
Algorithmica (2016) 76:490–501
DOI 10.1007/s00453-015-0051-5

Streaming Algorithms for Independent Sets in Sparse
Hypergraphs

Bjarni V. Halldórsson1 · Magnús M. Halldórsson2 ·
Elena Losievskaja2 · Mario Szegedy3

Received: 21 February 2014 / Accepted: 6 August 2015 / Published online: 19 August 2015
© Springer Science+Business Media New York 2015

Abstract We give the first treatment of the classic independent set problem in graphs
and hypergraphs in the streaming setting. The objective is to find space-efficient algo-
rithms that output independent sets that are “combinatorially optimal”, that is, with
size guarantee in terms of the degree sequence alone. Our main result is a randomized
algorithm that achieves this using space in bits that is linear in the number of vertices.
We use this to examine assumptions about the streaming model, and advocate the
study of output-efficient algorithms that measure space usage relative to the size of the

Magnús M. Halldórsson: Research supported by Grants 7000921,90032021 and 12003211 of the
Icelandic Research Fund.

Mario Szegedy: Supported by NSF Grant EMT-0523866.

A preliminary version of this paper appeared in the Proceedings of the 37th International Colloquium on
Automata, Languages and Programming (ICALP), Bordeaux, France, July 2010.

B Magnús M. Halldórsson
mmh@ru.is

Bjarni V. Halldórsson
bjarnivh@ru.is

Elena Losievskaja
ellossie@gmail.com

Mario Szegedy
szegedy@cs.rutgers.edu

1 ICE-TCS, School of Science and Engineering, Reykjavik University and deCODE genetics,
101 Reykjavík, Iceland

2 ICE-TCS, School of Computer Science, Reykjavik University, 101, Reykjavík, Iceland

3 Department of Computer Science, Rutgers University, 110 Frelinghuysen Road,
Piscataway, NJ, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-0051-5&domain=pdf

Algorithmica (2016) 76:490–501 491

output solution. In that sense, our main algorithm uses space linear in the output size.
We also examine algorithms that use little or no space in addition to the bits storing the
output. Our algorithms fall also into an online streamingmodel, where output-changes
can go only in one direction. In particular a feasible solution must be maintained at all
times, and items that are removed from the solution can never reenter. We obtain tight
bounds on deterministic algorithms for independent sets in graphs in that model.

Keywords Streaming algorithms · Independent sets · Turan bound ·
Online streaming

1 Introduction

In this paper we consider streaming algorithms for the classic independent set prob-
lem on graphs and hypergraphs. As input, we are presented with a sequence of
(hyper)edges, and we have to output a large set of vertices that contains no (full) edges.

For graphs, a theorem of Paul Turán guarantees an independent set of size n/(d+1)
[18], where d is the average degree of the graph. If the entire degree-sequence,
d1, . . . , dn , of the graph is available, then

∑n
i=1

1
di+1 is a stronger lower bound for

the maximum independent set size (in this paper n will always denote the number of
nodes of the input graph) [4,19]. This formula has a generalization for hypergraphs as
well (see Sect. 1.2). We seek algorithms that output solutions of this “combinatorially
optimal” size.

The motivation for the streaming model [16] comes from practical applications of
managing massive data sets such as, e.g., real-time network traffic, on-line auctions,
and telephone call records. These data sets are huge and arrive at very high rate,making
it impossible to store the entire input and forcing quick decisions on each data item.

However, most graph problems are impossible to solve within the polylogarithmic
space bound that the traditional streaming model offers. For instance, testing basic
properties like connectivity or bipartiteness requires �(n) space [12].

This observation led to the introduction of the semi-streaming model [16], where
space for n-vertex graphs is restricted to n logO(1) n. The algorithms then have enough
space for some information for each vertex, but not enough to store the whole graph.
A number of graph problems have been studied in the semi-streamingmodel, including
bipartite matching (weighted and unweighted cases) [10,11], diameter and shortest
paths [11,12], min-cut [1], and graph spanners [12]. The independent set (IS) problem,
to our best knowledge, has not been studied in the model before.

