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Abstract In this paper, we consider the Unsplittable (hard) Capacitated Facility
Location Problem (UCFLP) with uniform capacities and present new approximation
algorithms for it. This problem is a generalization of the classical facility location
problem where each facility can serve at most u units of demand and each client
must be served by exactly one facility. This problem is motivated by its applications
in many practical problems including supply chain problems of indivisible goods
(Verter in Foundations of location analysis, chapter 2. International series in opera-
tions research and management science. Springer, Berlin, 2011) and the assignment
problem in the content distribution networks (Bateni and Hajiaghayi in Proceedings
of the nineteenth annual ACM-SIAM symposium on discrete algorithms, pp 805–814,
2009). While there are several approximation algorithms for the soft capacitated ver-
sion of this problem (in which one can open multiple copies of each facility) or the
splittable version (in which the demand of each client can be divided to be served
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by multiple open facilities), there are very few results for the UCFLP. It is known
that it is NP-hard to approximate this problem within any factor without violating
the capacities. So we consider bicriteria (α, β)-approximations where the algorithm
returns a solution whose cost is within factor α of the optimum and violates the
capacity constraints within factor β. Shmoys et al. (Proceedings of the twenty-ninth
annual ACM symposium on theory of computing, pp 265–274, 1997) were the first to
consider this problem and gave a (9, 4)-approximation. Later results imply (O(1), 2)-
approximations, however, no constant factor approximation is known with capacity
violation of less than 2.We present a framework for designing bicriteria approximation
algorithms for this problem and show two new approximation algorithms with factors
(9, 3/2) and (29.315, 4/3). These are the first algorithms with constant approxima-
tion in which the violation of capacities is below 2. The heart of our algorithm is a
reduction from the UCFLP to a restricted version of the problem. One feature of this
reduction is that any (O(1), 1+ε)-approximation for the restricted version implies an
(O(1), 1+ ε)-approximation for the UCFLP and we believe our techniques might be
useful towards finding such approximations or perhaps ( f (ε), 1 + ε)-approximation
for the UCFLP for some function f . In addition, we present a quasi-polynomial time
(1+ ε, 1+ ε)-approximation for the (uniform) UCFLP in Euclidean metrics, for any
constant ε > 0.

Keywords Approximation algorithms · Capacitated facility location ·
Hard capacities

1 Introduction

We consider the Unsplittable Capacitated Facility Location Problem (UCFLP) with
uniform capacities. In this problem, we are given a set of clients C and a set of
facilities F where each client j has demand d j and each facility i has opening cost fi
and capacity u. There is a metric cost ci j which denotes the cost of serving one unit
of demand of client j at facility i . The goal is to open a subset of facilities I ⊆ F and
assign each client j to exactly one open facility φ( j) to serve its entire demand d j so
that the total amount of demand assigned to each open facility is no more than u, while
minimizing the total cost of opening facilities and connecting (serving) clients, i.e.,
minimizing

∑
i∈I fi +∑

j∈C d j cφ( j) j . This problem generalizes the bin packing, the
minimummakespan, and some facility location problems. If the demands of clients can
be served by multiple open facilities, then we have the splittable capacitated version
of the problem. If each facility can be opened multiple times then we have the so-
called soft capacitated version. Each of these relaxations (i.e., allowing splitting the
demands of clients and/or having multiple copies of each facility) makes the problem
significantly easier as discussed below. When each facility i has a given capacity ui ,
the problem is called the non-uniform version.

Facility location problems have been studied extensively in operations research
and management sciences and even a few books are devoted to these problems (e.g.,
see [17,29]). They are also well studied in theoretical computer science and various
approximation algorithms are designed. While these problems arise in a wide range of
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practical applications, the most common context of their employment has been supply
chain. In a supply chain that consists of suppliers, distribution centres, or warehouses
and customers, these problems emerge in making location decisions [36]. When we
deal with indivisible goods, the unsplittable demand assumption is a necessity. In
particular, the UCFLP has been studied in operations research literature from the
eighties,where it is called the capacitated facility location problemwith single sourcing
or the capacitated concentrator location problem [17]. The latter name comes from
the problem of assigning a set of terminals or workstations to some concentrator
devices in telecommunications networks. Here, each terminal has a demand that must
be served by exactly one concentrator and each concentrator has a capacity that shows
the amount of traffic that it can manage.

As Bateni and Hajiaghayi [9] pointed out, solving the UCFLP without relaxation
of capacities is NP-hard even in very special cases. This is done via a simple reduction
from the special case of minimum makespan when the size of each client j is in a set
{p j ,∞}. In fact, it can be shown that unlessP=NP, any approximation algorithmwith
a bounded approximation ratio for the UCFLP violates the capacities of at least � |F |

2 �
facilities in some instances [10]. Thus, research has focused on the design of bicriteria
approximation algorithms. An (α, β)-approximation algorithm for the UCFLP returns
a solution whose cost is within factor α of the optimum and violates the capacity
constraints within factor β. It should be noted that if we violate capacity of a facility
within factor β, we must pay β times its opening cost. In the context of approximation
algorithms, Shmoys et al. [35] were the first to consider this problem and presented
a (9, 4)-approximation algorithm. They used a filtering and rounding technique to
get an approximation algorithm for the splittable version and used a rounding for
the generalized assignment problem (GAP) [34] to obtain their algorithm for the
unsplittable version. This technique of reducing the unsplittable version using the
rounding for the GAP to the splittable version was a cornerstone of the subsequent
approximation algorithms. In addition, in the same place, by a randomized version of
the filtering technique, they got a new algorithm with the ratio (7.62, 4.29). Korupolu
et al. [25] gave the first constant factor approximation algorithm for the splittable hard
capacitated version, and applied theGAP rounding technique of [35] to get a (O(1), 2)-
approximation algorithm for the UCFLP. Applying the current best approximation
algorithms for the splittable capacitated version with non-uniform capacities [37] and
uniformcapacities [1], it is straightforward to get factor (9, 2) and (5, 2) approximation
algorithms for theUCFLPwith non-uniform and uniform capacities, respectively [10].

Bateni and Hajiaghayi [9] designed the first approximation algorithms for the
UCFLP having violation ratio less than 2. They modelled an assignment problem
in content distribution networks by the UCFLP. This assignment problem has been
first considered by Alzoubi et al. [2] and is basically the assignment of downloadable
objects, such as media files or softwares, to some servers. We cannot split a download-
able object andweneed to store it in a single server.AsAlzoubi et al.mention, the server
capacities is very crucial in practice and a high overload amount on a server can disrupt
a large numbers of connections. Motivated by this strict requirement on capacities, the
authors of [9] designed a (1+ ε, 1+ ε)-approximation algorithm for tree metrics (for
any constant ε > 0) using a dynamic programming approach. They also presented a
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quasi-polynomial time (1+ε, 1+ε)-approximation algorithm (again for trees) for the
non-uniform capacity case. Using Fakcharoenphol et al.’s [18] improvement of Bar-
tal’s machinery [8], this implies a polynomial time (O(log n), 1 + ε)-approximation
algorithm for almost uniformcapacities and a quasi-polynomial time (O(log n), 1+ε)-
approximation algorithm for non-uniform version for an arbitrary constant ε > 0.

1.1 Related Work

Perhaps the most well-studied facility location problem is the uncapacitated facility
location problem (UFLP). In this problem, we do not have the capacity constraints
and we only need to decide which facilities to open, as each client will be assigned
to its closest open facility. The first constant approximation for the UFLP was a 3.16-
approximation algorithm by Shmoys et al. [35]. This algorithmwas based on a filtering
method due to Lin andVitter [28] and rounding a linear programming (LP) formulation
of the problem.

There is a long series of works that improve this constant approximation ratio for
the UFLP. Guha and Khuller [20] improved the ratio to 2.41 by combining a simple
greedy heuristic with the algorithm of [35]. This greedy heuristic adds unopened
facilities one by one greedily based on somemeasure of effectiveness for each facility.
Later, the factor improved to 1 + 2/e ≈ 1.74 by Chudak [13] using generalized
techniques of [35] for the LP rounding. A key element to this improvement is the
use of randomized rounding of some variables in conjunction with the approach of
Shmoys et al. Meanwhile, Jain and Vazirani [22] gave a 3-approximation primal-dual
algorithm with a better running time and Korupolu et al. [25] gave a surprisingly
simple local search algorithm with factor 5 + ε for any ε > 0.

Charikar andGuha [12] slightly improved the ratio to 1.73by combining primal dual
algorithm of [22] with cost scaling and greedy augmentation. The scaling technique
exploits the difference between approximation guarantees for the facility cost and
the service cost. This can be used by producing a new instance where the facility
costs are multiplied by δ, then apply the algorithm to the scaled instance, and then
scale back to get a solution for the original instance. Mahdian et al. [21] used a
variant of the primal-dual method, called dual fitting, and a new analysis technique,
called factor revealing LP, to bring down the factor to 1.61. Later, Mahdian et al. [32]
combined this algorithm with greedy augmentation of [12] to decrease the factor to
1.52. Afterwards, Byrka [11] combined this new algorithm of [32] with the algorithm
of Chudak [13] to get a 1.5-approximation. Finally, Li [27] showed that by choosing a
parameter of Byrka’s algorithm from a specific distribution, one can get a factor 1.488
approximation algorithm, which is the current best known factor.

On the negative side, a result of Guha and Khuller [20], combined with an obser-
vation of Sviridenko (personal communication cited in [15]), implies 1.463-hardness
for the Uncapacitated Facility Location Problem (UFLP). As a result, unless P=NP,
there is very little room to improve the best known approximation algorithm for the
UFLP.

