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Abstract Given a plane graph G (i.e., a planar graph with a fixed planar embedding
and outer face) and a biconnected subgraph G ′ with a fixed planar straight-line convex
drawing, we consider the question whether this drawing can be extended to a planar
straight-line drawing of G. We characterize when this is possible in terms of simple
necessary conditions, which we prove to be sufficient. This also leads to a linear-time
testing algorithm. If a drawing extension exists, one can be computed in the same
running time.

Keywords Extension of a partial drawing · Fixed cycle · Fixed inner face · Convex
shape · Straight-line drawing · Linear-time algorithm

1 Introduction

The problem of extending a partial drawing of a graph to a complete one is a funda-
mental problem in graph drawing that has many applications, e.g., in dynamic graph
drawing and graph interaction. This problemhas been studiedmost in the planar setting
and often occurs as a subproblem in the construction of planar drawings.

A preliminary version of this work appeared in the Proceedings of the 21st International Symposium on
Graph Drawing (GD 2013) [8].
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The earliest example of such a drawing extension result are so-called Tutte embed-
dings. In his seminal paper “How to Draw a Graph” [12], Tutte showed that any
triconnected planar graph admits a convex drawing with its outer vertices fixed to an
arbitrary convex polygon. The strong impact of this fundamental result is illustrated by
its, to date, more than 850 citations and the fact that it received the “Best Fundamental
Paper Award” from GD’12. The work of Tutte has been extended in several ways. In
particular, it has been strengthened to only require polynomial area [5], even in the
presence of collinear points [3]. Hong and Nagamochi extended the result to show that
triconnected graphs admit convex drawingswhen their outer vertices are fixed to a star-
shaped polygon [6]. For general subdrawings, the decision problemofwhether a planar
straight-line drawing extension exists is NP-hard [10]. Pach and Wenger [9] showed
that every subdrawing of a planar graph that fixes only the vertex positions can be
extended to a planar drawingwith O(n) bends per edge and that this bound is tight. The
drawing extension problem has also been studied in a topological setting, where edges
are represented by non-crossing curves. In contrast to the straight-line variant, it can
be tested in linear time whether a drawing extension of a given subdrawing exists [1].
Moreover, there is a characterization via forbidden substructures [7]. In case the topol-
ogy of a straight-line drawing of a subgraph H allows a drawing extension, Timothy
et al. [4] showed that there exists an extension with at most 72|V (H)| bends per edge.

In this paper, we study the problem of finding a planar straight-line drawing exten-
sion of a plane graph for which an arbitrary biconnected subgraph has been fixed in
form of a planar straight-line convex drawing. The question of whether the internal
faces of the subgraph can be completed have been extensively studied [3,5,12]. We
fill the gap by studying what happens with the outer face. In particular, we study the
problem of finding a planar straight-line drawing extension of a plane graph for which
an arbitrary cycle has been fixed to a convex polygon. It is easy to see that a drawing
extension does not always exist in this case; see Fig. 1. Let G be a plane graph and let
C be a simple cycle of G drawn as a convex polygon ΓC in the plane. The following
two simple conditions are clearly necessary for the existence of a drawing extension:
(i) C has no chords that must be embedded outside of C and (ii) for every vertex v

with neighbors onC that must be embedded outside ofC there exists a placement of v
outside ΓC such that the straight-line drawing of the graph induced byC and v is plane
and bounded by the same cycle as in G. We show in this paper that these two condi-
tions are in fact sufficient. Both conditions can be tested in linear time, and if they are
satisfied, a corresponding drawing extension can be constructed within the same time
bound (Theorem 4). This result implies a linear time algorithm to test the extendability
of a planar straight-line convex drawing of a biconnected subgraph (Theorem 5).

Our paper starts with some necessary definitions (Sect. 2) and useful combinatorial
properties (Sect. 3). Our main result is Theorem 4, the proof of which has two steps.
We first show in Sect. 4 that the conditions are sufficient if ΓC is one-sided (i.e., it has
an edge whose incident inner angles are both less than 90◦). Afterward, we show in
Sect. 5 that, for an arbitrary convex polygon ΓC , we can place the neighborhood of C
in such a way that the drawing is planar, and such that the boundaryC ′ of its outer face
is a one-sided polygon ΓC ′ . Moreover, our construction ensures that the remaining
graph satisfies the conditions for extendability of ΓC ′ . The general result then follows
directly from the one-sided case.
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2 Definitions and a Necessary Condition

2.1 Plane Graphs and Subgraphs

A graph G = (V, E) is planar if it has a drawing Γ in the plane R
2 without edge

crossings. Drawing Γ subdivides the plane into connected regions called faces; the
unbounded region is the outer and the other regions are the inner faces. The boundary
of a face is called facial cycle, and outer cycle for the outer face. The cyclic ordering
of the edges around each vertex of Γ together with the description of the outer face of
Γ characterize a class of drawings with the same combinatorial properties, which is
called an embedding of G. A graph G with a planar embedding is called plane graph.
A plane subgraph H of G is a subgraph of G together with a planar embedding that
is the restriction of the embedding of G to H .

Let G be a plane graph and let C be a simple cycle of G. Cycle C is called strictly
internal, if it does not contain any vertex of the outer face of G. A chord of C is called
outer if it lies outside C in G. A cycle without outer chords is called outerchordless.
The subgraph of G inside C is the plane subgraph ofG that is composed of the vertices
and edges of C and all vertices and edges of G that lie inside C .

2.2 Connectivity

A graph G is k-connected if the removal of any set of at most k −1 vertices of G does
not disconnect the graph. For k = 2, 3 a k-connected graph is also called biconnected
and triconnected, respectively. An internally triangulated plane graph is triconnected
if and only if there is no edge connecting two non-consecutive vertices of its outer
cycle (see, for example, [2]).

2.3 Star-Shaped and One-Sided Polygons

Let Π be a polygon in the plane. Two points inside or on the boundary of Π are
mutually visible, if the open straight-line segment connecting them belongs to the
interior ofΠ . The kernel K (Π) of polygonΠ is the set of all the points insideΠ from
which all vertices of Π are visible. We say that Π is star-shaped if K (Π) �= ∅. We
observe that, with our definition of mutual visibility, a star-shaped polygon ensures
that its kernel has positive area.

A convex polygon Π with k vertices is called one-sided, if there exists an edge e
(i.e., a line segment) of Π such that the orthogonal projection to the line supporting
e maps all polygon vertices onto segment e. Then e is called the base edge of Π .
Without loss of generality let e = (v1, vk) and v1, . . . , vk be the clockwise ordered
sequence of vertices of Π .