We propose to study algorithms that are output efficient, by measuring space usage
relative to the size of the required output. In that sense, our focus is on models that are
more restrictive than the semi-streaming, either aiming for space linear in the solution
size or minimal space in addition to the solution bits.

All the algorithms we consider have the common feature that they maintain a feasi-
ble solution at all times. Also, decisions made on edges are irreversible: once a node is
ejected from the solution, it never enters it again. This defines a new online streaming
model. It is closely related to preemptive online algorithms, considered recently by
Epstein et al. [10] in a streaming context for weighted matching. The difference is that

123

492 Algorithmica (2016) 76:490–501

in our problem, we can view the whole vertex set as belonging to the initial solution,
thus the solution of any algorithm is monotonously non-increasing with time.

To contrast, in the classical online version of the IS problem [2,14], vertices arrive
one by one, along with all incident edges to previous vertices. The online algorithm
must then determine once and for all whether the node is to be included in the con-
structed feasible independent set solution. This problem is very hard to solve online
[2,14]; e.g., a competitive factor of n−1 is best possible for deterministic algorithms,
even when restricted to trees. However, bounded-degree graphs are comparatively
easy, since a factor of � is trivial for a deterministic greedy algorithm, where �

denotes the maximum degree.
By focusing on the space requirements and how the working space can be used, we

seek to gain a deeper understanding of theways that independent sets can be computed.
There have been few works on online graph problems that allow for one-way

changes along the lines of the online streaming model (where items can be removed
from a solution at any time but not reintroduced). A rare example is a recent (and con-
current) work of [7] that can be viewed as the maintenance of a strong independent set
(a set of vertices that intersects each edge in at most one node) of a hypergraph when
edges arrive in a stream; the focus in that work is however on the competitive ratio,
not the space usage. Following the initial publication of our work [13], two papers
have explored further streaming algorithms that use space proportional to the output
size: interval selection (or independent set in interval graphs) [8], and semi-matchings
[9].

Finally, the independent set problem in general graphs was studied in the streaming
setting [15], with strong space lower bounds.

1.1 Our Contribution

We present in Sect. 2 a priority-based schema of streaming algorithms for IS in
sparse graphs and hypergraphs. It is parameterized by a priority function that rules
which vertices from each edge will survive and which are removed from the solution.
We instantiate the schema with three priority functions. Our main result is showing
that there is an O(n)-space algorithm that achieves a combinatorially optimal bound
(denoted �(i(H)) and defined shortly).

We use this opportunity to examine the appropriatemodels for streaming algorithms
in this context. Our algorithms have the property of being online in the sense that a
feasible solution must be maintained at all times and a vertex can never reenter the
solution once it has been ejected. We study in Sect. 3 the power of deterministic algo-
rithms in such an online streaming model, which are much weaker than randomized
algorithms.

We also examine the tradeoffs between space and solution quality. One conclusion
is that a desirable goal for streaming algorithms should be to use space only linear in
the size of the output, which for IS is n bits. We consider in Sect. 4 the case when only
minimal extra space is available, in addition to the bits needed to store the solution,
and show in particular that with no additional space the performance guarantees are
exponentially worse.

123

Algorithmica (2016) 76:490–501 493

1.2 Definitions

Given a hypergraph H = (V, E), let n and m be the number of vertices and edges
in H , respectively. We assume that H is a simple hypergraph, i.e. no edge is a proper
subset of another edge. An independent set I in H is a vertex subset that contains no
edge of H . If I is independent, then V \I is said to be a hitting set.

A hypergraph is r -uniform if all edges have the same cardinality r . Graphs are
exactly the 2-uniform hypergraphs. For graphs and hypergraphs the degree d(v) of
a vertex v is the number of edges incident on v. We denote by � and d the maxi-
mum and the average degree, respectively. For us, a better measure for the degree of
the vertex v of H is the efficient degree, d∗(v), which is the real-valued solution to∑

e:v∈e 1
(d∗(v))|e|−1 = 1. For intuition, if all edges incident on vertex v are of size r ,

then d∗(v) = r−1
√
d(v).

