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Abstract We revisit the matrix problems sparse null space andmatrix sparsifica-
tion, and show that they are equivalent. We then proceed to seek algorithms for these
problems: we prove the hardness of approximation of these problems, and also give a
powerful tool to extend algorithms and heuristics for sparse approximation theory to
these problems.
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1 Introduction

In this paper, we revisit the matrix problems sparse null space and matrix sparsi-
fication.

The sparse null space problem was first considered by Pothen in 1984 [31]. The
problem asks, given a matrix A, to find a matrix N that is a full null matrix for A—that
is, N is full rank and the columns of N span the null space of A. Further, N should
be sparse, i.e., contain as few nonzero values as possible. The sparse null space
problem is motivated by its use to solve Linear Equality Problems (LEPs) [11]. LEPs
arise in the solution of constrained optimization problems via generalized gradient
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descent, augmented Lagrangian, and projected Lagrangian methods. Berry et al. [4]
consider the sparse null space problem in the context of the dual variable method for
the Navier-Stokes equations, or more generally in the context of null space methods
for quadratic programming. Gilbert and Heath [18] noted that among the numerous
applications of thesparse null spaceproblemarising in solutions of underdetermined
system of linear equations, is the efficient solution to the force method (or flexibility
method) for structural analysis, which uses the null space to create multiple linear
systems. Finding a sparse null space will decrease the run time and memory required
for solving these systems. More recently, it was shown [30,42] that the sparse null
space problem can be used to find correlations between small numbers of times series,
such as financial stocks. The decision version of the sparse null space problem is
known to be NP-Complete [11], and only heuristic solutions have been suggested for
the minimization problem [4,11,18].

Thematrix sparsification problem is similar to sparse null space. One is given
a full rank matrix A, and the task is to find a matrix B with as few nonzero values as
possible given the constraint that B = AX for some nonsingular matrix X ; that is, A
and B must have the same column space. Many fundamental matrix operations are
greatly simplified by first sparsifying a matrix (see [14]) and the problem has applica-
tions in areas such as machine learning [34] and in discovering cycle bases of graphs
[23]. But there seem to be only a small number of heuristics formatrix sparsification
([8] for example), or algorithms under limiting assumptions ([20] considers matrices
that satisfy the Haar condition), and in fact these algorithms allow an error term (of
the form ||B− AX || < ε) incommensurate with our formal statement ofmatrix spar-
sification. McCormick [26] established that the decision version of this problem is
NP-Complete.

For these two classic problems, we wish to investigate potentials and limits of
approximation algorithms both for the general problems and for some variants under
simplifying assumptions. To this end, we will need to consider the well-known vector
problemsmin unsatisfy and exact dictionary representation (elsewhere called the
sparse approximation or highly nonlinear approximation problem [37]).

The min unsatisfy problem is an intuitive problem on linear equations. Given a
system Ax = b of linear equations (where A is an integer m × n matrix and b is
an integer m-vector), the problem is to provide a rational n-vector x ; the measure to
be minimized is the number of equations not satisfied by Ax = b. The term “min
unsatisfy” was first coined by Arora et al. [2] in a seminal paper on the hardness of
approximation, but they claim that the the NP-Completeness of the decision version
of this problem is implicit in a 1978 paper of Johnson and Preparata [21]. Arora
et al. demonstrated that it is hard to approximate min unsatisfy to within a factor
2log

.5−o(1) n of optimal (under the assumption thatNPdoes not admit a quasi-polynomial
time deterministic algorithm). This hardness result holds over Q, and stronger results
are known for finite fields [12]. For this problem, Berman and Karpinski [3] gave a
randomized m

c logm -approximation algorithm (where c is a constant). There has been a
large amount of recent literature devoted to heuristics formin unsatisfy, where it has
been presented as a problem of decoding in the presence of errors (see for example
[7,9,41]).
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The exact dictionary representation problem is the fundamental problem in
sparse approximation theory (see [27]). In this problem, we are given a matrix of
dictionary vectors D and a target vector s, and the task is to find the smallest set
D′ ⊂ D such that a linear combination of the vectors of D′ is equal to s. This problem
and its variants have been well studied. According to Temlyakov [35], a variant of
this problem may be found as early as 1907, in a paper of Schmidt [32]. The decision
version of this problem was shown to be NP-Complete by Natarajan [28]. (See [25]
for further discussion.)

The field of sparse approximation theory has become exceedingly popular in the last
decade. For example, it was the subject of the Sparse and Low Rank Approximation
workshop at the Banff International Research Station in 2011, as well as the Sparse
Representation and Low-rank Approximation workshop at NIPS’11. The applications
of sparse approximation theory include signal representation and recovery [10,29],
amplitude optimization [33] and function approximation [28]. When the dictionary
vectors are Fourier coefficients, this problem is a classic problem in Fourier analysis,
with applications in data compression, feature extraction, locating approximate peri-
ods and similar data mining problems [6,16,17,43]. There is a host of results for exact
dictionary representation (see for example [7]) though all are heuristics or approx-
imations under some qualifying assumptions. In fact, Amaldi and Kann [1] showed
that this problem (they called it RVLS—‘relevant variables in the linear system’) is
as hard to approximate as min unsatisfy, though their result seems to have escaped
the notice of the sparse approximation theory community.
Our contribution As a first step, we note that the matrix problems sparse null space
andmatrix sparsification are equivalent, and that the vector problemsmin unsatisfy
and exact dictionary representation are equivalent as well. Note that although these
equivalences are straightforward, they seem to have escaped researchers in this field.
For example, [5] claimed that the sparse null space problem is computationally
more difficult than matrix sparsification.