The (soft and hard) capacitated facility location problems have also received a lot of
attention. In the soft capacitated facility location problem, despite having capacities,
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the fact that we can open a facilitymultiple timesmakes the problem easier in compari-
son to the case of hard capacities. Shmoys et al. [35] designed the first constant factor,
namely a 5.69-approximation algorithm for this problem by a similar LP rounding
technique they used for the first constant factor approximation for the UFLP. Then,
Chudak andShmoys [14] used the sameLPand the randomizedLP-rounding technique
to get a 3-approximation algorithm for this problem. For non-uniform capacities, Jain
and Vazirani [22] reduced this problem to the UFLP, and by solving the UFLP, they
obtained a 4-approximation algorithm. Arya et al. [6] proposed a simple local search
algorithm with an approximation ratio of 3.72 for the non-uniform version. Following
the reduction of Jain and Vazirani [22] to the UFLP, Jain et al. [21] showed that the
soft Capacitated Facility Location (CFLP)with non-uniform capacities (where one can
open �x/ui	 copies of a facility with capacity ui to serve x demands) can be solved
within a factor 3 of optimum. This result was improved to a 2.89-approximation algo-
rithm for the non-uniform soft CFLP in [32]. Finally,Mahdian et al. [31] improved this
factor to 2, achieving the integrality gap of the natural LP relaxation of the problem.
To the best of our knowledge, this is the current best ratio for this problem.

We should point out that all of the above algorithms except the local search algorithm
of Arya et al. [6] use the optimal value of a natural LP relaxation of the soft capacitated
facility location problem as a lower bound in their analysis. Therefore, they cannot
obtain a better ratio than the integrality gap of this relaxation. Mahdian et al. [31] also
showed that the integrability gap of this LP is 2 and hence, their analysis is tight.

If we add the constraint that the demand of a client cannot be split, it does not make
the problem much more difficult than its splittable counterpart in the soft setting.
One can show that any α-approximation algorithm for the unsplittable version of the
soft CFLP yields a 2α-approximation algorithm for the splittable version and vice
versa [10]. As a result, the 2-approximation algorithm of Mahdian et al. [31] yields
a 4-approximation for unsplittable version of the soft CFLP. In fact, it is not difficult
to observe that this algorithm is a 2-approximation for this version. Their algorithm
assigns each client by utilizing a UFLP algorithm and hence, to a single facility, and its
cost is within factor 2 of the optimum value of soft CFLP. Clearly, the optimum value
of the unsplittable version is not less than the optimum value of the splittable version,
because all feasible solutions for the unsplittable version are feasible solutions with
the same cost for the splittable version, too. Thus, their algorithm gives a feasible
solution for the unsplittable version of the soft CFLP which is within factor 2 of the
optimum value for the unsplittable version.

The (splittable) hard capacitated facility location problem has also received a lot
of attention. In contrast to the UFLP and soft capacitated facility location problem,
there is an important distinction between the splittable and unsplittable case in the
presence of hard capacities, because in the unsplittable case, even checking whether
there exists a feasible solution becomesNP-hard and we can only hope for a bicriteria
algorithm. In contrast, in the splittale case, if we decide on the set of open facilities,
the best way of serving the clients can be determined by building a flow network and
using a minimum cost flow algorithm.

For the splittable case, Korupolu et al. [25] gave a simple factor 8+ ε local search
algorithm. This was the first constant factor approximation algorithm for the hard
capacitated facility location problem.
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Later, Chudak and Williamson [15] simplified their analysis and showed the actual
ratio of algorithm of Korupolu et al. [25] is at most 6 + ε. Pal et al. [33] gave a more
powerful local searchwith factor 8.54+ε for the case of non-uniform capacities. Later,
with a series of more powerful local search algorithms, the ratio for the case of non-
uniform capacities decreased to 7.46 + ε [30], and 5.83 + ε [37]. Later, Aggarwal et
al. [1] showed that the algorithm of Korupolu et al. [25] is actually a 3-approximation
for the uniform splittable CFLP and this ratio is tight. Recently, Bansal et al. [7]
showed that slightly more powerful versions of algorithm of Zhang et al. [37] give a
5-approximation for the non-uniform splittable CFLP and this ratio is tight.

It should be noted that in contrast to the UFLP and soft CFLP, all the known LP
relaxations for this problem have super-constant integrality gap in the general case.
The only LP-based result is a 5-approximation algorithm by Levi et al. [26] for the
non-uniform version in the special case that all facility opening costs are equal.

1.2 Our Results

Recall that given an instance (F,C) of the UCFLP with facility opening costs fi ,
demands d j , and connection costs ci j , a solution is a subset I of facilities to open along
with assignment function φ : C → I . Since all capacities are uniform, by a simple
scaling, we can assume that all of them are 1 and all the client demands are at most 1.

All the known constant factor algorithms for the UCFLP violate the capacity con-
straints by a factor of at least 2 which is mainly due to using the rounding algorithm for
GAP [34]; and the algorithm of [9] (although it has 1 + ε violation) is not a constant
factor approximation. We are interested in (O(1), β)-approximation algorithms for a
β < 2. We define a restricted version of the problem and show that finding a good
approximation algorithm for this restricted version would imply a good approxima-
tion for the general version. The definition of similar restricted versions has been a
common practice in solving bin packing type problems (e.g., see [16,23]).

Definition 1 An ε-restricted UCFLP instance, denoted by RUCFLP(ε), is an instance
of the UCFLP in which each demand has size more than ε, i.e., ε < d j ≤ 1 for all
j ∈ C .

The following theorem establishes the reduction from the general instances of the
UCFLP to the restricted version. Here, the general idea is that if we assign the large
clients oblivious to small clients, we can fractionally assign the small clients without
paying too much in cost. We use the maximum-flow minimum-cut theorem to show
this. Then we can round this fractional assignment of small clients with the GAP
rounding technique [34].

Theorem 1 If A is an (α(ε), β(ε))-approximation algorithm for the RUCFLP(ε)
with running time τ(A) then there is an algorithm AC which is an (η(1 +
ε)α(ε),max{β(ε), 1 + ε})-approximation algorithm for the UCFLP, for some con-
stant η, whose running time is polynomial in τ(A) and the instance size.

Corollary 1 For any constant ε > 0, an (α(ε), 1+ε)-approximation algorithm for the
RUCFLP(ε) yields an (O(α(ε)), 1 + ε)-approximation for the UCFLP. Particularly,
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when α(ε) is a constant, we have a constant approximation for the UCFLP with a
(1 + ε) factor violation of capacities in polynomial time.

This reduction shows that to get a (O(1), 1 + ε)-approximation, it is sufficient
to consider large clients only, which may open the possibility of designing algo-
rithms using some of the techniques used in the bin packing type problems. If
one finds such an algorithm for large clients, the above corollary shows that we
have an (O(1), (1 + ε))-approximation for the UCFLP. As an evidence for this,
we find approximation algorithms for the RUCFLP(12 ) and the RUCFLP(13 ). For the
RUCFLP(12 ), we present an exact algorithm and for the RUCFLP(13 ), we present a
(21, 1)-approximation algorithm. These, together with Theorem 1, yield:

Theorem 2 There is a polynomial time (9, 3
2 )-approximation algorithm for the

UCFLP.

Theorem 3 There is a polynomial time (29.315, 4
3 )-approximation algorithm for the

UCFLP.

Finally, we give a quasi polynomial time approximation scheme (QPTAS) for the
UCFLP restricted to Euclidean metrics. Here, we employ a dynamic programming
based algorithm and combine the shifted quad-tree dissection of Arora [3], some
ideas from [9], and some new ideas.

Theorem 4 There exists a (1+ε′, 1+ε′)-approximation algorithm for the Euclidean
UCFLP in R2 with quasi-polynomial running time for any constant ε′ > 0.

Although this theorem is presented forR2, it can be generalized toRd for any constant
d > 2.

In the following discussions, for a solution (I, φ), where I is the set of open facilities
and φ : C → I is the assignment of clients to open facilities, we use c f (φ) to denote
the total facility opening cost and cs(φ) to denote the total service cost, and c(φ) to
denote the total cost of the solution. Thus, we have c(φ) = c f (φ) + cs(φ). In the
splittable versions, the assignment function is φ : C × F → R≥0, where φ(i, j)
shows the amount of demand of client j served by facility i .

The rest of this paper is organized as follows. In Sect. 2, we prove Theorem 1.
In the next section, we present approximation algorithms for the RUCFLP(1/2) and
RUCFLP(1/3), which also prove Theorems 2 and 3. In Sect. 4, we give a QPTAS
for Euclidean metrics. Finally, in Sect. 5, we conclude the paper with a discussion of
results, future works and open problems.

2 Reduction to the Restricted UCFLP

Let L = { j ∈ C : d j > ε} be the set of large clients and S = C\L be the set of small
clients1. We call two assignments φ1 : C1 → F1 and φ2 : C2 → F2 consistent if

1 We should point out that the definitions of L and S are with respect to a given parameter ε. Since
throughout the following sections, this parameter is the same for all statements, in the interest of brevity,
we use this notation instead of L(ε) and S(ε).
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φ1( j) = φ2( j) for all j ∈ C1 ∩C2. The high level idea of the algorithm is as follows.
Wefirst ignore the small clients and solve the problem restricted to only the large clients
by running algorithm A of Theorem 1. We can show that given a good assignment of
large clients, there exists a good assignment of all the clients (large and small) that
is consistent with this assignment of large clients, i.e., a solution which assigns the
large clients the same way that A does, whose cost is not far from the optimum cost.
More specifically, we show there exists a fractional (i.e., splittable) assignment of
small clients that together with the assignment of large clients obtained fromA gives
an approximately good solution. Then, we try to find a fractional assignment of small
clients. To do this, we update the capacities and the opening costs of facilities with
respect to the assignment of large clients (according to the solution of A). Then, we
fractionally assign small clients and round this fractional assignment at the cost of
violating the capacities with additive factor ε by using a rounding algorithm for the
Generalized Assignment Problem (GAP).