Let α(H) denote the size of a maximum independent set in H . Also, define i(H) =∑
v

1
d∗(v)

, and note that for a d-regular r -uniform hypergraph H , i(H) = n/
r−1
√
d.

What makes i(H) interesting for us is that α(H) = �(i(H)). In fact, as Caro and
Tuza have shown that �(i(H)) is the strongest lower bound for α(H) that we can
obtain from the degree-sequence alone for a large class of hyper-graphs [5], and
we are not aware of any class for which an asymptotically better bound could be
given. Let IS denote the problem of finding in hypergraphs an independent set of size
�(i(H)).

We can generalize all of the definitions for weighted (hyper)graphs. A vertex-
weighted hypergraph has a non-negative weight function on its vertices. The notions
of average degree etc. carry over to the weighted case in a natural way, for instance
i(H) becomes

∑
v

w(v)
d∗(v)

, wherew is the weight function.Most of our results will carry
over to the weighted case with obvious modifications.

Let [n] denote {1, 2, . . . , n}.

Model We assume that the algorithm knows in advance n, the number of vertices, but
has no other information about the input. The edges arrive in a stream, in an adversarial
order. We assume that the vertices are labelled 0, . . . , n − 1; this assumption can be
avoided by simply maintaining a lookup table, but the storage requirements for such
lookup are beyond the scope of our considerations here.

For this article, the most precious resource is space, and we model and regard
memory as a linear array of bits with direct access (as in standard C programming).
When using big-oh notation, we mean constants independent of the edge sizes and
degree parameters.

We consider online streaming algorithms that maintain at all times a single valid
solution, in the form of a single bit for each vertex. The solution is monotonously non-
increasing with time: initially, it contains all vertices, but once a vertex is removed
from the solution it never reappears. Note that vertices of degree 0 will automatically
be included in any solution output.

123

494 Algorithmica (2016) 76:490–501

S ← ∅
For each edge e in the edge stream do

Let v be the vertex in e with the largest value f(v), resolving conflicts arbitrarily
S ← S ∪ {v}

Output I = V \ S

Fig. 1 Algorithm schema Priority, parameterized by a priority function f : V → N

2 Priority-Based Streaming Algorithms

Weconsider the following algorithm schema that operates on a streamof (hyper)edges.
It is parameterized by a priority function f mapping vertices to natural numbers, with
higher values representing lower priority, meaning less chances of being part of the
solution output (Fig. 1).

Priority places a lowest-priority vertex of each edge into a set S, that then forms
a hitting set (vertex cover). Thus, the set I output is an independent set. The quality
of the solution depends on the priority function f . The space requirements depend
also only on the compressibility of the function f (besides O(log n) bits for local
variables), and note that this working space is only written to before the stream is
processed. Finally, the time complexity is the aggregate complexity of looking up
the f -values of the vertices in each edge, in addition to whatever precomputation is
needed for constructing f .

We shall present three different instantiations of Priority with different func-
tions f .

2.1 RandomPermute

In the first instantiation of Priority, we choose f to be a random permutation, i.e.,
drawn uniformly at random from bijective functions f : V → [n]. The resulting
algorithm, RandomPermute, assigns the last (according to the random permutation)
vertex of each edge to a vertex cover S. As featured in the book of Alon and Spencer
[3], it achieves the Turán bound

∑n
i=1

1
di+1 on graphs; on hypergraphs, it was shown

by Shachnai and Srinivasan [17] to achieve the bound �(i(H)). As presented, the
algorithm is clearly a streaming algorithm with space complexity O(n log n), which
becomes our benchmark.

Theorem 2.1 ([3,17]) There is a randomized streaming algorithm RandomPar-
tialPermute that given an edge stream, finds an independent set of expected size at
least

∑n
i=1

1
di+1 on graphs and �(i(H)) on hypergraphs, using expected O(n log n)

bits of space.

