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Abstract Graph modification problems typically ask for a small set of operations
that transforms a given graph to have a certain property. The most commonly con-
sidered operations include vertex deletion, edge deletion, and edge addition; for the
same property, one can define significantly different versions by allowing different
operations. We study a very general graph modification problem that allows all three
types of operations: given a graph G and integers k1, k2, and k3, the chordal edit-
ing problem asks whether G can be transformed into a chordal graph by at most
k1 vertex deletions, k2 edge deletions, and k3 edge additions. Clearly, this problem
generalizes both chordal deletion and chordal completion (also known as
minimum fill-in). Our main result is an algorithm for chordal editing in time
2O(k logk) · nO(1), where k :=k1 + k2 + k3 and n is the number of vertices of G.
Therefore, the problem is fixed-parameter tractable parameterized by the total number
of allowed operations. Our algorithm is both more efficient and conceptually simpler
than the previously known algorithm for the special case chordal deletion.
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1 Introduction

Chordal graphs are arguably the oldest andmost important perfect graph class [2,3,12].
A graph is chordal if very cycle of length larger than three has a chord. Chordal graphs
have many nice structural properties, which earn them wide applications. Balas and
Yu [1] proposed a heuristic algorithm for the maximum clique problem by first find-
ing a maximum spanning chordal subgraph (see also [25]). This is equivalent to the
chordal edge deletion problem, which asks for the existence of a set of at most
k edges whose deletion makes a graph chordal. Dearing et al. [8] observed that a
maximum spanning chordal subgraph can also be used to approximatemaximum inde-
pendent sets and sparsematrix completion. This observation turns out to be archetypal:
many NP-hard problems (coloring, maximum clique, etc.) are known to be solvable in
polynomial time when restricted to chordal graphs, and hence admit a similar heuristic
algorithm. Some applications of chordal graphs might not seem to be related to graphs
at first sight. During the study of Gaussian elimination on sparse positive definite
matrices, Rose [23,24] formulated the chordal completion problem, which asks
for the existence of a set of at most k edges whose addition makes a graph chordal,
and showed that it is equivalent to minimum fill-in.

Cai [5] extended this observation to the exact setting. He studied the coloring
problems on graphs close to certain graph classes. In particular, he asked the following
question: given an n-vertex graph G that can be obtained from a chordal graph by
adding k edges (or vertices), can we find a minimum coloring for G in f(k) · nO(1)

time? The edge version was resolved by Marx [18] affirmatively. His algorithm needs
as part of the input the additional edges; to find them is equivalent to solving the
chordal edge deletion problem. Likewise, to decide whether a graph G can be
obtained from a chordal graph by k additional vertices is equivalent to solving the
chordal vertex deletion problem. One may observe that though with slightly
different purpose, the inspirations behind [1,8,25] and [5] are exactly the same.

All three aforementionedmodification problems, unfortunately but understandably,
are NP-hard [14,16,21,26]. Therefore, early work of Kaplan et al. [13] and Cai [4]
focused on their parameterized complexity, and proved that chordal completion
is fixed-parameter tractable (FPT). Recall that a graph problem, with a nonnegative
parameter k, is FPT if there is an algorithm solving it in time f(k) ·nO(1), where f is a
computable function depending only on k and n is the number of vertices in the input
graph [10]. Marx [19] showed that the complementary deletion problems, both edge
and vertex versions, are also FPT.Herewe consider the generalized chordal editing
problem that combines all three operations: the task is to decidewhether a graph can be
made chordal by deleting at most k1 vertices, deleting at most k2 edges, and adding at
most k3 edges. On the formulation we have two quick remarks. First, it does not make
sense to add new vertices, as chordal graphs are hereditary (i.e., any induced subgraph
of a chordal graph is chordal). Second, the budgets for different operations are not

123



120 Algorithmica (2016) 75:118–137

transferable, as otherwise it degenerates to chordal vertex deletion. Our main
result establishes the fixed-parameter tractability of chordal editing parameterized
by k := k1 + k2 + k3.

Theorem 1.1 (Main result) There is a 2O(k logk) ·nO(1)-time algorithm for deciding,
given an n-vertex graph G, whether there are a set V− of at most k1 vertices, a set
E− of at most k2 edges, and a set E+ of at most k3 non-edges, such that the deletion
of V− and E− and the addition of E+ make G chordal.

As a corollary, our algorithm implies the fixed-parameter tractability of chordal
edge editing, which allows both edge operations but not vertex deletions (we can
try every combination of k2 and k3 where k2 + k3 does not exceed the given bound),
resolving an open problem asked by Mancini [17]. Moreover, we get a new FPT
algorithm for the special case chordal deletion, and it is far simpler and faster
than the algorithm of Marx [19].

Motivation In the last two decades, graph modification problems have received
intensive attention, and promoted themselves as an independent line of research in
both parameterized computation and algorithmic graph theory. For graphs represent-
ing experimental data, the edge additions and deletions are commonly used to model
false negatives and false positives respectively, while vertex deletions can be viewed
as the detection of outliers. In this setting, it is unnatural to consider any single type
of errors, while the chordal editing problem formulated above is able to encom-
pass both positive and negative errors, as well as outliers. Further, since it is generally
acknowledged that the study of chordal graphs motivated the theory of perfect graphs
[2,12], the importance of chordal graphs merits such a study from the aspect of struc-
tural graph theory.

Related work Chordal graphs contain no holes (i.e., induced cycles of at least
four vertices) as induced subgraphs. Observing that a large hole cannot be fixed by
the addition of a small number of edges, it is easy to devise a bounded search tree
algorithm for the chordal completion problem [4,13]. No such simple argument
works for the deletion versions: the removal of a single vertex/edge suffices to break
a hole of an arbitrary length. The way Marx [19] showed that the deletion problems
are FPT is to (1) prove that if the graph contains a large clique, then we can identify
an irrelevant vertex whose deletion does not change the problem; and (2) observe that
if the graph has no large cliques, then it has bounded treewidth, so the problem can
be solved by standard techniques, such as the application of Courcelle’s Theorem. In
contrast, our algorithm uses simple reductions and structural properties, which reveal
a better understanding of the deletion problems, and easily extend to the more general
chordal editing problem.

Of all the vertex deletion problems, we would like to single out those to forests
(also known as feedback vertex set), interval graphs, and unit interval graphs for
a special comparison. Their commonality with chordal vertex deletion lies in
the fact that these graph classes are proper subsets of chordal graphs, or equivalently,
their forbidden subgraphs contain all holes as a proper subset. For these problems, we
can dispose of those small forbidden subgraphs first and their nonexistence simplifies
the graph structure and significantly decreases the possible configurations on which
we conduct branching (all known algorithms use bounded search trees). As a result,
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each of them admits a ck ·nO(1)-time algorithms for some small constant c. However,
long holes, which do not bother us at all in these three problems, turn out to be the
main difficulty of the current paper. This partially explains why a ck · nO(1)-time
algorithm for chordal vertex deletion is so elusive.