We then proceed to show that matrix sparsification is hard to approximate, via a
reduction from min unsatisfy. We will thereby show that the two matrix problems
are hard to approximate within a factor 2log

.5−o(1) n of optimal (assuming NP does not
admit quasi-polynomial time deterministic algorithms).

This hardness result for matrix sparsification is important in its own right, but it
further leads us to ask what can be done for this problem. Specifically, what restric-
tions or simplifying assumptions may be made upon the input matrix to makematrix
sparsification problem tractable? In addressing this question, we provide the major
contribution of this paper and show how to adapt the vast number of heuristics and
algorithms for exact dictionary representation to solvematrix sparsification (and
hence sparse null space as well). This allows us to conclude, for example, that
matrix sparsification admits a randomized m

c logm -approximation algorithm, and also
to give limiting conditions under which a known �1 relaxation scheme for exact dic-
tionary matching solvesmatrix sparsification exactly. Our results also carry over to
relaxed version of these problems, where the input is extended by an error term δ which
relaxes a constraint. These versions are defined in the “Appendix 2”, although we omit
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the proof of their equivalence. All of our results assume that the vector variables are
over Q.1

An outline of our paper follows: In Sect. 2 we review some linear algebra and
introduce notation. In closing the preliminarySect. 2.3,weprove equivalences between
the two matrix problems and the two vector problems. In Sect. 3 we prove thatmatrix
sparsification is hard to approximate, and in Sect. 4 we show how to adapt algorithms
for exact dictionary representation to solve matrix sparsification.

2 Preliminaries

In this section we review some linear algebra, introduce notation and definitions, and
formally state our four problems.

2.1 Linear Algebra and Notation

Matrix and vector properties Given a set V of n m-dimensional column vectors, an
m-vector v /∈ V is independent of the vectors of V if there is no linear combination
of vectors in V that equals v. A set of vectors is independent if each vector in the set
is independent of the rest.

Now let the vectors of V be arranged as columns of an m × n matrix A; we refer to
a column of A as ai , and to a position in A as ai j . We define #col(A) to be the number
of columns of A. The column span of A (col(A)) is the (infinite) set of column vectors
that can be produced by a linear combination of the columns of A. The column rank
of A is the dimension of the column space of A (rank(A) = dim(col(A))); it is the size
of the maximal independent subset in the columns of A. If the column rank of A is
equal to n, then the columns of A are independent, and A is said to be full rank.

Other matrices may be produced from A using elementary column operations.
These include multiplying columns by a nonzero factor, interchanging columns, and
adding a multiple of one column to another. These operations produce a matrix A′
which has the same column span as A; we say A and A′ are column equivalent. It can
be shown that A, A′ are column equivalent iff A′ = AX for some invertible matrix X .

Let R be a set of rows of A, and C be a set of columns. A(R,C) is the submatrix
of A restricted to R and C . Let A(:,C) (A(R, :)) be the submatrix of A restricted
to all rows of A and to columns in C (restricted to the rows of R and all columns
in A). A square matrix is an m × m matrix. A square matrix is nonsingular if it is
invertible.
Null space The null space (or kernel) of A (null(A)) is the set of all nonzero n-length
vectors b for which Ab = 0. The rank of A’s null space is called the corank of A.

1 More precisely, we assume that all input variables are rational and that their numerators and denominators
can be stored in words of size polynomial in the length of the input vector or matrix. All reductions and
algorithms presented here require only polynomial time and space over the field of rational numbers.
For example, Householder triangularization [36] is a numerically stable process for determining the QR
decomposition of a matrix, and can be used to compute a full null matrix as seen in the proof of Theorem 3.
The space and time bounds for this process remain polynomial when applied to arbitrary-precision rational
values.
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The rank-nullity theorem states that for any matrix A, rank(A)+ corank(A) = n.
Let N be a matrix consisting of column vectors in the null space of A; we have that
AN = 0. If the rank of N is equal to the corank of A then N is a full null matrix
for A.

Given matrix A, a full null matrix for A can be constructed in polynomial time.
Similarly, given a full rank matrix N , polynomial time is required to construct a matrix
A for which N is a full null matrix [30].
Notation Throughout this paper, we will be interested in the number of zero and
nonzero entries in a matrix A. Let nnz(A) denote the number of nonzero entries in
A. For a vector x , let ||x ||0 denote the number of nonzero entries in x . This notation
refers to the quasi-norm �0, which is not a true norm since λ||x ||0 �= ||λx ||0, although
it does obey the triangle inequality.

For vector x , let xi be the value of the i th position in x . The support of x (supp(x))
is the set of indices in x which correspond to nonzero values, i ∈ supp(x) ⇔ xi �= 0.

The notation A|B indicates that the rows of matrix B are concatenated to the rows
of matrix A. The notation

(A
B

)
indicates that the columns of B are appended to the

columns of A. M = A⊗ B denotes the Kronecker product of two matrices, where M
is formed by multiplying each individual entry in A by the entire matrix B. (If A is
m × n, B is p × q, then M is mp × nq.)

By equivalent problems, we mean that reductions between them preserve approx-
imation factors. A formal definition of approximation equivalence is found in
“Appendix 1”.

2.2 Minimization Problems

In this section, we formally state the four major minimization problems discussed in
this paper. The first two problems have vector solutions, and the second two problems
have matrix solutions. Our results hold when the variables are over Q, although these
problems can be defined over R. IF is the set of input instances, SF (x) is the solution
space for x ∈ IF , mF (x, y) is the objective metric for x ∈ IF and y ∈ SF (x).