2.2 Random Subset Algorithm

Our key algorithm, and our second example, is based on the well-known observation
that random sets of the right size in a sparse graph are nearly independent. It uses

123

Algorithmica (2016) 76:490–501 495

the complemented characteristic function of a random subset X of pn vertices, for a
given p; namely, f p(v) is 0 if v ∈ X and 1 otherwise. Let us refer to this algorithm—
Priority run with f p, parameterized by p—as RandomSubset(p).

Remark By a random set of size pn we shall mean either of two things: (1) We select
a subset of V = [n] of size pn uniformly and randomly. (2)We create a random subset
X of V by the procedure that selects each node in V randomly and independently with
probability p. While we prove Lemma 2.3 below only for Case 2, our applications
will use the lemma for Case 1, where it also holds.

We need the following special case of the FKG-inequality, as used in [17].

Theorem 2.2 (FKG) Given a vector �Y = (Y1,Y2, . . . ,Y�) of independent Bernoulli
random variables and an event F that is completely determined by the Yi ’s, call F
increasing if and only if the following holds: for any �a such that F holds when �Y = �a,
F also holds when �Y = �b that coordinate-wise dominates �a (i.e., ai ≤ bi , for all i).
Then, for any collection of increasing events F1, F2, . . . , Ft , it holds that

Pr

[
t∧

i=1

Fi

]

≥
t∏

i=1

Pr[Fi].

We now analyze RandomSubset(p).

Lemma 2.3 Let H be a hypergraph, p be a number and A be the set of vertices
of H with efficient degree ≤ 1

2p . Then, running RandomSubset(p) on H yields an
independent set I such that E[|A ∩ I |] ≥ p|A|/2. In fact, each node in A is included
in I with probability at least p/2.

Proof For a node v in A, let χv be the indicator random variable of the event that node
v is selected into I . Then |A ∩ I | = ∑

v∈A χv . We aim to show that E[χv] ≥ p/2,
from which the lemma follows.

For v ∈ I to hold, it suffices that two things occur: v is chosen into X , and for each
edge e incident on v it holds that e � X . Let us define events that capture this: Yv is
the event that v ∈ X and Fv

e is the event e � X |v ∈ X , i.e., conditioned on v being in
X , some element in e is outside X . Observe that the events Yv and Fv

e are independent,
for any vertex v and edge e containing v. The probability of Yv is p. Thus,

Pr[χv = 1] = Pr[Yv] · Pr
[

∧

e
v

Fv
e

]

= p · Pr
[

∧

e
v

Fv
e

]

.

The probability of the conditional event Fv
e is

Pr[Fv
e] = 1 − Pr[e ⊆ X |v ∈ X] = 1 − p|e|−1 ,

If the edges incident on v have only the vertex v in common and are otherwise disjoint,
then this gives us that

123

496 Algorithmica (2016) 76:490–501

P[χv = 1] = p
∏

e
v

Pr[Fv
e] = p

∏

e: v∈e

(
1 − p|e|−1

)
≥ p

(

1 −
∑

e: v∈e
p|e|−1

)

. (1)

Now, note that since the efficient degree of any node v in A is at most 1/(2p), by our
assumption, it holds that

∑

e: v∈e
(2p)|e|−1 ≤

∑

e: v∈e
(1/d∗(v))|e|−1 ≤ 1 .

Thus, since there are no singleton edges, it holds that 2 ≤ 2|e|−1 and therefore that∑
e: v∈e p|e|−1 ≤ 1/2. Applying this bound in (1), yields E[χv] = P[χv] ≥ p/2, as

desired. When the (hyper)edges incident on v intersect, the FKG-inequality (Theorem
2.2) implies the same lower bound. The lemma now follows from the additivity of
expectation. �

Clearly, RandomSubset is very space efficient, as it uses only one bit per vertex.
Intuitively, it works well for the “right” value of p.

RandomSubset in parallel Interestingly, we can run algorithm RandomSubset “in
parallel” for many different p’s at the same time in the same sequential algorithm.
This happens implicitly in the case of algorithm RandomPermute. For a random
permutation π , define

Xk = {first k elements of π}.