2.4 Extension of a Drawing

LetG be a plane graph and let H be a plane subgraph ofG. LetΓH be a planar straight-
line drawing of H . We say that ΓH is extendable if drawing ΓH can be completed to a
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Fig. 1 a A botanical flower with petals and stamen. (Image courtesy of Pearson Scott Foresman). b The
convex polygon ΓC of cycle C is drawn in black. Vertices wi, j and wl,k are petals of C with wl,k ≺ wi, j ,
vertices w and w′ are stamens of vi . Petal wl,k is realizable, whereas petal wi, j is not, since vertex wi, j
cannot be placed in the plane without changing the embedding or intersecting C

planar straight-line drawingΓG of the plane graphG. ThenΓG is called an extension of
ΓH . A planar straight-line drawing of G is called convex, if every face of G (including
the outer face) is represented as a convex polygon.

The following theorem by Hong and Nagamochi [6] shows the extendability of a
prescribed star-shaped outer face of a plane graph.

Theorem 1 (Hong and Nagamochi [6]) Every drawing of the outer face of a tricon-
nected planar graph G as a star-shaped polygon can be extended to a convex drawing
of G. Such a drawing can be computed in linear time.

2.5 Petals and Stamens

LetG be a plane graph, and let Puv be a path inG between vertices u and v. Its subpath
from vertex a to vertex b is denoted by Puv[a, b]. LetC be a simple cycle of G, and let
v1, . . . , vk be the vertices of C in clockwise order. Given two vertices vi and v j of C ,
we denote by C[vi , v j ] the subpath of C encountered when we traverse C clockwise
from vi to v j . Assume that C is represented by a convex polygon ΓC in the plane. We
say that a vertex vi , 1 ≤ i ≤ k of ΓC is flat, if � vi−1vivi+1 = π . Throughout this
paper, we assume that convex polygons do not have flat vertices.

A vertexw ∈ V (G)\V (C) adjacent to at least two vertices ofC and lying outsideC
inG, is called a petal ofC ; see Fig. 1. Consider the plane subgraphG ′ ofG induced by
the vertices V (C)∪{w}. Vertexw appears on the boundary ofG ′ between two vertices
of C , i.e., after some vi ∈ V (C) and before some v j ∈ V (C) in clockwise order. To
indicate this fact, we will denote petal w by wi, j . Edges (wi, j , vi ) and (wi, j , v j ) are
called the outer edges of petal wi, j . The subpath C[vi , v j ] of C is called the base of
the petal wi, j . A vertex v f is internal to petal wi, j , if it appears on C after vi and
before v j in clockwise order. A petal wi,i+1 is called trivial. A vertex of V (G)\V (C)

adjacent to exactly one vertex of C is called a stamen of C .
Let v be a petal of C and let u be either a petal or a stamen of C , we say that u is

nested in v, and denote this fact by u ≺ v, if u lies in the cycle delimited by the base
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and the outer edges of petal v. For two stamens u and v, neither u ≺ v nor v ≺ u. So
for each pair of stamens or petals u and v we have either u ≺ v, or v ≺ u, or none of
these. This relation ≺ is a partial order. A petal or a stamen u of C is called outermost
if it is maximal with respect to ≺.

2.6 Necessary Petal Condition

Let again G be a plane graph and let C be an outerchordless cycle of G represented
by a convex polygon ΓC in the plane. Let wi, j be a petal of C . Let G ′ be the plane
subgraph of G, induced by the vertices V (C) ∪ {wi, j }. We say that wi, j is realizable
if there exists a planar drawing of G ′ which is an extension of ΓC . This gives us the
necessary condition that ΓC is extendable only if each petal of C is realizable. In the
rest of the paper we prove that this condition is also sufficient.

3 Combinatorial Properties of Graphs and Petals

In this section, we derive several properties of petals in graphs, which we use through-
out the construction of the drawing extension in the remaining parts of this paper.
Proposition 1 allows us to restrict our attention to maximal plane graphs for which
the given cycle C is strictly internal. The remaining lemmas are concerned with the
structure of the (outermost) petals of C in such a graph.

Proposition 1 Let G be a plane graph on n vertices and let C be a simple outerchord-
less cycle of G. There exists a plane supergraph G ′ of G with O(n) vertices such that
(i) G ′ is maximal plane, (ii) there are no outer chords of C in G ′, (iii) each petal of
G ′ with respect to C is either trivial or has the same neighbors on C as in G, and (iv)
C is strictly internal to G. Graph G ′ can be constructed within O(n) time.

Proof First, we arbitrarily triangulate the graph in the interior of C . Clearly, this
creates neither outer chords nor new petals. For triangulating the graph outside of
C , we have to be more careful to avoid the creation of outer chords and potentially
unrealizable petals. We proceed in three steps. First, we ensure that, for each edge e
of C , the incident face outside of C is a triangle. In this phase, we create new petals,
all of which are realizable. Second, we ensure that all faces incident to vertices of C
are triangles without introducing any new petals. After this step, all faces incident to
vertices of C are triangles and C is strictly internal. We then triangulate the remaining
faces arbitrarily. In the following, we describe these steps in more detail and argue
their correctness.

In the first step, we create, for each edge e of C , a new vertex ve that is adjacent to
the endpoints of e and embed it in the face incident to e outside of C (refer to Fig. 2a).
Note that each such vertex ve is a trivial petal, and it is hence realizable. Clearly, after
performing this operation for each edge e of C , every face incident to an edge of C
is a triangle. Note that, besides the new trivial petals, we do not create or modify any
other petals. Moreover, we introduce no chords of C since any new edge is incident
to a new vertex. Clearly, this step can be performed in O(|C |) time.
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Fig. 2 a Graph G is depicted by black, cycle C is bold. Gray vertices are added during the first step of
the augmentation. b Example of an augmentation during the second step. Face f is considered, which is
depicted by dashed lines. Vertex v f is added to lie inside f and connected to u, v and w. As a result v has
no other incident non-triangular face

For the second step, we traverse all faces incident to vertices of C that are not
triangles. Let f be such a face that is incident to some vertex v of C ; see Fig. 2b.
Notice that f can be either an inner or the outer face of G. Let (v, u) and (v,w) be
the two edges incident to v that bound f . Note that (v, u) and (v,w) do not belong
to C since, according to step 1, f would be a triangle in this case. Hence, since there
are no outer chords of C , u and w are not in C . We create a new vertex v f , connect
it to u, v and w, and embed it in f . This reduces the number of non-triangular faces
incident to v by 1. Note that this operation neither produces a petal nor a chord of C .
After treating all faces incident to vertices of C in this way, all inner faces incident to
vertices of C are triangles and C is strictly internal. This step is accomplished within
time proportional to the number of non-triangular faces incident to the vertices of C ,
i.e., in O(n) time.