Our techniquesAs a standard opening step,we use the iterative compressionmethod
introduced by Reed et al. [22] and concentrate on the compression problem. Given
a solution (V−,E−,E+) to a graph G, we can easily find a set M of at most |V−| +
|E−| + |E+| vertices such that G − M is chordal. A clique tree decomposition of
G−M will be extensively employed in the compression step,1 where short holes can
be broken by simple branching, and the main technical idea appears in the way we
break long holes. We show that a hole H of the minimum length can be decomposed
into a bounded number of segments, where the internal vertices of each segment, as
well as the part of the graph “close” to them behave in a well-structured and simple
way with respect to their interaction with M. To break H, we have to break some of
the segments, and the properties of the segments allow us to show that we need to
consider only a bounded number of canonical separators breaking them. Therefore,
we can branch on choosing one of these canonical separators and break the hole using
it, resulting in an FPT algorithm.

Notation All graphs discussed in this paper shall always be undirected and simple.
The vertex set and edge set of a graph G are denoted by V(G) E(G) respectively. We
use the customary notation u ∼ v to mean uv ∈ E(G), and by v ∼ Uwe mean that v is
adjacent to at least one vertex in U. Two vertex sets X and Y are completely connected
if x ∼ y for every pair of x ∈ X and y ∈ Y. A hole H has the same number of vertices
and edges, denoted by |H|. We use NU(v) as a shorthand for N(v) ∩ U, regardless
of whether v ∈ U or not; moreover, NH(v) :=NV(H)(v) for a hole H. A vertex is
simplicial if N[v] induces a clique. A set S of vertices is an x-y separator if x and
y belong to different components in the subgraph G − S; it is minimal if no proper
subset of S is an x-y separator. Note that the definition of x-y separators requires
them to be disjoint from {x,y}. Minimal separators and induced paths are connected
by the following fact.

Proposition 1.2 A vertex is an internal vertex of an induced u-v path if and only if it
is in some minimal u-v separator.

Let T be a tree whose vertices, called bags, correspond to the maximal cliques of a
connected graph G. With the customary abuse of notation, the same symbol K is used
for a bag in T and its corresponding maximal clique of G. We say that T is a clique
tree of G if for every x ∈ V(G), all bags containing x induce a subtree of T, denoted
by T(x). It is known that a connected graph is chordal if and only if it has a clique
tree, which has at most n bags [9]. Between any pair of adjacent bags K and K ′ of a
clique tree T, the intersectionK∩K ′ is a minimal x-y separator for any pair of vertices
x ∈ K\K ′ and y ∈ K ′\K. In our setting, this separator is necessarily nonempty. A
vertex is simplicial if and only if it belongs to exactly one maximal clique; thus, any
non-simplicial vertex appears in some minimal separator(s) [15]. By definition, a pair
of vertices u, v of G is adjacent if and only if T(u) and T(v) intersect. Otherwise,

1 Refer to Sect. 6 for more intuition behind this observation.
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there exists a unique path Ku . . .Kv connecting T(u) and T(v) in T, where Ku and
Kv are the only bags that contain u and v respectively; the intersection of any pair of
consecutive bags in this path is a (not necessarily minimal) u-v separator.

A notational remark is worth here. For technical reasons, we have restricted clique
trees in this paper to be defined only on connected chordal graphs, or components in
a general chordal graph. However, in literature it is more common that clique trees
are defined without the condition on connectedness. Indeed, given a set of clique trees
for all components of a disconnected chordal graph, one may add arbitrary edges to
connect them into a single tree, where some adjacent bags may share no common
vertices. We remark also that clique trees of chordal graphs are not unique, and our
algorithm does not rely on a particular one.

2 Outline of the Algorithm

A subset of vertices is called a hole cover of a graphG if its deletion makesG chordal.
LetV− ⊆ V(G), and let E− and E+ be a set of edges and a set of non-edges ofG−V−

respectively. We say that (V−,E−,E+) is an chordal editing set of G if the deletion of
E− from and the addition of E+ to G − V− create a chordal graph. Its size is defined
to be the 3-tuple (|V−|, |E−|, |E+|), and we say that it is smaller than (k1,k2,k3) if all
of |V−| � k1 and |E−| � k2 and |E+| � k3 hold true and at least one inequality is
strict. Note that since chordal graphs are hereditary, it does not make sense to add new
vertices. The main problem studied in the paper is formally defined as follows.

chordal editing (G,k1,k2,k3)
Input: A graph G and three nonnegative integers k1, k2, and k3.
Task: Either construct a chordal editing set (V−,E−,E+) of G that has

size at most (k1,k2,k3), or report that no such set exists.

We use k :=k1 + k2 + k3 to denote the total numbers of operations. One might
be tempted to define the editing problem by imposing a combined quota on the total
number of operations instead of three separate parameters. However, this formulation
is computationally equivalent to chordal vertex deletion in a trivial sense, as
vertex deletions are clearly preferable to both edge operations.

We use the technique iterative compression, i.e., we define and solve a compression
version of the problem first and argue that this implies the fixed-parameter tractability
of the original problem. In the compression problem a hole cover M of a bounded
size is given in the input. Note that the definition below has a slightly technical (but
standard) additional condition: we are not allowed to delete any vertex from M.

chordal editing compression (G,k1,k2,k3,M)
Input: A graph G, three nonnegative integers k1, k2, and k3, and a hole

cover M ⊆ V(G) of G with |M| � k1 + k2 + k3 + 1.
Task: Either construct a chordal editing set (V−,E−,E+) of G such that

its size is at most (k1,k2,k3) and V− is disjoint from M, or report
that no such a set exists.
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The hole coverM is called themodulator of this instance, whichmakes the problem
somewhat easier: as G − M is chordal, we have useful structural information about
the graph. The main part of this paper will be focused on an algorithm for chordal
editing compression. More specifically, we will endeavor to prove the following
theorem.

Theorem 2.1 Chordal editing compression can be solved in time 2O(k logk) ·
nO(1).

Roughly speaking, our algorithm for chordal editing compression either
repetitively calls the following steps or reduces the instance when it identifies a vertex
that has to be in V−.

1. find a shortest hole H;
2. if H is shorter than k + 4, then guess a way to fix it;
3. otherwise, decompose H into O(k3) segments, and guess a segment and break it.

Let us briefly explain here steps 1 and 2, while leaving the main technical part, step 3,
for later sections. A shortest holeH can be detected in timeO(n3(n+m)) as follows:
we guess three consecutive vertices {v1, v2, v3} of H, and then search for the shortest
v1-v3 path in G− (N[v2]\{v1, v3}). In order to destroy H, we need to perform at least
one of the possible |V(H)\M| vertex deletions (vertices in M are avoided here), |H|

edge deletions, or O(|H|2) edge insertions that affect H. Therefore, if the length of H

is no more than k + 3, then we can fix it easily by branching into O(k2) directions.
Hence wemay assume |H| � k+4 > k3+3 in step 3. Such a hole cannot be fixed with
edge additions only; thus at least one deletion has to occur on this hole. As we shall
see in Sect. 3, the hole can be divided into a bounded number of “segments” (paths),
of which at least one needs to be “broken.” In our case, breaking a segment means
more than deleting one vertex or edge from it, and it needs a strange mixed form of
separation: we have to separate two vertices by removing both edges and vertices. We
study this notion of mixed separation on chordal graphs in Sect. 4. Finally, we show in
Sect. 5 that there is a bounded number of canonical ways of breaking a segment and
we may branch on choosing one segment and one of the canonical ways of breaking
it. This completes the proof of Theorem 2.1, which enables us to prove the main
theorem.