Now Xk is a random set of size pn, where p = k/n. Notice that upon running Ran-
domPermute we also run RandomSubset indirectly for p = i/n, i = 1, 2, . . . , n
in parallel, giving Xk for k = 1, . . . , n. Indeed, it holds that when a hyperedge e is
processed, we add the last vertex, v, of e to S. Thus, unless e ⊆ Xk , vertex v is not in
Xk .

Using this property, we see that for each vertex v, the expectation of χv in Lemma
2.3 is at least 1

4d∗(v)
, just by picking Xk with k = n/d∗(v), and applying the same

argument to bound E[χv] from below.
Using the linearity of expectation, we therefore obtain an alternative proof of the

result of Shachnai and Srinivasan [17] (aside from a constant factor). The space needed
is only the O(n log n) bits needed to store the random permutation π .

Theorem 2.4 Parallel executions of RandomSubset yield a randomized stream-
ing algorithm that, given a hypergraph H, finds an independent set of expected size
�(i(H)) using O(n log n) space.

2.3 Linear Space Algorithm

We now create a more efficient algorithm, RandomMap, based on the observation
that the above argument goes through even when we only use the properties of Xk

123

Algorithmica (2016) 76:490–501 497

for k = 1, 2, 4, 8, . . . , n. Indeed, if v has efficient degree d∗ then choose k such that
n

2d∗ ≤ k ≤ n
d∗ . Then, we get that the expectation χv of Lemma 2.3 is at least 1

8d∗(v)
.

Assume in the following, for simplicity of exposition, that n is a power of 2.
To provide the Xk , for all powers of two, we use a map ρ : V → {1, 2, . . . , log n},

where the probability of ρ(v) = i is 1/2i (tomake the total probability equal to one, we
set the probability of ρ(v) = log n to be 2/n instead of 1/n). This can be obtained by
counting unbiased coin flips until flipping a head. Then, X2 j = {v : ρ(v) ≥ log n− j},
for j = 0, 1, . . . , log n.

We now describe how to store and access ρ using small space. Since the domain
of ρ has size log n, there is a straightforward random access implementation that uses
only deterministic space n log log n by storing ρ(i) in the memory segment [(i− 1)
�log log n� + 1, i�log log n�]. We can use the space even more efficiently, however.
Note that E[ρ(v)] = O(1), using that

∑
i≥1 i/2

i = 2, and thus by the linearity of
expectation, the expected bit-length of the sequence

ρ(1) ρ(2) . . . ρ(n)

is linear in n. We write the ρ-values in a prefix-free code, which at most triples the
length. To facilitate binary search, we pack these items into odd-numbered words of
size log n, and store in the even-numbered words the index of the first item packed in
the next succeeding word. This again at most doubles the space requirements. We can
now implement a binary search to find a given ρ(i), until we reach the right word, in
which we need only examine log n bits. Hence, the running time is O(log n). Since
the total bit-length of any sequence of 	(log n), adjacent ρ-values will be highly
concentrated around its mean, so interpolation search could also be applied to reduce
the complexity further still.

Theorem 2.5 There is a randomized streaming algorithm that finds in a given hyper-
graph an independent set of expected size�(i(H)), using expected O(n) bits of space
and deterministic O(r log n) time per edge of size r .

3 Deterministic Online Streaming Algorithms

All the algorithms considered in this paper have the following two properties: (a) a
feasible solution I is maintained at all times, and (b) rejections (i.e., the removal of a
node from I , or alternatively addition to S) are irrevocable.We refer to such algorithms
as online streaming algorithms.

In this section, we study the power of this model in the deterministic case. We
restrict our attention here to the case of graphs.

Deterministic algorithms: The next result shows that no deterministic algorithm can
attain a performance ratio in terms of the average degree d alone, nor a ratio of o(2�).