Problem 1 Exact Dictionary Representation (EDR)

IEDR = 〈D, s〉,m × n matrix D, vector s with s ∈ col(D)

SEDR(D, s) = {v ∈ Qn : Dv = s}
mEDR(〈D, s〉, v) = ||v||0

Problem 2 Min Unsatisfy (MU)

IMU = 〈A, y〉,m × n matrix A, vector y ∈ Qm

SMU(A, y) = {x : x ∈ Qn}
mMU(〈A, y〉, x) = ||y − Ax ||0
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Problem 3 Sparse Null Space (SNS)

ISNS = matrix A

SSNS(A) = {N : N is a full null matrix for A}
mSNS(A, N ) = nnz(N )

Problem 4 Matrix Sparsification (MS)

IMS = full rank m × n matrix B

SMS(B) = {matrix N : N = BX for some invertible matrix X}
mMS(B, N ) = nnz(N )

2.3 Equivalences

In closing the preliminary section, we show thatmin unsatisfy and exact dictionary
representation are equivalent. We then show that sparse null space and matrix
sparsification are equivalent. The type of equivalence is formally stated inDefinition 2
in the “Appendix 1”, and guarantees exact equality of approximation factors among
polynomial-time algorithms (Corollary 1).

Here we show that EDR and min unsatisfy are equivalent.
We reduce EDR tomin unsatisfy. Given input 〈D, s〉 to EDR, we seek a vector v

with minimum ||v||0 that satisfies Dv = s. Let y be any vector that satisfies Dy = s,
and A be a full null matrix for D. (These can be derived in polynomial time.) Let
x = MU (A, y) and v = y − Ax . We claim that v is a solution to EDR. First note
that v satisfies Dv = s: Dv = D(y − Ax) = Dy − DAx = s − 0 = s. Now, the call
to MU (A, y) returned a vector x for which ||y − Ax ||0 = ||v||0 is the minimization
measure; and, as x ranges overRn , the vector v = y− Ax ranges over all vectors with
Dv = s. Hence, the oracle for min unsatisfy directly minimizes ||v||0, and so v is a
solution to EDR.

We now reduce min unsatisfy to EDR (see [7] for a similar result). Given input
〈A, y〉 to min unsatisfy, we seek a vector x which minimizes ||y − Ax ||0. We may
assume that A is full rank. (Otherwise,we can simply take anymatrix Ãwhose columns
form a basis of col(A), and it follows easily that ||MU (A, y)|| = ||MU ( Ã, y)||.) Find
(in polynomial time) a matrix D such that A is a full null matrix for D (this can be
achieved by finding DT as a null matrix of AT ). Let s = Dy, and v = EDR(D, s).
Since Dv = s we have that D(y − v) = Dy − Dv = 0, from which we conclude that
y − v is in the null space of D, and therefore in the column space of A. It follows that
we can find an x such that Ax = y − v. We claim that x solves the instance of min
unsatisfy: It suffices to note that the call toEDR(D, s)minimizes ||v||0 = ||y−Ax ||0,
and that as v ranges over {v : Dv = s}, the vector Ax = y − v ranges over all of
col(A). In conclusion,

Lemma 1 The problems exact dictionary representation and min unsatisfy are
equivalent.
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Now we’ll demonstrate that sparse null space and matrix sparsification are
equivalent. Recall that in the description of matrix sparsification on input matrix
B, we required that B be full rank, #col(B) = rank(B). (We could in fact allow
#col(B) > rank(B), but thiswould trivially result in #col(B)−rank(B) zero columns
in the solution, and these columns are not interesting.) We will need the following
lemma:

Lemma 2 Let B be a full null matrix for m × n matrix A. The following statements
are equivalent: (1) N = BX for some invertible matrix X. (2) N is a full null matrix
for A.

Proof In both cases, N and B must have the same number of columns, the same rank,
and the same span. This is all that is required to demonstrate either direction. 
�

We can now prove that sparse null space and matrix sparsification are equiv-
alent. The problem sparse null space may be solved utilizing an oracle for matrix
sparsification. Given input A to sparse null space, create (in polynomial time) a
matrix B which is a full null matrix for A, and let N = MS(B). We claim that N is a
solution to SNS(A). Since N = BX for some invertible matrix X , by Lemma 2 N is
a full null matrix for A. Therefore the call toMS(B) is equivalent to a call toMS(N ),
which solves sparse null space on A.

We show thatmatrix sparsification can be solved using an oracle for sparse null
space. Given input B to matrix sparsification, create (in polynomial time) matrix
A such that B is a full null matrix for A. Let N = SNS(A). We claim that N is a
solution to MS(B). By the lemma, N = BX for some invertible matrix X , so N can
be derived from B via elementary column reductions. The call to SNS(A) finds an
optimally sparse N , which is equivalent to solving matrix sparsification on B. In
conclusion,

Lemma 3 The problems matrix sparsification and sparse null space are equiva-
lent.

3 Hardness of Approximation for Matrix Problems

In this section, we prove the hardness of approximation ofmatrix sparsification (and
therefore sparse null space). This motivates the search for heuristics or algorithms
under simplifying assumptions formatrix sparsification, which we undertake in the
next section. For the reduction, we will need a relatively dense matrix which we know
cannot be further sparsified. We will prove the existence of such a matrix in the first
subsection, and demonstrate how to construct it in the second subsection.

3.1 Unsparsifiable Matrices

Anym×n matrix Amay be column reduced to contain at most (m−r+1)r nonzeros,
where r = rank(A). For example, Gaussian elimination on the columns of the matrix
will accomplish this sparsification. We will say that a rank r , m × n matrix A is
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unsparsifiable if and only if, for any invertible matrix X , nnz(AX) ≥ (m−r +1)r . A
matrix A is optimally sparse if, for any invertible X , nnz(AX) ≥ nnz(A). The main
result of this section follows.