Proof of Theorem 1.1 Let v1, . . . , vn be an arbitrary ordering of V(G), and let Gi

be the subgraph induced by the first i vertices. Note that Gn = G. The algorithm
described in Fig. 1 iteratively finds a chordal editing set of Gi from i = 1 to n; the
solution for Gi is used in solving Gi+1. The main work is done in the for-loop, which
maintains as an invariant that (V−,E−,E+) is a chordal editing set of size at most
(k1,k2,k3) of Gi for the current i. The set X found in step 1 contains no more than
k+1 vertices, and then step 2 generates at most 2O(k) instances of chordal editing
compression, where X\X− is the modulatorM. Each instance has parameter at most
(k1,k2,k3), and thus can be solved in 2O(k logk) ·nO(1) time. There are n iterations,
and the running time of the algorithm is thus 2O(k logk) · nO(1). ��
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Fig. 1 Algorithm for chordal editing

3 Segments

We consider the chordal editing compression problem. Let H be the shortest
hole we have found, which is assumed to be longer than k + 3. We denote by A the
set of common neighbors of H, and define AM = A ∩ M and A0 = A\M. We can
assume that A induces a clique: if two vertices in A are nonadjacent, then they form
a 4-hole together with any two nonadjacent vertices of H. The following observation
follows from the fact that H is the shortest hole of G.

Proposition 3.1 A vertex not in A ∪ H is adjacent to at most three vertices of H and
these vertices have to be consecutive in H.

Let V0 = V(G)\(M ∪ A). For each component in the chordal subgraph G0 =
G[V0], we fix a clique tree. Note that {M, A0, V0} partitions V(G), and H is disjoint
fromA0. Since |H| � k+4 > |M| andG0 is chordal, the holeH intersects bothM and
V0. Every component of H − M is an induced path of G0, and there are at most |M|

such paths. We divide each of these paths into O(k2) parts; observing |M| = O(k),
this leads to a decomposition of H into O(k3) parts. For this purpose, it suffices to
consider paths longer than k + 3. Let P denote such a path v1v2 . . . vp in H, then
vi ∈ V0 for 1 � i � p and the other neighbors of v1 and vp in H (different from v2
and vp−1 respectively) are in M.

It is worth noting that the definition of V0 depends upon the hole H. We shall now
define twomore vertex setsV1 andV2, which depend upon, apart fromH, the sub-path
P we are considering, and the clique tree T for the component of G0 containing P.

We take the unique path P of bags K1, . . . , Kq that connects the disjoint subtrees
T(v1) and T(vp) in T, where K1 and Kq are the only bags of P that contain v1 and
vp respectively. The condition p > k + 3 implies that q > 2. The removal of K1 and
Kq from T will separate T into a set of subtrees, one of which contains all K� with
1 < � < q; let T1 denote this nonempty subtree. The set V1 is defined to be the union
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of all bags in T1 and {v1, vp}. Since these bags induce a subtree, and our definition of
clique tree requires a nonempty intersection between two adjacent bags, V1 is a subset
of V0 and induces a connected subgraph.

We then focus on bags in P and their union. (One may have judiciously observed
that these vertices induce an interval subgraph.) For every i with 1 � i � p, we
denote by first(i) (resp., last(i)) the smallest (resp., largest) index � such that
1 � � � q and vi ∈ K�. Recall that v1 and vp appear only in K1 and Kq respectively,
hence first(1) = last(1) = first(2) = 1 and last(p − 1) = first(p) =
last(p) = q. On the other hand, every internal vertex of P appears in more than one
bag of P. Since P is an induced path, for each i with 1 < i < p, we have

first(i) � last(i − 1) < first(i + 1) � last(i). (1)

For any pair of nonadjacent vertices vi, vj in P, (i.e., 1 � i < i + 1 < j � p,)
all minimal vi-vj separators in G0 are contained in {K� ∩ K�+1 | last(i) � � <

first(j)}. The set V2 is defined to be the union of vertices in all induced v1-vp paths
in G0; according to Proposition 1.2, V2\{v1, vp} ⊆ ⋃

1<�<q K�, and thus V2 ⊆ V1.
Note that V2 and A0 are completely connected: given a pair of nonadjacent vertices
x ∈ V2 and y ∈ A0, we can find a hole of G − M that consists of y and part of a
v1-vp path through x in G0.

Proposition 3.2 The vertex sets V2 and A0 are completely adjacent.

The set V0\V1 is easily understood, and we now consider V1\V2. Given a pair of
nonadjacent vertices x,y ∈ V2, we say that x lies to the left (resp., right) of y if every
bag of P containing x has smaller (resp., greater) index than every bag of P containing
y. If an induced path of G[V2] consists of three or more vertices, then its ends are
nonadjacent and have a left-right relation. This relation can be extended to all pairs of
consecutive (and adjacent) vertices x,y in this path, the one with smaller distance to
the left end of the path is said to the left of the other.

Lemma 3.3 Let C be a component of the subgraph induced by V1\V2. If C is non-
adjacent to v1 and vp, then NV0(C) induces a clique and there exists � such that
1 < � < q and NV0(C) ⊆ K�.

Proof Since C is nonadjacent to v1 and vp, it is disjoint from K1 and Kq. As a result,
NV0 [C] ⊆ V1, and then NV0(C) ⊆ V2. Recall that all vertices of V2 appear in P, and
thus every clique of V2 is a subset of some bag in P; it suffices to show that NV0(C)
induces a clique. Suppose for contradiction that there is a pair of nonadjacent vertices
x,y ∈ NV0(C); without loss of generality, let x lie to the left of y. We can find an
induced v1-x path Px through no vertices to the right of x, and an induced y-vp path
Py through no vertices to the left of y. Let x ′ be the first vertex in Px (counting from
v1) that is adjacent toC, and y ′ the last vertex in Py (counting from y) that is adjacent
to C. We can find an induced path x ′P ′y ′ with all internal vertices from C. Note that
x ′ either is x or lies to the left of x in Px and y ′ either is y or lies to the right of y,
which imply x ′

� y ′. Thus v1 · · · x ′P ′y ′ · · · vp is an induced v1-vp path through C,
which is impossible. This completes the proof. ��
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Fig. 2 Possible modifications to
simplicial vertices ( 3© means a
clique of 3 vertices). a A
minimal solution (two deletions)
that deletes a (dashed) edge
incident to a simplicial vertex v.
b A minimal solution (3 × 3
deletions and 5+ 5 additions)
that adds (dotted) edges incident
to a simplicial vertex v

(a) (b)

Such a component C is called a branch of P, and we say that C is near to some
internal vertex vi of P if there is an � with first(i) � � � last(i) satisfying
the condition of Lemma 3.3. In other words, C is near to vi ∈ P if and only if
NV0(C) ⊆ N[vi]; here note that since G[V1] is connected, NV0(C) �= ∅. Applying
Proposition 3.1 on any vertex in NV0(C), we conclude that a branch is near to at
most three vertices of P. If there exists some hole passing through C, then C has to be
adjacent toM: by Proposition 3.2 and Lemma 3.3,NV0(C)∪A0 is a clique, and thus a
hole cannot both enter and leave C via NV0(C)∪ A0. The converse is not necessarily
true: some branch that is adjacent to M might still be disjoint from all holes, e.g.,
N(C) can be a clique even if it intersects M\AM. This observation inspires us to
generalize the definition of simplicial vertices to sets of vertices.

