
Algorithmica (2017) 77:1–15
DOI 10.1007/s00453-015-0055-1

Revenue and Reserve Prices in a Probabilistic Single
Item Auction

Noga Alon1,2 · Moran Feldman3 · Moshe Tennenholtz4

Received: 22 January 2015 / Accepted: 14 August 2015 / Published online: 25 August 2015
© Springer Science+Business Media New York 2015

Abstract We investigate the effect of limiting the number of reserve prices on the
revenue in a probabilistic single item auction. In the model considered, bidders com-
pete for an impression drawn from a known distribution of possible types. The auction
mechanism sets up to � reserve prices, and each impression type is assigned the high-
est reserve price lower than the valuation of some bidder for it. The bidder proposing
the highest bid for an arriving impression gets it provided his bid is at least the cor-
responding reserve price, and pays the maximum between the reserve price and the
second highest bid. Since the number of impression types may be huge, we consider
the revenue R� that can be ensured using only � reserve prices. Our main results are
tight lower bounds on R� for the cases where the impressions are drawn from the
uniform or a general probability distribution.
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1 Introduction

Real-time bidding has become a standard tool in advertising, especially in the context
of ad exchanges [10].Amajor setting of interest in this regard is themulti-billion-dollar
display advertisement market, where publishers (such as MSN and Yahoo) attempt to
maximize the revenue they collect from the advertisers (say, Nike or Coca-Cola) by
wisely targeting their ads at the right users. For example, an ad referring to the surfing
lifestyle on the sunny beaches of the PacificOceanmay bemost valuablewhen targeted
at a teenager from California; perhaps less so when targeted at a 10years old from
Oregon; and even less when targeted at older folks in areas that are far from the ocean.
In this setting each advertiser has his own valuation for each user type, and the different
user types appear according to some probability distribution.

The above type of situations has been recently formalized and studied [3,9] in a
framework termed a probabilistic single-item auction, in which m bidders participate
in a second-price auction for a single item, which is chosen randomly from a set of n
indivisible goods according to a commonly known probability distribution p ∈ Δ(n).
This stylized model captures the above advertising setting, where goods are in fact
user impressions in a publisher’s site.

Existing ad exchanges usually perform second price auction with reserve prices. A
reserve price is a minimum price set by the auctioneer. If no bid exceeds the reserve
price, the item is left unsold. Otherwise, the player with the highest bid gets the item
for the price of the second highest bid, but no less than the reserve price. Reserve
prices are a major tool for revenue optimization [11], and were shown also to be a
powerful tool in Internet settings [12].

In this paper we extend the framework of [3,9] by allowing actions with reserve
prices. Assuming familiarity of the auctioneer with the bidders’ values, which is a
standard assumption in the above framework,1 allowing an independent reserve price
for each one of the possible goods would allow the auctioneer to get for each good the
maximum valuation of any bidder. However, realistic ad exchanges usually segment
the set of possible goods, and set a uniform reserve price for all the goods in a given
segment. Often each segment represents a logical category. For example, all user
impressions related to cars are assigned the same reserve price. Hence, the number of
different reserve prices is often small in comparison to the number of possible goods
(which can be very large as every combination of user attributes defines a different
good). Our main objective in this paper is to investigate the effect of limiting the
number of different reserve prices on the revenue.

More formally, given an instance of an auction,2 let R� be the maximum expected
revenue that can be achieved using up to � different reserve prices. Notice that R∞ =
Rn is the optimal value that can be achieved by assigning an independent reserve

1 Real life ad exchanges have access to a vast log history, which allows for a good estimate of the bidders’
values based on historical bids and other, less direct, means such as the conversion rate associated with the
bidder and impression at hand.
2 An instance of an auction consists of the possible impression types, as well as the probability associated
with each type. The exact type of the impression that arrives in practice is not considered part of the instance.
A formal definition of the auctions we consider is given in Sect. 2.
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Table 1 Bounds on R�/R∞

Case Can be as low as Is at least

Uniform
probabilities

� ≤ ln1/2−ε n �/Hn (1) (1 − o(1)) · �/Hn (1)

ω(1) ≤ � (1 + o(1)) · c(1 − e−1/c) (2) (1 − o(1)) · c(1 − e−1/c) (2)

where c = �/ ln n where c = �/ ln n

General
probabilities

All (1 + o(1)) · �/n (3) �/n (3)

price for each good. We are interested in bounding the ratio R�/R∞ as a function of
0 ≤ � ≤ n, i.e., determining the fraction of R∞ that is guaranteed to be achieved by a
second price auction using up to � reserve prices.