In the third step, we triangulate the remaining faces arbitrarily. None of the edges
added in this step is incident to a vertex of C . Hence, this produces neither petals nor
chords. Finally, if C is not strictly internal in the resulting graph, there is at most one
vertex of C on the outer face. (To see this, observe that the outer face is a triangle,
and if two of its vertices belong to C , the edge between them would be an outer
chord, contradicting the properties of our construction.) If this case occurs, we add
an additional vertex into the outer face and connect it to all three vertices of the outer
face. Afterwards C is strictly internal. Again this can neither produce a petal nor an
outer chord.

The resulting graph G ′ is triangulated and each petal of C in G ′ is either trivial
or has the same neighbors on C as in G. Obviously, the procedure adds only O(n)

vertices and runs in O(n) time. This concludes the proof. 
�

Lemma 1 Let G be an n-vertex triangulated planar graph with a strictly internal
outerchordless cycle C. Then the following statements hold. (i) Each vertex of C that
is not internal to an outermost petal is adjacent to two outermost petals. (ii) There
is a simple cycle C ′ whose interior contains C and that is formed by the outermost
stamens and petals of C. Finally, cycle C ′ can be found in O(n) time.
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Fig. 3 a Illustration for the proof of Lemma 1. Cycle C is shown by bold black curve. b Illustration for
the proof of Lemma 2. Cycle C is depicted by bold black. Three paths from u to v are shown by bold grey
curves

Proof For (i), observe that each edge ofC is incident to a triangle outside ofC , whose
tip then is a petal. Thus, every vertex of C is adjacent to at least two petals p1 and p2
such that none of them contains the other one; see Fig. 3a. For a vertex v of C that is
not contained in the base of an outermost petal, this implies that there exist distinct
outermost petals p′

1 and p′
2 with p1 ≺ p′

1 and p2 ≺ p′
2. Since v is not internal to any

of them, it must be incident to one of the outer edges of each of them.
For (ii), let v be a vertex of C and let u and w be two stamens or petals that are

adjacent in the circular ordering of neighbors around v; refer again to Fig. 3a. Then
(v, u) and (v,w) together bound a face, which must be a triangle, implying that u and
w are adjacent. Applying this argument to all adjacent pairs of outermost petals or
stamens around C yields the claimed cycle in G that traverses exactly the outermost
petals and stamens. Obviously, this construction can be carried out in O(n) time. 
�

The following lemma is an auxiliary lemma that is only used in the proof of
Lemma 3.

Lemma 2 Let G be an n-vertex triangulated planar graph with a strictly internal
outerchordless cycle C. Let u ∈ C be internal to an outermost petal v. Then there
exists a chordless path from u to v that contains no other vertices of C, which can be
found in O(n) time.

Proof If u is adjacent to v, there is nothing to prove. Otherwise, let v1 and v2 be the first
vertex onC to the left and right of u, respectively, that are adjacent to v; see Fig. 3b. Let
C ′ denote the cycle consisting of C[v1, v2] and v together with two edges (v, v1) and
(v, v2). The graph consisting of C ′ and all edges and vertices embedded inside C ′ is
inner-triangulated and chordless, and hence triconnected. Thus, byMenger’s theorem,
the graph contains three vertex-disjoint paths from u to v, which can be constructed
in O(n) time [11]. The middle one of these paths cannot contain any vertices of C .
We obtain the claimed path from the middle path by iteratively short-cutting it using
chords. This procedure can be accomplished in time linear in the number of vertices
in the path. 
�
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Fig. 4 Illustration for the proof of Lemma 3. Cycle C is solid black, cycle Cshell is solid blue. Edges
incident to petals are dashed. The identified paths are bold gray. a Case 1a: Vertex b is contained in the
counterclockwise path from x to y. b–c Case 1b: Vertex b is contained in the clockwise path from x to y
(Color figure online)

Lemma 3 Let G be an n-vertex maximal planar graph with a strictly internal out-
erchordless cycle C. Let u and v be two adjacent vertices on C that are not internal
to the same petal. Then there exists a third vertex w of C such that there exist three
chordless disjoint paths from u, v and w to the vertices of the outer face of G such
that none of them contains other vertices of C. Such paths can be constructed in O(n)

time.

Proof Let Cshell denote the cycle going through the outermost petals and stamens of
C , which exists by Lemma 1. It follows from Menger’s theorem that there exists a set
A = {a, b, c} of three vertices on Cshell that have disjoint paths to the outer face, such
that none of them contains any other vertices of Cshell. Our goal is to identify vertex
w and to connect the vertices u, v, w by vertex-disjoint paths to the vertices of A such
that together we obtain the claimed paths. Assume without loss of generality that v is
the immediate successor of u on C in counterclockwise order.

We distinguish cases based on the number of outermost petals.

Case 1: There are exactly two outermost petals x and y. Since u and v are not
both internal to the same petal, we can assume that u is in the base of petal x and
v is in the base of petal y. Note further that one of u and v must be contained
in the bases of both petals, and hence adjacent to them; see Fig. 4. Without loss
of generality, we assume that v is. The case that u is adjacent to both of them is
completely symmetric.
We consider the subpaths of Cshell from x to y. At least one of them contains a
vertex of A in its interior. If one of them contains all three of them in its interior,
let b denote the middle one, otherwise, let b denote an arbitrary one. Let a and c
denote the vertices of A \ {b} that occur before and after b in counterclockwise
direction along Cshell.
We distinguish cases based on whether b is contained in the clockwise or in the
counterclockwise path from x to y.
Case 1a: Vertex b is contained in the counterclockwise path from x to y. See
Fig. 4a for an illustration. It then follows that b is a stamen of v. We choose w as
an arbitrary vertex in the base of petal y such that it is distinct from u and v (note
that this is always possible since C has length at least 3).
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Fig. 5 Illustration for the proof of Lemma 3. Cycle C is solid black, cycle Cshell is solid blue. Edges
incident to petals are dashed. The identified paths are bold gray. a Case 2a: b–c Case 2b (Color figure
online)

