
Algorithmica (2016) 76:279–296
DOI 10.1007/s00453-015-0037-3

Parameterized Algorithms for Non-separating Trees
and Branchings in Digraphs

Jørgen Bang-Jensen1 · Saket Saurabh2 ·
Sven Simonsen1

Received: 13 August 2014 / Accepted: 14 July 2015 / Published online: 24 July 2015
© Springer Science+Business Media New York 2015

Abstract Awell known result in graph algorithms, due to Edmonds, states that given
a digraph D and a positive integer �, we can test whether D contains � arc-disjoint
out-branchings in polynomial time. However, if we ask whether there exists an out-
branching and an in-branching which are arc-disjoint, then the problem becomes
NP-complete. In fact, even deciding whether a digraph D contains an out-branching
which is arc-disjoint from some spanning tree in the underlying undirected graph
remainsNP-complete. In this paper we formulate some natural optimization questions
around these problems and initiate its study in the realm of parameterized complexity.
More precisely, the problemswe study are the following:Arc-Disjoint Branchings
and Non-Disconnecting Out-Branching. In Arc-Disjoint Branchings (Non-
Disconnecting Out-Branching), a digraph D and a positive integer k are given
as input and the goal is to test whether there exist an out-branching and in-branching
(respectively, a spanning tree in the underlying undirected graph) that differ on at least
k arcs. We obtain the following results for these problems.

• Non-Disconnecting Out-Branching is fixed parameter tractable (FPT) and
admits a linear vertex kernel.

• Arc-Disjoint Branchings is FPT on strong digraphs.

B Saket Saurabh
saket@imsc.res.in

Jørgen Bang-Jensen
jbj@imada.sdu.dk

Sven Simonsen
svsim@imada.sdu.dk

1 Department of Mathematics and Computer Science, University of Southern Denmark, Odense,
Denmark

2 The Institute of Mathematical Sciences, Chennai, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-0037-3&domain=pdf

280 Algorithmica (2016) 76:279–296

The algorithm for Non-Disconnecting Out-Branching runs in time 2O(k)nO(1)

and the approach we use to obtain this algorithms seems useful in designing other
moderately exponential time algorithms for edge/arc partitioning problems.

Keywords Branching · Spanning tree · Fixed parameter tractable · Parameterized
complexity · Linear vertex kernel · Exponential time algorithm · Partitioning problem

1 Introduction

A digraph T is an out-tree (an in-tree) if T is an oriented tree with just one vertex s of
in-degree zero (out-degree zero). The vertex s is the root of T . If an out-tree (in-tree)
T is a spanning subdigraph of D, T is called an out-branching (an in-branching). We
use the notation B+

s (B−
s) to denote an out-branching (in-branching) rooted at s of

the digraph. The study of finding a spanning tree in an undirected graph or an out-
branching in a digraph satisfying certain properties, such as having at least k leaves,
or having at least k internal vertices [1,8–10,13,14,18,19] has been at the forefront of
research in parameterized algorithms in the last few years. The goal of this paper is to
initiate a study of a different class of problems around spanning trees/out-branchings
in the realm of parameterized complexity.

Our starting point is a classical result by Edmonds that states that given a digraph D
and a positive integer �, we can test whether D contains � arc-disjoint out-branchings
in polynomial time [16]. Given this result, a natural question is whether in polynomial
time one can find an out-branching and an in-branching that are arc-disjoint. How-
ever, it is NP-complete to decide whether a given digraph has a pair of arc-disjoint
branchings B+

s , B
−
t [2]. In fact, as was shown recently by two of the authors, this

already holds for 2-regular digraphs [4]. Similarly, as shown by Edmonds [15], one
can also decide in polynomial time whether an undirected graph G contains a pair
of edge-disjoint spanning trees and find such trees if they exist. Inspired by these
results Thomassé asked around 2005 whether one could decide in polynomial time,
for a given input digraph D, whether D contains an out-branching such that deleting
the arcs of this would leave the resulting digraph connected in the underlying sense.
This was recently answered in the negative by the first author and Yeo [6]. That is,
it is NP-complete to decide whether a given digraph D = (V, A) contains an out-
branching B+

s such that the underlying undirected graph of D′ = (V, A\A(B+
s))

is connected. Here, A(B+
s) denotes the arc set of B+

s . In this paper we formu-
late some natural optimization questions around these two problems and initiate
their study in the realm of parameterized complexity. In what follows we define
the problems we study, the results we get and give an overview of the related
results.

For our first problem we need to define spanning trees on digraphs. A spanning
tree of a digraph D is a spanning subdigraph T such that the underlying undirected
graph of T is a spanning tree of the underlying undirected graph of D.
Non-Disconnecting Out-Branching. The first problem we study is as follows.

123

Algorithmica (2016) 76:279–296 281

Non-Disconnecting Out-Branching (NDOB) Parameter: k
Input: A digraph D = (V, A) and a non-negative integer k.
Question: Does D have an out-branching B+

s and a spanning tree T of D such
that |A(B+

s)\A(T)| ≥ k?

This problem is a parameterized version of the problemof decidingwhether D contains
an out-branching such that deleting the arcs of this would leave the resulting digraph
connected in the underlying sense. Another parameterization for this problem could
be whether there is an out-branching B+

s and a spanning tree T of D so that they have
at most k arcs in common. However, observe that this problem becomes NP-complete
even for k = 0 and thus is not FPT.

For NDOB we first obtain a linear vertex kernel and then design an FPT algorithm
for this problem running in time 2O(k)|V |O(1). It is important to note that our FPT
algorithm does not follow directly from our linear vertex kernel and uses a randomized
separation argument.
Arc-Disjoint Branchings. The second problem we study is as follows.

Arc-Disjoint Branchings Parameter: k
Input: A digraph D = (V, A) and a non-negative integer k.
Question: Does D have branchings B+

s and B−
t

such that |A(B+
s)\A(B−

t)| ≥ k?

It is a parameterized version of the problem of deciding whether a given digraph has
a pair of arc-disjoint branchings B+

s , B
−
t . We show that Arc-Disjoint Branchings

is FPT on strong digraphs and strongly believe that our algorithm can be extended
to all digraphs. To derive our result, we show that in polynomial time either we can
correctly decide whether the input is a Yes-instance, or obtain a tree-decomposition
of width at most 3 k for the underlying undirected graph. Now we get the desired FPT
algorithm by standard dynamic programming over graphs of bounded treewidth.