The GAP is a generalization of the matching problem that can be described as
a scheduling problem which has similarities to the UCFLP. In the GAP, we have a
collection of jobs J and a set M of machines. Each job must be assigned to exactly
one machine in M . If job j ∈ J is assigned to machine i ∈ M , then it requires pi j
units of processing time and incurs a cost ri j . Each machine i ∈ M can be assigned
jobs of total processing time at most Pi . We want to find an assignment of jobs to
machines to minimize the total assignment cost. We should point out that ri j values
do not necessarily satisfy the triangle inequality. Shmoys and Tardos [34] considered
an LP relaxation and showed that a feasible solution of this LP can be rounded, in
polynomial time, to an integral solution with the same cost that violates processing
time limit Pi within additive factor max j∈J pi j .

Our algorithm is presented below. Here, φ−1(i) is the set of clients assigned to
facility i by the assignment φ and for a set F ′ ⊆ F , φ−1(F ′) = ∪i∈F ′φ−1(i).

Algorithm 1 Algorithm for the UCFLP by reduction to the RUCFLP(ε)

Input: An instance of the UCFLP, a parameter ε > 0, and an algorithm A for the RUCFLP(ε)

Output: A subset I ⊆ F to open and an assignment of clients φ : C → I
1: Let L = { j ∈ C : d j > ε} and S = C\L . Assign the clients in L by running A. Let IL be the opened

facilities and φL : L → IL be the assignment found by A.
2: For i ∈ IL , set fi = 0, and set u′

i = max{0, 1−∑

j∈φ−1
L (i)

d j } as the new capacity of facility i . Assign

the clients in S with respect to updated opening costs and capacities by an approximation algorithm
for the splittable CFLP with non-uniform capacities. Let IS be the new set of opened facilities and
φ′
S : S → I ′S be the assignment function, where I ′S ⊆ IS ∪ IL .

3: Round the splittable assignment φ′
S using algorithm of [34] for GAP to find an unsplittable assignment

φS : S → I ′S .
4: Let I = I ′S ∪ IL and define φ : C → I as φ( j) = φS( j) if j ∈ S and φ( j) = φL ( j), otherwise. Return

φ and I .

First, we formally prove the property that given assignment of large clients, there
is a feasible fractional assignment of small clients with an acceptable cost. A feasible
fractional assignment is an assignment of demands of clients to open facilities where
each client’s demand might be served by multiple facilities (instead of just one),
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i.e. we split their demands between multiple open facilities while satisfying capacity
constraints. Note that we do not open facilities fractionally (they are open integraly).
We should point out that the proof of this property is only an existential result and we
do not actually find the assignment in the proof. We only use this lemma to bound the
cost of our solution. Let OPT be an optimum solution which opens set I ∗ of facilities
and with assignment of clients φ∗ : C → I ∗. We use φ∗

L : L → I ∗ and φ∗
S : S → I ∗

to denote the restriction of φ∗ to large and small clients, respectively.

Lemma 1 Suppose IL is a set of open facilities and φL : L → IL is an arbitrary (not
necessarily capacity respecting) assignment of large clients. Given the assignment φL ,
there exists a feasible fractional assignment of small clients, φ′′

S : S → I ′′
S such that

cs(φ′′
S) ≤ cs(φ∗) + cs(φL) and c f (φ

′′
S) ≤ c f (φ

∗).

Proof Recall u′
i is equal to max{0, 1 − ∑

j∈φ−1
L (i) d j }, i.e., the amount of capacity

left for facility i after the assignment of large clients based on φL . We open all the
open facilities in the optimum solution, i.e., all facilities in I ∗ (if not already open in
IL ). Let I ′′

S = IL ∪ I ∗. To show the existence of φ′′
S , first we move the demands of

small clients to the facilities in I ∗ based on φ∗
S and we pay cs(φ∗

S) for this. So now
the demands of small clients are located at facilities in I ∗. However, a facility i ∈ I ′′

S
has only u′

i residual capacity left (after committing parts of its capacity for the large
clients assigned to it by φL ) and this capacity may not be enough to serve the demands
of small clients moved to that location. In order to rectify this, we will fractionally
redistribute the demands of these small clients between facilities (in I ′′

S ) in such a way
that we do not violate capacities u′

i . In this redistribution, we only use the edges used
in φL or φ∗

L and if an edge is used to assign large client j to facility i (in φL or φ∗
L ),

we move at most d j units of demands of small clients along this edge. Therefore, we
pay at most cs(φL) + cs(φ∗

L) in this redistribution. Thus, by the triangle inequality,
the connection cost of the fractional assignment of small clients obtained at the end
is bounded by cs(φ∗

S) + cs(φ∗
L) + cs(φL) = cs(φ∗) + cs(φL). Since we only open

facilities in the optimum solution (on top of what is already open in IL ) the extra
facility cost (for assignment φ′′

S) is bounded by the facility cost of the optimum.
This process of moving the small client demands can be alternatively thought of in

the following way. We start from the optimum assignment φ∗ and change the assign-
ment of large clients to get an assignment identical to φL for those in L . Specifically,
we change the assignment of a large client j from i ′ = φ∗( j) to i = φL( j). This
switch increases the amount of demands served at i by d j and decreases the amount of
demand served at i ′ by d j . After doing all these switches, wemight have more demand
at some facilities than their capacities. To resolve this problem, we try to redistribute
(fractionally) the demands of small clients so that there is no capacity violation due to
these clients and we use the max-flowmin-cut theorem to show that this redistribution
is possible.

Let s∗
i be the total demand of small clients served by facility i in φ∗. Define a flow

network H as follows. H has set of vertices X ∪ Y ∪ {s, t} where X = {xi |i ∈ F}
and Y = {yi |i ∈ F}, and s is called the source and t is the sink. We add an edge
from s to all the vertices in X and set the capacity of edge sxi to s∗

i (this represents
the total demand of small clients that can be moved from facility i). We connect each
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Fig. 1 The flow network used
in the proof of Lemma 1.
a Assignment of large client j in
φ∗
l and φL . b The edge xi yi ′

corresponding to the large client
j shown in part (a). Also, an
arbitrary s − t cut of bounded
value in H shown with a dashed
line. The portion above the
dashed line shows the partition
s ∪ Xc ∪ Yc

j

F

C

i i

Our Assignment
Optimal Assignment

(a)

X Y

X −Xc

Yc
s t

xi

yidj

Xc

Cut c

Y − Yc

(b)

yi ∈ Y to t and set the capacity of edge yi t to u′
i (this represents the residual capacity

of facility i after the assignment of large clients according to φL ). We connect xi
and yi bidirectionally with edges of unlimited capacity (because xi and yi represent
the same facility). Finally, for each large client j with φL( j) = i and φ∗( j) = i ′
we add an edge from xi to yi ′ with capacity d j (see Fig. 1). This means that we can
transport d j units of (small clients) demands from facility i to facility i ′ since we
switch the demand of large client j from being served at i ′ in the optimum to be
served at i .

A flow of value
∑

i s
∗
i in H represents a fractional redistribution of demands of

small clients between facilities in such a way that we do not violate capacities u′
i . It

follows that if there is a flow of value
∑

i s
∗
i in H then we can redistribute the demands

of small clients among facilities so that large clients are served according to φL and
no facility capacity is violated because of small clients. We show that a maximum s–t
flow in H has value at least

∑
i s

∗
i .

We show that the capacity of any s–t cut in H is at least
∑

i s
∗
i . Therefore, the

capacity of minimum cut is at least
∑

i s
∗
i and by the max-flow min-cut theorem, the

value of max flow is at least
∑

i s
∗
i . If for any i ∈ F , the vertices xi and yi are in

different partitions of a cut, the cut has unbounded capacity (because of the unlimited
capacity of bidirectional edge xi yi ) and clearly has capacity at least

∑
i s

∗
i .

Now, consider an arbitrary cut in which for all i ∈ F , the vertices xi and yi are in
the same partition. Consider the partition containing s in this cut and let Xc ⊆ X and
Yc ⊆ Y be the rest of the vertices in this partition, i.e., the partition is s ∪ Xc ∪ Yc.
Let F ′ be the facilities corresponding to the vertices in Xc (or equivalently, in Yc). Let
C∗
l be the large clients assigned to the facilities in F ′ by φ∗ and Cl be the large clients

assigned to the facilities in F ′ by φL . Since φ∗ does not violate capacities, the total
demand of clients assigned to facilities in F ′ is at most their total capacity, i.e., |F ′|.
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In other words:

∑

i∈F ′
s∗
i +

∑

j∈C∗
l

d j ≤ |F ′| ≤
∑

i∈F ′
u′
i +

∑

j∈Cl

d j ,

where the second inequality follows from the way that we defined u′
i and Cl . Adding

the term
∑

i∈F\F ′ s∗
i − ∑

j∈C∗
l
d j to both sides:

∑

i∈F ′
s∗
i +

∑

i∈F\F ′
s∗
i ≤

∑

i∈F\F ′
s∗
i +

∑

i∈F ′
u′
i +

∑

j∈Cl

d j −
∑

j∈C∗
l

d j ,

and by the simple fact that
∑

j∈Cl
d j−∑

j∈C∗
l
d j ≤ ∑

j∈Cl\C∗
l
d j , the above inequality

implies

∑

i∈F
s∗
i ≤

∑

i∈F\F ′
s∗
i +

∑

i∈F ′
u′
i +

∑

j∈Cl\C∗
l

d j .

Notice that the right hand side of the above inequality is exactly the capacity of
the cut (see Fig. 1). The first term of the right hand side is the capacity of the edges
leaving the cut from s to X \ Xc. The second term is the capacity of the edges leaving
the cut from the vertices in Yc to t . The third term is the capacity of the edges leaving
the cut from Xc to Y \ Yc, because a client j is in Cl\C∗

l if and only if it is assigned
to a facility in F ′ by φL and is assigned to a facility outside of F ′ by φ∗ if and only if
we have an edge of capacity d j from φL( j) ∈ Xc to φ∗( j) ∈ Y\Yc. ��
Remark 1 The above lemma can be generalized in the following way. Assume facility
i has capacity ui , i.e., we are in the non-uniform case. Let φC ′ : C ′ → IC ′ and
φC : C → IC be two arbitrary capacity respecting assignments, where C ′ can be any
subset ofC , and IC ′ and IC are subsets of F . LetC ′′ = C\C ′. Almost the same proof as
above shows that given the assignmentφC ′ , there exists a feasible fractional assignment
φC ′′ : C ′′ → IC ′′ such that cs(φC ′′) ≤ cs(φC )+cs(φC ′) and c f (φC ′′) ≤ c f (φC ), where
IC ′′ ⊆ IC ∪ IC ′ . If we set C ′ = L and φC = φ∗, then C ′′ = S and we get the above
lemma.