Now the claimed paths can be constructed as follows. For u, take the path from u
to x (Lemma 2), and from there along Cshell to a, avoiding b. For v, take the edge
(v, b). For w, take the path from w to y (Lemma 2), and from there along Cshell
to c, avoiding b. It follows from the choice of b that these paths are disjoint.
Case 1b: Vertex b is contained in the clockwise path from x to y. Then b must
be a stamen that is, by construction, not adjacent to v.
If b is not adjacent to u, choose b’s unique neighbor on C as w; see Fig. 4b. The
paths are constructed as follows. For u, take the path from u to x , as guaranteed
by Lemma 2, and from there to c, avoiding b. For v, take the edge (v, y) and from
there to a, avoiding b. For w, take the edge (w, b). It follows from the choice of
b that the constructed paths are vertex disjoint.
Otherwise b is adjacent to u; see Fig. 4c. Then choose w as a vertex that lies on C
counterclockwise between u and v. Such a vertex exists, since C contains at least
three vertices. The paths are constructed as follows. For u, we take the edge (u, b).
For v, we take the edge (v, x) and the path from x along Cshell to c, avoiding b.
For w, we take the path from w to y (Lemma 2) and from there to a, avoiding b.
Again, it follows from the choice of b that the constructed paths are vertex disjoint.
Case 2: There are at least three outermost petals of C. See Fig. 5 for the
illustration of this case. By the conditions of the Lemma, vertices u and v are
not internal to the same petal. Since u and v are adjacent, at most one of them is
internal to a petal.Without loss of generality assume that v is not internal to a petal,
and let x and y denote the two outermost petals adjacent to v, such that u is in the
base of petal x . One of the two subpaths of Cshell connecting x and y contains in
its interior a vertex of A. If there are three vertices of A in the interior of one of
these paths, let b denote the middle one, otherwise, let b denote an arbitrary one.
The vertices of A before and after it in counterclockwise direction along Cshell are
a and c, respectively.
We distinguish cases based on whether b is contained in the clockwise or in the
counterclockwise path from x to y along Cshell.
Case 2a: Vertex b is in the counterclockwise path from x to y along Cshell.
Then, b is a stamen adjacent to v by the choice of x and y; see Fig. 5a. Letw be any
vertex adjacent to y but distinct from v. Note that w �= u by the assumption that
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there are at least three petals. We construct the following paths. For u, we apply
Lemma 2 to construct a path from u to x and then follow Cshell to a, avoiding b.
For v, we take the edge vb. Finally, for w, we take the edge wy and then traverse
Cshell to c, avoiding b. Note that the paths are disjoint by the choice of b.
Case 2b: Vertex b is in the clockwise path from x to y along Cshell. Then, b is a
petal or a stamen but, by definition, not adjacent to v. If b is adjacent to a vertex
that is distinct from u as well, then we choose this vertex as w; see Fig. 5b. For w,
we take as path the edge wb. We use the path from u to x to c (along Cshell) and
the path from v to y to a as above.
If b is adjacent to u (Fig. 5c), then pick w as a vertex adjacent to y but distinct
from u and v (such a vertex exists since petal y has at least two neighbors on C ,
and since there are at least three petals). Then the paths are ub, the path from v to
x to c and from w to y to a. As above the paths can be chosen such that they are
disjoint.

In all cases, if a path contains chords, we iteratively short-cut it by using chords.
In this way we obtain the three chordless paths. The time complexity of the con-
struction is bounded by: an application of Lemma 1, which takes O(n) time; an
application of Menger’s theorem, which can be accomplished in time linear in the
number of vertices [11]; and finally, a constant number of applications of Lemma 2,
each of which takes linear lime. Thus, we infer that the overall construction takes O(n)

time. 
�

4 Extension of a One-Sided Polygon

Let G be a plane graph, and let C be a simple outerchordless cycle, represented by a
one-sided polygon ΓC . In this section, we show that if each petal of C is realizable,
then ΓC is extendable to a straight-line drawing of G. This result serves as a tool for
the general case, which is shown in Sect. 5.

The drawing extension we produce preserves the outer face, i.e., if the extension
exists, then it has the same outer face as G. It is worth mentioning that, if we are
allowed to change the outer face, the proof becomes rather simple, as the following
theorem shows.

Theorem 2 Let G be a maximal plane graph and let C be an outerchordless cycle of
G, represented in the plane by a one-sided polygon ΓC . Then, for a suitable choice of
the outer face of G, the drawing ΓC is extendable.

Proof Let (v1, vk) be the base edge of ΓC . Edge (v1, vk) is incident to two faces of G,
to a face fin inside C and to a face fout outside C . We select fout as the outer face of
G. With this choice, edge (v1, vk) is on the outer face of G. Let v be the third vertex
of this face. We place the vertex v far enough from ΓC , so that all vertices of ΓC are
visible from v. Thus, we obtain a planar straight-line drawing of the subgraph Gv

induced by the vertices V (C)∪{v} such that each face is represented by a star-shaped
polygon. Each subgraph ofG inside a face ofGv is triconnected, and therefore, we can
complete the existing drawing to a straight-line planar drawing of G, by Theorem 1.


�
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Fig. 6 Illustration of Fact 1.
Points of the set Spt are black.
Neither segments ab and cd
intersect each other, nor do they
intersect a segment between two
consecutive points of Spt
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In the rest of the section we show that extendability of ΓC can be efficiently tested,
even if the outer face of G has to be preserved. The following simple geometric fact
will be used in the proof of the result of this section; see Fig. 6 for an illustration.

Fact 1 Let pqrt be a convex quadrilateral and let o be the intersection of its diagonals.
Let Spt be a one-sided convex polygon with base pt, that lies inside triangle �opt.
Let ab and cd be such that b, d ∈ Spt , ordered clockwise as t, d, b, p and a, c ∈ qr,
ordered as q, a, c, r . Then, neither ab and cd intersect each other, nor do they intersect
a segment between two consecutive points of Spt .

We are now ready to prove the main result of this section.

Theorem 3 Let G be a n-vertex plane graph and C be a simple outerchordless cycle
of G, represented in the plane by a one-sided polygon ΓC . If every petal of C is
realizable, then ΓC is extendable. If it exists, such an extension can be constructed in
O(n) time.

Proof For the following construction we need to ensure that G is a maximal plane
graph and cycle C is strictly internal. If this is not the case, we apply Proposition 1, to
complete G to a maximal plane graph, where C is strictly internal. For simplicity of
notation, we refer to the new graph as G. Notice that the application of Proposition 1
only introduces trivial, and therefore realizable, petals. Moreover, no outer chord is
introduced. After the construction of the extension of C , we remove the vertices and
edges added by the application of Proposition 1.