Theorem 1 Let A be an m × n matrix with m ≥ n. If every n × n submatrix of A
is nonsingular, then A has rank n and is unsparsifiable. Moreover, if every square
submatrix of A is nonsingular, then the matrix

( I
A

)
is optimally sparse, where I is the

n × n identity matrix.

Proof Suppose there is an invertible X such that nnz(AX) < (m − n + 1)n; that is,
suppose that A is not unsparsifiable. Then there must be a column ci of C = AX such
that nnz(ci ) ≤ m − n. Choose a row set R ⊂ [m] so that |R| = n and cri = 0 for
all r ∈ R. Then A(R, :)X has an all-zero column; since X is invertible, it must be the
case that A(R, :) is a singular n × n submatrix of A. This demonstrates the first part
of the theorem.

To show the second part, it is sufficient to show that every n × n submatrix of
( I
A

)

is nonsingular, as this shows that
( I
A

)
itself is unsparsifiable and therefore has already

achieved optimal sparsity.
Suppose an n × n submatrix M of

( I
A

)
is singular. It cannot be I itself; nor can

it be entirely contained within A. Thus we can choose a smaller identity matrix I ′

and submatrices A1, A2 of A that allow us to rewrite M as

(
I ′ 0
A1 A2

)
after a possible

column reordering. Since M is singular, there is a nonzero row matrix (x y) so that

(x y)

(
I ′ 0
A1 A2

)
= 0.

This means that x + yA1 = 0 so that y �= 0; we also know that yA2 = 0, so that A2
must be singular. Thus, for anymatrix Awithout a singular submatrix,

( I
A

)
is optimally

sparse. 
�

3.2 Efficiently Building an Unsparsifiable Matrix

The next lemma establishes that we can easily construct an unsparsifiable matrix with
a given column, a useful fact for the reductions to follow.

Lemma 4 If n×n matrix M = (Mi j ) has entries mi j = i p j for distinct positive reals
p1, p2, . . . , pn, then every subsquare of M is nonsingular.

Proof Let f be a signomial (a polynomial allowed to have nonintegral exponents).We
define positive_zeros( f ) := {x : x > 0 & f (x) = 0} and #sign_changes( f ) :=
#{i : μiμi+1 < 0}, where f = ∑

i μi x pi , and no μi = 0. A slight generalization of
Descartes’ rule of signs [40] states that

#positive_zeros( f ) ≤ #sign_changes( f ). (1)
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Consider any k × k subsquare M(R,C) given by R = {r1, . . . , rk} and C =
{c1, . . . , ck} ⊂ [n], and any nonzero vector μ ∈ Rk . Then M(R,C) · μ matches the
signomial f (x) = ∑

μi x
pci evaluated at x = r1, . . . , rk . Using (1), #{i : f (ri ) =

0} ≤ #sign_changes( f ) < k, so that some f (ri ) �= 0, and M(R,C)μ �= 0. Hence
the subsquare has a trivial kernel, and is nonsingular. 
�

For simplicity, we will choose powers of p j to be consecutive integers beginning
at 0. This yields the Vandermonde matrix over Q, which can clearly be stored in
polynomial-sized words.

Remark Random matrices In the case of matrices over infinite fields, a randommatrix
is almost surely (i.e., with probability 1) unsparsifiable when its entries are chosen
independently over a non-atomic distribution. (For any element of the field, such a
distribution will choose that element with probability zero.)

We first prove that, for any random square matrix, every square submatrix is non-
singular with probability 1. We do so by induction on the size of the matrix. Consider
a random n × n matrix A where all entries have been fixed except a11, which will
be chosen randomly. Then det(A) = λa11 + μ, where λ �= 0 with probability 1 by
inductive assumption as λ is the determinant of a (n − 1) × (n − 1) submatrix of A.
Since only one value for a11 would render A singular, and the distribution is non-
atomic, the event det(A) = 0 has probability 0. In addition, there are only finitely
many smaller square submatrices, each of which is nonsingular with probability 1 by
inductive assumption. The probability of all of them being simultaneously nonsingular
is still 1. This completes the proof for square matrices.

A general rectangular random matrix is unsparsifiable if and only if all square
submatrices are nonsingular. This is a finite collection of events with probability 1.
Again, the probability of all these events happening simultaneously is still 1. This
completes the general case.

To create an unsparsifiable matrix for use in a polynomial-time reduction, it suffices
to use words of linear size, and repeating the above argument in this setting shows
that a random matrix is unsparsifiable with high probability. Further, if the entries are
chosen uniformly at random from a normal distribution, then the matrix is also well-
conditioned [19]. Using a random matrix would result in the reduction of Sect. 3.3
below being randomized instead of deteministic; Lemma 4, however, avoids any prob-
ability and allows us to construct such a matrix as quickly as we can iterate over the
entries.

Remark More examples The class of matrices with all nonsingular submatrices are
exactly the Maximum Distance Separable matrices arising in coding theory [24], and
also include the Reed-Solomon code matrices. Also, many simple Cauchy matrices
(a matrix C defined as ci j = 1

xi+y j
) satisfy this property: Since the determinant of the

Cauchymatrix is known to be
Π1≤i< j≤n(x j−xi )(y j−yi )

Π1≤i, j≤n(xi+y j )
, we can ensure that all submatrices

have nonzero determinants if we stipulate that all x j ’s are distinct, all y j ’s are distinct,
and xi + y j �= 0 ∀ i, j ; see [24]. The entries of these Cauchy matrices may be stored
in words of logarithmic size, much smaller than in the Vandermonde matrix.
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3.3 Reduction for Matrix Problems

After proving the existence of an unsparsifiable matrix in the last section, we can
now prove the hardness of approximation of matrix sparsification. We reduce min
unsatisfy to matrix sparsification. Given an instance 〈A, y〉 of min unsatisfy, we
create a matrix M such that matrix sparsification on M solves the instance of min
unsatisfy.