Bang-Jensen and Yeo [5] studied the relatedMinimum Spanning Strong Sub-
digraph (MSSS) problem. MSSS is the problem of finding, in a strong digraph
D = (V, A), a spanning strong subdigraph D′ = (V, A′) where A′ ⊆ A and |A′|
is minimum. This problem isNP-hard as it contains the hamiltonian cycle problem as
a special case. Every strong digraph contains an out-branching B+

s and an in-branching
B−
s and the union of B+

s and B−
s is a strong spanning subdigraph of D, hence the opti-

mum A′ has size at most 2|V | − 2. It was shown in [5] that MSSS is FPT when we
use the distance from the upper bound 2|V |−2 as a parameter. That is, there exists an
f (k)|V |O(1) algorithm for deciding whether a given strong digraph D on n vertices
contains a spanning strong subdigraph with at most 2n − 2 − k arcs. The parame-
terized version of MSSS is equivalent to deciding for a given strong digraph D and
parameter k whether there exists an out-branching B+

s and an in-branching B−
s such

that |A(B+
s) ∩ A(B−

s)| ≥ k. If, instead of maximizing the intersection between the
branchings, we seek to minimize the intersection, we get Arc-Disjoint Branch-
ings. In [5] it was asked whetherArc-Disjoint Branchings is FPT. We answer this
question in the affirmative for strong digraphs.

123

282 Algorithmica (2016) 76:279–296

Vertex Exponential Exact Algorithms for Arc-Disjoint Problems. The approach
used in designing a 2O(k)|V |O(1) time algorithm for NDOB seems of general interest
and we outline a scheme for producing vertex exponential exact algorithms for a large
class of related problems. For discussion let us focus on the problem of deciding
whether a given digraph D = (V, A) has a pair of arc-disjoint branchings B+

s , B
−
t .

A trivial enumerative algorithm will guess arc sets for B+
s and B−

t and then check
whether they are disjoint. This algorithm will run in time mO(n), where m = |A| and
n = |V |. However, we obtain an algorithm running in time 2O(n) for this and many
similar problems. It is important to point out that an exact algorithm forMSSS running
in time 2O(n) was only recently obtained using tools from matroids [20].

2 Preliminaries

An instance of a parameterized problem consists of (x, k), where k is called the
parameter. A central notion in parameterized complexity is fixed parameter tractability
(FPT) whichmeans, for a given instance (x, k), solvability in time f (k) · p(|x |), where
f is an arbitrary function of k and p is a polynomial in the input size. The notion of
kernelization is defined as follows.

Definition 1 (Kernelization) Let� be a parameterized problemand g be a computable
function. We say that � admits a kernel of size g if there exists an algorithmK, called
a kernelization algorithm, or, in short, a kernelization, that given (x, k) ∈ �, outputs,
in time polynomial in |x | + k, a pair (x ′, k′) such that

(a) (x, k) ∈ � if and only if (x ′, k′) ∈ �, and
(b) max{|x ′|, k′} ≤ g(k).

When g(k) = kO(1) or g(k) = O(k) then we say that� admits a polynomial or linear
kernel respectively.

We say that a graph problem admits a linear vertex kernel if the number of vertices in
the reduced graph is bounded by a linear function of k.

Let D = (V, A) be a digraph. By V (D) and A(D) we represent the vertex set and
the arc set of D, respectively. Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′]
denote the digraph induced by V ′. The underlying graph U(D) of D is obtained from
D by omitting all orientations of arcs. A digraph D is strong if, for every pair x, y of
vertices there are directed paths from x to y and from y to x . A vertex u of D is an
in-neighbor (out-neighbor) of a vertex v if uv ∈ A(D) (vu ∈ A(D), respectively).
The in-degree d−(v) (out-degree d+(v)) of a vertex v is the number of its in-neighbors
(out-neighbors). For an arc uv, we call u the arc’s tail and v its head.

Let G = (V, E) be a graph. A tree decomposition of G is a pair (T,X =
{Xt }t∈V (T)) where T is a tree and X is a collection of subsets of V such that:

• ∀e = uv ∈ E, ∃t ∈ V (T) : {u, v} ⊆ Xt and
• ∀v ∈ V , T [{t | v ∈ Xt }] is non-empty and connected.

We call the vertices of T nodes and the sets in X bags of the tree decomposition
(T,X). The width of (T,X) is equal to max {|Xt | − 1 | t ∈ V (T)} and the treewidth
of G = (V, E) is the minimum width over all tree decompositions of G.

123

Algorithmica (2016) 76:279–296 283

Throughout the paper we use n and m to denote the number of vertices and arcs in
the input digraph. Notation not given here is consistent with [3].

3 NON-DISCONNECTING OUT-BRANCHING

In this section we first give a vertex kernel with at most 12 k vertices for a rooted
version of the problem, then design a vertex kernel for NDOB with at most 20 k
vertices. Finally, using the kernel for the rooted version we design a 2O(k)nO(1) time
algorithm for NDOB.

3.1 A Kernel for ROOTED NDOB

In this section we first define a rooted version of the problem and obtain a vertex kernel
wit at most 12 k vertices which allows us to design a faster FPT algorithm for NDOB.
The problem is defined as follows.

Rooted NDOB Parameter: k
Input: A digraph D, a root s ∈ V (D) and a non-negative integer k.
Question: Does D have a branching B+

s and a spanning tree T in D such that
|A(B+

s)\A(T)| ≥ k?

To obtain our vertex kernel for Rooted NDOB with at most 12 k vertices we first
introduce some simple reduction rules which we use to bound the size of the kernel.

Rule 1 If D has no out-branching rooted at s replace D by an independent set of size
2.

Rule 2 If D has a vertex v ∈ V with d−(v) = 1 and d+(v) = 0 and v
= s, delete v.

We say we contract an arc (edge) uv when we delete uv and identify u with v keeping
all their adjacent arcs (edges).

Rule 3 If D has an arc uv ∈ A such that d−(u) = d+(u) = d−(v) = 1 and
u
= s
= v, contract uv.

A reduction rule is safe with respect to a problem if applying the rule does not
change the answer to the problem, that is after applying a safe rule with respect to
problem A the answer to problem A is YES if and only if the answer was YES before
the rule was applied.

Rule 1 is clearly safe. We show below that the other two are also safe.

Lemma 2 Rules 2 and 3 are safe and can be applied in polynomial time.

Proof All structures in rules 2 and 3 can be identified in linear time and performing an
update takes constant time. So we are left with arguing that all rules are safe. Rule 2 is
safe since every spanning tree and out-branching must contain the unique arc incident
to the vertex v.