A particularly interesting case of our problem is when the probability distribution
over the goods is uniform. This distribution corresponds not only to the case of selling
a particular good selected according to the uniform probability distribution, but also to
that where the aim is to sell a single instance of each good. This case is related to the
famous bundling problem considered by a rich literature in economics originated in
[13] (see, e.g., [4] and the references therein for more recent works on this problem).

Observe that R� ≤ R∞ because having more reserve prices can only improve the
revenue. Our main results are tight bounds on the lowest value R�/R∞ can take as a
function of � for both general and uniform probability distributions. The bounds we
prove are summarized in Table 1. Note that although, for the proofs, it is convenient to
state these bounds for the case of uniform probabilities separately for small values of
� and for large ones, the table actually shows that for uniform probabilities and every
possible value of �, R� is always at least (1 − o(1)) �

ln n (1 − e− ln n/�)R∞, and this is
tight. Here and throughout the paper, the o(1)-term tends to 0 as n tends to infinity.

In particular, the above bounds imply that for uniform probabilities c · ln n reserve
prices are enough to guarantee that R� is at least (1 − ε) · R∞ for an arbitrary small
constant ε > 0, provided c = c(ε) is chosen appropriately (and the best possible value
of this c(ε) can be computed as well). Our results are constructive, but we believe they
are also interesting as existential results, bounding the guarantee that can be ensured
with a given number of reserve prices. We stress that all the results in Table 1 are tight
up to low order terms for every value of �. The number in parentheses beside each
result in the table is the number of the theorem proving this result.

The results given in Table 1 are proved in Sect. 3. On the algorithmic side, we
describe in Sect. 4 an efficient algorithm for calculating the optimal set of reserve
prices. One can think of the previous results as lower bounds on the performance of
this algorithm.

Additional related work The related work on reserve prices in economics is huge,
and it would be impossible to do justice with all of its aspects. Let us just emphasize
that it deals with both theory extending upon Myerson work (see, e.g., [2,6,7]) and
empirical issues (see, e.g., [1,8]) under a variety of assumptions. The importance of
reserve prices has been in particular noticed by the multi-agent systems community,
and delicate aspects of the design of reserve prices have been studied, e.g., in two
items VCG-like auctions [14] and in realistic single item auctions [15]. The design of
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reserve prices in the context of segmentation and its combinatorial structure, which
are central to this work, were not studied to the best of our knowledge.

2 Model

In our model there are n impression types and m bidders. Each bidder d j has a non-
negative value v(i, j) for every impression type ti . Every arriving impression is of
type ti with probability pi (hence,

∑n
i=1 pi = 1). The auction mechanism can set

up to � reserve prices r1, r2, . . . , r�, where � is a parameter of the mechanism. Every
impression type ti is assigned the highest reserve price which is still lower or equal to
v(i, j) for some j (0 if there is no such reserve price). Let us denote this reserve price
by r ′

i . Whenever an impression whose type ti arrives, the bidders are notified about its
exact type, and then each bidder d j declares a bid b(i, j). Let dh and ds be the bidders
who gave the highest and second highest bids, respectively (if there is only one bidder,
we assume ds is a dummy bidder with a bid of 0). The bidder winning the good and
the payment are determined by the following rules:

– If b(i, h) < r ′
i , no bidder gets the item.

– If b(i, s) < r ′
i ≤ b(i, h), bidder dh gets the item and pays r ′

i .
– If r ′

i ≤ b(i, s), bidder dh gets the item and pays b(i, s).

One can observe that the above mechanism is truthful for every given choice of
reserve prices, and therefore, given an impression of type ti , declaring a bid of b(i, j) =
v(i, j) is a (weakly) dominant strategy for bidder d j .3 To present our results and
analyze them, we need the following notation:

R�: The expected revenue achieved by the above auction mechanism using the best
choice of up to � reserve prices.

hi : The maximal value given by any bidder for impressions of type ti . Unless oth-
erwise is explicitly stated, we assume, without loss of generality, h1 ≥ h2 ≥
· · · , hn .

The following formula for R∞ follows immediately from the definitions, and is used
often in our proofs.

Observation 1 R∞ = ∑n
i=1 hi · pi .

Figure 1 depicts an example demonstrating our notation.

3 Bounding R�/R∞

Our aim in this section is to find out how much lower can R� be in comparison to
R∞. Theorem 1 considers the relation of R∞ and R� for uniform probabilities and
relatively small values of �, while Theorem 2 does the same for large values of �.
General probabilities are treated by Theorem 3.