Let v1, . . . , vk be the clockwise ordering of the vertices of C , so that (v1, vk) is the
base of ΓC . We rotate ΓC so that (v1, vk) is horizontal. Let a, b, c be the vertices of the
outer face of G in clockwise order; see Fig. 7. By Lemma 3, there exists a vertex v j ,
1 < j < k, such that there exist chordless disjoint paths between v1, v j , vk , and the
vertices a, b, c, respectively. Denote these paths by Pv1a , Pv j b and Pvkc. Some vertices
of Pv1a and Pvkc are possibly adjacent to each other, as well as to the boundary of C .
Depending on these adjacencies, we show how to draw the paths Pv1a , Pvkc and how
to place vertex b, so that the graph induced by these vertices and cycleC is drawn with
star-shaped faces. Then, the drawing of G can be completed by applying Theorem 1.

Let vi be the topmost vertex of ΓC . It can happen that there are two adjacent
topmost vertices vi and vi+1. However, vi−1 and vi+2 have a smaller y-coordinate,
since ΓC does not contain flat vertices. In the following, we assume that vi and vi+1
have the same y-coordinate. The case when vi is unique can be seen as a special case
where vi = vi+1. Without loss of generality assume that i + 1 ≤ j ≤ k − 1, the
case where 2 ≤ j ≤ i is treated symmetrically. Notice that the presence of the path
Pv j b ensures that edges between vertices of Pv1a and Pvkc can only lie in the interior
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vi vi+1
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vj+1
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b
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PvkcPv1a

w
w
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Fig. 7 Illustration for the proof of Theorem 3. Edges between C[v1, vi ] and Pv1a [v1, w′] ∪ {vk } are gray.
Edges between C[vi+1, v j ] and Pv1a [w, a] are dashed

vi vi+1
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vj
vj+1

vkv1

s
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a

i

pa

qp

pc

Fig. 8 Illustration for the proof of Theorem 3. For space reasons lines are shown by curves

of the cycle delimited by these paths and edges (v1, vk) and (a, c); refer to Fig. 7.
Consider a vertex of Pv1a that is a petal of C . The base of such a petal cannot contain
edge (vk−1, vk), since this would cause a crossing with Pvkc. Moreover, if the base
of this petal contains edge (v1, vk), then it cannot contain any edge (v f , v f +1) for
i ≤ f < j , since otherwise this petal would not be realizable. Thus a vertex of Pv1a is
either adjacent to vk or to a vertex v f , where i + 1 ≤ f ≤ j , but not both. It is worth
mentioning that a vertex of Pv1a cannot be adjacent to any v f , j + 1 ≤ f ≤ k − 1,
since such an adjacency would cause a crossing either with Pv j b or with Pvkc.

Let s, � and �c be three distinct lines through v j that lie clockwise between the
slopes of edges (v j−1, v j ) and (v j , v j+1); see Fig. 8. Such lines exist since ΓC does
not contain flat vertices. Let �i be the line through vi with the slope of (vi−1, vi ). Let �a
be the half-line originating at an internal point of (v1, vk) towards−∞, slightly rotated
counterclockwise from the horizontal position, so that it crosses �i . Let q denote the
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intersection point of �a and �i . Let p be any point on �a to the left of q. Let �′
a be the

line through p with the slope of �. By construction of lines s, � and �c, line �′
a crosses

s above the polygon ΓC at point pa and line �c below this polygon at point pc.
Let G ′ be the plane subgraph of G induced by the vertices of C , Pv1a , and Pvkc.

The outer cycle of G ′ consists of edge (a, c) and a path Pac between vertices a and c.

Claim 1 The vertices of Pv1a and Pvkc can be placed on lines �a, �′
a and �c such

that the resulting straight-line drawing of G ′ is planar, path Pac is represented by an
x-monotone polygonal chain, and the inner faces of G ′ are star-shaped polygons.

The vertices of Pv1a will be placed on line �a between points p and q and on line �′
a

above point pa . The vertices of Pvkc will be placed on �c below pc. In order to place
the vertices, we need to understand how the vertices of Pv1a are adjacent to vertices of
C . As we travel on Pv1a from v1 to a, we first meet all vertices adjacent to v1, . . . , vi
and then all vertices adjacent to vi+1, . . . , v j , since G is a planar graph. Let w be the
first vertex of Pv1a adjacent to v f , i + 1 ≤ f ≤ j , and let w′ be the vertex preceding
w on Pv1a . We place vertices of Pv1a[v1, w′], in the order they appear in the path,
on line �a , between q and p, in increasing distance from v1. We place all vertices of
Pv1a[w, a] on �′

a above pa in increasing distance from p. We draw the edges between
the vertices of C and Pv1a . Notice that vertex w might not exist, since it might happen
that none of the vertices of Pv1a is adjacent to v f , i + 1 ≤ f ≤ k. In this case all
vertices of Pv1a are placed on line �a , between q and p.

In the following, we show that the constructed drawing is planar. Notice that the
quadrilateral formed by the points w, a, v j , vi+1 is convex, by the choice of line �′

a
and the positions of vertices w and a on it. Also, notice that the points of vertices
vi+1, . . . , v j form a one-sided polygon with base segment vi+1v j , which lies in the
triangle �ov jvi+1, where o is the intersection of vi+1a and v jw. Thus, by Fact 1, the
edges connecting C[vi+1, v j ] and Pv1a[w, a] do not cross each other. By applying
Fact 1, we can also prove that edges connecting Pv1a[v1, w′] with C[v1, vi ], cross
neither each other, nor ΓC . Recalling that vertices of Pv1a[v1, w′] can be also adjacent
to vk , we notice that these edges also do not cross ΓC , by the choice of line �a . Finally,
path Pv1a is chordless, and therefore the current drawing is planar. Notice that the
subpath of Pa,c that has already been drawn is represented by an x-monotone chain.
We next draw the vertices of Pvkc. We observe that in the already constructed drawing
path Pv1a taken together with edge (v1, vk) is represented by an x-monotone chain,
each point of which is visible from any point below the line �′

a . This means that
any point below line �′

a , can be connected by a straight-line segment to the vertices
V (Pv1a)∪{vk}without creating any crossing either with Pv1a or with (v1, vk). We also
notice that any of the vertices v j , . . . , vk can be connected to a point of �c, without
intersecting ΓC . Recall that pc denotes the intersection point of �c and �′

a . Thus we
place the vertices of Pvkc on the line �c, below �′

a , in increasing distance from point
pc. Applying Fact 1 we can prove that the edges induced by {v j , . . . , vk} ∪ V (Pvkc)

are drawn without crossings. Edges between Pvkc and Pv1a cross neither Pv1a , nor
(v1, vk) by the choice of lines �c and �′

a .
We have constructed a planar straight-line drawing of G ′. We notice that path

Pac is drawn as an x-monotone polygonal chain. We also notice that the faces of
G ′, created when placing vertices of Pv1a (resp. Pvkc) are star-shaped and have their
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kernels arbitrarily close to the vertices of Pv1a (resp. Pvkc). This concludes the proof
of the claim.