123

284 Algorithmica (2016) 76:279–296

Now we show that Rule 3 is safe. Let (D, k) be the given instance and (D′, k)
be the instance obtained after applying contraction to the arc uv. Let the contracted
vertex be zuv . We show that (D, k) is a Yes-instance if and only if (D′, k) is a Yes-
instance. We first show the forward direction of the proof. Let B+

s be an out-branching
rooted at s and T be a spanning tree of D such that |A(B+

s)\A(T)| ≥ k. Let w be the
in-neighbor of u. We know that both arcs wu and uv appear in B+

s . Let B
+c
s be the

out-branching of D′ obtained after contracting the arc uv into a vertex zuv in B+
s . If

uv also appears in T then we just contract the edge uv and obtain a spanning tree T ′
of D′. Since uv is present in both B+

s and T we have that |A(B+c
s)\A(T ′)| ≥ k. Now

we assume that uv does not appear in T . Observe that u has degree 2 in U (D). Since
the edge uv is not present in T we have that the edge wu is present in T . Now obtain
a spanning tree T ′ in D by deleting the edge wu and adding the edge uv to T . Clearly,
if |A(B+

s)\A(T)| ≥ k then we have that |A(B+
s)\A(T ′)| ≥ k and this case reduces to

the previous case.
Now we show the reverse direction of the proof. Suppose we have B+c

s and T ′ in
D′ such that |A(B+c

s)\A(T ′)| ≥ k. If w is a neighbor to zuv in T ′ then we obtain T by
modifying T ′ as follows: delete zuv , introduce u and v, make w adjacent to u, add the
edge uv, and make every other vertex than w that was adjacent to zuv now adjacent
to v. If w is not a neighbor to zuv in T ′ then we obtain T from T ′ by renaming zuv to
v and adding the edge uv to it. We obtain B+

s from B+c
s by deleting the vertex zuv ,

adding u and v, adding the arc wu (we have the arc wzuv in B+c
s since d−

D′(zuv) = 1)
and making v in-neighbor to every other vertex zuv was in-neighbor to. Since we have
not deleted any arc/edge from B+c

s and T ′ we have that |A(B+
s)\A(T)| ≥ k. This

concludes the proof. ��
We call an instance (D, k) reduced according to a reduction rule if the rule can not

be applied to (D, k) anymore. We prove that reduction according to these rules and a
greedy construction algorithm are sufficient to give a linear vertex kernel.

Lemma 3 Let (D, k) be an instance to Rooted NDOB. Then in polynomial time
either we

• conclude that (D, k) is a No-instance;
• or find an out-branching B+

s and a spanning tree T such that |A(B+
s)\A(T)| ≥ k;

• or find a vertex kernel with at most 12 k vertices.

Proof If Rule 1 applies we answer NO. If not we reduce (D, k) according to Rules 2
and 3. After this we find an arbitrary out-branching B+

s rooted at s. Such a branching
must exist since otherwise Rule 1 would apply and B+

s can be found in O(m) time
using one BFS-search.

Greedy-Tree-Update
Let T be the spanning tree with the same arc-set as B+

s . Furthermore, let W =
A(D)\A(B+

s), diff(T) = ∅ and diff(B+
s) = ∅. Repeat the following until no

longer possible.

If there exists an arc a ∈ W such that the fundamental cycle C(T, a) of T + a
shares an arc with B+

s (that is there exists an arc a′ ∈ A(C(T, a)) ∩ A(B+
s))

then update the spanning tree and other sets as follows.

123

Algorithmica (2016) 76:279–296 285

• T := T + a − a′;
• W := W\{a};
• diff(T) := diff(T) ∪ {a} and diff(B+

s) := diff(B+
s) ∪ {a′}.

Return T .

Let B+
s still be our arbitrarily chosen out-branching and T be the spanning tree

returned by Greedy-Tree-Update. If |diff(B+
s)| ≥ k we have our solution and we

return B+
s and T . So let us assume that |diff(B+

s)| < k which implies |diff(T)| < k.
Let X be the set of endvertices of the arcs in diff(B+

s) ∪ diff(T). The size of X is at
most 2(k − 1) + 2(k − 1) = 4k − 4 and every arc in A\A(B+

s) has both endvertices
in X from B+

s : otherwise, if there was an arc a with at least one end in V \X we could
have continued one more step above, as B+

s and T are identical in this part of the
digraph so C(T, a) would have to share arcs with B+

s .
If we delete all arcs that have both endvertices in X from D, we obtain a collection

of disjoint out-trees F+
s1 , . . . , F+

sp , where s1 = s and si ∈ X for 2 ≤ i ≤ p. This holds

because the remaining arcs are all in A(T) ∩ A(B+
s) so we are essentially breaking

apart B+
s .

Partition the vertex set of every F+
si into 3 sets: Xsi = X ∩ V (F+

si), 2si = {v ∈
(V (F+

si)\Xsi)|d+
F+
si

(v) ≥ 2} and 1si = {v ∈ (V (F+
si)\Xsi)|d+

F+
si

(v) = 1}. Observe that
F+
si can have no leaves in V \X since in that case we could apply Rule 2. So the leaves

of F+
si are all in Xsi thus upper bounding the number of leaves by |Xsi | and implying

that |2si | < |Xsi |. Likewise F+
si can contain no arc uv such that d−

F+
si

(u) = d+
F+
si

(u) =
d−
F+
si

(v) = 1 and u, v /∈ X since then the arcs adjacent to u and v would all be in B+
s

and we could apply Rule 3. So every vertex in 1si must have its only out-neighbor in
Xsi implying that |1si | ≤ |Xsi |. Furthermore since the F+

si were disjoint we know that
the Xsi are disjoint. Collecting all of this we get that

|V | =
p∑

i=1

|V (F+
si)| =

p∑

i=1

(|Xsi | + |2si | + |1si |
)

<

p∑

i=1

3|Xsi | ≤ 3|X | ≤ 12k − 12.

So D is a vertex kernel with at most 12 k vertices and we conclude our proof. ��
The kernel for NDOB is obtained using reduction rules similar to Rules 1–3.

3.2 Kernel for NON-DISCONNECTING OUT-BRANCHING

In this section we present a polynomial algorithm for obtaining a vertex kernel for
NDOB with at most 20 k vertices.

First we introduce some simple reduction rules which we will use to bound the
number of vertices of the kernel.

Rule 4 If a vertex v ∈ V has in-degree 0, fix v as the root and apply Lemma 3.

Rule 5 If D has a vertex v ∈ V with d−(v) = 1 and d+(v) = 0, delete v.

123

286 Algorithmica (2016) 76:279–296

Rule 6 If D has no out-branching, answer NO.