Definition 1 A set X of vertices is called simplicial in a graph G if N[X] induces a
chordal subgraph of G and N(X) induces a clique of G.

It is easy to verify that a simplicial set of vertices is disjoint from all holes. This
may suggest that simplicial sets are irrelevant to chordal editing problem and we
may never want to add/delete edges incident to a vertex in a simplicial setX. However,
this is not true: as Fig. 2 shows, if a solution removes some edges of N(X), then the
solution may also need to add/delete edges incident to X. As characterized by the
following lemma, this is the only reason for touchingX in the solution. In other words,
a simplicial set X will only concern us after N(X) has been changed; after all, X may
not be simplicial any more. We say that a chordal editing set (V−,E−,E+) edits a set
U ⊂ V(G) of vertices if either V− contains a vertex of U or E− ∪ E+ contains an
edge incident to U. We use a classic result of Dirac [9] stating that the graph obtained
by identifying two cliques of the same size from two chordal graphs is also chordal.

Lemma 3.4 A minimal chordal editing set edits a simplicial set U only if it removes
at least one edge induced by N(U).

Proof Let (V−,E−,E+) be a minimal editing set of G such that E− does not contain
any edge induced by N(U). We restrict the editing set to the subgraph G−U, i.e., we
consider the set (V−\U,E−\(U × V(G)),E+\(U × V(G))), and let G ′ be the graph
obtained by applying it to G. Clearly G ′ − U = G − U is chordal, where N(U)\V−

induces a clique. Also chordal is the subgraph of G ′ induced by N[U]\V−. Both of
them contain the cliqueN(U)\V−. SinceG ′ can be obtained from them by identifying
N(U)\V−, it is also chordal. Then by the minimality of (V−,E−,E+), it must be the
same as (V−\U,E−\(U × V(G)),E+\(U × V(G))), and this proves this lemma. ��
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Now we are ready to define segments of the path P, which are delimited by some
special vertices called junctions. Note that a branch is always simplicial in G0 (by the
definition of G0 and Lemma 3.3), but it is not necessarily simplicial in G.

Definition 2 (Segment) A vertex v ∈ P is called a junction (of P) if

(1) some bag K that contains v is adjacent to M\AM;
(2) some branch near to v is adjacent to M\AM;
(3) some branch near to v is not simplicial in G; or
(4) NV2(v) is not completely connected to A.

A sub-path vs · · · vt of P, denoted by [vs, vt], is a segment if vs and vt are the only
junctions in it.

Because v1 is adjacent to M\AM, both v1 and v2 are junctions of type (1); so are
{vp−1, vp}. We point out that the four types are not exclusive, and one junction might
be in more than one type. For a junction v of type (1) or (2), we say that the vertex in
M\AM used in its definition witnesses it. Let us briefly explain the intuition behind
the definition of junctions and segments.

Remark 3.5 For a junction v of type (1) or (2), there is a path from v to M\AM that
is “local to v” in some sense. For a junction v of type (3) or (4), there might be a hole
“local to v” (in the sense that it passes through only M ∪ A and vertices near to v),
and its disposal might interfere with that of H. On the other hand, since there are no
junctions inside a segment [vs, vt], if another hole H ′ intersects it, then H ′ has to “go
through the whole segment.” Or precisely,H ′ necessarily enters and exits the segment
via N[vs] and N[vt], respectively.

The definition of junctions and segments extends to all paths of H − M. Once H

is given, we can find in polynomial time the sets A and V0, and construct clique trees
for each component of G0; for each path P of H−M, we can find in polynomial time
V1 and V2, and identify all its junctions. Since both ends of P are type (1) junctions
(adjacent to M\AM), every vertex in H − M is contained in some segment, and in
each path of H − M, the number of segments is the number of junctions minus one.
We are now ready for the main result of this section that gives a cubic bound on the
number of segments of H. It should be noted that the constants—both the exponent
and the coefficient—in the following statement are not tight, and the current values
simplify the argument significantly. Recall that, by Proposition 3.1, a vertex not in A

sees at most three vertices in H, and they have to be consecutive.

Theorem 3.6 IfH contains more than |M| · (14k2+88k+82) segments, then we can
either find a vertex that has to be in V−, or return “NO.”

Proof Since there are at most |M| paths in H − M, at least one of them contains
more than 14k2 + 88k + 82 segments. Let P be such a path, then P has more than
14k2 + 88k + 83 junctions. Let us first attend to junctions of type (1) in P. ��

Claim 1 Each w ∈ M\AM witnesses at most 14 junctions of type (1) in P.
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Proof Suppose, for contradiction, that 15 or more vertices in P appear in bags adjacent
to w; let X be this set of vertices. Assume first that X is consecutive. At most 3 of
them are adjacent to w, and they are either consecutive in P or at the two ends of P

(Proposition 3.1). Thus, we can always pick 6 consecutive vertices from X that are
nonadjacent to w; let them be {vi, . . . , vi+5}. By definition, there are two vertices
u1,u2 ∈ V0 ∩ N(w) such that u1 ∼ vi and u2 ∼ vi+5. Using Proposition 3.1 it is
easy to verify that u2 � vi, vi+1, vi+2 and u1 � vi+3, vi+4, vi+5. Therefore, we can
find an induced u1-u2 path with all internal vertices from {vi, . . . , vi+5}. The length
of this path is at least 3, and hence u1 � u2 (G0 is chordal) and the path together with
w makes a hole of length at most 9, contradicting the assumption that H is a shortest
hole.

Assume now that X is not consecutive in P, then we can pick a pair of nonadjacent
vertices vi, vj from X such that v� /∈ X for every i < � < j. Note that neither of
vi and vj can be adjacent to w, as otherwise vi+1 or vj−1 will also be a junction of
type (1). There are two vertices u1,u2 ∈ V0 ∩ N(w) such that u1 ∼ vi and u2 ∼ vj.
Neither of u1 and u2 can be adjacent to v� for i < � < j (they are not junctions of
type (1)); noting that |X| � 15, from Proposition 3.1 and the fact that G0 is chordal
we can conclude that u1 � u2, u1 � vj, and u2 � vi. Therefore, wu1vi · · · vju2w

is a hole. By assumption that |X| � 15, we have j − i � |H| − 13. Thus, we obtain a
hole strictly shorter than H, a contradiction. �
Claim 2 If some vertex w ∈ M\AM witnesses 5k + 75 junctions of types (1) and
(2) in P, then we can return “NO.”

Proof Let X be this set of junctions of type (1) or (2) witnessed by w. We order
these vertices according to their indices in P and group each consecutive five from the
beginning. We omit groups that contain junctions of type (1) witnessed by w, and in
each remaining group, we pair the second and last vertices in it. According to Claim 1,
we end with at least k + 1 pairs, which we denote by (v�1 , vr1 ), . . ., (v�k+1 , vrk+1 ).