We now extend the constructed drawing of G ′ to a drawing of G. Notice that vertex
b is possibly adjacent to some of the vertices of Pac. Thus, placing b at an appropriate
distance above Pac, the edges between b and Pac can be drawn straight-line without
intersecting Pac and therefore no other edge ofG ′. The faces createdwhen placing b are
star-shaped and have their kernels arbitrarily close to b. We finally apply Theorem 1.

The time complexity of the described construction is determined by: an application
of Proposition 1, after which the number of vertices in the graph is still O(n); an
application of Lemma 3; the construction of a constant number of lines; a constant
number of line-line intersections; a linear number of vertices and edges traversed and
drawn on the plane; and finally, by multiple applications of Theorem 1, each of which
requires time linear in the size of the subgraph it affects.

5 Main Theorem

Let G be a maximal plane graph and C be a strictly internal simple outerchordless
cycle of G, represented by an arbitrary convex polygon ΓC in the plane. In Theorem 4
we prove that it is still true that if each petal of C is realizable, then ΓC is extendable.
Before stating and proving Theorem 4, we introduce notation that will be used through
this section.

Recall that v1, . . . , vk denote the vertices of C . Let wi, j be an outermost petal of C
inG. Let �i (resp. � j ) be a half-line originating at vi (resp. v j ) and passing through vi+1
(resp. v j−1); see Fig. 9a. Since wi, j is realizable, lines �i and � j intersect. Denote by
apex(wi, j ) their intersection point and by cone(wi, j ) the subset of R2 that is obtained
by the intersection of the half-planes defined by �i and � j , not containing ΓC . It is
clear that any internal point of cone(wi, j ) is appropriate to draw wi, j so that the plane
subgraph of G induced by V (C) ∪ {wi, j } is crossing-free. For consistency, we also
define cone(w) and apex(w) of an outer stamen w of C as follows. Assume that w

is adjacent to vi ∈ C . Then cone(w) ⊂ R
2 is the union of the half-planes defined by

lines of edges (vi−1, vi ) and (vi , vi+1), that do not contain ΓC . We set apex(w) = vi .
Let P (resp. S) denote the set of outermost petals (resp. stamens) of C in G. By

Lemma 1, there exists a cycleCshell inG that contains exactly P∪ S. LetGshell denote
the plane subgraph of G induced by the vertices of C and Cshell; see Fig. 9b. Let
C ′
shell denote the outer cycle of Gshell. We denote the graph consisting of C , C ′

shell
and edges between them by G ′

shell. Each petal or stamen of C , say w, that belongs to
Cshell but not to C ′

shell, belongs to a face of G
′
shell. We denote this face by shell(w). We

categorize the faces of Gshell as follows. The faces that lie inside cycle C are called
faces of C. The faces that are bounded only by Cshell and its chords, are called faces of
Cshell. Notice that each face of Cshell is a triangle. Notice that a face of Gshell that is
comprised by two consecutive edges adjacent to the same vertex of C (not belonging
to C), is a triangle, and contains no vertex of G \Gshell, since both facts would imply
that the taken edges are not consecutive. Finally, faces bounded by a subpath of C and
two edges adjacent to the same petal, are called petal faces. The plane subgraph of G
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vj−1

vj vj+1
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cone(wij)
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u

faces of C

faces of Cshell

no vertex of G is
contained here
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Fig. 9 a Vertex wi, j is the petal of C with base C[vi , v j ]. Point apex(wi, j ) is red, region cone(wi, j ) is
gray. Vertex w is a stamen of v j+1. The union of the half-planes defined by lines of edges (v j , v j+1) and
(v j+1, v j+2) is cone(w). Point apex(w) is blue. b Graph Gshell. Polygon ΓC is black. Cycle Cshell is bold.
Cycle C ′

shell is blue. Graph G′
shell is comprised by blue, red and black edges. Vertices of B are squares

(Color figure online)

inside a petal face is triangulated and does not have a chord connecting two vertices
of its outer face, and therefore is triconnected. Thus we have the following

Observation 1 Each vertex of G \ Gshell either lies in a face of C, or in a face that
is a triangle, or in a petal face, or outside C ′

shell. Each subgraph of G inside a petal
face is triconnected.

Theorem 4 Let G be an n-vertex plane graph and let C be a simple outerchordless
cycle of G, represented by a convex polygon ΓC in the plane. The drawing ΓC is
extendable to a straight-line drawing of G if and only if each petal of C is realizable.
Both, testing the condition and the construction of an extension can be accomplished
in O(n) time.

Proof The condition that each petal of C is realizable is clearly necessary. Next we
show that it is also sufficient.

Assume that each petal of C is realizable. Similarly to the proof of Theorem 3, we
first completeG to a maximal plane graph, such that cycleC becomes strictly internal,
by applying Proposition 1. The new maximal plane graph (for simplicity of notation
denoted also by G) contains no outer chord and only realizable petals, since the newly
added petals are trivial. When the construction of the extension of C is completed, we
simply remove the vertices and edges added by Proposition 1.

We first show how to draw the graph G ′
shell. Afterward we complete it to a drawing

of Gshell. Our target is to represent C ′
shell as a one-sided polygon, so that Theorem 3

can be applied for the rest of G that lies outside C ′
shell.

Claim 2 PolygonΓC can be extended to a straight-line drawing of graph G ′
shell where

its outer face C ′
shell is represented by a one-sided polygon such that each petal of C

′
shell

is realizable. Moreover, C ′
shell contains in its interior all points of {apex(w) | w ∈

Cshell}.
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Fig. 10 a Construction of drawing of graph Gshell shown in Fig. 9b. Apex points are gray, points of B are
black squares. Polygon Π is bold gray, lines {�(w) | w ∈ C ′

shell} are dashed gray. b Choice of the base for
the one-sided polygon representing C ′

shell. Angle of petal w is large, thus none of the edges in the base of
w is chosen as the base edge. Edge e = (u, v) is a possible choice for the base edge

Proof Recall that P (resp. S) denotes the set of outermost petals (resp. stamens) ofC in
G. Let B denote the set of vertices ofC , to which stamens S∩C ′

shell are adjacent; refer
to Fig. 9b. By construction of the apex points, the set {apex(w) | w ∈ P ∩C ′

shell} ∪ B
is in convex position, and we denote by Π its convex hull; refer to Fig. 10a. Polygon
Π may be degenerate, and may contain only a single vertex or a single edge. We treat
these cases separately to complete the construction of the drawing of the graph G ′

shell.