Theorem 3.1 The performance ratio of any deterministic algorithm in the online
streaming model is �(n). This holds even for trees of maximum degree log n, giving

123

498 Algorithmica (2016) 76:490–501

also a lower bound of �(2�). It also holds even if the algorithm is allowed to use
arbitrary extra space.

Proof Assume that n = 2k , for an integer k. Let A be any deterministic algorithm.
We construct a tree on n vertices; thus at any stage, the graph induced by the edges
seen so far induces a forest.

Wemaintain at any stage the invariant that the independent set selectedby A contains
at most one node from each tree in the forest. The construction proceeds in k rounds.
In round i , for i = 1, 2, . . . , k, n/2i edges are presented. Each edge connects two
components; in either component, we choose as endpoint the node that is currently
in A’s solution, if there is one, and otherwise use any node in the component. This
ensures that the algorithm cannot keep both vertices in its solution, maintaining the
invariant.

In the end, the resulting graph is a tree of maximum degree at most k, and A’s
solution contains at most one node. �

When allowing additional space, we can match the previous lower bound in terms
of �.

Theorem 3.2 There is a deterministic algorithm in the online streaming model with
a performance ratio O(2�).

Proof We consider an algorithm that maintains additional information in the form of
a counter cv for each node v, initialized as zero.

When an edge arrives between two nodes in the current solution I , we compare
the counters of the nodes. The node whose counter is smaller, breaking symmetry
arbitrarily, is then removed from the current solution I . The counter of the other node,
e.g. u, is incremented. We then say that u eliminated v. We say that a node u is
responsible for a vertex x if u eliminated x , or, inductively, if u eliminated a node that
was responsible for x .

Let r(v) denote the number of nodes for which node v is responsible, and let R(k)
denote the maximum r(v) over nodes v with cv = k. We claim that R(k) ≤ 2k − 1.
It then follows that the size of I is at least n/2�, since cv is at most the degree
of v. For the base case R(0) = 0, since the node never eliminated another vertex.
Assume now that R(t) ≤ 2t − 1, for all t < k. Consider a node v with cv = k,
and let u1, u2, . . . , uk denote the vertices eliminated by v in order. Before the i-th
elimination, the value of cv was i − 1, hence the value of cui was at most i − 1.
Once eliminated, the counter cui for node ui stays unchanged. Hence, by the inductive
hypothesis, r(ui) ≤ R(i − 1) ≤ 2i − 1. We then have that v was responsible for at
most

r(v) ≤
k∑

t=1

(r(vt) + 1) ≤
k∑

t=1

(R(t − 1) + 1) =
k−1∑

t=0

2t = 2k − 1 .

Since this holds for any give v with cv = k, we have established that R(k) ≤ 2k − 1.
�

123

Algorithmica (2016) 76:490–501 499

4 Minimal Space Algorithms

In the most restricted case, we have no extra space available. We can refer to such
algorithm asmemoryless, since they cannot store anything about previous events. Can
we still obtain reasonable approximations to IS?

We show that there exists a function g allowing us to find an n/g(d)-independent
set in this model, but that g must now be exponential.

A simple modification to Priority, which we shall call RandomDelete, is to
always select the covering vertex v at random. This algorithm is clearly memoryless,
as it even does not check whether it has already added some other vertex from the
edge into the cover.

Intuitively, a memoryless algorithm would seem to be unable to do significantly
better than randomly selecting the vertex to be eliminated. We restrict our attention in
this section to the case of graphs.

Theorem 4.1 RandomDelete finds an independent set of expected size n/2d . This
is tight for this algorithm in that even if the algorithm avoids eliminating vertices
unnecessarily: there is a graph instance in which it only finds an independent set of
expected size at most n/2	(d).

Proof Positive result. Each vertex v belongs to the final solution V \S with probability
2−d(v). Therefore, the expected size ofV \S is∑v∈V 2−d(v) ≥ n/2d , using the linearity
of expectation and Jensen’s inequality.