For each pair (v�j
, vrj

), where 1 � j � k + 1, we construct a hole Hj as follows.
By definition, there is a branch C�j

(resp., Crj
) whose neighborhood in P is a proper

subset ofN[v�j
] (resp.,N[vrj

]). By the selection of the pair v�j
and vrj

(two vertices of
X have been skipped in between), they are nonadjacent, and rj − �j > 2. According to
Proposition 3.1, vrj

and v�j
have no common neighbors in V0. Therefore, NV0(C�j

)
and NV0(Crj

), which are nonempty subsets of NV0 [v�j
] and NV0 [vrj

] respectively,
are disjoint. The neighborhoods of C�j

and Crj
on the hole H are possibly empty,

and this fact is irrelevant for the argument to follow. Since C�j
induces a connected

subgraph and is adjacent to bothw andNV0 [v�j
], we can find an inducedw-v�j+1 path

P�j
with all internal vertices fromC�j

∪NV0 [v�j
]. Likewise, we can obtain an induced

w-vrj−1 path Prj
with all internal vertices from Crj−1 ∪ NV0 [vrj

]. These two paths
P�j

andPrj
, together with v�j+1 . . . vrj−1, make the holeHj: we have �j + 1 < rj − 1;

for each �j + 1 � s � rj − 1, vs � w (as there cannot be a junction of type (1) in
between); and for each �j + 1 < s < rj − 1, vs � C�j

,Crj
. This hole goes through

w. This way we can construct k + 1 holes, and it can be easily verified that they
intersect only in w. Since we are not allowed to delete w in the disjoint compression
version of the problem, we cannot fix all these holes by at most k operations. Thus we
can return “NO.” �
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If Claim 2 applies, then we are already done; otherwise, there are at most |M| ·
(5k + 74) junctions of the first two types in P. We proceed to consider the set B of
junctions that are only of type (3) or (4) but not of the first two types. The size of B is
at least (noting |M| � k + 1)

(14k2 + 88k + 83) − (5k + 74) · |M| � 9k2 + 9k + 9 = 9 (k(k + 1) + 1) .

We order B according to their indices in P, and let bi denote the index of the ith vertex
of B in P. For each 0 � i � k(k + 1), we use the (9i + 4)th vertex of B to construct
a hole Hi. Then we argue that this collection of holes either allows us to identify a
vertex that has to be in the solution, or conclude infeasibility.

The first case is when vb9i+4 is of type (4): there is a pair of nonadjacent vertices
x ∈ NV2(vb9i+4

) and w ∈ A; according to Proposition 3.2, w ∈ AM. In this case we
can assume that x is adjacent to neither vb9i+2 nor vb9i+6 ; otherwise xvb9i+2wvb9i+4x

or xvb9i+4wvb9i+6x is a 4-hole, which contradicts the fact that H is the shortest. In
other words, x only appears in bags between Klast(b9i+2)+1 and Kfirst(b9i+6)−1.
By the definition of V2, there is an induced v1-vp path P ′ via x in G[V2]. This path
necessarily passes through both N[vb9i+2 ] and N[vb9i+6 ]. We find the last neighbor
x ′ of vb9i+2

on P ′ and the first neighbor x ′′ of vb9i+6
on P ′; they must lie to the

different sides of x. We can thus construct an induced vb9i+2 -vb9i+6 path Pi through
x in G[V2]. Note that x ′ and x ′′ are adjacent to vb9i+2+1 and vb9i+6−1 respectively;
by Proposition 3.1, this path does not visit N[vb9i

] or N[vb9i+8
]. Starting from x, we

traverse Pi to the left until the first vertex x1 that is adjacent tow; the existence of such
a vertex is ensured by the fact that w ∼ vb9i+2

. Similarly, we find the first neighbor
x2 of w in Pi to the right of x. Then the sub-path of Pi between x1 and x2, together
with w, gives the hole Hi. By construction, no vertex of Hi − w is adjacent to vb9i

or vb9i+8
.

In the other case, vb9i+4
is of type (3): some branch Ci near to vb9i+4

is not
simplicial in G. By definition, either the subgraph induced by N(Ci) is not a clique,
or the subgraph induced by N[Ci] is not chordal.

• The subgraph induced by N(Ci) is not a clique. Since vb9i+4
does not satisfy the

conditions of type (1) and (2), N(Ci) ∩ M ⊆ AM, i.e., N(Ci)\V0 ⊆ A. On the
other hand, according to Lemma 3.3, N(Ci) ∩ V0 induces a clique. Therefore,
there must be a pair of nonadjacent vertices w ∈ AM and x ∈ N(Ci)∩V0, which
is necessarily in V2. As Ci is near to vb9i+4 , it must hold that x ∈ N(vb9i+4).
However, then vb9i+4

is also of type (4), and it has already been discussed.
• Suppose now that N(Ci) induces a clique and there is a hole Hi in N[Ci]. Since

vb9i+4 is not of type (2), N[Ci] ∩ M ⊆ AM. Since G − M is chordal, Hi must
intersect AM; let w be a vertex in V(Hi) ∩ AM. If Hi is disjoint from A0, then
no vertex in Hi\M can be adjacent to vb9i+1

or vb9i+7
. Otherwise, it contains

some vertex u ∈ A0; noting that A induces a clique, Hi ∩ A = {u,w}. Moreover,
N(Ci) ∩ V2 is in the neighborhood of vb9i+4

and therefore N(Ci) ∩ V2 and
N(Cj)∩V2 are disjoint for i �= j: the existence of a vertex x ∈ V2 adjacent to both
Ci andCj would contradict Proposition 3.1 (noting that the distance of vb9i+4 and
vb9j+4

is greater than 2 on the hole H).
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In summary, we have a setH of at least k(k+1)+1 distinct holes such that (1) each
hole in H contains at most one vertex of A0, and (2) the intersection of any pair of
them is inA and it has size at most two (asA is a clique). If there is au ∈ A0 contained
in at least k + 1 holes of H; we argue that we have to put u into V−. Here note that
it might be the case that these k + 1 holes contain also a common vertex w ∈ M,
and then the edge uw is also common to them. Suppose that we delete uw but not u.
After the deletion of uw, each of these holes becomes a u-w path. Internal vertices of
these paths are in N[vb9i+4 ] or in branches near to vb9i+4 for some i, and thus internal
vertices of different paths cannot be adjacent. Therefore, any two of these paths will
together make a hole longer than k+ 4, not fixable by edge additions only. Therefore,
at least k of these paths have to be broken, but we have only k− 1 modifications left,
so we still need to delete u. Otherwise, no vertex in A0 is contained in more than k

holes of H. We can find k + 1 distinct holes that intersect only in M. Some subset
H ′ of H may share the same edge ww ′ with w,w ′ ∈ M, but a similar argument as
above ensures us that at least |H ′| edges need to be deleted from H ′. Therefore, we
can return “NO.” This concludes the proof. ��

4 Mixed Separators in Chordal Graphs

Given a pair of nonadjacent vertices x,y of a graph, we say that a pair of vertex set VS

and edge set ES is a mixed x-y separator if the deletion of VS and ES leaves x and y

in two different components; its size is defined to be (|VS|, |ES|). Again, by definition,
VS needs to be disjoint from {x,y}. A mixed x-y separator is inclusion-wise minimal
if there exists no other mixed x-y separator (V ′

S,E
′
S) such that V

′
S ⊆ VS and E ′

S ⊆ ES

and at least one containment is proper. If (VS,ES) is an inclusion-wise minimal mixed
x-y separator in graph F, then each component of F−VS−ES is an induced subgraph
of F. Therefore, we have the following simple property of inclusion-wise minimal
mixed separators in chordal graphs.