3 If the choice of reserve prices is based on historical bids, it might be beneficial for a bidder to lie in
the current auction round, and probably lose some value, in order to affect the reserve prices set in future
auctions. We leave such complex (and probably unpractical) plots outside our scope.
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Value Reserve Prices
R1 15/4 {5}
R2 17/4 {6, 5}
R3 19/4 {7, 5, 2}
R∞ 20/4 {7, 6, 5, 2}

b: 7 3 1 2
5 6 5 1

h: 7 6 5 2

Fig. 1 Example of an auction. Matrix b gives the bids—the entry at row j and column i is the bid of bidder
d j for impression type ti . The numbers below matrix b are the hi values corresponding to the various
impression types. Notice that the hi values are ordered in a non-increasing order following our assumption.
The table on the right gives the values of R� for � ∈ {1, 2, 3, ∞} and the set of reserve prices yielding each
value, assuming uniform probabilities

Lemma 1 Assume uniform probabilities, R1 ≥ R∞/Hn, where Hn is the nth har-
monic number.

Proof By choosing a single reserve price of hi , the auctioneer can get a revenue of at
least hi from impressions of types t1, t2, . . . , ti , resulting in a total revenue of at least
i · hi/n. If for some i , i · hi/n ≥ R∞/Hn , then we are done. To complete the proof,
let us show that assuming hi/n < R∞/(i · Hn) for every i leads to a contradiction.
Summing our assumption over all i , we get:

n∑

i=1

hi/n <

n∑

i=1

R∞/(i · Hn) = R∞/Hn ·
n∑

i=1

1

i
= R∞.

However, the left hand side of the inequality from the previous line is also R∞, which
is a contradiction. ��

Using the above lemma, we can get a general theorem for R�, when � is not too
large (compared to n).

Theorem 1 Assume uniform probabilities. For every 1 ≤ � ≤ ln1/2−ε n, where ε > 0
is an arbitrary small constant, it always holds that R� ≥ (1 − o(1)) · �/Hn · R∞,
where Hn is the nth harmonic number. Moreover, there exists an instance with uniform
probabilities for which R� ≤ �/Hn · R∞.

Proof We begin by proving the first part of the theorem. Note that we may and will
assume throughout the proof that n is sufficiently large. Define c = lnε n, and observe

that c� ≤ n. If
∑c�

i=1 hi/n ≥ R∞/c, then by Lemma 1, a single reserve price can be
used to get a revenue of at least:

∑c�

i=1 hi/n

Hc�

≥ (1 − o(1)) · R∞/c

� ln c
≥ (1 − o(1)) · � · R∞

ln1−2ε n · c · ln c
= (1 − o(1)) · � · R∞

ln1−ε n · ln lnε n
= (1 − o(1)) · lnε n

ln lnε n
· �

ln n
· R∞

≥ (1 − o(1)) · �

Hn
· R∞,
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The proof for this case is complete by observing that � reserve prices are always at

least as good as 1. Thus, we can assume from now on that
∑c�

i=1 hi/n < R∞/c.
Let us now define n different possible sets of reserve prices. To do that, we need to

define rk,i as follows:

rk,i =
{
h	i ·ck−1
 if i · ck−1 ≤ n,

0 otherwise.

The i th set of reserve prices is simply Li = {rk,i |1 ≤ k ≤ �}. By the definition of
R�, no one of the above sets yields a revenue of more than R�, hence, it must be that
for every 1 ≤ i ≤ n:

	i · c0
 · ri,1
n

+
�∑

k=2

[	i · ck−1
 − 	i · ck−2
] · ri,k
n

≤ R�

⇒ i · ri,1
n

+ i · (c − 2)

n
·

�∑

k=2

ck−2 · ri,k ≤ R�

⇒ ri,1
n

+ c − 2

n
·

�∑

k=2

ck−2 · ri,k ≤ R�

i
. (1)

Notice that
∑n

i=1 ri,1 = ∑n
i=1 hi = n · R∞. Similarly, by the fact that the h’s form

a non-increasing series, we also have for every 2 ≤ k ≤ �:

n∑

i=1

ri,k =
	n/ck−1
∑

i=1

h	i ·ck−1
 ≥
∑n

i=ck−1 hi
ck−1 =

∑n
i=1 hi − ∑ck−1−1

i=1 hi
ck−1

≥ n · R∞ − n · R∞/c

ck−1 = n · R∞ · 1 − 1/c

ck−1 ,

where the last inequality follows from our assumption that
∑c�

i=1 hi/n < R∞/c.
Adding up Eq. (1) for every 1 ≤ i ≤ n, and applying the last observation to the result,
we get:

R∞+(c − 2) ·
�∑

k=2

ck−2 ·
[

R∞ · 1 − 1/c

ck−1

]

≤ R� · Hn

⇒ R∞ + (� − 1) · (1 − 2/c)(1 − 1/c) · R∞ ≤ R� · Hn

⇒ R∞ + (� − 1) · (1 − 2/c)2 · R∞ ≤ R� · Hn

⇒ R∞ · � · (1 − 2/c)2 ≤ R� · Hn

⇒ R� ≥ (1 − 2/c)2 · �

Hn
· R∞ = (1 − o(1)) · �

Hn
· R∞.
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We now get to the second part of the theorem. Consider an instance with uniform
probabilities and a single bidder whose value for impressions of type ti is 1/ i . In this
instance hi = 1/ i for every 1 ≤ i ≤ n, and thus, R∞ = ∑n

i=1(1/ i)(1/n) = Hn/n.
Let us upper bound R�. Let r1, r2, . . . , r� be the optimal choice of reserve prices for
the instance constructed. Clearly we can assume without loss of generality that every
reserve price in this optimal set is equal to hi for some 1 ≤ i ≤ n, and is, therefore,
different from 0. Moreover, we can also assume that every reserve price is unique, i.e.,
no two reserve prices are equal (if ri1 and ri2 are two identical reserve prices, then
replacing ri1 with an arbitrary other value can only increase the revenue).

Since there is only a single bidder, the revenue of the auctioneer from every impres-
sion type ti must be equal to either 0 or some reserve price. Let us construct for every
reserve price rk a set Tk containing all impression types which yield a revenue of rk .
R� can be calculated using the following formula: R� = n−1 · ∑�

k=1 |Tk | · rk . Con-
sider some reserve price rk . We already know rk is equal to hi for some 1 ≤ i ≤ n.
Thus, the set |Tk | can contain at most the i elements of values 1, 1/2, . . . , 1/ i . Hence,
|Tk | · rk ≤ i · (1/ i) = 1. Plugging this into the previous formula yields:

R� ≤ 1

n
·

�∑

k=1

1 = �

n
= �

Hn
· R∞.

��
The following theorem bounds the ratio R�/R∞ for large values of �.

Theorem 2 Assume uniform probabilities. Then, for every ω(1) ≤ � ≤ n,

R� ≥ (1 − o(1)) · c
(
1 − e−1/c

)
· R∞,

where c = �/ ln n. Moreover, there exist an instance for which

R� ≤ (1 + o(1)) · c
(
1 − e−1/c

)
· R∞.

Before getting to the proof of the theorem, we need the following lemma.

Lemma 2 For every choice of 1 ≥ r1 > r2 > · · · > r� ≥ 1/n,

r1 · 	1/r1
 +
�−1∑

k=1

rk+1 · (	1/rk+1
 − 	1/rk
)

≤ 1 + (� − 1)
(
1 − n−1/(�−1)

)
.

Proof Notice that the expression on the left hand side of the above inequality is upper
bounded by:

r1 · 1/r1 +
�−1∑

k=1

rk+1 · (1/rk+1 − 1/rk) = 1 +
�−1∑

k=1

(1 − rk+1/rk) . (2)
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Let 1 ≥ r ′
1 > r ′

2 > · · · > r ′
� ≥ 1/n be the � values maximizing (2). The derivative

of (2) by r1 is: ∂[−r2/r1]/∂r1 = r2/r21 , which is always positive. Thus, the value
of r ′

1 must be 1, the largest value it can take. Next, the derivative of (2) by r� is:
∂[−r�/r�−1]/∂r� = −1/r�−1, which is always negative. Thus, the value of r ′

� must be
1/n, the smallest value it can take. Finally, the derivative of (2) by rk , for 1 < k < �

is:

∂[−rk+1/rk − rk/rk−1]
∂rk

= rk+1/r
2
k − 1/rk−1,

which is zero for rk = √
rk+1rk−1, negative for larger values and positive for small val-

ues. Thus, it must be that r ′
k =

√
r ′
k+1r

′
k−1, and after rearranging: r

′
k/r

′
k−1 = r ′

k+1/r
′
k .

Clearly, this implies that the r ′
k’s form a geometric series, i.e., r ′

k = n−(k−1)/(�−1).
Plugging this into (2) gives:

1 +
�−1∑

k=1

(1 − rk+1/rk) ≤ 1 +
�−1∑

k=1

(
1 − n−k/(�−1)/n(k−1)/(�−1)

)

= 1 +
�−1∑

k=1

(
1 − n−1/(�−1)

)
= 1 + (� − 1) ·

(
1 − n−1/(�−1)

)
.