Before describing the reduction, we outline the intuition behind it.Wewish to create
a matrix M with many copies of y and some copies of A. The number of copies of
y should greatly outnumber the number of copies of A. The desired approximation
boundswill be achieved by guaranteeing thatM is composedmostly of zero entries and
of copies of y. It follows that minimizing the number of nonzero entries in the matrix
(solving matrix sparsification) will reduce to minimizing the number of nonzero
entries in the copies of y by finding a sparse linear combination of y with some other
dictionary vectors (solving min unsatisfy).

The construction is as follows: Given an instance 〈A, y〉 ofmin unsatisfy (where A
is an m × n matrix, y ∈ Qm , and q ≥ p are free parameters), take an optimally sparse
(p + q) × p matrix

(Ip
X

)
as given by Lemma 4 and Theorem 1 (where Ip is a p × p

identity matrix), and create matrix Ml = (Ip
X

) ⊗ y = (Ip⊗y
X⊗y

)
(of size (p + q)m × p).

Further create matrix Iq ⊗ A (of size qm × qn), and take matrix 0 (of size pm × qn)
and form matrix Mr = ( 0

Iq⊗A

)
(of size (p + q)m × qn). Append Mr to the right of

Ml to create matrix M = Ml |Mr of size (p + q)m × (p + qn). We can summarize

this construction as M =
(
Ip ⊗ y 0
X ⊗ y Iq ⊗ A

)
.

Ml is composed of p + pq m-length vectors, all corresponding to copies of y. Mr

is composed of qn m-length vectors, all corresponding copies of vectors in A. By
choosing p = q = n2, we ensure that the term pq is larger than qn by a factor of n.
Note that M now contains O(n3) columns.

It follows that the number of zeros in M depends mostly on the number of zeros
induced by a linear combination of dictionary vectors that include y. Because Ml

is unsparsifiable, vectors in the rows of Ml will not contribute to sparsifying other
vectors in these rows; only vectors in Mr (which are copies of the vectors of A)
may sparsify vectors in Ml (which are copies of the vectors in y). It follows that an
approximation to matrix sparsification will yield a similar approximation—within

a factor of 1 + n− 1
3—to min unsatisfy, and that matrix sparsification is hard to

approximate within a factor 2log
.5−o(1) n1/3 = 2log

.5−o(1) n of optimal (assuming NP does
not admit quasi-polynomial time deterministic algorithms).

4 SolvingMatrix Sparsification ThroughMin Unsatisfy

In the previous section we showed thatmatrix sparsification (MS) is hard to approx-
imate. This motivates the search for heuristics and algorithms under simplifying
assumptions for matrix sparsification. In this section we show how to extend algo-
rithms and heuristics formin unsatisfy (MU) to apply tomatrix sparsification—and
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hence sparse null space— while preserving approximation guarantees. (Note that
this result is distinct from the hardness result; neither one implies the other.)

We first present an algorithm formatrix sparsificationwhich is in essence identical
to the one given by Coleman and Pothen [11] for sparse null space. The algorithm
assumes the existence of an oracle for a problem we will call the sparsest indepen-
dent vector problem. The algorithm makes a polynomial number of queries to this
oracle, and yields an optimal solution to matrix sparsification.

Thesparsest independent vector problem takes full-rank inputmatrices A and B,
where the columns of B are a contiguous set of right-most columns from A (informally,
one could say that B is a suffix of A, in terms of columns). The output is the sparsest
vector in the span of A but not in the span of B. We’ll write A\B to denote the matrix
composed of columns of A that aren’t in B. For convenience, we add an extra output
parameter—a column of A\B which can be replaced by the sparsest independent
vector while preserving the span of A. More formally, sparsest independent vector
is defined as follows. (See §1 for the definition of a problem instance.)

Problem 5 Sparsest Independent Vector (SIV)

ISIV = 〈A, B〉; A is an m × n full rank matrix with

A = (C |B) for some non-empty matrix C.

SSIV(A, B) = {a : a ∈ col(A), a /∈ col(B)}
mSIV(〈A, B〉, a) = ||a||0

The following algorithm reducesmatrix sparsification on anm×n input matrix A
to making a linear number of queries to an oracle for sparsest independent vector.
As shown above in Sect. 2.3, this is equivalent to making a linear number of queries
to an oracle for exact dictionary representation (EDR), where each such query is
preceded by the computation of a full null rank matrix.

Algorithm Matrix_Sparsification(A)
B ← null
for i = n to 1:

〈bi , a j 〉 = SIV(A, B)

A ← (A \ {a j }|bi )
B ← (bi |B)

return B

This greedy algorithm sparsifies the matrix A by generating a new matrix B one
column at a time. The first-added column (bn) is the sparsest possible, and each
subsequent column is the next sparsest. It is decidedly non-obvious why such a greedy
algorithm would actually succeed; we refer the reader to [11] where it is proven that
greedy algorithms yield an optimal result on matroids such as the set of vectors in
col(A). Our first contribution is in expanding the result of [11] as follows.