Case 1: Polygon Π is non-degenerate. Let p be a point insideΠ . Let �(w) denote
a half-line from p throughw, wherew is a vertex ofΠ . If we order the constructed
half-lines around p, any two consecutive lines have between them an angle less
than π . If w ∈ B, we substitute �(w) by the same number of slightly rotated lines
as the number of stamens of C ′

shell adjacent to w, without destroying the order;
refer to Fig. 10a. Thus, for each w ∈ C ′

shell, a line �(w) is defined. Notice that,
for any w ∈ P ∩C ′

shell, line �(w) passes through apex(w), and the infinite part of
�(w) lies in cone(w). Thus, for any position of w on a point of �(w) ∩ cone(w),
edges between C and w do not cross ΓC . For a stamen w ∈ S ∩ C ′

shell, line �(w)

crosses cone(w) very close to apex(w), and its infinite part lies in cone(w). Thus,
similarly, for any position of w on a point of �(w) ∩ cone(w), edges between C
and w do not cross ΓC .
We next decide which edge of C ′

shell to “stretch”, i.e., which edge will serve as
the base edge of the one-sided polygon representing C ′

shell. In order to be able to
apply Theorem 3, this one-sided polygon must be such that each petal of C ′

shell is
realizable. Thuswe choose the base edge e ofC ′

shell as follows; refer to Fig. 10b. Let
w be a petal ofC ′

shell and let (w, p), (w, q) be the outer edges of petalw. Consider
the lines �(p) and �(q), and the angle between them that contains apex(w), we
call it angle of petal w. Observe that there exists at most one petal (called large
petal) of C ′

shell whose angle is greater than π . Let e = (u, v) be any edge of C ′
shell

such that (1) e does not belong to the base of a large petal (such an edge exists,
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(v)
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Fig. 11 Construction of Case 1. Corresponding Gshell is shown in Fig. 9b

since there are no double edges in G) and (2) if e belongs to the base of some
petal, then at least one of u, v is adjacent to an outermost petal of C ′

shell.
The edge e = (u, v), identified in the previous paragraph, will serve as the base
of the one-sided polygon, which we are going to construct next. Recall that �(u)

and �(v) are consecutive in the sequence of half-lines we have constructed. Let κ
be a circle around ΓC that contains in the interior the polygon Π and the set of
points {apex(w) | w ∈ Cshell}. Let � be a half-line bisecting the angle between
�(u) and �(v) (refer to Fig. 11). Let λ be a parabola with � as axis of symmetry
and the center of κ as focus. We position and parametrize λ such that it does not
cross � and κ .
With this placement of λ, each half-line �(w), w ∈ Π , crosses λ, moreover,
intersections with �(u) and �(v) are on different branches of λ and are the last
ones as we walk on λ from its origin to infinity. Let Π ′ be the convex polygon
comprised by the intersection points of lines {�(w) | w ∈ V (C ′

shell)} with λ.
Notice that Π ′ is a one-sided polygon with the base edge e = (u, v). We scale Π ′
with respect to the center of κ so that Π ′ contains the circle κ in the interior. The
minimum scale factor is determined by the segment of Π ′ that is closest to the
center of κ . As a result, for each w ∈ C , cone(w) ∩ Π ′

in �= ∅, where Π ′
in denotes

the interior of Π ′.
We next show that each petal of Cshell′ is realizable by the choice of edge e. Thus,
if e does not belong to the base of a petal of C ′

shell, then all petals of C ′
shell are

realizable. Otherwise, e = (u, v) belongs to the base of an outermost petal w of
C ′
shell, and is chosen such that either (u, w) or (v,w) exists and represents an outer

edge of w. Recall that w is not a large petal, thus, the angle between the lines �(u)

and �(v) is at most π . Since Π ′ is a one-sided polygon with the base edge (u, v),
petal w is realizable. Since w is an outermost petal of C ′

shell, we infer that all the
remaining petals containing e in their base are also realizable. This concludes the
proof of the claim in the non-degenerate case.
Case 2: Polygon Π is degenerate and has two vertices. Notice that in this case
cycle C ′

shell contains at most two petals, since each petal of C ′
shell is a vertex of

Π . Assume that C ′
shell contains two petals, w and w′. Since C ′

shell contains at least
three vertices (G does not have double edges), there would be at least one stamen
w′′ in C ′

shell. However, the vertex of C , to which w′′ is adjacent, together with w
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Fig. 12 a–b Case 2: Polygon Π is degenerated and has two vertices. c Case 3: Polygon Π is degenerated
and has a single vertex, and C ′

shell contains three or more stamens of C adjacent to the same vertex

and w′, contribute three vertices to Π , which is a contradiction to the assumption
that Π has two vertices. Thus, in this case C ′

shell contains at most one petal of C .
In the following we consider two subcases, first when C ′

shell contains one petal,
and second when it contains no petal.
Case 2.a: C ′

shell contains a petal w of C (Fig. 12a). Notice that there are at least
two stamens of C in C ′

shell, since otherwise C
′
shell would contain only two vertices,

and therefore there would be a double edge in G. Moreover, all stamens of C that
are in C ′

shell, are adjacent to the same vertex vi of C . Let s1, . . . , sk be the stamens
adjacent to vi , appearing clockwise in C ′

shell. Let �(sk) be a line through vi that
does not cross ΓC ; see Fig. 13a. There exists a half-line �(w) in cone(w) that does
not cross �(sk). Let �(s1) be a half-line through vi , lying in the half-plane defined
by �(sk) not containing ΓC , slightly rotated clockwise. Let �(s2), . . . , �(sk−1) be
lines through vi that lie clockwise between �(s1) and �(sk). The angle between
two consecutive half-lines �(s1), . . . , �(sk), �(w) is less than π . Moreover, each
of the half-lines has its infinite part in the corresponding cone. Moreover, for any
position ofw (resp. si ) on a point of �(w)∩cone(w) (resp. �(si )∩cone(si )), edges
between C and w (resp. si ) do not cross ΓC . Thus, we can choose base edge e and
then apply a construction using circle κ and parabola λ identical to the case when
polygon Π is not degenerate.
Case 2.b: C ′

shell does not contain any petal of C (Fig. 12b). In this case C ′
shell

contains at least three stamens of C , and all of them are adjacent to two vertices of
C , say vi and v j , otherwise Π would contain more than two vertices. Without loss
of generality assume that at least two stamens of C are adjacent to vi . Let them be
s1, . . . , sk . Let t1, . . . , tp be the stamens adjacent to v j . The construction of half-
lines �(s1), . . . , �(sk), �(t1), . . . , �(tp) can be done analogous to Case 2.a, where
line �(w) is substituted by a set of closely placed lines �(t1), . . . , �(tp). Since the
angle between two consecutive half-lines �(s1), . . . , �(sk), �(t1), . . . , �(tp) is less
than π , we proceed again as in the non-degenerate case.
Case 3: Polygon Π is degenerated and has a single vertex (Fig. 12c). We first
notice that in this case C ′