Proposition 4.1 In a chordal graph, all components obtainedbydeletingan inclusion-
wise minimal x-y separator are chordal.

Consider an inclusion-wise minimal x-y separator (VS,ES) in a connected chordal
graph F. The degenerate case where ES = ∅ is well understood: VS itself makes an
x-y separator and can be easily found. Hence we may assume ES �= ∅. Let X and Y be
the vertices in the components of G− VS − ES that contain x and y respectively. We
fix a clique tree TF of F, and consider the subtree TF(X) induced by bags intersecting
X, and the subtree TF(Y) induced by bags intersecting Y. By minimality, all edges of
ES are between X and Y, hence in TF(X) ∩ TF(Y), which is again a subtree of TF,
and every bag in it intersects both X and Y. The following conclusions follow from
the minimality of (VS,ES).

(1) All vertices in all bags of TF(X) ∩ TF(Y) are either in VS or belong to X ∪ Y; in
the second case, every such vertex is incident to at least one edge of ES.

(2) Every vertex in VS is adjacent to both X and Y, thereby appearing in some bag of
TF(X) ∩ TF(Y).
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We remark that the remaining vertices of a bag not in the subtree TF(X)∩TF(Y)may
belong to a different component of G − VS − ES than X and Y.

Each bag K in the subtree TF(X)∩TF(Y) contains at most |VS|+ |ES|+ 1 vertices:
the number of edges between any nontrivial partition of K\VS is at least |K\VS| − 1,
which has to be at most |ES|. Likewise, the total number of vertices in all bags of this
subtree is at most |VS|+ 2|ES|: each vertex in these bags that are not in VS is incident
to at least one edge in ES, and one edge is incident to two vertices. This inspires the
following algorithm.

Lemma 4.2 Letxandybeapair of nonadjacent vertices in a connected chordal graph
F. For any pair (a,b) of nonnegative integers, we can find a mixed x-y separator of
size at most (a,b) or assert its nonexistence in time 9a+b · |V(F)|O(1).

Proof We find first a minimum vertex x-y separator S; if its size is at most a, then
(S, ∅) will be the mixed x-y separator. Henceforth we may assume that ES �= ∅ in
any mixed x-y separator satisfying |VS| � a. By previous discussion, to find such a
mixed separator, it suffices to find the subtree TF(X)∩ TF(Y) and a tri-partition of all
vertices in all bags of this subtree, where X and Y are the components of G−VS −ES

containing x and y respectively.
To begin with, we guess a bag K of size at most a+b+ 1 vertices, and generate in

3|K| time all tri-partitions of K. If a mixed separator of size at most (a,b) exists, then
in some branch we will guess a bag K in TF(X) ∩ TF(Y) along with its tri-partition
whose three parts are in VS, X, and Y respectively. We grow the bag K to the subtree
TF(X) ∩ TF(Y) by considering its neighboring bags one by one. For such a bag K ′,
we consider K ∩ K ′, of which all vertices have already been decided. If they are all in
VS, then their deletion separates the rest of K ′ (as well as all vertices in the subtree
containing K ′ in TF − K) from both x and y, and thus they will not further concern
us. A similar situation is when (K ∩ K ′)\VS a subset of X or Y, then the rest of K ′
will be in X or Y accordingly: all paths connecting them to the other side go through
(K ∩ K ′)\VS. Otherwise, K ∩ K ′ intersects both X and Y, and then K ′ must be in
TF(X)∩TF(Y). Let a ′ the number of vertices that have been decided to be in VS, and
let b ′ be the number of edges between vertices that have been decided in X and Y. If
K ′\K contains more than (a − a ′) + (b − b ′) + 1 vertices, then we terminate this
branch; otherwise we guess a tri-partition for it and proceed to the next bag.

Extending this way, in the whole process all bags that have been partitioned form
a subtree. Either all partitions have been terminated and we can conclude that there is
no mixed x-y separator of size at most (a,b), or we obtain a mixed separator when it
cannot be further extended, i.e., for every bagK ′ adjacent to some bagK of this subtree,
(K ′ ∩ K)\VS are fully contained in either X or Y. The execution of this algorithm can
be viewed as traversing a bounded search tree, and to bound the number of its leaves,
we use a+b as the measure. There are at most |V(F)| bags in TF, which is the number
of child nodes of the root node in the search tree. For each new bag with p undecided
vertices, we have at most 3p = 9p/2 tri-partitions to consider. For each of these tri-
partitions, we have a sub-instance, where the measure decreases by at least p − 1.
Noting that p/2 < p− 1, the total number of leaves is at most 9a+b · |V(F)|, and the
running time of the algorithm is 9a+b · |V(F)|O(1). This completes the proof.

��
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Thedefinitionofmixed separator canbe easily generalized to twodisjoint vertex sets
each inducing a connected subgraph—we may simply contract each set into a single
vertex (after which the graph remains chordal) and then look for a mixed separator for
these two new vertices. Another interpretation of Lemma 4.2 is the following.

Corollary 4.3 Let F be a chordal graph, and let X and Y be a pair of disjoint and
nonadjacent sets of vertices in F such that both F[X] and F[Y] are connected. For any
nonnegative integer a � k1, in time 9k1+k2 · |V(F)|O(1) we can find the minimum
number b such that b � k2 and there is a mixed X-Y separator of size (a,b) or assert
that there is no mixed X-Y separator of size (a,k2).

We remark that the problem of finding a mixed separator of certain size is fixed-
parameter tractable even in general graphs: the treewidth reduction technique of Marx
et al. [20] can be used after a simple reduction (subdivide each edge, color the new
vertices red and the original vertices black, and find a separator with at most k1 black
vertices and at most k2 red vertices). However, the algorithm of Lemma 4.2 for the
special case of chordal graphs is simpler and much more efficient. On the other hand,
we are not aware of any proof of its NP-hardness on chordal graphs, and its complexity
is still open.

5 Proof of Theorem 2.1

We are now ready to put everything together and finish the algorithm for chordal
editing compression. We say that a chordal editing set is minimum if there exists
no chordal editing set with a smaller size.

Proof of Theorem 2.1 We start from finding a shortest hole H. If |H| � k + 3, then
we try one of the |V(H)\M| vertex deletions, |H| edge deletions, and O(|H|2) edge
insertions that affect H. Clearly, at least one of these operations is necessary, and each
of them makes a new instance that has strictly smaller parameters. Hence we may
assume |H| � k+4 > k3+3.WithH fixed, we haveA (common neighbors ofH) and
V0 (i.e., V(G)\(M ∩ A)) defined; we further build clique trees for all components in
G0 :=G[V0] and find all segments ofH. If there are more than |M| · (14k2+88k+74)
segments, then by Theorem 3.6, we have either found a vertex that must be in V− in
any valid solution, leading to a new instance with smaller parameters, or been ready
to return “NO.” Henceforth, we may assume that H contains O(k3) segments, which
also means that it has O(k3) junctions.