Limitation result.Consider the graph stream Sn with vertex setV = {v1, v2, . . . , vn}
and edges {vi , v j } for any |i − j | ≤ k, where the edges arrive in the stream in lexico-
graphic order: (v1, v2), (v1, v3), . . . , (v1, vk), (v2, v3), . . . , (v2, vk+1), (v3, v4), etc.
Note, that all but the first and the last k vertices have degree 2k. Thus, the average
degree d ≤ � = 2k.

Suppose first that the algorithm avoids eliminating vertices unnecessarily, i.e., if it
ignores an edge is one endpoint has already been selected into a cover. We claim that
the expected size of the independent set I found by the algorithm on Sn is at most
1 + n/2k . We prove the claim by induction on n. For n ≤ k, the claim holds since
graph is a clique.

For the inductive step, consider the first vertex v1 of the stream. There are two cases,
depending on whether v1 ends up in I , the independent found by the algorithm.

Case 1 v1 ∈ I . It means that during the processing of the edges (v1, v j), for
j = 2, 3, . . . , k, all the neighbors of v1, namely v2, v3, . . . , vk , are added to the
cover S. The probability of this event occurring is P[v1 ∈ I] = 2−k . All the edges
incident on v2, v3, . . . , vk are then ignored. The remaining stream is identical to the
graph stream Sn−k . By the induction hypothesis, the expected size of the solution
found on Sn−k is at most 1 + (n − k)/2k ≤ 1 + (n − 1)/2k .

Case 2 v1 /∈ I . Suppose v1 was selected to cover the t-th edge incident on v1 for
some t ∈ [1, k]. Then, the first t − 1 neighbors of v1 were selected to cover the
first t − 1 edges incident on v1. All later edges incident on v1, v2, . . . , vt are then

123

500 Algorithmica (2016) 76:490–501

ignored by the algorithm. The remaining stream is then identical to the graph stream
Sn−t . By the induction hypothesis, the expected size of the solution found is at most
1 + (n − t)/2k ≤ 1 + (n − 1)/2k .

Thus, a vertex vi ∈ V is inserted in I only in Case 1 and the probability of this event
is 2−k , for any i ∈ [1, n − k]. Combining the two cases, we obtain that the expected
size of the solution found is

2−k
(

1 + 1 + n − k

2k

)

+ (1 − 2−k)

(

1 + n − 1

2k

)

≤ 2−k + 1 + n − 1

2k
= 1 + n/2k ,

as desired.
Now, when the algorithm is memoryless, the probability that a given vertex v

remains in the independent set solution is 2−d(v) ≤ 2−k , since the minimum degree
of the graph is k. By the linearity of expectation, the expected size of the solution
is at most n/2k . We conclude by observing that the average degree of the graph is
2k(1 + o(1)). �
Remark The algorithm has the special property of being oblivious in that the solution
maintained, or any other part of memory, is never consulted in the operation of the
algorithm until it is output.

4.1 The utility of advice

When the average efficient degree d∗(H) is known in advance, we can obtain from
the RandomSubset schema an algorithm that requires only logarithmic space in
addition to the solution bits. Initially, the solution bit for vertex v is set if v is in X ;
as we proceed, the bit records whether a v is contained in the current independent set
solution, i.e. in S ∩ X . When p = 1/d∗(H), the reciprocal of the efficient degree,
Lemma 2.3 yields the following bound that is slightly weaker than i(H).

Theorem 4.2 When d∗(H) (or its approximation) is known in advance, there is an
online streaming algorithm that finds an independent set of expected size�(n/d∗(H))

in O(log n) extra space using O(r) time to process each edge.

In comparison with the earlier zero-space algorithms, this suggests that knowledge
of the input parameters is highly useful for IS. This relates to the recent annotation
model of [6], although the assumption there is that the advice is dispensed only after
the stream is given.

5 Open Questions

What is the right computationalmodel for graph problems in the streaming context?All
of our algorithms for IS use: A read-once-only input tape + A tape storing precompu-
tation +A tape for the output streamwith very limited access (in some case write-only)
+ Poly-logarithmic work space. Is (poly-logarithmic work space + restricted storage

123

Algorithmica (2016) 76:490–501 501

types) the right way to capture a range of graph problems that do not fit conveniently
into existing streaming models? If other graph problems can be also captured by this
model, this could grow into a new brand of research.