We point out that the above lemma is tight. Consider a path P = v1v2v3 where the
edges have unit cost. Assume 1/2ε is an integer and denote this integer by q. There are
q small clients of demand ε on v1, there is a facility with opening cost 0 on v1, there is
a large client with demand 1/2 on v2, there is another facility with opening cost 0 on
v3 and there are 2q small clients of demand ε on v3. In the optimal solution, we open
both facilities and assign the large client on v2 to the facility on v1. Thus, we have
cs(φ∗) = 1/2 and c f (φ

∗) = 0. An algorithm which decides the assignment of large
clients oblivious to small clients (including Algorithm 1) may assign the large client
on v2 to the facility on v3. After this assignment, any feasible fractional assignment of
small clients, φ′′

S , must assign at least 1/2 units of demands of small clients on v3 to
the facility on v1. Thus, we have cs(φ′′

S) ≥ 1/2+1/2 = 1 = cs(φ∗)+cs(φL), because
cs(φL) = 1/2 and c f (φ

′′
S) = c f (φ

∗) = 0. This shows that Lemma 1 is tight. Note that
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v1
v2

v3
q clients of demand one client of demand 1

2 2q clients of demand

one facility with f1 = 0
1 1

one facility with f2 = 0

Fig. 2 A tight example for Lemma 1

this example shows that any algorithm which decides the assignment of large clients
oblivious to small clients is at least a factor 3 away from the optimum even for simple
metrics such as Euclidean, planar, and tree metrics (Fig. 2).

One should note that when all facility costs and at least one of cs(φ∗
L) or cs(φL) are

non-zero, Lemma 1 is not tight: remember that I ∗ is the set of facilities opened by φ∗.
Assume the facility cost inequality of Lemma 1 is tight, i.e., for any feasible fractional
assignment of small clients φ′′

S , we have c f (φ
′′
S) = c f (φ

∗). This means that none of
the large clients is assigned to I ∗ by φL or equivalently, no small client is assigned to
a facility opened by φL . Therefore, when we switch the assignment of large clients
from the one in the optimal solution to the one in φL , we do not need to send back
anything and change the assignment of small clients. Since at least one of cs(φ∗

L) or
cs(φL) is non-zero, we have cs(φ′′

S) < cs(φ∗
S)+ cs(φ∗

L)+ cs(φL) for a φ′′
S that assigns

small clients the same way as φ∗
S .

Now, we prove our main theorem using Lemma 1:

Proof of Theorem 1 Since the cost of the optimum solution for the instance consisting
of only the large clients is clearly nomore than that of the original instance, after Step 1
ofAlgorithm 1,we have an assignmentφL such that c(φL) ≤ α(ε)c(φ∗

L) and it violates
the capacities by a factor of at most β(ε). By Lemma 1, given φL , there is a feasible
fractional assignment φ′′

S for small clients such that cs(φ′′
S) ≤ cs(φ∗) + cs(φL) and

c f (φ
′′
S) ≤ c f (φ

∗).
In Step 1, consider the instance of the splittable CFLP consisting of the small

clients and the residual facility opening costs and capacities as defined. We use an
approximation algorithm for the splittable CFLP to find an approximate splittable (i.e.,
fractional) assignment φ′

S for small clients. Suppose that the approximation algorithm
used for the splittable CFLP has separate factors λss , λs f , λ f s , λ f f such that it returns
an assignment with service cost at most λsscs(φ̃S) + λs f c f (φ̃S) and with opening
cost λ f scs(φ̃S) + λ f f c f (φ̃S) for any feasible solution φ̃S . Therefore, if we use the
fractional assignment φ′′

S guaranteed by Lemma 1:

cs
(
φ′
S

) ≤ λsscs
(
φ′′
S

) + λs f c f
(
φ′′
S

)
, (1)

and
c f

(
φ′
S

) ≤ λ f scs
(
φ′′
S

) + λ f f c f
(
φ′′
S

)
. (2)

The current best approximation for the non-uniform splittableCFLP is due toBansal
et al. [7] with parameters λss = 1, λs f = 1, λ f s = 4, and λ f f = 4.

In Step 1, we round the splittable assignment φ′
S using the algorithm of Shmoys

and Tardos [34] for the Generalized Assignment Problem (GAP) to find an integer
assignment φS . Given the fractional assignment of clients to facilities φ′

S , using the
rounding algorithm of [34], we can round φ′

S to φS without increasing the connection
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cost, i.e., cs(φS) = cs(φ′
S), such that the capacity constraints are violated by at most

an additive factor of max j∈S d j . Since all the jobs in S have demand at most ε, the
capacity constraints are violated by at most a factor of 1 + ε.

After combining φS and φL in Step 1, the violation of capacities is within a factor
of at most max{β(ε), (1+ ε)}, because the facilities with violated capacities in Step 1
will be removed in Step 1 and will not be used in Step 1. So it only remains to bound
the cost of this assignment:

cs(φS) = cs
(
φ′
S

)
by rounding of the GAP [34]

≤ λsscs
(
φ′′
S

) + λs f c f
(
φ′′
s
)

by Eq. (1)
≤ λss

(
cs

(
φ∗) + cs (φL )

) + λs f c f
(
φ∗)

, by Lemma 1
c f (φS) ≤ (1 + ε)c f

(
φ′
S

)
by rounding of the GAP [34]

≤ (1 + ε)λ f scs
(
φ′′
S

) + (1 + ε)λ f f c f
(
φ′′
S

)
by Eq. (2)

≤ (1+ε)λ f s(cs
(
φ∗)+cs(φL ))+(1+ε)λ f f c f

(
φ∗)

. by Lemma 1

Therefore:

c(φ) = c(φS) + c(φL)

= cs(φS) + c f (φS) + cs(φL) + c f (φL)

≤ h1(ε)cs
(
φ∗) + h2(ε)c f

(
φ∗) + (h1(ε) + 1)cs(φL) + c f (φL), (3)

where h1(ε) = λss+(1+ε)λ f s and h2(ε) = λs f +(1+ε)λ f f . Since h1(ε) ≥ 0 for any
ε > 0: (h1(ε) + 1)cs(φL) + c f (φL) ≤ (h1(ε) + 1)c(φL) ≤ α(ε)(h1(ε) + 1)c(φ∗

L) ≤
α(ε)(h1(ε) + 1)c(φ∗). Combining this with Inequality (3), we obtain that the cost of
φ is within factor:

g(ε, α(ε)) = max(h1(ε), h2(ε)) + α(ε)(h1(ε) + 1) (4)

of the optimum, where h1(ε) = h2(ε) = 5 + 4ε using the current best ratio in [7]. ��

3 The RUCFLP
(1
2

)
and RUCFLP

(1
3

)

In this section, we give two algorithms for the RUCFLP(12 ) and RUCFLP(13 ).
Combined with Theorem 1 (and using Algorithm 1) these imply two approxima-
tion algorithms for the UCFLP. We start with the simpler of the two, namely the
RUCFLP(12 ).

Theorem 5 There is a polynomial time exact algorithm for the RUCFLP( 12 ).

Proof Consider an optimal solution for a given instance of this problem with value
OPTL . Because d j > 1

2 for all j ∈ C , each facility can serve at most one client in the
optimal solution. Therefore, the optimal assignment function, φ∗

L , induces a matching
M = { jφ∗

L( j) : j ∈ C}. Let wi j = ci j .d j + fi and let w(H) = ∑
e∈H we for any

subset of edges H ⊆ E . It follows that w(M) = OPTL .
LetM∗ be aminimumweight perfectmatchingwith respect toweightswi j . Clearly,

w(M∗) ≤ w(M) = OPTL . In addition, M∗ induces a feasible assignment of clients to
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facilities with costw(M∗). Thus, M∗ induces an optimal solution for the RUCFLP(12 ).
Since we can find a minimum weight perfect matching in polynomial time, there is an
exact algorithm for the RUCFLP(12 ). ��
Corollary 2 There is a polynomial time (15, 3/2)-approximation algorithm for the
UCFLP.

Proof We run Algorithm 1, where we use the algorithm of Theorem 5 in the first
step. Substituting α(ε) = 1 and ε = 1/2, we have h1(

1
2 ) = 7, h2( 12 ) = 7, and

g(ε, α(ε)) = 15. Since β(ε) = 1, the overall ratio is (15, 3/2). ��
Remark 2 We can generalize the above Theorem. Let φL be the assignment induced
by M∗ and φ̃L be any feasible assignment for the RUCFLP(12 ) instance. The reader
may verify that a similar proof shows that cs(φL) + c f (φL) ≤ cs(φ̃L) + c f (φ̃L).

The algorithm for the RUCFLP(13 ) is more involved. First, we show how find-
ing an approximation algorithm for the RUCFLP(ε) with zero facility opening costs
leads to an approximation algorithm for the general RUCFLP(ε). Then, we give an
approximation algorithm for the RUCFLP(13 ) with zero opening costs.

Lemma 2 Given an (α′(ε), β(ε))-approximation algorithm A′ for the RUCFLP(ε)
with zero facility opening costs, we can find a (α′(ε) 1

ε
, β(ε))-approximationA for the

general RUCFLP(ε).