��
We are now ready to prove Theorem 2.

Proof of Theorem 2 We begin by proving the first part of the theorem. Let b = �(1+
ln ln n/ ln n)� + 1. We first lower bound Rb, and then show how to translate this
lower bound into a lower bound on R�. Let B = {ti | hi ≤ h1 · e(1−b)/c} be the
set of impression types with very low value (compared to h1). Observe that the total
contribution to R∞ of these impression types is only:

n ·
(
h1 · e(1−b)/c

) /
n ≤ h1 · e−(ln n+ln ln n) = h1 · n−1 · ln−1 n ≤ R∞ · ln−1 n.

Hence, we can upper bound R∞ by:

R∞ ≤
∑

i /∈B
hi

/
n + R∞ · ln−1 n ⇒ R∞ ≤

∑
i /∈B hi/n

1 − ln−1 n
.

Let x be a uniformly chosen random number from the range [0, 1]. For every
1 ≤ j ≤ b, let us define a set S j = {ti /∈ B|h1 · e(2− j−x)/c ≥ hi > h1 · e(1− j−x)/c}.
Observe that every impression type outside of B belongs to exactly one set S j . Since
we are lower bounding Rb, we should define b reserve prices. Thus, let us define the
j th reserve price, for every 1 ≤ j ≤ b, to be r j = h1 · e(1− j−x)/c. Observe that,
under these reserve prices, all impression types of a set S j pay at least r j . Using this
observation, we can now calculate the expected value of Rb (recall that x is a random
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number). Let yi be the value for which hi = h1 · e(1−yi )/c. Impression type ti belongs
to set Syi � if x ≤ 1+ yi − yi�, and belongs to Syi �−1 otherwise. Thus, the expected
contribution to Rb of ti is:

∫ 1+yi−yi �

0
h1 · e(1−yi �−x)/cdx +

∫ 1

1+yi−yi �
h1 · e(2−yi �−x)/cdx

= −h1c · e(1−yi �−x)/c
∣
∣
∣
1+yi−yi �
0

− h1c · e(2−yi �−x)/c
∣
∣
∣
1

1+yi−yi �
= h1c ·

[
e(1−yi �)/c − e−yi /c

]
+ h1c ·

[
e(1−yi )/c − e(1−yi �)/c

]

= h1c · e−yi /c · (e1/c − 1) = hi · c
(
1 − e−1/c

)
.

Hence, by the linearity of the expectation, the total expected contribution to Rb from
impression types outside of B is at least: c(1− e−1/c) · ∑i /∈B hi/n. Thus, there must
exist a set of b reserve prices which proves that: Rb ≥ c(1 − e−1/c) · ∑

i /∈B hi/n.
Recall now that we actually need to lower bound R�. However, by averaging we get:

R� ≥ �

b
· Rb ≥ �

b
· c

(
1 − e−1/c

)
·
∑

i /∈B
hi/n

≥ � · c (
1 − e−1/c

)

�(1 + ln ln n/ ln n)� + 1
· (1 − ln−1 n) · R∞

>
� · (1 − ln−1 n)

�(1 + ln ln n/ ln n) + 2
· c

(
1 − e−1/c

)
· R∞

= 1 − o(1)

1 + o(1) + 2/�
· c

(
1 − e−1/c

)
· R∞.

Recalling that � = ω(1), we get 2/� = o(1), and the first part of the theorem follows
immediately from the above inequality.

As for the second part of the theorem. First, consider the case � ≥ ln2 n. In this
case:

c
(
1 − e−1/c

)
≥ c

(
1

c
− 1

2c2

)

= 1 − 1

2c
= 1 − ln n

2�

≥ 1 − ln n

2 ln2 n
= 1 − 1

2 ln n
= 1 − o(1).

Thus, in this case, the second part of the theorem follows from the inequality: R� ≤
(1+o(1))(1−1/(2 ln n))R∞, which is trivially true, as R� ≤ R∞. Hence, the second
part of the theorem is meaningful only for � < ln2 n. Therefore, we assume this is the
case from now on.

Consider an instance with uniform probabilities and a single bidder whose value
for impressions of type ti is 1/ i . In this instance hi = 1/ i for every 1 ≤ i ≤ n,
and thus, R∞ = ∑n

i=1(1/ i)(1/n) = Hn/n. We would like to upper bound R� in this
instance. Let r1 > r2 > · · · > r� be some set of � reserve prices. Clearly, we can
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10 Algorithmica (2017) 77:1–15

assume 1 ≥ ri ≥ 1/n for every 1 ≤ k ≤ � (otherwise, ri can be either increased or
decreased without affecting the revenue). The revenue when using these reserve prices
is given by 1/n times the following expression:

r1 · 	1/r1
 +
�−1∑

k=1

rk+1 · (	1/rk+1
 − 	1/rk
) ≤ 1 + (� − 1)
(
1 − n−1/(�−1)

)
,

where the last inequality follows from Lemma 2. Thus,

R� ≤ 1/n + (� − 1) ·
(
1 − n−1/(�−1)

)/
n.