Acknowledgments We thank Páll Melsted for helpful discussions.

References

1. Ahn, K.J., Guha, S.: Graph sparsification in the semi-streaming model. In: Automata, Languages
and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, 5–12 July 2009,
Proceedings, pp. 328–338 (2009)

2. Alon, N., Arad, U., Azar, Y.: Independent sets in hypergraphs with applications to routing via fixed
paths. In: Proceedings of Third International Workshop on Randomization and Approximation Tech-
niques in Computer Science, and Second International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, RANDOM-APPROX’99, pp. 16–27 (1999)

3. Alon, N., Spencer, J.: The Probabilistic Method. Wiley, New York (1992)
4. Caro, Y.: New Results on the Independence Number. Technical report, Tel-Aviv University (1979)
5. Caro, Y., Tuza, Z.: Improved lower bounds on k-independence. J. Graph Theory 15(1), 99–107 (1991)
6. Cormode, G., Mitzenmacher, M., Thaler, J.: Streaming graph computations with a helpful advisor.

Algorithmica 65(2), 409–442 (2013)
7. Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J., Rawitz, D.: Online set

packing. SIAM J. Comput. 41(4), 728–746 (2012)
8. Emek, Y., Halldórsson, M.M., Rosén, A.: Space-constrained interval selection. In: Automata, Lan-

guages, and Programming—39th International Colloquium, ICALP 2012, Warwick, UK, 9–13 July
2012, Proceedings, Part I, pp. 302–313 (2012)

9. Emek, Y., Rosén, A.: Semi-streaming set cover - (extended abstract). In: Automata, Languages, and
Programming—41st International Colloquium, ICALP 2014, Copenhagen, Denmark, 8–11 July 2014,
Proceedings, Part I, pp. 453–464 (2014)

10. Epstein, L., Levin,A.,Mestre, J., Segev,D.: Improved approximation guarantees forweightedmatching
in the semi-streaming model. SIAM J. Discrete Math. 25(3), 1251–1265 (2011)

11. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming
model. Theor. Comput. Sci. 348(2), 207–216 (2005)

12. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the data-stream
model. SIAM J. Comput. 38(5), 1709–1727 (2008)

13. Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming algorithms for inde-
pendent sets. In: Automata, Languages and Programming—37th International Colloquium, ICALP,
Bordeaux, France, Proceedings, pp. 641–652. Springer (2010)

14. Halldórsson, M.M., Iwama, K., Miyazaki, S., Taketomi, S.: Online independent sets. Theor. Comput.
Sci. 289(2), 953–962 (2002)

15. Halldórsson, M.M., Sun, X., Szegedy, M., Wang, C.: Streaming and communication complexity of
clique approximation. In: Automata, Languages, and Programming—39th International Colloquium,
ICALP 2012, Warwick, UK, 9–13 July 2012, Proceedings, Part I, pp. 449–460 (2012)

16. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends Theor. Comput. Sci.
1(2), 117–236 (2005)

17. Shachnai, H., Srinivasan, A.: Finding large independent sets in graphs and hypergraphs. SIAM J.
Discrete Math. 18(3), 488–500 (2004)

18. Turán, P.: On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok 48, 436–452 (1941)
19. Wei, V.K.: A lower bound on the stability number of a simple graph. Technical Memorandum No.

81-11217-9, Bell Laboratories (1981)

123

	Streaming Algorithms for Independent Sets in Sparse Hypergraphs
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Definitions

	2 Priority-Based Streaming Algorithms
	2.1 RandomPermute
	2.2 Random Subset Algorithm
	2.3 Linear Space Algorithm

	3 Deterministic Online Streaming Algorithms
	4 Minimal Space Algorithms
	4.1 The utility of advice

	5 Open Questions
	Acknowledgments
	References