Rules 4 and 6 are safe and can be checked in polynomial time. Rule 5 is the same
as Rule 2 from our section on Rooted NDOB. This rule is still safe as a vertex with
only in-neighbors can never be the root of an out-branching anyways and the unique
arc incident with v must be both in all out-branchings and all spanning trees. However,
Rule 3 does not apply to NDOB in its current form, as evidenced by the case where u
or v are possible roots. To fill its role we introduce the following “longer path” rule.

Rule 7 If D has a path xuvw such that d−(u) = d+(u) = d−(v) = d+(v) =
d−(w) = 1, contract uv.

The extra arc this rule requires compared to Rule 3 allows us to show.

Lemma 4 Rule 7 is safe and can be applied in polynomial time.

Proof The 3-path can be identified in polynomial time and performing an update takes
constant time. So we are left with arguing that the rule is safe.

Let (D, k) be the given instance and (D′, k) be the instance obtained after contract-
ing the arc uv into the vertex zuv . We show that (D, k) is a Yes-instance if and only
(D′, k) is a Yes-instance.

We first show the backward direction of the proof. Let B+c be an out-branching
and T ′ be a spanning tree in D′ such that |A(B+c)\A(T ′)| ≥ k. We obtain a solution
B+ and T for D from B+c and T ′ by doing the following to both. Split zuv into u and
v such that u keeps the possible in-arc of zuv while v keeps the possible out-arc, then
add the arc uv. Since we have not deleted any arc/edge from B+c

s and T ′ we have that
|A(B+

s)\A(T)| ≥ k.
Forward direction. Let B+ be an out-branching and T be a spanning tree in D

such that |A(B+)\A(T)| ≥ k, we can construct a solution for D′ as follows. First
we observe that if uv ∈ B+ and uv ∈ T we can just contract it in both and get an
out-branching B+c and a spanning tree T ′ in D′ such that |A(B+c)\A(T ′)| ≥ k. If
uv /∈ B+ or vw /∈ B+ this implies that v or w is the root of B+. Change the root
to u by removing xu from B+ and adding uv and vw. This change might decrease
|A(B+)\A(T)| by one if xu /∈ T , but we fix this in the next step. If xu /∈ T or
uv /∈ T add this arc to T then remove vw to break the fundamental cycle. This change
increases |A(B+)\A(T)| by one again if it was decreased in the previous step. Now
B+, T is again a solution in D and uv is contained in both, so we can contract uv and
get a solution for D′. ��

With this new reduction rule we are able to prove a linear kernel for Non-
Disconnecting Out-Branching as well.

Theorem 5 Let (D, k) be an instance to NDOB. Then in polynomial time either we

• conclude that (D, k) is a No-instance;
• or find an out-branching B+ and a spanning tree T such that |A(B+)\A(T)| ≥ k;
• or find a kernel with at most 20 k vertices.

Proof If Rule 4 applies we hand the instance with its new root over to the algorithm of
Lemma 3 and answer what the algorithm would answer. If Rule 6 applies we answer

123

Algorithmica (2016) 76:279–296 287

NO. If both of these didn’t apply we reduce (D, k) according to Rules 5 and 7. After
this we find an arbitrary out-branching B+

s rooted at some vertex s ∈ V . Such a
branching must exist since otherwise Rule 6 would apply and B+

s can be found in
O(nm) time using one BFS-search for every possible root.

Let T be the spanning tree returned by the procedure Greedy-Tree-Update from
Lemma 3 run on our arbitrarily chosen out-branching B+

s . As before we can assume
that |diff(B+

s)| = |diff(T)| < k. Again we let X be the set of endvertices of the arcs
in diff(B+

s) ∪ diff(T) and observe that |X | ≤ 2(k − 1) + 2(k − 1) = 4k − 4 and
since the update rule of Greedy-Tree-Update could no longer be applied every arc in
A\A(B+

s) has both endvertices in X from B+
s .

If we delete all arcs that have both endvertices in X from D, we obtain a collection
of disjoint out-trees F+

s1 , . . . , F+
sp , where s1 = s and si ∈ X for 2 ≤ i ≤ p.

Partition the vertex set of every Fsi into 3 sets: Xsi = X ∩ V (Fsi), 2si = {v ∈
(V (Fsi)\Xsi)|d+

Fsi
(v) ≥ 2} and 1si = {v ∈ (V (Fsi)\Xsi)|d+

Fsi
(v) = 1}. Then further

partition 1si into twoparts, let 1
X
si be the set of vertices of 1si that have their out-neighbor

in Xsi and let 1
V \X
si = 1si \1Xsi . Since D was reduced according to Rule 5 we know that

all leaves of Fsi are in Xsi so |2si | < |Xsi |. By construction every vertex in 1Xsi must
have its only out-neighbor in Xsi so |1Xsi | ≤ |Xsi |, since no two vertices in Fsi can have

the same out-neighbor. Now to bound the size of 1V \X
si observe that the out-neighbor

of any vertex in 1V \X
si can’t be in 1V \X

si as well, since then Rule 7 would apply, so the

out-neighbor must be either in 2si or in 1
X
si . This gives |1V \X

si | ≤ |2si |+ |1Xsi | ≤ 2|Xsi |.
Collecting all of this we get that

|V | =
p∑

i=1

|V (Fsi)| =
p∑

i=1

(
|Xsi | + |2si | + |1Xsi | + |1V \X

si |
)

<

p∑

i=1

5|Xsi | ≤ 5|X | ≤ 20k − 20.

So D is a kernel for NDOB with at most 20 k vertices and we conclude our proof. ��

3.3 Faster FPT Algorithm for NON-DISCONNECTING OUT-BRANCHING

Here, we give a 2O(k)nO(1) time algorithm for NDOB. For our main algorithm we
need the following subroutine.

Lemma 6 Given an undirected graph G, a coloring function f : E(G) → {0, 1},
and a non-negative integer k, we can find in linear time a spanning tree T such that
it contains at least k edges colored 0 or decide that no such tree exists.

Proof First of all we assume that the graph G is connected, else we know that G
does not have any spanning tree. Let E0 be the set of edges that have been colored 0.
Consider the graph G ′ with the vertex set V (G) and the edge set E0. Find a spanning
forest F ′ of G ′ with largest possible number of edges. Now since G is connected F ′

123

288 Algorithmica (2016) 76:279–296

can be extended to a spanning tree T of G. Thus, G has a spanning tree with at least
k edges colored 0 if and only if G ′ has a spanning forest on at least k edges. Since
our algorithm just runs two rounds of any standard algorithm for finding a maximum
forest (which can be done with simple Depth-First-Search) we have that the algorithm
runs in linear time. ��

Now we design a randomized algorithm for NDOB.