Using the same arguments, one can also get: R�+1 ≤ 1/n + �
(
1 − n−1/�

)
/n, and

clearly, R� ≤ R�+1 ≤ 1/n + �
(
1 − n−1/�

)
/n. Next, observe that:

�
(
1 − n−1/�

)
= �

(
1 − e− ln n/�

)
≥ � ·

(
ln n

�
− ln2 n

2�2

)

= ln n − ln2 n

2�
> ln n − ln2 n

2 ln2 n
= ln n − 1

2
.

Thus, R� ≤ 1/n + �(1 − n−1/�)/n = (1 + o(1)) · �(1 − n−1/�)/n. Finally, recall that
R∞ = Hn/n, and therefore,

R� ≤ (1 + o(1)) · �
(
1 − n−1/�

)
/n = (1 + o(1)) · c

(
1 − e−1/c

)
· R∞,

where the equality uses the definition c = �/ ln n, which implies that � = c ln n and
n−1/� = e−1/c. ��

The last theorem of the section deals with the relatively simple case of general
probabilities, for all values of �.

Theorem 3 Assume general probabilities. Then, for every 1 ≤ � ≤ n,

R� ≥ (�/n) · R∞.

Moreover, there exists an instance for which

R� ≤ (1 + o(1)) · (�/n) · R∞.

Proof Webeginbyproving thefirst part of the theorem.Notice that R∞ = ∑n
i=1 pi ·hi .

Thus, there exists a set S of � impression types for which R∞ ≤ (n/�) · ∑ti∈S pi · hi .
Let us now choose the following set of up to � reserve prices: {hi | ti ∈ S}. Clearly,
when using this set of reserve prices the revenue from every impression of type ti ∈ S
is at least hi . Thus, R� ≥ ∑

ti∈S pi · hi ≥ (�/n) · R∞.
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Next, consider the second part of the theorem. Let f0, f1, f2, . . . , fn be a set of
values such that for every 1 ≤ i ≤ n, f (i) = ω(n) · f (i − 1) (notice that ω(n)/n
tends to infinity with n). Consider an instance with a single bidder whose value for
impressions of type ti is v(i, 1) = 1/ fi , and the probability of impressions of type
ti is pi = fi/[∑n

j=1 f j ]. For consistency, we also define p0 = f0/[∑n
j=1 f j ]. The

contribution of impressions of type ti to R∞ is pi/ fi , for every 1 ≤ i ≤ n, and
therefore, R∞ = ∑n

i=1[pi/ fi ] = n/[∑n
i=1 fi ]. Consider now R�. Let r1, r2, . . . , r�

be the best set of � reserve prices. Clearly we can assume without loss of generality
that for every 1 ≤ k ≤ �, the reserve price rk is equal to 1/ fi for some 1 ≤ i ≤ n,
and let us denote this i by i(k). Moreover, we can also assume each reserve price is
unique, i.e., no two reserve prices are equal.

Since there is only a single bidder, the revenue from every impression type ti must
be equal to either 0 or some reserve price. Let us construct for every reserve price rk
a set Tk containing all impression types which contribute rk to R�. Then, R� can be

calculated using the following formula: R� = ∑�
k=1

(
rk · ∑

ti∈Tk pi
)
. Consider an

arbitrary reserve price rk . Every impression type ti ∈ Tk , except for ti(k), must have
i < i(k). Hence,

rk ·
∑

ti∈Tk
pi ≤ rk · (pi(k) + n · pi(k)−1) = pi(k)

fi(k)
+ n · pi(k)−1

fi(k)

= 1
∑n

j=1 f j
+ n · fi(k)−1/ fi(k)

∑n
j=1 f j

= 1 + o(1)
∑n

j=1 f j
.

Plugging this into the previous formula yields:

R� ≤
�∑

k=1

⎛

⎝rk ·
∑

ti∈Tk
pi

⎞

⎠ = � · 1 + o(1)
∑n

j=1 f j
= (1 + o(1)) · �

n
· R∞.