Proof Define a new connection cost c′
i j = ci j + fi and opening cost f ′

i = 0 for
all i ∈ F and j ∈ C . Note that the new cost function is still metric. Then, we run
A′ on this new modified instance and let the solution returned by the algorithm be
assignment φL . We use φL to assign the clients for the original instance and we claim
this is a (α′(ε) 1

ε
, β(ε))-approximation. In the following, the costs of all assignments

are based on ci j and fi values.
Let φ∗

L be an optimal assignment for the original instance of the RUCFLP(ε) and
OPTL be the cost of φ∗

L (including opening costs). Let Ci = φ∗
L

−1(i). The cost of φ∗
L

in the new instance will be

∑

i

∑

j∈Ci

d j c
′
i j =

∑

i

⎛

⎝
∑

j∈Ci

d j ci j +
⎛

⎝
∑

j∈Ci

d j

⎞

⎠ . fi

⎞

⎠≤
∑

i

( ∑

j∈Ci

d j ci j+ fi

)

≤ OPTL ,

where we used the fact that
∑

j∈Ci
d j ≤ 1. Thus, there is a solution in the modified

instance with cost at most OPTL . Therefore, the value of the assignment found by
A′ in the new graph is at most α′(ε) · OPTL . Let γ be the portion of this value that
comes from the facility costs in c′ costs, i.e., the cost of solution φL in the new graph
is cs(φL) + γ ≤ α′(ε)OPTL . Since d j > ε for all j ∈ C , each client j pays at least ε
fraction of the opening cost of φL( j) embedded in costs c′ and hence, c f (φL) ≤ 1

ε
γ .

Therefore, we have

c(φL) = cs(φL) + c f (φL) ≤ cs(φL) + 1

ε
γ ≤ 1

ε
cs(φL) + 1

ε
γ ≤ 1

ε
α′(ε)OPTL
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for ε ≤ 1. ��
Remark 3 Let φ̃L be any feasible assignment for the original instance of the
RUCFLP(ε). A similar proof shows that cs(φL) + γ ≤ α′(ε)(cs(φ̃L) + c f (φ̃L)).
We use this fact in Sect. 3.1 to get a better ratio for the RUCFLP(13 ).

In the following, we present a (7, 1)-approximation algorithm for the RUCFLP(13 )
with zero opening costs (see Algorithm 2), which coupled with Lemma 2 yields a
(21, 1)-approximation algorithm for the RUCFLP(13 ).

Algorithm 2 Algorithm for solving the RUCFLP(13 ) with zero opening costs

Input: An instance of the RUCFLP( 13 ) with zero opening costs
Output: A subset I ⊆ F and a function φ : C → I
1: Let L ′ = { j ∈ C : d j > 1

2 } and L ′′ = C\L ′. Assign the clients in L ′ by running a minimum
weight perfect matching algorithm with edge weights wi j = d j ci j . Let IL ′ be the opened facilities and
φL ′ : L ′ → IL ′ be the assignment function.

2: Build the flow network H as described in the proof of Theorem 6.
3: Find a minimum cost maximum flow in H . If the value of the flow is smaller than |L ′′| then return

“Infeasible”. Else, let IL ′′ be the subset of facilities in F\IL ′ whose corresponding nodes in Y (in H )
have non-zero flow through them and φL ′′ be the assignment function defined as: if there is a unit flow
from x j to yi in H then φL ′′ ( j) = i .

4: Let I = IL ′′ ∪ IL ′ . Combine φL ′′ and φL ′ to form assignment function φL : C → I where φ( j) =
φL ′′ ( j) if j ∈ L ′′, otherwise φ( j) = φL ′ ( j). Return φ and I .

Theorem 6 There is a (7, 1)-approximation algorithm for the RUCFLP( 13 ) with zero
opening costs.

Proof Note that all the clients in the given instance have size > 1
3 . We break them

into two groups: L ′ = { j ∈ C : d j > 1
2 } and L ′′ = C\L ′ are those which have

size in ( 13 ,
1
2 ]. In this proof (and that of Lemma 3), we call clients in L ′, huge clients

and those in L ′′, medium clients. The algorithm assigns the huge clients by running a
minimum weight perfect matching algorithm with edge weights wi j = d j ci j . Let IL ′
be the opened facilities and φL ′ : L ′ → IL ′ be the assignment function. For medium
clients (i.e., those in L ′′), we define a flow-network H and show that minimum cost
maximum flows in H corresponds to minimum cost feasible assignment of clients in
L ′′ to facilities (given the assignment φL ′ ).

Directed network H has node set X ∪ Y ∪ {s, t} where there is a node x j ∈ X for
every client j ∈ L ′′ and a node yi ∈ Y for every facility i ∈ F ; s is the source and t is
the sink. The source is connected to each node x j ∈ X , and all yi ∈ Y are connected
to the sink. Each x j ∈ X is connected to a node yi ∈ Y if either the corresponding
facility i is in F\IL ′ , i.e., unopened yet, or i is in IL ′ and the remaining capacity of i
is enough to serve the demand of client j . Set the capacity of the edges between the
source and the nodes in X to 1, set the capacity of the edges between X and Y to 1,
set the capacity of the edges between the nodes yi ∈ Y whose corresponding facility
i is unopened (i.e., not in IL ′ ) and the sink to 2, and set the capacity of the edges
between the nodes yi ∈ Y whose corresponding facility is in IL ′ and the sink to 1. The

123



68 Algorithmica (2016) 75:53–83

cost of an edge connecting x j yi is d j · ci j and all the other costs are 0. Algorithm 2
summarizes the algorithm for the RUCFLP(13 ) with zero opening costs.

Let φ∗
L be an optimal assignment for the given instance of the RUCFLP(13 ) with

cost OPTL . In Lemma 3, we will prove that there exists an assignment φ′ of clients
consistent with assignment φL ′ found in Step 2, with cost at most 7OPTL . Below we
prove that in Steps 2 and 2 the algorithm finds the best possible feasible assignment
of clients in L ′′ (given φL ′ ). Therefore, the cost of φ formed in Step 2 is at most c(φ′)
and hence, is at most 7OPTL .

Since for any j ∈ L ′′: 1
3 < d j ≤ 1

2 , each unopened facility after Step 2 can serve
any two clients of L ′′ (and no more than two). This fact is reflected in that we connect
all the nodes in X (corresponding to medium clients) to the nodes in Y corresponding
to unopened facilities F\IL ′ and we set the capacity of the edges between those nodes
in Y and the sink to 2. In addition, each facility in IL ′ can serve at most one medium
client, becausemore than 1

2 of its capacity is already used by a huge client; accordingly
we set the capacity of the edges from those nodes in Y to the sink to 1 and we only
connect to them the nodes of X whose corresponding client can be served by them.
Considering these two simple facts: ��

Claim 1 The maximum flow in H has value |L ′′| if and only if the given instance is
feasible and there is a one to one correspondence between maximum flows in H and
feasible assignment of medium clients (i.e., in L ′′) given φL ′ . Furthermore, a maximum
flow in H and its corresponding assignment of clients of L ′′ to F have the same cost.

Proof Since all the edges of H have integer capacities we may consider an integral
maximum flow. If a node x j ∈ X has a flow of one to a node yi ∈ Y we assume client j
is assigned to facility i , and vice-versa. First, suppose that the instance is feasible and
let φ be an arbitrary feasible assignment. We show that there is a feasible assignment
consistent with φL ′ . Let I (φ)

L ′ be the set of open facilities in φ to which a client of L ′

is assigned. Clearly, |I (φ)

L ′ | = |L ′|. Since opening costs are zero and all facilities have
the same capacity, we can easily swap the facilities in I (φ)

L ′ with ones to which a client
of L ′ is assigned to in φL ′ so that we get a feasible assignment consistent with φL ′ .
Then it is easy to see that H has a flow of value |L ′′| (basically the edges between
X and Y in H with non-zero flow correspond to the assignment of clients of L ′′ in
the feasible solution consistent with φL ′). Conversely, if H has a flow of |L ′′| then
that corresponds to a feasible assignment of medium clients to facilities (consistent
with φL ′ ). The correspondence between cost of a maximum flow and an assignment
of clients (of L ′′) is immediate from the definition of costs of edges. ��

Therefore, the assignment φL ′′ obtained from a minimum cost maximum flow in
H has the minimum cost among the assignments consistent with φL ′ . This together
with Lemma 3 implies that φ as defined has cost at most 7OPTL . ��

Lemma 3 There exists an assignment φ′
L of clients consistent with φL ′ with cost at

most 7OPTL, where OPTL is the cost of an optimum assignment φ∗
L for the given

instance of the RUCFLP( 13 ) with zero opening costs.
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F

C

S1 S2 Sk Sk+1

Our Assignment Optimal Assignment

. . .

i1 i2 ik ik+1

j1 j2 jkjk−1

Fig. 3 An arbitrary path in GL ′ . In φ′, the clients in Sl are assigned to the facility pointed to by the gray
arrow adjacent to Sl

Proof Let φ∗
L ′ be the restriction of φ∗

L to clients in L ′, and GL ′ be the graph induced
by the edges used in φL ′ or φ∗

L ′ . Since at most one client in L ′ is assigned to each
facility by any feasible solution, the degree of vertices in GL ′ is at most 2; so GL ′ is a
collection of cycles and paths. For an arbitrary path, we show how the assignment of
huge clients in φ∗

L (i.e., those in L
′) can be changed to the ones in φL ′ without violating

any capacity, while the cost increases by at most a factor of 7. Similarly, each cycle
can be fixed with at most a factor of 3 increase in its cost, which completes the proof.

Let P = i1 j1i2 j2 . . . ik jkik+1 be an arbitrary path in GL ′ where φ∗
L ′( jl) = il and

φL ′( jl) = il+1 for 1 ≤ l ≤ k (see Fig. 3). Let Sl be the set of medium clients (i.e., in
L ′′) assigned to facility il by φ∗

L . In φ′, we assign jl and the clients in Sl to il+1 for
1 ≤ l ≤ k and we assign the clients in Sk+1 to i1. Since we used a min-cost maximum
matching algorithm to findφL ′ , we have c(φL ′) ≤ c(φ∗

L ′), and changing the assignment
of clients in L ′ does not increase the cost (compared to that of φ∗

L ). Therefore, we only
need to analyse the increase in cost because of the change in assignment of medium
clients. Note that due to uniformity, the capacity constraints remain satisfied.