shell does not contain any petal of C . This is because
C ′
shell contains at least one stamen of C , adjacent to a vertex vi of C . Thus a petal

together with vi would contribute two vertices to Π . Therefore, C ′
shell contains

only stamens of C . These stamens are adjacent to a single vertex of C , say vi ,
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Fig. 13 a Construction in Case 2.a. b Construction in Case 3. c If C ′
shell contains only two stamens of C ,

then a vertex of C , vi , belongs to the outer cycle of G

since otherwise Π would contain more than one vertex. If there are only two
stamens adjacent to vi (see Fig. 13c), then either there is a double edge in G, or vi
belongs to the outer cycle of G. The latter can not be the case, since C is a strictly
internal cycle of G, as ensured in the beginning of the proof. So C ′

shell contains
three or more stamens s1, . . . , sk of C , and they are all adjacent to vi . Fig. 13b
illustrates the construction of lines �(s1), . . . , �(sk) in this last case. Notice that
the angles between two consecutive half-lines �(s1), . . . , �(sk) can be made less
than π , since vi is not flat. Thus we can again proceed as in the non-degenerate
case. This concludes the proof of the claim.

Let Γ ′
shell be the constructed drawing of G ′

shell. Recall that each petal or stamen
w of C , that does not belong to C ′

shell, lies in a face of G ′
shell, denoted by shell(w).

Let Γshell(w) denote the polygon representing face shell(w) in Γ ′
shell. By construction,

cone(w) ∩ Γshell(w) �= ∅. We next explain how to extend the drawing of G ′
shell to

the drawing of Gshell. For each edge (u, v) of C ′
shell, we add a convex curve, lying

close enough to this edge inside Γ ′
shell. More precisely, we consider the perpendicular

bisector of the edge (u, v) and place a point o on this line, so that o is closer to (u, v)

than any apex point insideΓshell(w). We then construct a parabola with origin o passing
through the vertices u and v. Let μ be the closed curve that is formed by the union of
the parts of all these parabolas (one for each edge of C ′

shell) that lie inside C
′
shell. We

notice that we have placed them so that all the points of {apex(w) | w ∈ C} are still
in the interior of μ. Thus μ is intersected by all the sets cone(w), for each w ∈ C .
We place each vertex w of Cshell \ C ′

shell on μ ∩ cone(w) in the order they appear in
Cshell. Since all edges induced by Cshell lie outside of Cshell, and both endpoints of
such an edge are placed on a single convex curve, they can be drawn straight without
intersecting each other, or other edges of Gshell. Thus, we have constructed a planar
extension of ΓC to a drawing of Gshell, call it Γshell.

Recall the definitions of faces ofC , faces ofCshell and petal faces from the beginning
of this section. The faces of C appear in Γshell as convex polygons. The faces of Cshell
are triangles, and the petal faces of Gshell are star-shapes whose kernel is close to the
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corresponding petal. By Observation 1, each vertex of G \ Gshell either lies in a face
of C , or in a face that is a triangle, or in a petal face, or outside C ′

shell. Moreover, a
subgraph of G inside a petal face is triconnected. Thus, by multiple applications of
Theorem 1, we can extend the drawing of Gshell to a straight-line planar drawing of
the subgraph of G inside C ′

shell.
Finally, notice that in the constructed drawing of Gshell each petal of its outer cycle,

i.e., C ′
shell, is realizable (Claim 2). Moreover, by construction of Gshell, C ′

shell has no
outer chords. Thus, we can apply Theorem 3, to complete the drawing of G lying
outside C ′

shell.
The time complexity of the construction is determined by the following basic oper-

ations: an application of Proposition 1; the construction of a constant number of
subgraphs of linear size, namely Cshell, Gshell, C ′

shell and G ′
shell; a constant number of

traversals of these subgraphs, for computing cones, apex points, polygon Π ′ and the
actual drawing of these subgraphs; a linear number line-line intersections to construct
the apex points and the cones; the construction of a linear number of lines to host the
vertices of C ′

shell; a traversal of the neighborhood of C
′
shell to determine which edge to

“stretch” for the one-sided representation of C ′
shell; a linear number of parabola-line

intersections for the placement of vertices of C ′
shell; the construction of a number of

parabolas to form the curve μ, which takes time proportional to the number of apex
points plus the size of C ′

shell, which is linear in total; multiple applications of Theo-
rem 1, each of which runs in time linear in the number of vertices it places; and finally,
an application of Theorem 3. Thus, we conclude that the overall time complexity of
the construction is O(n). 
�

We conclude with the following general statement that follows from Theorem 4
and one of the known algorithms that constructs drawing of a planar graph with a
prescribed outer face (e.g. [5,12] or Theorem 1).

Theorem 5 Let G be a plane graph and H be a biconnected plane subgraph of G. Let
ΓH be a straight-line convex drawing ofΓH .ΓH is extendable to a planar straight-line
drawing of G if and only if the outer cycle of H is outerchordless and each petal of
the outer cycle of H is realizable.

6 Conclusions

In this paper, we have studied the problem of extending a given convex drawing of
a cycle of a plane graph G to a planar straight-line drawing of G. We characterized
the cases when this is possible in terms of two simple necessary conditions, which we
proved to also be sufficient.

It can be easily seen that the drawing area depends on the input. Thus, if C has a
petal wi, j , such that the edges (vi , vi+1), (v j−1, v j ) of C (refer to Fig. 9a) are almost
parallel, the area required for the drawing becomes arbitrarily large. Another situation
which blows up the area is the following. Consider a cycle of length three which
surrounds C and has one common vertex vi with C . If additionally vi is almost flat in
C , i.e., edges (vi−1, vi ) and (vi , vi+1) have almost the same slope, then the three-cycle
needs to be arbitrarily long in order to contain C . Thus, our main open question is
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whether simple conditions forbidding such situations are sufficient to ensure that the
area of the final drawing is polynomial. For our construction we have repeatedly used
Theorem 1 [6], which also does not ensure that the area is polynomial. Thus, in order
to answer our open question it also has to be investigated when a straight-line drawing
inside a fixed star-shaped polygon has polynomial area.

Finally, as an extensionof our research, itwould be interesting to investigatewhether
more involved necessary conditions are sufficient for more general shapes of a cycle,
for instance star-shaped polygons.
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