��

4 Computing the Optimal Reserve Prices

In this section we describe an algorithm for calculating the optimal set of reserve
prices for a given auction instance. This is done using dynamic programming. The
algorithm fills up a table T of size n · �, where cell T (n′, �′) contains the optimal
set of reserve values for an auction where only the last n′ impression types appear
(i.e., tn−n′+1, tn−n′+2, . . . , tn), and only �′ reserve prices are allowed.4 To simplify the
discussion, we consider the case of a single bidder. The same reasoning easily extends
to the general case of many bidders as well.

4 Technically, when removing impressions from an auction, we get an invalid auction where the total
probability of all impression types is less than 1.We assume throughout this section that if

∑n
i=n−n′+1 pi <

1, then with probability 1 − ∑n
i=n−n′+1 pi no impression arrives, and the revenue is 0.
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Lemma 3 For every 1 ≤ n′ ≤ n, T (n′, 1) can be efficiently computed.

Proof Cells of the form T (n′, 1) represent an auction with a single reserve price.
The only values that make sense for this reserve price are hn−n′+1, hn−n′+2, . . . , hn .
Hence, we have only a linear number of options to check. ��

Lemma 4 For every 1 ≤ n′ ≤ n and 1 < �′ ≤ �. Given that T (n′′, �′ − 1) is known
for every 1 ≤ n′′ ≤ n, the value T (n′, �′) can be efficiently computed.

Proof Let r1, r2, . . . , r�′ be the set of optimal reserve prices for the auction represented
by T (n′, �′), ordered in an increasing order, and let Sk be the set of impression types
which give a revenue of rk , for every 1 ≤ k ≤ �′. Notice that the assumption h1 ≥
h2 ≥ · · · ≥ hn implies that the sets Sk are continuous, i.e., the indices of the impression
types of Sk form a continues range of integers. Moreover, we can assume that rk is
equal to hi , where i is the largest index for which ti belongs to Sk . It is possible to
guess the size s of S�′ , the set with the range of impression types of the lowest indices.
Once we make this guess, it is easy to see that the optimal choice for r�′ is hn−n′+s ,
which results in a revenue of r�′ · ∑n−n′+s

i=n−n′+1 pi from the impressions of S�′ .
Let us now make the following mental experiment. Let us remove the reserve price

r�′ together with all the impression types of S�′ . Are the remaining reserve prices
optimal for the remaining auction? We claim they are. Let A be the original auction,
and A′ = A\S�′ be the remaining auction after the removal of the impression types of
S�′ . We also denote by R the above set of �′ reserve prices, and by R′ = R\{r�′ } the
remaining reserve prices. Using this notation, we need to prove that R′ is the optimal
set of reserve prices for A′.

Assume there is a better set of reserve prices R̄′ for A′. Then, the set R̄ = R̄′ ∪ {r�′ }
is a new set of reserve prices for A. Let us denote by V (A, R) the revenue from an
auction A and a set R of reserve prices. Let H be the largest hi for any impression
type ti ∈ A′. Observe that by the definition of S�′ , r�′ is larger than H . Thus, we get:

V
(
A′, R′) = V

(
A′, R

)
, V

(
A′, R̄′) = V

(
A′, R̄

)
.

Clearly, we can assume that both R and R̄ contain no reserve price larger than H ,
other than r�′ . Thus, the revenue from the impression types of S�′ is equal under both
the set R and R̄ of reserve prices. Hence,

V (A′, R) + r�′ ·
⎛

⎝
n∑

i=n−n′+s+1

pi

⎞

⎠ = V (A, R),

and

V (A′, R̄) + r�′ ·
⎛

⎝
n∑

i=n−n′+s+1

pi

⎞

⎠ = V (A, R̄).
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Combining all these inequalities, with the fact that by definition V (A′, R̄′) >

V (A′, R′), we get V (A, R̄) > V (A, R), contradicting the definition of R as the
optimal set of reserve prices for A.

From the above experiment, we learn that once we know the size s of S�′ and r�′ ,
the rest of the optimal set of reserve prices is given by T (n′ − s, �′ − 1) (if n′ − s = 0,
then we can assume T (0, �′ − 1) = ∅). ��
Theorem 4 The optimal set of reserve prices can be calculated efficiently.

Proof Using Lemmata 3 and 4, we can fill up the table T . The optimal set of reserve
prices is now given by T (n, �). ��

To demonstrate our algorithm, let us consider an auction instance with 4 items and
2 advertisers. The values of the items (to each adversertiser) are given by the following
matrix (the value of advertiser j for item i is given by the cell ( j, i) in this matrix):

(
5 0 1 2

1 3 2 0

)

.

Observe that the items in the above matrix are already sorted in a decreasing hi order.
Given the above auction instance, our algorithm will construct the following table T .