Theorem 7 There is a one-sided-error Monte-Carlo algorithm forNDOB running in
O((33.97)k · (n + m)) expected time.

Proof Given an input (D, k) to NDOB, the algorithm goes through all n vertices as
potential root and applies the following procedure. If for any vertex currently chosen
as a root candidate we succeed in finding the desired solution we return Yes else we
return No.

Given a root first apply the kernelization algorithm described in Lemma 3. The
algorithm, in polynomial time, either returns a solution to Rooted NDOB and thus
to NDOB, in which case we answer Yes, or it returns an equivalent instance (D′, k)
such that |V (D′)| ≤ 12 k. In the second case we perform the following steps several
times.

1. Uniformly at random color the arcs of D′ with [13 k] = {1, 2, . . . , 13 k}. Let the
coloring function be called f .

2. Using Lemma 6 test whether the underlying undirected graph of D′ contains a
spanning tree with at least k edges colored with colors from the set {1, . . . , k} by
treating all these colors as 0 and others as 1. Also test whether the digraph D′′
on the vertex set V (D′) and the arc set containing all those arcs that have been
colored {k + 1, . . . , 13 k} contains an out-branching. If the answer to both these
questions is Yes then return Yes.

Given a spanning tree T and an out-branching B+
s , we define diff(T) =

A(T)\A(B+
s) and diff(B+

s) = A(B+
s)\A(T). The answer to our problem is Yes

if and only if there exists a tree T and out-branching B+
s such that |diff(T)| ≥ k and

thus |diff(B+
s)| ≥ k. We say that the solution (B+

s , T) is colorful with respect to f , if

• every arc of B+
s has been colored with {k + 1, . . . , 13 k} and

• some subset S ⊆ diff(T) of size k has been colored with {1, . . . , k}.
The probability that a solution (B+

s , T) becomes colorful is:

∑

{S⊆diff(T),|S|=k}
(12 k/13 k))|V (D′)|−1(k/13 k)k ≥ ((12/13)12 · (1/13))k .

Given a coloring, Step 2 of the algorithm finds a colorful solution if one exists, in
polynomial time. The correctness of the algorithm follows from the fact that both T
and B+

s have |V (D′)|−1 arcs and if T contains at least k arcs that are of different color
than the arcs of B+

s then we have that |diff(T)| ≥ k and consequently |diff(B+
s)| ≥ k

since T and B+
s have the same number of arcs. Thus, if there is indeed a solution

(B+
s , T) then we find one with probability at least

((12
13

)12 · 1
13

)k
. Thus, repeating the

123

Algorithmica (2016) 76:279–296 289

algorithm
((13

12

)12 · 13
)k ≤ 33.97k times, the error probability can be reduced to at

most 1/e meaning that the success probability is at least 1 − 1
e ≥ 1

2 . ��
Wecan obtain a deterministic algorithm for the problemusing the notion of lopsided

universal family.

Definition 8 ([20,22]). An n-p-q-lopsided-universal family F is a set of functions
from {1, . . . , n} to {0, 1}, such that for every subset A, B ⊆ {1, . . . , n}, A ∩ B = ∅,
|A| = p and |B| = q, there exists a function f ∈ F such that for every a ∈ A, f (a) =
0 and for every b ∈ B, f (b) = 1.

Theorem 9 ([20,22]). There is an algorithm that given n, p and q constructs a n-p-
q-lopsided-universal familyF of size

(p+q
p

) ·2o(p+q) · log n in timeO(
(p+q

p

) ·2o(p+q) ·
n log n).

Theorem 10 There is an algorithm forNon-Disconnecting Out-Branching run-
ning in O(33.97k+o(1) · (n + m) log n) time.

Proof To obtain the deterministic algorithm we change the algorithm suggested in
Theorem7 so that it takes coloring functions froma universal family instead of creating
them randomly. To achieve this we replace the two repeated steps in the algorithmwith
the following. Let m′ and n′ denote the number of arcs and the number of vertices in
the reduced instance (D′, k).
1. Label the arcs of D′ 1, 2, . . . ,m′ then for every f ∈ F , whereF is an (m′, k, n′ −

1)-lopsided-universal family, do as follows:
• Using Lemma 6 test whether the underlying undirected graph of D′ contains a
spanning tree with at least k edges colored with 0 under f . Also test whether
the digraph D′′ on the vertex set V (D) and the arc set containing all those arcs
that has been colored 1 contains an out-branching rooted at s. If the answer to
both these questions is Yes then return Yes.

2. Return that the original instance is a No-instance.

The correctness of the algorithm follows from the following. Let (B+, T) be a
solution andW be A(B+)∩ S, where S is some fixed set of k arcs in diff(T). Since the
size of A(B+) is n′ − 1 there exists a function f ∈ F such that f colors all the arcs of
B+ with 1 and the arcs of S with 0. The running time of the algorithm is dominated
by the size of the set of hash functions, which by Theorem 9 is upper bounded by(13k

k

)
2o(k). To upper bound

(13k
k

)
, we will use the following well known identity on

binomial coefficients:
(
n

k

)
≤ nn

kk(n − k)n−k
.

A direct application of the above identity implies

(
13k

k

)
≤

((
13

12

)12

· 13
)k

≤ 33.97k .

This concludes the proof. ��

123

290 Algorithmica (2016) 76:279–296

4 ARC-DISJOINT BRANCHINGS on Strong Digraphs

In this sectionwe considerArc-Disjoint Branchings on strong digraphs and design
an FPT algorithm for this. We do this by showing that in polynomial time either we
can find an out-branching and an in-branching that differ on at least k arcs or we can
find a tree-decomposition of the underlying undirected graph of width at most 3 k. The
main technical lemma of this section is as follows.

Lemma 11 Let (D, k) be an instance to Arc-Disjoint Branchings where D is a
strong digraph. Then in polynomial time either we

• conclude that (D, k) is a No-instance;
• or findanout-branching B+

s andan in-branching B−
t such that |A(B+

s)\A(B−
t)| ≥

k;
• or find a tree-decomposition of width 3 k − 2 for U (D).

Proof We start with an arbitrary pair of an out-branching B+
s and an in-branching

B−
t , rooted at s and t respectively where s and t could potentially be the same vertex.

Such branchings can be constructed by two BFS-searches in polynomial time and
since D is strong they always exist. So from now onwards we assume that we have an
out-branching B+

s and an in-branching B−
t . Next we describe a procedure that finds a

pair of branchings with nice structural properties.