Lemma 5 Let subroutine SIV in algorithm Matrix_Sparsification be a λ-approx-
imation oracle for sparse independent vector. Then the algorithm yields a
λ-approximation to matrix sparsification.
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Proof Given m × n matrix A, suppose C̃ exactly solvesMS(A), and that the columns
c̃1, . . . , c̃n of C̃ are sorted in decreasing order by number of nonzeros. Let si = ||c̃i ||0;
then s1 ≥ s2 ≥ . . . ≥ sn . As already mentioned, given a true oracle to sparsest
independent vector, algorithm Matrix_Sparsification would first discover a column
with sn nonzeros, then a column with sn−1 nonzeros, etc.

Now suppose algorithm Matrix_Sparsification made calls to a λ−approximation
oracle for sparse independent vector. The first column generated by the algorithm,
call it bn , will have at most λsn nonzeros, since the optimal solution has sn nonzeros.
The second column generated will have at most λsn−1 nonzeros, since the optimal
solution to the call to SIV has no more than sn−1 nonzeros: even if bn is suboptimal,
it is true that at least one of c̃n or c̃n−1 is an optimal solution to SIV(A, bn).

More generally, the i th column found by the algorithm has no more then λsi nonze-
ros, since at least one of {c̃n, . . . , c̃i } is an optimal solution to the i th query to SIV.
Thus we have nnz(B) = ∑

i ||bi ||0 ≤ ∑
λ||c̃i ||0 = λ nnz(C̃), and may conclude

that the algorithm yields a λ−approximation to matrix sparsification. 
�
It follows that in order to utilize the aforementioned algorithm for matrix sparsi-

fication, we need some algorithm for sparsest independent vector. This is in itself
problematic, as the sparsest independent vector problem is hard to approximate—
in fact, we will demonstrate later that sparsest independent vector is as hard to
approximate as min unsatisfy. Hence, although we have extended the algorithm of
[11] to make use of an approximation oracle for sparsest independent vector, the
benefit of this algorithm remains unclear.

To this end, we will show how to solve sparsest independent vector while
making queries to an approximate oracle formin unsatisfy. This algorithm preserves
the approximation ratio of the oracle. This implies thatall algorithms formin unsatisfy
immediately carry over to sparsest independent vector, and further that they carry
over to matrix sparsification as well. This also implies a useful tool for applying
heuristics formin unsatisfy to the other problems.

The problem sparsest independent vector on input 〈A, B〉 asks to find the spars-
est vector in the span of A but not in the span of B. It is not difficult to see that min
unsatisfy solves a similar problem: Given a matrix A and target vector y not in the
span of A, find the sparsest vector in the span of (A|y) but not in the span of A. Hence,
if we query the oracle for min unsatisfy once for each vector a j /∈ col(B), one of
these queries must return the solution for the sparsest independent vector problem.
This discussion implies the following algorithm:

Algorithm Sparse_Independent_Vector(A, B)
s ← m + 1
for j = 1 to n:

if a j /∈ col(B) :
A j ← A\{a j }
x ← MU(A j , a j )

c′ ← A j x − a j

if ||c′||0 < s
c ← c′; s ← ||c′||0; α ← a j

return 〈c, α〉
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Note that when this algorithm is given a λ-approximate oracle for min unsatisfy,
it yields a λ-approximate algorithm for sparsest independent vector. (In this case,
the approximation algorithm is valid over the field for which the oracle is valid.)

We conclude this section by giving hardness results for sparsest independent
vector by reduction from min unsatisfy; we show that any instance 〈A, b〉 of min
unsatisfymay be modeled as an instance 〈A′, B ′〉 of sparsest independent vector:
Let A′ = A|y, and B ′ = A. This suffices to force the linear combination to include
y. It follows that sparsest independent vector is as hard to approximate as min
unsatisfy, and in fact that the two problems are approximation equivalent.

4.1 When �1-Minimization is Sufficient

We have presented a tool for extending algorithms and heuristics for exact dictionary
representation tomin unsatisfy and then directly to thematrix problems.When these
algorithms make assumptions on the dictionary ofEDR, it is useful to investigate how
these assumptions carry over to the other problems.

To this end, we consider here one of the most popular heuristics for EDR,
�1-minimization, and a case where it is guaranteed to provide the optimal result. The
heuristic is to find a vector v that satisfies Dv = s, while minimizing ||v||1 instead of
||v||0. (See [13,38,39] for more details.) In [15], Fuchs shows that under the following
relatively simple condition �1-minimization provides the optimal answer to EDR.

Given a matrix A, define M(A) as maxi �= j
|aTi a j |

||ai ||·||a j || ; here and throughout this

section, the unsubscripted norm || · || indicates the �2 Euclidean norm.

Theorem 2 (Fuchs) Suppose we have a matrix D with unit columns and a vector s.
If there exists a v with Dv = s and ||v||0 < 1

2 (1 + 1/M), where M = M(D), then
v is the unique solution to Dv = s which minimizes ||v||0, and is likewise the unique
solution which minimizes ||v||1.

This elegant condition provides an easily computable threshold value such that
any solutions v with ||v||0 below the threshold are guaranteed to be found by �1-
minimization. The value M(A) can be thought of as the maximum cos(θi j ) where θi j
is the angle between ai and a j . In other words, M(A) reflects the smallest angle (with
the largest cosine) between any pair of columns of A. Informally, if two columns of A
were separated by a small angle, it would be difficult for �1-minimization to “decide”
between them; avoiding such small angles promotes concentration of the support of
v when a sparse v is viable.

We extend the result of Fuchs tomin unsatisfy in Theorem 3 and tomatrix spar-
sification in Theorem 4.