Consider an arbitrary l where 1 ≤ l ≤ k. Since d jl > 1
2 , the total demand of clients

in Sl is less thand jl (because 1−d jl < 1/2 < d jl ). Therefore, ifwe send the clients in Sl
to il+1 over the edges il jl and jl il+1, we increase the cost by at most d jl (cil jl +c jl il+1).
Thus, in total over all paths in GL ′ , changing the assignment of clients in ∪1≤l≤k Sl
increases the cost by at most an additive c(φL ′) + c(φ∗

L ′) ≤ 2OPTL . Finally, the total
demand of clients in Sk+1 is at most 1 < 2d jl for any 1 ≤ l ≤ k. Therefore, sending
back these clients to i1 over P increases the cost in total by atmost an additive 2c(φL ′ )+
2c(φ∗

L ′) ≤ 4OPTL . Cycles in GL ′ are handled the same way as paths, but with nodes
i1 and ik+1 identified. We conclude that the reassignment of clients increases cost by
at most an additive 6OPTL , making the overall cost of φ′ at most 7OPTL . ��

The above lemma is essentially tight: there are instances of the RUCFLP(13 ) with
zero costs that after deciding the assignment of huge clients by a minimum weight
perfect matching algorithm, any feasible solution consistent with this assignment has
cost at least 7OPTL (see Fig. 4). Consider a path P = v1v2v3 where the edges have
unit cost. There are two facilities with zero opening cost on v1 and v3. In addition,
there is a medium client of demand 1/2 − δ on v1, a huge client of demand 1/2 + δ

on v2, and two medium clients of demand 1/2 on v3, where δ is a small positive
number. In the optimal solution, the client on v2 is assigned to the facility on v1 and
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v1
v2

v3
one client of demand = 1

2 − δ one client of demand = 1
2 + δ

one facility with f1 = 0 one facility with f2 = 01 1

two clients of demand = 1
2

Fig. 4 A tight example for Lemma 3

OPTL = 1/2 + δ. In our solution, the minimum weight perfect matching algorithm
may assign the huge client on v2 to the facility on v3. Then, in any feasible solution,
we must move the medium client on v1 to v3 and move the two medium clients on v3
to v1, so the total cost of any feasible solution given the assignment of the huge client,
is at least (1/2− δ) × 2+ 1× 2+ (1/2+ δ) × 1 = 7/2− δ. This shows any feasible
solution is essentially a factor of 7 away from the optimum.

Combining Lemma 2 and Theorem 6:

Corollary 3 There is a polynomial time (21, 1)-approximation algorithm for the
RUCFLP( 13 ).

Corollary 4 There is a (160.334,4/3)-approximation algorithm for the UCFLP.

Proof We run Algorithm 1, where we use the algorithm of Corollary 3 for A. That
is, we first run the (7, 1)-approximation algorithm of Theorem 6 as algorithm A′ in
Lemma 2 to obtain A with α(ε) = 21 and ε = 1/3. Thus h1( 13 ) = 19/3, h2( 13 ) =
19/3, and g(ε, α(ε)) = 19/3 + 21(22/3) < 160.334. Since β(ε) = 1, the overall
ratio is (160.334, 4/3). ��

Notice that we solved the RUCFLP(12 ) and (
1
3 ) without violation of capacities, but

this is not possible for smaller values of ε as shown below.

Theorem 7 The RUCFLP(ε) does not admit any (α(ε), 1)-approximation algorithm
for ε < 1

3 unless P = NP.

Proof This can be shown by a simple reduction from the 3-partition problem (which
isNP-hard). In the 3-partition problem, we are given a set of 3m integers a1, . . . , a3m ,
a positive integer bound B where B

4 < a j < B
2 for all 1 ≤ j ≤ 3m and mB =∑

1≤ j≤3m a j . The question is if there is a way to partition these numbers into m sets
of size 3 each such that the sum of the numbers in each set is exactly B. This problem
is NP-hard [19].

Starting from a given instance Ip of the 3-partition problem, we build an instance
IR of the RUCFLP(ε) in the following way. Let c be a constant dependent on ε,
which we define soon. For each 1 ≤ j ≤ 3m, let d j = a j+cB

B(3c+1) and create a client
j with demand d j . Also, create m facilities with zero opening cost and capacity 1.
We set all the connection costs ci j = 0. We choose constant c large enough such that
ε < 1

3 − 1
12(3c+1) . Since

B
4 < a j < B

2 for all 1 ≤ j ≤ 3m, the value of the demands

are between 1
3 − 1

12(3c+1) and
1
3 + 1

6(3c+1) and clearly, are greater than ε by the choice
of c. This completes the description of instance IR .

First, note that if we define a′
j = δ1a j + δ2 for all 1 ≤ j ≤ 3m and B ′ = δ1B+3δ2

for two positive constants δ1 and δ2, then this new instance is a yes instance of the
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3-partition problem if and only if Ip is a yes instance. In the above reduction, we
used δ1 = 1

B(3c+1) and δ2 = c
3c+1 to define d j values. Thus, Ip is a yes instance

if and only if we can partition d j values to m sets of size 3 each such that the sum
of numbers in each set is exactly B ′ = 1. Since any solution for IR , that does not
violate the capacity constraints, provides such a partition of d j values, an (α(ε), 1)-
approximation algorithm for the RUCFLP(ε) can be used to solve the 3-partition
problem in polynomial time. Therefore, unlessP=NP, there is no such approximation
algorithm. ��

It should be noted that to find an algorithm for the UCFLP that violates capacities
within factor 1+ε, we donot need tofind an algorithm that does not violate capacities in
theRUCFLP(ε). Even ifwe violate the capacitieswithin factor 1+ε in theRUCFLP(ε),
using Theorem 1 we can get an algorithm for the UCFLP that violates the capacities
within factor 1+ ε. We think it is possible to find an (α(ε), 1+ ε)-approximation for
the RUCFLP(ε) for any constant ε > 0. This, together with Theorem 1 would imply
an ( f (ε), 1 + ε)-approximation for the UCFLP, for any constant ε > 0.

3.1 Improving the Ratios

With a more careful analysis and a simple scaling to balance the bi-factors of con-
nection and facility costs, we can bring down the factors of our algorithms. A similar
scaling has been used to obtain better ratios for several variations of facility location
problems (for example see [12]). For certain parameters δ1 and δ2 to be defined, we
change Algorithm 1 as follows:

1. We multiply the original connection costs by δ1 to get a new cost function c(1),
i.e., c(1)

i j = δ1ci j for all i ∈ F and j ∈ C . Then, we perform Step 1 with cost c(1)

to find φL .
2. After step 1, we multiply the original connection costs by δ2 to get a new cost

function c(2) i.e., c(2)
i j = δ2ci j for all i ∈ F and j ∈ C . Then, we do Steps 1 and 1

with cost c(2) to find φS .

In the following, for an assignment φ, we use cs(φ), c(1)
s (φ), and c(2)

s (φ) to indicate
the service cost of this assignment with respect to cost functions c, c(1), and c(2),
respectively. In addition, assignments φ∗ and φ∗

L have the same definition as before
and are defined with respect to the original costs. As a result, they are not necessarily
optimal with respect to cost functions c(1) and c(2).

By Remark 1 (applied to φ∗) there exists an assignment φ′′
S such that c(1)

s (φ′′
S) ≤

c(1)
s (φ∗) + c(1)

s (φL). Thus:

c(2)
s

(
φ′′
S

) = δ2

δ1
c(1)
s

(
φ′′
S

)

≤ δ2

δ1
c(1)
s

(
φ∗) + δ2

δ1
c(1)
s (φL)

= c(2)
s

(
φ∗) + c(2)

s (φL). (5)
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In addition, the inequalities for cs(φS) and c f (φS) at the end of proof of Theorem 1
change to:

c(2)
s (φS) = c(2)

s

(
φ′
S

)

≤ λssc
(2)
s

(
φ′′
S

) + λs f c f (φ
′′
s )

≤ λss(c
(2)
s

(
φ∗) + c(2)

s (φL)) + λs f c f
(
φ∗) , by Eq. (5), (6)

c f (φS) ≤ (1 + ε)c f
(
φ′
S

)

≤ (1 + ε)λ f sc
(2)
s

(
φ′′
S

) + (1 + ε)λ f f c f
(
φ′′
S

)

≤ (1 + ε)λ f s(c
(2)
s

(
φ∗) + c(2)

s (φL)) + (1 + ε)λ f f c f
(
φ∗) . by Eq. (5)

(7)

Therefore, scaling down Eq. (6) by δ2 and using definition of c(2):

cs(φS) ≤ λss(cs
(
φ∗) + cs(φL)) + λs f

δ2
c f

(
φ∗) .

Also, using definition of c(2) and Eq. (7):

c f (φS) ≤ δ2(1 + ε)λ f s(cs
(
φ∗) + cs(φL)) + (1 + ε)λ f f c f

(
φ∗) .

Adding these inequalities together and then, adding cs(φL)+ c f (φL) to the result, we
obtain:

c(φ) = cs(φS) + c f (φS) + cs(φL) + c f (φL)

≤ ĥ1(ε)cs
(
φ∗) + ĥ2(ε)c f

(
φ∗) + (ĥ1(ε) + 1)cs(φL) + c f (φL) (8)

where ĥ1(ε) = λss + δ2(1+ ε)λ f s and ĥ2(ε) = λs f
δ2

+ (1+ ε)λ f f . Using algorithm of
Aggarwal et al. [1] for splittable CFLP, we have λss = λs f = 1 and λ f s = λ f f = 4.
Therefore, ĥ1(ε) = 1+4δ2(1+ε) and ĥ2(ε) = 1

δ2
+4(1+ε). We use these equalities

to get the improved results.