Procedure-Local-Optimal
Let B+

s and B−
t be the branchings found in the first paragraph. Furthermore, let

W = A(D)\(A(B+
s) ∪ A(B−

t)), diff(B+
s) = A(B+

s)\A(B−
t) and diff(B−

t) =
A(B−

t)\A(B+
s) at all times throughout the procedure. Repeat the following until

no longer possible.

If there exists an arc a = uv ∈ W such that B+
s + a (that is add the arc a to

the out-branching B+
s) contains no directed cycle and the unique in-arc a′ of v

in B+
s satisfies a′ /∈ diff(B+

s) then update the out-branching and other sets as
follows.

• B+
s := B+

s + a − a′;
• W := W\{a};
• diff(B+

s) := diff(B+
s) ∪ {a} and diff(B−

t) := diff(B−
t) ∪ {a′}.

Return B+
s and B−

t .

Let B+
s and B−

t be the out-branching and in-branching returned by Procedure-Local-
Optimal. If |diff(B+

s)| ≥ k we have our solution and we return B+
s and B−

t . So let us
assume that |diff(B+

s)| < k. This implies that |diff(B−
t)| < k. We use these trees to

find a tree-decomposition of width 3 k for U (D).
We say an arc uv goes backwards with respect to a branching B, if B contains

a (v, u)-path, that is, adding the arc to the branching would create a directed cycle.
Let Hdiff(B+

s) be the set of vertices that are head of the arcs in diff(B+
s). Clearly,

|Hdiff(B+
s)| ≤ k − 1. Observe that every arc of W is either a backward arc with respect

to B+
s or has its head in Hdiff(B+

s). Let Wh be the set of arcs in W whose heads are in
Hdiff(B+

s).

123

Algorithmica (2016) 76:279–296 291

Let X = diff(B−
t) ∪ Wh and HX be the set of vertices that are head of the arcs

in X . Since, |diff(B−
t)| < k we have that |HX | ≤ 2(k − 1). Let D′ be the digraph

obtained by deleting the arcs in X . Observe that every arc of B+
s is still in D′ and thus

it is also an out-branching rooted at s in D′. Let T+
v denote the sub-out-branching of

B+
s rooted at v and let Hv denote the heads of arcs in A(D′) that have tail in V (T+

v)

and head in V (D′)\V (T+
v). If for any v we have that |Hv| ≥ k, then we construct an

out-branching B+
v in D such that |A(B+

v) − A(B−
t)| ≥ k as follows.

Start with the sub-out-branching T+
v of B+

s rooted at v. Now for every vertex
w ∈ Hv pick an arbitrary arc aw with tail in V (T+

v) and head being w. Let this
set of arcs be Y . Now add Y to T+

v . That is, let T+
v := T+

v ∪ Y .

Clearly, T+
v constructed above is an out-tree and furthermore since Y ⊆ W\Wh we

have that |A(T+
v)\A(B−

t)| ≥ k. Now since D is a strong digraph we can extend T+
v to

an out-branching B+
v in D. Thus, in this case we have our solution and we return B+

v

and B−
t . So from now onwards we assume that for every v ∈ V (D′), |Hv| ≤ k − 1.

Claim 1 The treewidth of U (D′) is at most k.

Proof Let L denote the underlying undirected tree rooted at s corresponding to B+
s .

Furthermore, for v
= s, let p(v) denote the parent of v in B+
s . That is, p(v) is the

unique in-neighbor of v in B+
s . Let Lv denote the subtree of L rooted at v. Observe that

arcs of D′ are either arcs of B+
s or backward arcs corresponding to B+

s . Thus, we have
that NU (D′)(V (Lv)) = Hv ∪ {p(v)}. This in turn implies that |NU (D′)(V (Lv))| ≤ k,
so no bag has more than k + 1 vertices.

We construct a tree decomposition (T,X = {Xt }t∈V (T)) of U (D′) as follows. We
take T := L , Xs = {s} and for every v
= s, take Xv = {v} ∪ NU (D′)(V (Lv)).

1

Every vertex and edge of U (D′) belong to some bag, since D′ only contains B+
s

and backwards arcs. Now we need to show that for each vertex v ∈ V (U (D′)) the
subgraph T [{t | v ∈ Xt }] is connected. Observe that v can only belong to Xw where
w ∈ V (Lv) and the only reason it belongs to Xw for some w
= v is that v ∈ Hw or
v = p(w). However, once it belongs to Hw for some w then it belongs to every w′ on
the path from w to v. This proves that T [{t | v ∈ Xt }] is connected. Thus (T,X) is
a tree decomposition of width at most k, implying by definition that the treewidth of
U (D′) is at most k. This concludes the proof of the claim. ��
Finally, we show how to obtain a tree decomposition for U (D). Recall that, X =
diff(B−

t) ∪ Wh and HX is the set of vertices that are head of the arcs in X and D′ is
the digraph obtained by deleting the arcs in X . We also have that |HX | ≤ 2(k − 1).
We obtain the tree decomposition ofU (D) by taking the tree decomposition (T,X =
{Xt }t∈V (T)) of U (D′) and adding HX to every bag. That is, Xt := Xt ∪ HX for all v
in V (T), this way we ensure that every edge of X is in some bag without violating the
already established tree decomposition. The resulting tree decomposition has width
at most k + |HX | ≤ 3k − 2. This completes the proof. ��

Nowweget the desired FPT algorithmby doing the standard dynamic programming
over graphs of bounded treewidth. However, this would take 2O(t log t)nO(1) and thus

1 Where NU (D′)(V (Lv)) is the neighborhood of V (Lv) in U (D′).

123

292 Algorithmica (2016) 76:279–296

getting an algorithm for Arc-Disjoint Branchings on strong digraphs running in
time 2O(k log k)nO(1). Alternatively, the property of containing an out-branching and
an in-branching that differs on at least k arcs can be formulated as a monadic second
order formula. Thus, by the fundamental theorem of Courcelle [11,12], the problem
Arc-Disjoint Branchings for all digraphs D with treewidth at most O(k) can be
solved in f (k) · n time, where f is a function depending only on k. Thus, we have the
following theorem.

Theorem 12 Arc-Disjoint Branchings is FPT on strong digraphs.

5 Exact Algorithms for Some Subdigraph Problems

In this section we abstract the ideas used in the algorithm forNDOB deriving amethod
that is applicable to a range of edge partitioning problems satisfying some constraints.
We then apply this method to a number of related problems.