It will be useful to define, for a matrix A with columns ||ai || < 1, M̃(A) =
maxi �= j

|aTi a j |√
(1−||ai ||2)(1−||a j ||2)

. When we speak of �1-minimization for min unsatisfy,

we mean a solution formin unsatisfy derived by an �1-minimization solver for EDR,
as described above.
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Theorem 3 Given an instance 〈A, y〉 of min unsatisfy, where A has orthonormal
columns, if there exists a solution vector x such that

||y − Ax ||0 <
1

2

(
1 + 1/M̃(AT )

)
,

then x is the unique optimal solution of this instance, and x can be found by applying
�1-minimization.

Note that arbitrary inputs tomin unsatisfy can be orthonormalized without affect-
ing the solution, so the orthonormality assumption imposes no loss of generality.

Proof In this proof, we use the notation ai for the i th row of A, and continue to use
ai for the i th column. We also use the notation 〈x, y〉 to denote the inner product of
vectors x and y regardless of their being column or row vectors.

Recall that our reduction finds a matrix D with full null matrix A, and uses s = Dy;
this D, s pair is the input to EDR. A solution v to Dv = s for EDR corresponds to a
solution v = y − Ax of min unsatisfy since D(y − Ax) = s.

Complete the matrix AT into a full unitary matrix Q =
(
AT

D

)
. Since 〈qi , q j 〉 = 0

for any i �= j , we have 〈di , a j 〉 = 0 for any row di of D and column a j of A. In other
words, DA = 0. Clearly rank(A) = corank(D), and D will work for our reduction.

For i �= j , 〈qi , q j 〉 = 0, so that 〈ai , a j 〉 + 〈di , d j 〉 = 0, and |〈di , d j 〉| = |〈ai , a j 〉|.
Since ||ai ||2 + ||di ||2 = ||qi ||2 = 1, we arrive at

|〈di , d j 〉|
||di || · ||d j || = |〈ai , a j 〉|

√
(1 − ||ai ||2)(1 − ||a j ||2) for all i �= j.

This means M(D) = M̃(AT ), which concludes this part of the proof. 
�
The next result addresses matrix sparsification (MS), and depends on a slightly

modified version of our earlier-described reduction to min unsatisfy, which is itself
reduced to EDR. We’ll first describe the modified algorithm, then provide the �1-
minimization guarantees.

Recall that our reduction starts with matrix A(0) = A and replaces one column
with a sparser column (or at least an equally-sparse column) to arrive at A(1) with
col(A(1)) = col(A(0)); this process repeats, updating one column at a time as we
generate matrices A(2), A(3), etc. Our earlier reduction calls MU(A(s) \ {ak}, ak) at
step s. In order to use the results of Theorem 3, however, we need to send in a matrix
with orthonormal columns.

Toward this end, we write orth(A) for the matrix Q = AR−1 found by taking the
(reduced) QR decomposition of A; thus, Q is the same size as A, with orthonormal
columns, and with col(A[k]) = col(Q[k]) for any k, where X [k] denotes the first k
columns of X .

Let B(s) denote the set of columns of A(s) which have been sparsified. Our reduc-
tion remains valid at step s when we call MU(A′

k, ak) with A′
k chosen so that
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col(A′
k ∪ {ak}) = col(A) and col(B(s)) ⊂ col(A′

k), ensuring that the result is lin-
early independent of col(B(s)). By ordering the columns of A(s) so that the sparsified
columns are first, we know that the first s columns of orth(A(s)) have the same col-
umn span as B(s). So if matrix A′

k is orth(A(s)) with any non-sparsified column
removed, then col(B(s)) ⊂ col(A′

k). Thus the sth step will work correctly by calling
MU(orth(A(s))\{ak}, ak) over all columns ak /∈ B(s).

The algorithm can be summarized as follows:

A(0) ← A ; B(0) ← {}; s ← 1
for s = 0 to #cols(A) − 1:

t ← #rows(A)

for each column ak in A(s) but not in B(s):
A′
k ← orth(A(s))\{ak}

x ← MU(A′
k, ak)

c′ ← A′
k x − ak

if ||c′||0 < t :
c ← c′; t ← ||c′||0; k′ ← k

A(s+1) ← A(s) with column ak′ removed and c inserted as the first column
B(s+1) ← B(s) ∪ {c}

return A(s) with s = #cols(A)

Let ||A||max denote maxi, j |ai j |, and ||A||col denote maxi ||ai ||.

Theorem 4 Let matrix A be an instance of matrix sparsification, and suppose that
N = MS(A) is an optimally sparse solution with columns ns sorted by sparsity so that
||n1||0 ≤ ||n2||0 ≤ . . .. Let A(s) denote the matrices produced by the above algorithm,
let Ã(s) = orth(A(s))T , and let

M (s) = M̃( Ã(s)) + || Ã(s)||2max

1 − || Ã(s)||2col
.

If ||ns ||0 < 1
2 (1+ 1/M (s)), then �1-minimization finds a column at least as sparse as

ns at the sth step.

Values of M̃ or M (s) are useful when they are� 1. Notice that M̃(A) is small when
all columns of A are pairwise uncorrelated, and that the M (s) values are useful when
both || Ã(s)||max and || Ã(s)||col are small. Intuitively, this can happen when Ã(s) is a
wide matrix composed of unit-length rows with evenly distributed values.