Proof of Theorem 2 We run the modified Algorithm 1 with δ1 = ĥ1(
1
2 )+ 1 and value

of δ2 to be defined soon. We have:

(

ĥ1

(
1

2

)

+ 1

)

cs(φL) + c f (φL) = c(1)
s (φL) + c f (φL)

≤ c(1)
s

(
φ∗
L

) + c f
(
φ∗
L

)

=
(

ĥ1

(
1

2

)

+ 1

)

cs
(
φ∗
L

) + c f
(
φ∗
L

)

≤
(

ĥ1

(
1

2

)

+ 1

)

cs
(
φ∗) + c f

(
φ∗) ,
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where the first inequality follows from Remark 2. Combining this with Inequality (8):

c(φ) ≤ (2ĥ1

(
1

2

)

+ 1)cs
(
φ∗) + (ĥ2

(
1

2

)

+ 1)c f
(
φ∗)

= (12δ2 + 3)cs
(
φ∗) + (1/δ2 + 7)c f

(
φ∗) .

Solving the equation 12δ2 + 3 = 1/δ2 + 7 for δ2, we find δ2 = (4 + √
64)/24 = 1

2 ,
which gives the claimed ratio. ��
Proof of Theorem 3 Recall that we use Lemma 2 to obtain algorithmA used in Algo-
rithm 1 for large clients. We first start with a more careful analysis in Lemma 2. By
Remark 3, the proof of this lemma implies:

c f (φL) ≤ 1

ε
γ and c(1)

s (φL) + γ ≤ α′(ε)(c(1)
s (φ∗

L) + c f (φ
∗
L)).

In our case, we have ε = 1/3 and α′(ε) = 7. Thus: c f (φL) ≤ 3γ ≤ 3(7(c(1)
s (φ∗

L) +
c f (φ

∗
L)) − c(1)

s (φL)) which implies 3c(1)
s (φL) + c f (φL) ≤ 21(c(1)

s (φ∗
L) + c f (φ

∗
L)). If

we set δ1 = (ĥ1(
1
3 ) + 1)/3, we have

(

ĥ1

(
1

3

)

+ 1

)

cs(φL) + c f (φL) ≤ 7

(

ĥ1

(
1

3

)

+ 1

)

cs(φ
∗
L) + 21c f (φ

∗
L)

≤ 7

(

ĥ1

(
1

3

)

+ 1

)

cs
(
φ∗) + 21c f

(
φ∗) .

Combining this with Inequality (8):

c(φ) ≤
(
ĥ1(1/3) + 7

(
ĥ1(1/3) + 1

))
cs

(
φ∗) + (ĥ2(1/3) + 21)c f

(
φ∗)

= (8(16δ2/3 + 1) + 7)cs
(
φ∗) + (1/δ2 + 16/3 + 21)c f

(
φ∗)

= (128δ2/3 + 15)cs
(
φ∗) + (1/δ2 + 79/3)c f

(
φ∗)

By solving the equation 128δ2/3 + 15 = 1/δ2 + 79/3 for δ2, we find δ2 = (17 +√
673)/128, which gives the claimed ratio. ��

4 The Euclidean UCFLP

In this section, we present a quasi-polynomial time (1 + ε, 1 + ε)-approximation
algorithm for the UCFLP in Euclidean metrics. For these instances, we do not reduce
our problem to the RUCFLP(ε) as we did in the previous sections. The reason is that
one cannot get a ratio better than (3, 1+ ε) by applying this reduction as shown in the
tight example of Lemma 1 (note that the cost function in that example is Euclidean).

Our algorithm for Euclidean metrics assigns the large clients integrally using a
dynamic programming approach, while it assigns the small clients fractionally at the
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same time at low cost. Thenwe can round the fractional assignment of the small clients
by the algorithm of Shmoys and Tardos [34] for the GAP, as we did in Sect. 2. This
rounding will not increase the cost and yields a blowup of factor at most 1 + ε in
facility capacities. We should note that Bateni and Hajiaghayi [9] used this approach
in the design of their (1 + ε, 1 + ε)-approximation algorithm for the UCFLP in the
metrics induced by trees. We combine some of their ideas with techniques developed
for designing PTASs for some Euclidean optimization problems; most notably the
algorithms of [3,5]. While our algorithm has some similarities to that of [9] (such as
the way we define client types), there are some technical differences. In particular,
our table entries in the dynamic program are defined based on a shifted quad-tree that
is obtained from a dissection of the plane and the way we combine solutions for the
subproblems is more complicated.

We assume that the input points are on a unit grid, the minimum inter-node distance
is at least 4 (which implies no two nodes are located on the same grid point), and the
maximum inter-node distance is at most O(n4). We can enforce all these assumptions
by a preprocessing step similar to the one used by Arora [4] to make the instances
well-rounded for k-TSP and k-MST. For completeness of exposition, we describe this
perturbation step in Sect. 4.4.

We use the randomly shifted quad-tree dissection method due to Arora to partition
the Euclidean plane [3]. We briefly explain this method here (a reader familiar with
this can skip this paragraph). We start with the bounding square of the input points and
recursively partition it into smaller sub-squares. Suppose the length of this bounding
square (box) is L and without loss of generality, assume L is a power of 2. Each
square is partitioned into four equal sub-squares and we recursively proceed for each
sub-square and stop partitioning a sub-square if it has unit length (and therefore has at
most one input point in it). There is an immediate 4-ary tree structure corresponding
to this dissection where each square in the dissection is a node of the tree. For two
integers a, b ∈ [0, L), the (a, b)-shift of dissections is obtained by shifting the x- and
y- coordinates of all the dissecting lines by a and bmodulo L , respectively. We obtain
an (a, b)-shifted quad-tree from the 4-ary tree representing the corresponding shifted
dissection by simply removing (from the tree) the partitioning of squares without any
input point.

For each square in a shifted dissection, we place a portal at each of its four corners
and placem evenly spaced points on each edge, wherem is a power of 2 (to be defined
later). In other words, we put 4(m+1) portals on each square and the portals of higher
level squares are co-located on some portals of lower level squares. Note however that
each portal is owned by a distinct square (so even if several portals are co-located at the
same point each belongs to one unique square). Let a portal-respecting path between
two points be a path that crosses the squares only at portals. Let S be a collection
of pairs of input points in the plane and let c(S) be the total Euclidean distance of
pairs. Arora, Raghavan, and Rao [5] show that in presence of our assumptions, if we
pick 0 ≤ a, b < L uniformly at random and use m = O(log n/ε) portals on each
side of each square, then with probability at least 1

2 , there exist some portal-respecting
paths between the pairs in S with total length (cost) at most (1+ ε)c(S). We present a
dynamic programming algorithm to find a (1+ε, 1+ε)-approximate portal-respecting
solution for the UCFLP instances. Then, we run this algorithm for all possible values
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of a and b and return the best solution of these runs. Based on the above result regard-
ing portal respecting paths, this solution is a (1+ ε′, 1+ ε′)-approximate solution for
the Euclidean UCFLP for some ε′ depending on ε.

4.1 Grouping Clients and Rounding Demand Sizes

For the simplicity of description, we assume 1
ε
is an integer and denote it by p. First,

we apply a grouping and rounding step which is essentially the same as the one in [9].
We partition the clients into three groups of large, small, and tiny clients according
to their demand sizes. We round down the demands of large and small clients and
show that the precision error (i.e., violation of facility capacities) resulted from this
rounding does not exceed 2ε. Also, this rounding does not increase the cost by more
than a (1+ ε) factor when we restore the original demands. As before, the clients with
demands greater than ε are called large but the definition of small clients are different
from before. We round down the demands of large clients to the nearest multiple of
ε2. This yields q = 1−ε

ε2
+ 1 = p2 − p+ 1 distinct demand values. Since each facility

can serve at most p large clients, this rounding yields a blowup of at most pε2 = ε

of facility capacities. Therefore, if we work with these rounded down demand values
from now on, we violate the facility capacities by at most an additive value of ε. We
define a client type corresponding to each of these q distinct demand value; so far we
have defined q client types.

A client j with demand ε/n < d j ≤ ε is called small. We round down the demands
of small clients to the nearest multiple of ε2/n. Similar to large clients, this yields an
additive blowup of at most ε of facility capacities (as there can be at most n/ε small
clients adding a total of ε to the demand of a facility). We intend to assign these clients
fractionally. Therefore, we just need to keep track of their total demand which is a
multiple of ε2/n. For this purpose, we divide each small client with rounded demand
d into dn/ε2 clients each with demand ε2/n. Since d ≤ ε and is a multiple of ε2/n,
we break each small client into at most n/ε clients. These clients of demand ε2/n
form type q + 1.

Finally, we call all the other clients tiny. The demand of these clients are negligible
with respect to capacities, i.e., even if we assign all of them to an already full facility,
it yields an additive blowup of at most ε. We leave their demands intact. It should
be noted that their assignment cost may still be significant and we must be careful in
their assignment. Now, we are ready to define the dynamic programming tables with
respect to the q + 1 client types and tiny clients. Note that q + 1 is a constant for a
fixed ε > 0 and this is crucial in our algorithm.

4.2 The Dynamic Programming Tables

We define a set of subproblems for each square in the shifted quad-tree and solve it
by combining the solutions of its children. We treat the clients of type 1 through q +1
separately from tiny clients. First, we explain how we handle the clients of type 1
through q + 1. Consider a shortest portal-respecting path from a client to a facility. It
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passes through some nodes of the quad-tree (i.e., squares in the dissection): The client
moves up to its least common ancestor in the quad-tree and moves downward to the
node (i.e., square) containing the facility. Equivalently, we can think of moving up the
facility to meet the client in their least common ancestor node in the tree and each one
pays its own movement cost. Looking at the problem this way, the portion of a facility
capacity serving a client must move to their least common ancestor. In fact, we are
breaking each facility i into some virtual facilities, one for each client j it must serve,
and move that virtual facility (corresponding to the portion of capacity for serving j)
to meet j at the least common ancestor of the two squares containing i and j .