Let us fix a hypothetical (V∗
−,E

∗
−,E

∗
+) minimum chordal editing set of G of size

no more than (k1,k2,k3). There are three options for breaking H by this set. In the
first case, V∗

− contains some junction, or E∗
− contains some edge of H that is incident

to M. In this case, we can branch on including one of these vertices or edges into the
solution; there are O(k3) of them. Otherwise, we need to delete an internal vertex or
an edge from some segment. Let d = 2k+ 4. In the second case, we delete either (1)
a vertex that is at distance at most d (on the hole H) from a junction; or (2) an edge
whose both endvertices are at distance at most d (on the hole H) from a junction. In
particular, this case must apply when we are breaking a segment of length at most 2d.
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If one of the two aforementioned cases is correct, then we can identify one vertex or
edge of the solution by branching. In total, there are O(k4) branches we need to try.

Henceforth, we assume that none of these two cases holds. The vertex or edge we
need to delete from H must then belong to some segment [vs, vt] with t − s > 2d;
in particular, it is in the sub-path vs ′ · · · vt ′ , where s ′ := s + d and t ′ := t − d. This
is the third case and our main concern. Recall that any segment [vs, vt] belongs to
some maximal path P of H − M, on which V1 and V2 are well defined, and T is a
clique tree for the component of the chordal subgraph G0 that contains P. For any
pair of indices i, j with s � i < i + 3 � j � t, we use U[i,j] to denote the union
of the set of bags in the nonempty subtree of T − {Klast(i),Kfirst(j)} that contains
{Klast(i)+1, . . . ,Kfirst(j)−1}, plus the two vertices vi and vj. Let G[i,j] be the
subgraph induced by U[i,j].

Claim 3 There must be some segment [vs, vt] with t− s > 2d such that vertices vs ′
and vt ′ are disconnected in G[s,t] − V∗

− − E∗
−.

Proof We prove by contradiction. Suppose that for every segment [vs, vt]with t−s >

2d, vertices vs ′ and vt ′ remain connected in G[s,t] − V∗
− − E∗

−. We can find an
induced vs ′-vt ′ path P[s ′,t ′] in G[s,t] − V∗

− − E∗
−, which has to visit every bag K�

with last(s ′) � � � first(t ′). Appending to this path vs · · · vs ′ and vt ′ · · · vt,
(which are assumed to be not impacted by the deletion of V∗

− and E∗
−,) we get a vs-vt

path P[s,t] in G[s,t] − V∗
− − E∗

−. From P[s,t] we can extract an induced vs-vt path
P ′
[s,t] ofG[s,t]−V∗

−−E∗
−. It is also a vs-vt path ofG[s,t]. By the definition ofG[s,t],

the path P ′
[s,t] must be disjoint fromA. The distance between vs and vt inG[s,t] must

be t− s > 2d; otherwise we have a hole shorter than H (whether some internal vertex
of P ′

[s,t] is adjacent to H\[vs, vt] or not), which is impossible. Therefore, the length

of P ′
[s,t] is larger than 2d > 2k3 + 4.

We have assumed that any segment of length at most 2d remains intact inG−V∗
−−

E∗
−. Therefore, we have now for each segment [vs, vt] of H an induced vs-vt path

P ′
[s,t] in G− V∗

− − E∗
−. Concatenating all these paths, as well as edges of H incident

to M, we get a closed walk C, which is disjoint from A. To show that C is a hole,
it suffices to verify that any vertex v ∈ V(C)\V(H) is nonadjacent to other vertices
of C different from its two neighbors in C. By construction, v belongs to some path
P[s ′,t ′] given above, which is either inNV2 [vs ′ ], . . . ,NV2 [vt ′ ], or in some branch near
to vs ′ , . . . , vt ′ ; since none of vs ′ , . . . , vt ′ is a junction of type (1) or (2), it follows
that v is not adjacent to M\AM, and thus NV (v) ⊆ V0. Suppose that besides its two
neighbors in C, the vertex v is adjacent to another vertex u in C, then u cannot be in
P ′
[s,t] and cannot be in H. In other words, u is in a branch near to some vertex vj that

is at least 2d far away from vs ′ , . . . , vt ′ , which is impossible as G0 is chordal. Hence,
C must be a hole of G − V∗

− − E∗
− of length larger than 2k3 + 4. It cannot be made

chordal by the addition of the at most k3 edges of E∗
+, and this contradiction proves

the claim. �

In other words, there is a segment [vs, vt] such that (V∗
−,E

∗
−) contains some

inclusion-wise minimal mixed {vs, . . . , vs ′ }-{vt ′ , . . . , vt} separator in G[s,t]. The

123



134 Algorithmica (2016) 75:118–137

resulting graph obtained by deleting this mixed separator from G[s,t] is character-
ized by the following claim.

Claim 4 LetG ′ = G−VS−ES, where (VS,ES) is an inclusion-wise minimal mixed
{vs, . . . , vs ′ }-{vt ′ , . . . , vt} separator in G[s,t]. For any i with s + 2 � i � s ′ − 2, the
component X of G ′ − (Klast(i) ∪ A) containing vs ′ is simplicial in G ′.

Proof We argue first that X is the same as the component of G[s,t] − (Klast(i) ∪
VS)−ES containing vs ′ . Let X ′ be the component; note that it fully contains the path
vi+2 · · · vs ′ . Since G[s,t] is a subgraph of G−A, it follows that X ′ ⊆ X. Note that no
vs ′-vt path in G[s,t] can be shorter than d (otherwise there is a hole shorter than H).
As a result, X ′ cannot contain a neighbor of vt: since X ′ is connected, a vs ′-vt path
will imply that |ES| > k. Therefore, X ′ has no neighbor in Klast(s) ∪ Kfirst(t). On
the other hand, a vertex in X ′ is either in N[vi+1], . . . ,N[vt−1] or a branch near to
vi+1, . . . , vt−1, and hence cannot be adjacent to M\AM. Suppose for contradiction
thatX ′ �= X, thenwe can find a neighbor ofX ′ inM\AM orKlast(s)∪Kfirst(t), but
we have seen that it is not possible. Hence, X ⊆ V0, and since Klast(i) and (VS,ES)
have been deleted, it can be further inferred X ⊆ V1. Then NG ′(X) ⊆ Klast(i) ∪ A.
Since vi+1 ∈ Klast(i) and is not a junction of type (4), NG ′(X) must be a clique.
Since (VS,ES) is inclusion-wise minimal, no edge in ES is induced by NG ′ [X]. In
particular, NG ′(X) induces the same subgraph in G and G ′, which is a clique. It
remains to show that NG ′ [X] induces a chordal subgraph of G ′.