Proof Fix a step s of our matrix sparsification algorithm. We call MU(orth(A(s))\
{ak}, ak) and would like to find the M value corresponding to the underlying call to
EDR. Since s is fixed, we write Ã (with columns ãi ) instead of Ã(s). Let Ã(k) =(
orth(A(s))\{ak}

)T
, and let ãi (k) denote the i th column of Ã(k). Find unitary Q =(

Ã(k)
D

)
. This D, with i th column di , is the matrix sent to EDR.
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Let η(i, j) = |〈di ,d j 〉|
||di ||·||d j || . Then

η(i, j) = |〈ãi (k), ã j (k)〉|√
(1 − ||ãi (k)||2)(1 − ||ã j (k)||2)

≤ |〈ãi (k), ã j (k)〉|√
(1 − ||ãi ||2)(1 − ||ã j ||2)

≤ |〈ãi , ã j 〉| + |ãki ãk j |√
(1 − ||ãi ||2)(1 − ||ã j ||2)

≤ |〈ãi , ã j 〉|√
(1 − ||ãi ||2)(1 − ||ã j ||2)

+ || Ã||2max

1 − || Ã||2col
.

The first equality above follows from the definition of Q and the proof of Theorem
3. The last inequality above uses the facts that ∀i, j, |ãi j | ≤ || Ã||max and ∀i, (1 −
||ãi ||2)−1/2 ≤ (1 − || Ã||2col)−1/2.

The result is that M(D) = maxi �= j η(i, j) ≤ M̃( Ã) + || Ã||2max
1−|| Ã||2col

, which concludes

the proof. 
�
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Appendix 1: Approximation Equivalence

Here we define approximation equivalence. Some of our notation and definitions are
inspired by [1], which itself built upon [22].

Definition 1 An optimization problem is a four-tuple F = {IF , SF ,mF , optF }, where
IF is the set of input instances, SF (x) is the solution space for x ∈ IF , mF (x, y) is
the objective metric for x ∈ IF and y ∈ SF (x), and optF ∈ {min,max}.

We will assume throughout the paper that optF = min.
For any optimization problem F and x ∈ IF , we define F(x) = argminy∈SF (x)

mF (x, y) and ||F(x)|| = mF (x, F(x)). An approximation F̃ to F is any map on IF
with F̃(x) ∈ SF (x). We write ||F̃(x)|| for mF (x, F̃(x)). F̃ is an λ-approximation for

F when, for all x ∈ IF , ||F̃(x)||
||F(x)|| ≤ λ(|x |).

Definition 2 Given optimization problems F and G, an exact reduction from F to G
is a pair 〈t1, t2〉 that satisfies the following: (1) t1, t2 ∈ P . (2) t1 : IF → IG and for all
x ∈ IF , y ∈ SG(t1(x)), we have t2(x, y) ∈ SF (x). (3) For all x ∈ IF , y ∈ SG(t1(x)),
we havemF (x, t2(x, y)) = mG(t1(x), y). (4) For all x ∈ IF , ||F(x)|| ≥ ||G(t1(x))||.

We write F � G. We write F ∼ G to denote that F � G and G � F , and call
these problems equivalent.
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Theorem 5 If F � G and G admits a λ-approximation, then so does F.

Proof We are given that for G, there exists G̃ with ||G̃(x)||
||G(x)|| ≤ λ for all x ∈ IG . Let

F̃(x) = t2(x, G̃(t1(x))), where 〈t1, t2〉 is the F � G exact reduction. It suffices to

show that ||F̃(x)||
||F(x)|| ≤ ||G̃(x ′)||

||G(x ′)|| , where x ′ = t1(x). By the fourth item of the definition,

it suffices to demonstrate that ||F̃(x)|| ≤ ||G̃(x ′)||. By the third item, ||F̃(x)|| =
mF (x, t2(x, G̃(x ′))) = mG(x ′, G̃(x ′)) = ||G̃(x ′)||. 
�

In fact, it can be shown that ||F̃(x)||
||F(x)|| = ||G̃(x ′)||

||G(x ′)|| .

Corollary 1 If F ∼ G, then F admits a λ-approximation if and only if G admits a
λ-approximation.

Appendix 2: Relaxed Versions

The following problems are variations which work with more approximate solution
spaces. This can be considered as allowing some noise in either the inputs or outputs.
It is not difficult to extend the the equivalence proofs and algorithmic approximation
results of the paper to the relaxed variants.

Problem 6 Relaxed Dictionary Representation (RDR)

IRDR = 〈D, s, δ〉,m × n matrix D, vector s with s ∈ col(D), δ ≥ 0

SRDR(D, s, δ) = {〈v,w〉 each in Rn : D(v − w) = s, ||w|| ≤ δ}
mRDR(〈D, s〉, 〈v,w〉) = ||v||0

Problem 7 Relaxed MinUnsatisfy (RMU)

IRMU = 〈A, y, δ〉,m × n matrix A, vector y ∈ Rm, δ ≥ 0

SRMU(A, y, δ) = {〈x ∈ Rn, w ∈ Rm〉 : ||w|| ≤ δ}
mRMU(〈A, y〉, 〈x, w〉) = ||y − Ax + w||0

Problem 8 Relaxed Sparse Null Space (RSNS)

IRSNS = 〈A, δ〉, matrix A, and δ ≥ 0

SRSNS(A, δ) = {〈M, N 〉 : N is a full null matrix for A, ||M || ≤ δ}
mRSNS(〈A, δ〉, 〈M, N 〉) = nnz(M + N )

Problem 9 Relaxed Matrix Sparsification (RMS)

IRMS = 〈B, δ〉, matrix B, and δ ≥ 0

SRMS(B, δ) = {〈M, N 〉 : N = BX, X invertible, ||M || ≤ δ}
mRMS(〈B, δ〉, 〈M, N 〉) = nnz(M + N )
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