The idea of randomly partitioning arcs to solve NDOB seems to be a promising
approach for other edge/arc partitioning problems in the realm of moderately expo-
nential time algorithms. We refer to the book of Fomin and Kratsch [17] for a detailed
introduction to the subject.

The class of digraphs on wich our method can be applied is defined as follows:

Definition 13 A class of (di)graphs � is called good if the following holds.

(a) There exist linear functions bπ so that every (di)graph H ∈ � contains a spanning
sub(di)graph H ′ such that H ′ ∈ � and |A(H ′)| ≤ bπ (|V (H)|) (this is called the
bounded certificate property);

(b) Given a (di)graph H , we can find in polynomial time either a spanning
sub(di)graph H ′ of H such that H ′ ∈ � and |A(H ′)| ≤ bπ (|V (H)|), or a
certificate showing that H contains no such subdigraph.

We formulate the following partitioning problem in terms of directed graphs but
the same can be done for undirected graphs as well as mixed graphs.

{�1, . . . ,��}-Arc-Disjoint Subgraphs Problem
Input: A directed graph D and a collection of families of good digraphs
�1, . . . ,��.
Question: Does D have subgraphs D1, . . . , D� such that

• for all i ∈ {1, . . . , �}, Di ∈ �i and
• for all 1 ≤ i < j ≤ �, A(Di) ∩ A(Dj) = ∅?
Nextweoutline an algorithm for {�1, . . . ,��}-Arc-Disjoint Subgraphs Prob-

lem using the idea of random separation.

Theorem 14 There is a one-sided-error Monte-Carlo algorithm for {�1, . . . ,��}-
Arc-Disjoint Subgraphs Problem running in �t · nO(1) expected time. Here, n is
the number of vertices in the input digraph and t = ∑�

i=1 bπi (n).

Proof The idea of the algorithm is similar to the algorithm in the proof of Theorem 7.

123

Algorithmica (2016) 76:279–296 293

1. Uniformly at random color the arcs of D with [�] = {1, 2, . . . , �}. Let the coloring
function be called f .

2. Let Hi denote the subdigraph of D with the vertex set V (D) and the arc set being
those that have been assigned color i . In polynomial time decide whether each
Hi contains a subdigraph Di such that Di ∈ �i and |A(Di)| ≤ bπi (n). If such a
subdigraph exists for each i ∈ [�] we return Yes.
Let n be the number of vertices in the input digraph D. When we talk about a

solution (D1, . . . , D�) to the {�1, . . . ,��}-Arc-Disjoint Subgraphs Problem
we shall assume that each Di satisfies that |A(Di)| ≤ bπi (n). We can adjust any
solution to satisfy this requirement since each �i is a good class of digraphs and thus
satisfies the bounded certificate property. We say that the solution (D1, . . . , D�) to the
{�1, . . . ,��}-Arc-Disjoint Subgraphs Problem is colorful with respect to f , if
every arc of Di has been colored with i . Since the number of arcs in Di is bounded
above by bπi (n), the probability that a solution (D1, . . . , D�) becomes colorful is at
least:

�∏

i=1

(
1

�

)bπi (n)

= �
−

(∑�
i=1 bπi (n)

)

= �−t .

Given a coloring, Step 2 of the algorithm finds a colorful solution satisfying the
prescribed bounds on the arc sets if there exists one, in polynomial time. Thus, if there
is indeed a solution (D1, . . . , D�) then we find it with probability �−t . So if we repeat
the algorithm �t times, the error probability can be reduced to at most 1/e, making the
success probability at least 1 − 1

e ≥ 1
2 . ��

As a corollary of Theorem 14 we give efficient exact algorithms for the following
problems.

(�1, �2)-Arc-Disjoint In-and Out-Branchings ((�1, �2)-ADB)
Input: A directed graph D on n vertices and m arcs.
Question: Does D have out-branchings B+

s1 , . . . , B
+
s�1

and in-branchings

B−
s�1+1

, . . . , B−
s�1+�2

such that they are pairwise disjoint.

This problem is NP-complete already when �1 = �2 = 1 [2].

Non Disconnecting Spanning Strong Subdigraph (NDSSS)
Input: A directed graph D on n vertices and m arcs.
Question: Does D have spanning tree T in D and a strong spanning subdigraph
D′ of D such that A(D′) ∩ A(T) = ∅?

This problem is NP-complete even for 2-regular digraphs [6].
Trivial brute-force algorithms for (�1, �2)-ADB and NDSSS work by guessing the

arcs and then checking whether the arcs satisfy the desired properties. For an example;
to solve Non Disconnecting Spanning Strong Subdigraph we can guess the
arcs of D′ and then checkwhetherUG(D∗)where D∗ has vertex set V (D) and arcs set
A(D)\A(D′) is connected. It is well known that we can obtain a strongly connected

123

294 Algorithmica (2016) 76:279–296

digraph by taking an out-branching and an in-branching starting at a vertex s and thus
the number of arcs in D′ is at most 2n − 2. Also D′ must contain at least n arcs and
thus the overall running time of this algorithm will be

2n−2∑

i=n

(
m

i

)
O(n + m) ∼ O(mn).

However, we can apply the algorithm described in Theorem 14 and get an algorithm
where the exponential part only depends on the number of vertices in the input graph
and is independent of the number of arcs. Let �1 be class of all strongly connected
digraphs, let �2 be the class of all trees and take b1(n) = 2n − 2 and b2(n) = n − 1.
Given any strong digraph H on n vertices, we can find a spanning strong subdigraph
on at most b1(n) arcs in linear time by fixing a vertex s and finding arbitrary in- and
out-branchings B−

s , B+
s rooted at s. The union of these forms H ′. Clearly we can

find a spanning tree an a given connected (di)graph in linear time. Hence by applying
Theorem 14 we get the following corollary.

Corollary 15 NDSSS can be solved in O(8n(n + m)) expected time.

To solve (�1, �2)-Arc-Disjoint In-and Out-Branchings we proceed as fol-
lows. By the clasical theorem of Edmonds, given a digraph we can test whether it
contains �-arc disjoint (in-) out-branchings in polynomial time [15]. Thus, we fix �1
to be the class of digraphs that has �1 arc-disjoint out-branchings and �2 to be the
class of digraphs that has �2 arc-disjoint in-branchings. We set b1(n) = �1 (n−1) and
b2(n) = �2 (n − 1). Now by applying Theorem 14 we get the following corollary.

Corollary 16 (�1, �2)-ADB can be solved in O(2(�1+�2)n(n + m)) expected time.