The subgraph induced by NG ′ [X] ∩ V2 is chordal, and since every vertex in it is
adjacent to some vertex in vi+1, . . . , vt ′−1, which is not a junction of type (4), they
are completely adjacent toA. All other vertices inNG ′ [X] (not in V2 ∪A) are in some
branch near to vi+1, . . . , vt ′−1. Since these vertices are not junctions of type (3), these
branches are all simplicial in G. Let C be such a branch; according to Lemma 3.3,
NV2(C) is a clique, andN(C)\NV2(C) are inA and henceN(C) is a clique. Therefore,
NG ′ [X] induces a chordal subgraph in G ′. �

A symmetric claim holds for the other side of the segment [vs, vt]. That is, for any
i with t ′ +2 � i � t−2, the component X of G ′ −(Kfirst(i) ∪A) that contains vt ′

is simplicial inG ′. Let (V∗
S,E

∗
S), where V∗

S ⊆ V∗
− and E∗

S ⊆ E∗
−, be an inclusion-wise

minimal mixed {vs, . . . , vs ′ }-{vt ′ , . . . , vt} separator in G[s,t]. We now consider the
subgraph obtained from G by deleting (V∗

S,E
∗
S), i.e., G

′ = G − V∗
S − E∗

S. Note that
(V∗

−\V∗
S,E

∗
−\E∗

S,E
∗
+) is a minimum chordal editing set of G ′.

Claim 5 For any mixed {vs, . . . , vs ′ }-{vt ′ , . . . , vt} separator (VS,ES) of size at most
(|V∗

S|, |E∗
S|) inG[s,t], substituting (VS,ES) for (V∗

S,E
∗
S) in (V

∗
−,E

∗
−,E

∗
+) gives another

minimum editing set to G.

Proof We first argue the existence of some vertex vs ′′ with s � s ′′ � s ′ such that
E∗
− contains no edge induced by Klast(s ′′). For each s ′′ with s � s ′′ � s ′, since

last(s ′′) � first(s ′′+1) and every vertex in them is adjacent to at most 3 vertices
of H (Proposition 3.1), bags Klast(s ′′) and Klast(s ′′+2) are disjoint. In particular,
an edge cannot be induced by both Klast(s ′′) and Klast(s ′′+2). Suppose that E∗

−

contains an edge induced by Klast(s ′′) for each s ′′ with s � s ′′ < s ′, then we must
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have |E−| > (s ′ − s)/2 � k2, which is impossible. Likewise, we have some vertex
vt ′′ with t ′ � t ′′ � t such that E∗

− contains no edge induced by Kfirst(t ′′). By
Claim 4, it follows that every vertex of U[s ′′,t ′′] is in a simplicial set of G−V∗

S −E∗
S.

Since (V∗
−\V∗

S,E
∗
−\E∗

S,E
∗
+) is a minimum chordal editing set to G − V∗

S − E∗
S, we

have by Lemma 3.4 that (V∗
−\V∗

S,E
∗
−\E∗

S,E
∗
+) does not edit any vertex of U[s ′′,t ′′].

Suppose that there is a hole C in the graph obtained by applying ((V∗
−\V∗

S) ∪
VS, (E∗

−\E∗
S) ∪ ES,E∗

+) to G. By construction, C contains a vertex of U[s ′,t ′] ⊆
U[s ′′,t ′′]. However, by Claim 4, every vertex of U[s ′′,t ′′] is in some simplicial set of
G−VS −ES and, as (V∗

−\V∗
S,E

∗
−\E∗

S,E
∗
+) does not edit U[s ′′,t ′′], every such vertex

is in a simplical set after applying ((V∗
−\V∗

S) ∪ VS, (E∗
−\E∗

S) ∪ ES,E∗
+) to G. Thus

no vertex of U[s ′′,t ′′] is on a hole, a contradiction. �
For any segment [vs, vt], we can use Corollary 4.3 to find all possible sizes of a

minimummixed {vs, . . . , vs ′ }-{vt ′ , . . . , vt} separator. There are at most k1 of them. By
Claim 5, one of them can be used to compose the desired chordal editing set. In each
iteration, we branch intoO(k4) instances to break a hole, and in each branch decreases
k by at least 1. The running time is thus O(k)4k · nO(1) = 2O(k logk) · nO(1). This
completes the proof. ��

6 Concluding Remarks

We would like to draw attention to the similarity between chordal vertex dele-
tion and the classic feedback vertex set problem, which asks for the deletion
of at most k vertices to destroy all cycles in a graph, i.e., to make the graph a forest.
The ostensible relation is that the forbidden induced subgraphs of forests are precisely
all holes and triangles. But triangles can be easily disposed of and their nonexistence
significantly simplifies the graph structure. On the other hand, each component of a
chordal graph can be represented as a clique tree, which gives another and probably
better way to correlate these two problems.

Recall that vertices with degree less than two are irrelevant for feedback vertex
set, while degree two vertices can also be preprocessed, and thus it suffices to consider
graphs with minimum degree three. Earlier algorithms for feedback vertex set
are based on some variations of the upper bounds of Erdős and Pósa [11] on the length
of shortest cycles in such a graph. For chordal vertex deletion, our algorithm
can be also interpreted in this way. First of all, a simplicial vertex participates in no
holes, and thus can be removed safely.

Reduction 1 Remove all simplicial vertices.

Note that a simplicial vertex corresponds to a leaf in the clique tree, Reduction 1
can be viewed as a generalization of the disposal of degree-1 vertices for feedback
vertex set. For feedback vertex set, we “smoothen” a degree-2 vertex by
removing it and adding a new edge to connect its two neighbors. This operation
shortens all cycles through this vertex and result in an equivalent instance. To have a
similar reduction rule, we need an explicit clique tree,2 sowe consider the compression

2 This can be surely extended to some local clique tree structure, and we use clique tree here for simplicity.
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problem,which, given a hole coverM, asks for another hole coverM ′ disjoint fromM.
The following reduction rule will only be used after Reduction 1 is not applicable, then
no vertex inside a segment can have a branch. Let S� denote the separator K� ∩ K�+1
in the clique tree.

Reduction 2 Let [vs, vt] be a segment and letSı have theminimumcardinality among
{Si : last(s) � i < first(t)}. If there exists S� such that S� is disjoint from
Klast(s) ∪ Kfirst(t) and there exists v ∈ S�\Sı, then remove v and insert edges to
make N(v) a clique.

After both reductions are exhaustively applied, we can use an argument similar as
Theorem 3.6 to show that either the length of a shortest hole is O(k4) or there is no
solution. Simply deleting vertices of degrees one or two already suffices to yield a
linear-vertex kernel for the disjoint feedback vertex set problem, the compres-
sion variant of feedback vertex set [7]. However, for our problem it does not seem
to be the case, and to furnish a polynomial kernel for even the compression variant of
the chordal vertex deletion problem, we might need more than Reductions 1
and 2. We leave the existence of polynomial kernels for chordal vertex deletion
and its compression variant as an open problem.

We have presented the first FPT algorithm for the general modification problem to
a graph class that has an infinite number of obstructions. Following this work, the first
author [6] showed that the unit interval editing problem is FPT as well. It is natural
to ask for its parameterized complexity on other related graph classes, especially for
those classes on which every single-operation version is already known to be FPT.
The most interesting candidates would be the interval graphs.

Acknowledgments We are grateful to the anonymous referees for their careful reading and helpful sug-
gestions, and in particular for pointing out flaws in a preliminary version and suggesting a better proof for
Lemma 4.2.
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