� n′

1 2 3 4

1 {2} {2} {2} {2}
2 {2} {2} {2, 3} {2, 5}
3 {2} {2} {2, 3} {2, 3, 5}

Let us explain how three of the above entries were calculated:

– T (4, 1). There are three possible guesses for the the single reserve price r1 in
the solution: h1 = 5, h2 = 3 and h3 = h4 = 2. The values of the solutions
corresponding to these guesses are: 5, 6 and 8, respectively. Thus, the last guess
is used, which yields the solution {2}.

– T (3, 2). There are three possible guesses for the size of S2 when considering only
the three last items. If S2 = {t2}, then r2 = h2 = 3, which results in the solution
{3} ∪ T (2, 1) = {2, 3}, whose value is 7. If S2 = {t2, t3}, then r2 = h3 = 2,
which results in the solution {2}∪T (1, 1) = {2}, whose value is 6. Finally, if S2 =
{t2, t3, t4}, then r2 = h4 = 2, which results in the solution {2} ∪ T (0, 1) = {2},
whose value is again 6. Thus, the best solution is {2, 3}.

– T (4, 2). There are four possible guesses for the size of S2 when considering all four
items. If S2 = {t1}, then r2 = h1 = 5, which results in the solution {5}∪T (3, 1) =
{2, 5}, whose value is 11. If S2 = {t1, t2}, then r2 = h2 = 3, which results in the
solution {3} ∪ T (2, 1) = {2, 3}, whose value is 10. If S2 = {t1, t2, t3}, then
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r2 = h3 = 2, which results in the solution {2} ∪ T (1, 1) = {2}, whose value is
8. Finally, if S2 = {t1, t2, t3, t4}, then r2 = h4 = 2, which results in the solution
{2} ∪ T (0, 1) = {2}, whose value is again 8. Thus, the best solution is {2, 5}.

5 Concluding Remarks

We studied the effect of limiting the number of reserve prices on the revenue in a
probabilistic single item auction. If R∞ denotes the maximum possible (expected)
revenue that can be obtained using an unlimited number of reserve prices, and R�

denotes the revenue that can be ensured using � reserve prices, we have determined
the best possible lower bound for the ratio R�/R∞, for all admissible values of � under
uniform probabilities and under general probabilities. In particular we have shown that
for uniform probabilities a number of reserve prices that is logarithmic in the number
of types suffices to ensure a revenue that is comparable to the total revenue that can be
obtained using an unlimited number of such prices. It is worth noting that the proof of
this statement itself is not complicated, when we do not care about precise constants,
and the main technical contribution is getting tight estimates, up to low order terms,
for all possible values of the parameters. Getting tight estimates is very important in
the ad exchanges business, where every small change in the constants of the estimates
may correspond to millions of dollars in revenue.

Our investigation is motivated by the study of the display advertisement market,
where the number of possible reserve prices is often limited. This limitation may arise
due to the difficulty of communicating a large number of reserve prices to the bidders,
or due to logical segmentation rules. In the last case it may be interesting to study
this problem further when these rules do not enable the mechanism to assign reserve
prices arbitrarily to the different types, but force some additional constraints on this
assignment.

We study the uniform distribution because it is natural and corresponds to the
bundling problem of [4,13]. The general distribution is the other extreme, and hence,
interesting. Other distributions may be worthwhile to study as well, but as it is not
clear which distributions are most relevant for the display advertisement market; this
paper refrains from addressing this issue. We believe our analysis of the two end point
distributions should give an intuitive idea as to the properties of the distribution that
affect the necessary number of reserve prices.

When the number of items is very large or when there is an insufficient log history
to determine the values of the different items to the bidders, it might not be possible
to find the optimal set of reserve prices using our algorithm. In these scenarios, our
results can be interpreted as showing that it is possible to do well with a realistic
number of reserve prices.

One possible extension of our work is comparing R� with auctions using signal-
ing. Auctions with signaling are second-price auctions where the auctioneer decides,
strategically, which part of the information to communicate to the bidders (as opposed
to the auctions considered in this paper, where the instantiation is fully revealed).
The concealment of information in signaling auctions is used as method for maxi-
mizing the revenue, instead of reserve prices, which are often missing in this kind of
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auctions. Auctions with signaling were considered, e.g., by [5]. In a complementary
study we compare the revenue of second-price auctions with reserve prices to the
revenue obtained by second-price auctions with signaling. Our preliminary results in
this direction show that one can indeed get a better bound when comparing against
the best signaling scheme, as opposed to comparing with the theoretical value of R∞.
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