The algorithm in Theorem 14 can be derandomized using a generalization of uni-
versal sets which is defined as follows.

Definition 17 ([21]) An (n, k, q)-universal set is a family of vectors V ⊆ [q]n such
that for any index set S ∈ ([n]

k

)
, the projection of V on S contains all qk possible

configurations.

Proposition 18 ([21]) An (n, k, q)-universal family of cardinality qkkO(log k) log2 n
can be constructed deterministically in time O(qkkO(log k)n log2 n).

Now using the (n, k, q)-universal family instead of random coloring in Theorem 14
we get the following result. In particular we apply Proposition 18 with the parameters
(|A(D)|, t, �).
Theorem 19 There is an algorithm for {�1, . . . ,��}-Arc-Disjoint Subgraphs
Problem running in �t · nO(1). Here, n is the number of vertices in the input digraph
and t = ∑�

i=1 bπi (n).

One could obtain several exact algorithms as a direct corollary of Theorem 19.
Recently Bernáth and Király [7] showed several natural packing, covering and par-
titioning problems to be NP-complete. For almost all the partitioning and covering
problems mentioned in [7] one can obtain exact algorithms using Theorem 19. We
leave the details, since these algorithms are direct consequences of our formulation of
{�1, . . . ,��}-Arc-Disjoint Subgraphs Problem.

123

Algorithmica (2016) 76:279–296 295

6 Concluding remarks

In this paper we formulated some natural parameterized problems around finding a
pair of branchings or spanning trees differing on at least k arcs and obtained some para-
meterized algorithms for them. We conclude with presenting the following questions,
whose parameterized complexity status is still unknown.

Problem 1 Given a strong digraph D = (V, A) and a natural number k. Does D
contain a spanning tree T such that we can delete some set of k arcs of A(T) from D
and still have a strong spanning subdigraph of D?

A related, seemingly simpler question is the following.

Problem 2 Given a digraph D = (V, A) and a number k. Can we delete some set X
of k arcs from D such that D\X is strong?

Acknowledgments We would like to thank the reviewers for their valuable comments and suggestions.

References

1. Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Spanning directed trees with many
leaves. SIAM J. Discrete Math. 23(1), 466–476 (2009)

2. Bang-Jensen, J.: Edge-disjoint in- and out-branchings in tournaments and related path problems. J.
Combin. Theory Ser. B 51(1), 1–23 (1991)

3. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms andApplications, 2nd edn. Springer, London
(2009)

4. Bang-Jensen, J., Simonsen, S.: Arc-disjoint paths and trees in 2-regular digraphs. Discrete Appl. Math.
161(1617), 2724–2730 (2013)

5. Bang-Jensen, J., Yeo, A.: The minimum spanning subdigraph problem is fixed parameter tractable.
Discrete Appl. Math. 156, 2924–2929 (2008)

6. Bang-Jensen, J., Yeo, A.: Arc-disjoint spanning subdigraphs in digraphs. Theor. Comput. Sci. 438,
48–54 (2012)

7. Bernáth, A., Király, Z.: On the tractability of some natural packing, covering and partitioning problems.
Discrete Appl. Math. 180, 25–35 (2015)

8. Binkele-Raible, D., Fernau, H., Fomin, F.V., Lokshtanov, D., Saurabh, S., Villanger, Y.: Kernel(s) for
problems with no kernel: on out-trees with many leaves. ACM Trans. Algorithms 8(4), 38 (2012)

9. Binkele-Raible, D., Fernau, H., Gaspers, S., Liedloff, M.: Exact and parameterized algorithms for max
internal spanning tree. Algorithmica 65(1), 95–128 (2013)

10. Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for finding k-vertex
out-trees and its application to k-internal out-branching problem. J. Comput. Syst. Sci. 76(7), 650–662
(2010)

11. Courcelle, B.: The monadic second-order logic of graphs. I: recognizable sets of finite graphs. Inf.
Comput. 85(1), 12–75 (1990)

12. Courcelle, B.: The monadic second-order logic of graphs. III: tree-decompositions, minor and com-
plexity issues. ITA 26, 257–286 (1992)

13. Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: Fpt algorithms and kernels for the directed k-leaf problem.
J. Comput. Syst. Sci. 76(2), 144–152 (2010)

14. Dorn, F., Fomin, F.V., Lokshtanov,D.,Raman,V., Saurabh, S.: Beyondbidimensionality: parameterized
subexponential algorithms on directed graphs. STACS 5, 251–262 (2010)

15. Edmonds J.: Matroid partition. In: Dantzig G.B., Veinott A.F. (eds.) Mathematics of the Decision
Sciences: Part 1, pp. 335–345. American Mathematical Society, New York (1968)

16. Edmonds., J.: Combinatorial Algorithms. In: Rustin, B. (ed.) Edge-disjoint branchings, pp. 91–96.
Academic Press, Waltham (1973)

17. Fomin, F., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin (2010)

123

296 Algorithmica (2016) 76:279–296

18. Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for maximum internal
spanning tree. J. Comput. Syst. Sci. 79(1), 1–6 (2013)

19. Fomin, F.V., Grandoni, F., Lokshtanov, D., Saurabh, S.: Sharp separation and applications to exact and
parameterized algorithms. Algorithmica 63(3), 692–706 (2012)

20. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applica-
tions in parameterized and exact algorithms. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 142–151 (2013)

21. Neeldhara, M., Fahad, P., Rai, A., Raman, V., Saurabh, S.: Parameterized algorithms for max colorable
induced subgraph problem on perfect graphs. In Graph-Theoretic Concepts in Computer Science—
39th International Workshop, WG 2013, Lübeck, Germany, June 19–21, 2013, Revised Papers, vol.
8165 of Lecture Notes in Computer Science, pp. 370–381. Springer, Berlin (2013)

22. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. (Preliminary
version). In 36th Annual Symposium on Foundations of Computer Science. Held in Milwaukee, WI,
USA, October 23–25, 1995. Los Alamitos, CA: IEEE Computer Society Press. pp. 182–193 (1995)

123

	Parameterized Algorithms for Non-separating Trees and Branchings in Digraphs
	Abstract
	1 Introduction
	2 Preliminaries
	3 Non-Disconnecting Out-Branching
	3.1 A Kernel for Rooted NDOB
	3.2 Kernel for Non-Disconnecting Out-Branching
	3.3 Faster FPT Algorithm for Non-Disconnecting Out-Branching

	4 Arc-Disjoint Branchings on Strong Digraphs
	5 Exact Algorithms for Some Subdigraph Problems
	6 Concluding remarks
	Acknowledgments
	References