Assume we have decided (in the dynamic programming) that a facility must serve
n� clients of demand type � for each 1 ≤ � ≤ q + 1 (we make this decision by
enumerating all possible ways of choosing n� values when we solve the base case
corresponding to the leaf of quad-tree containing this facility). We break this facility
into n� virtual facilities of type � for all 1 ≤ � ≤ q + 1. A virtual facility of type � can
only serve a client of type �. Considering the problem this way, in each square some
clients will be served by facilities inside, some clients will be shipped outside through
the portals of the square, some virtual facilities inside will serve the clients inside and
some will be sent outside through the portals to serve clients from outside. Thus, for
each portal of a square, we just need to keep track of how many of each demand type
is sent to this portal to be served outside and how many of each virtual facility type
is sent to this portal to service clients from outside. One nice feature of breaking the
facilities into virtual facilities is that once we have decided how a facility is going to
be broken into virtual facilities (i.e., each n� is guessed for 1 ≤ � ≤ q + 1), we can
consider the subproblem of each demand type independent of other types since no
client or virtual facility of a type can interfere with other types.

To handle tiny clients, we first need to point out a simple observation. Assume
some tiny clients are sent to a portal of a square they belong to, to be sent to their
facility. As we stated before, tiny clients can be assigned to any open facility without a
significant blowup in capacities. Thus, we can send all the tiny clients sent to a portal
to the nearest open facility, without increasing the connection cost. In other words,
there is a solution with cost no more than optimal cost in which all the tiny clients
sent to the same portal, head to the same facility (i.e., nearest open one) and we seek
such a solution in our algorithm. To find such a solution, we fix (by enumerating all
possibilities) the facility that should be used by tiny clients sent to each portal (of
each square) in our dynamic programming. Then, instead of assigning each tiny client
to a facility, we assign it to one of the portals around the square containing it and
automatically all the tiny clients assigned to that portal will be served at the “guessed”
nearest open facility for that portal. After choosing a portal for a tiny client, the client
pays the cost of connection to the facility of that portal with a portal-respecting path
fully upfront.

Formally, an instance of a subproblem is defined as a tuple (s, D, F) where s is a
square in the quad-tree (i.e., the dissection) and D and F are two matrices containing
information about the demands and (virtual) facilities moved to portals of s: D is
a 4(m + 1) × (q + 2) matrix (for demands) where the i th row keeps track of the
information regarding the i th portal of S. The first q + 1 elements of this row show
the number of clients of each client type (from 1 to q + 1) moved to this portal. The
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(q + 2)th element shows the index of the facility that the tiny clients (inside of s)
that are moved to this portal plan to use. F is defined similarly for facilities, namely
it is a 4(m + 1) × (q + 2) matrix where the i th row keeps track of the information
regarding the i th portal for facilities. The first q + 1 elements of this row show the
number of virtual facilities of each of q + 1 virtual facility types moved to this portal.
The (q + 2)th element shows the index of the nearest open facility inside s to this
portal (to be used for tiny clients moved to this portal). A value of 0 for facility index
indicates that no tiny client can use this portal to reach an open facility. For example,
when there is no open facility available inside, this value is 0. We store in A[s, D, F]
the value of optimal solution of the subproblem (s, D, F), i.e., the minimum total cost
to service the clients in square s by opening facilities inside and sending clients and
virtual facilities inside s to outside of s through its portals according to matrices D
and F . The tiny clients inside s pay their connection cost fully upfront i.e., if they are
to be served at a facility outside of s they contribute their connection cost to those
facilities to the total cost, while the other clients (large and small) just pay the cost to
move to their portal or to be served inside. The solution that we are seeking to find
is A[sr , 0, 0] with sr being the bounding box of all the input points. In the last step,
we should round the “fractional” assignment of small clients to an integer one, again
using the algorithm of Shmoys and Tardos [34] for the GAP. This rounding does not
increase the cost but may violate the capacity constraints by the maximum demand
value. Since each small client has demand at most ε, this will incur another additive
of at most ε blow up in capacity constraints.

4.3 Computing the Table

Wenow show howwe can compute A[s, D, F] recursively. The leaves of the quad-tree
have either one client or one facility in them. We have three cases:

1. There is one client of type j (1 ≤ j ≤ q + 1) inside s: We must ship this client
to one of the portals. For the entries A[s, D, F] where F is the zero matrix and D
has one non-zero value equal to 1 in the j th column of exactly one of its rows, say
row �, we set A[s, D, F] to the cost of shipping the client to the �th portal. For all
other entries, we set A[s, D, F] to undefined (or infinity).

2. There is one tiny client inside s: For the entries A[s, D, F] where F is zero and D
has exactly one non-zero value, say i (corresponding to facility i), in the (p+2)th
column of exactly one of its rows, say �, we set A[s, D, F] to the cost of moving
the client to the �th portal and thenmoving it through the shortest portal-respecting
path between the portal and facility i . For all other entries, we set A[s, D, F] to
undefined (or infinity).

3. There is a facility, say i , in the square. We set A[s, 0, 0] = 0. For the entries
A[s, D, F] in which D is the zero matrix, and the total capacity (i.e., virtual
facilities) sent to the portals of s according to F is not more than the capacity of
facility i , and the (p+2)th column of F has value i in its entries, we set A[s, D, F]
to the opening cost of i plus the cost of moving virtual facilities according to F to
the portals. For all other entries, we set A[s, D, F] to undefined (or infinity).
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We update each non-leaf node as follows. Let s be a non-leaf node and s1, s2, s3,
and s4 be its four children. We enumerate all the combinations of matrices D and
F for s and matrices Di and Fi for si for all 1 ≤ i ≤ 4 where the subproblems are
consistent (to be explained below).We update A[s, D, F]with respect to subproblems
(si , Di , Fi ). As mentioned before, we can solve the problem for each demand type
and the corresponding virtual facility type separately, because there is no dependencies
between two different types. Let�� be the extra cost for demand type � in sub-problem
(s, D, F) in addition to the cost we paid in the subproblems (si , Di , Fi ) (1 ≤ i ≤ 4).
We show how to compute �� below.

Let m(�) and m(�)
i (for 1 ≤ i ≤ 4) be the number of virtual facilities of type � in F

and Fi , respectively. We define n(�) and n(�)
i (for 1 ≤ i ≤ 4) for the number of clients

of type � in D and Di , respectively. Note that n
(�)
1 + n(�)

2 + n(�)
3 + n(�)

4 − n(�) is the
total number of clients of type � inside s that are to be serviced inside s since only n(�)

many demands of type � are shipped outside from a total of n(�)
1 + n(�)

2 + n(�)
3 + n(�)

4 .

Similarly, of a total ofm(�)
1 +m(�)

2 +m(�)
3 +m(�)

4 virtual facility of type � inside s, only

m(�) is sent to portals and therefore m(�)
1 +m(�)

2 +m(�)
3 +m(�)

4 −m(�) virtual facilities
of type � must be used inside s. Therefore, we must have

n(�)
1 + n(�)

2 + n(�)
3 + n(�)

4 − n(�) = m(�)
1 + m(�)

2 + m(�)
3 + m(�)

4 − m(�), (9)

or else the subproblems considered are inconsistent. Denote this quantity by r (�); so
we must assign exactly r (�) clients of type � to r (�) facilities of this type inside s;
otherwise this combination of sub-problems is impossible and the solutions to the
sub-problems are inconsistent. We can assign these r (�) clients and facilities of type �

optimally in polynomial time by running a minimum cost perfect matching algorithm
as described below. Note that by Eq. (9), wemust have n(�)

1 +n(�)
2 +n(�)

3 +n(�)
4 +m(�) =

m(�)
1 + m(�)

2 + m(�)
3 + m(�)

4 + n(�). Since out of n(�)
1 + n(�)

2 + n(�)
3 + n(�)

4 clients of

type �, n(�) are shipped outside, we must match each of n(�)
1 + n(�)

2 + n(�)
3 + n(�)

4 to

one of n(�) or one of m(�)
1 + m(�)

2 + m(�)
3 + m(�)

4 virtual facilities of type �. Similarly,

out of m(�)
1 + m(�)

2 + m(�)
3 + m(�)

4 facilities of type �, only m(�) are sent to portals
of s, thus each is either matched to one of m(�) facilities or is used to serve one
of n(�)

1 + n(�)
2 + n(�)

3 + n(�)
4 clients. This suggests to form a bipartite graph H with

n(�)
1 +n(�)

2 +n(�)
3 +n(�)

4 clients of the sub-squares s1, . . . , s4 andm(�) facilities of s on

one side andm(�)
1 +m(�)

2 +m(�)
3 +m(�)

4 facilities of the sub-squares and n(�) clients of s
on the other side. Put an edge between two vertices of the two partitions of H unless one
of them is from them(�) facilities and the other is from the n(�) clients. In other words,
H has (n(�)

1 + n(�)
2 + n(�)

3 + n(�)
4 +m(�))(m(�)

1 +m(�)
2 +m(�)

3 +m(�)
4 + n(�)) −m(�)n(�)

edges. The cost of an edge of H is the cost of the shortest portal-respecting path
between its endpoints times d� (demand of type �). It is not hard to see that this gives
the best possible assignment for the demand type � given the sub-problems, i.e., ��

is the weight of the minimum cost perfect matching of H . We update A[s, D, F]
to:
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min

⎛

⎝A[s, D, F], A [s1, D1, F1] + A [s2, D2, F2] + A [s3, D3, F3]

+A [s4, D4, F4] +
p+1∑

�=1

��

⎞

⎠ .

If for one of the types 1 ≤ � ≤ p+1, one of the sub-problems does not have a solution,
then the combinations of matrices that we have guessed are inconsistent (and we do
not update A[s, D, F]).

One other consistency condition of the matrices D, F , and Di , Fi (for 1 ≤ i ≤ 4)
that we need to check is that for co-located portal points of s, s1, s2, s3, and s4, we
must have consistency of facilities devoted to tiny clients in those portal points. For
instance, if t1 is a portal of s1 and t is a portal point of s and the tiny clients of s1
shipped to t1 are to be served at facility i1 and the tiny clients of s shipped to t are
to be served at i and the shortest portal-respecting path from t1 to i1 goes through t
then we must have i1 = i , or else the sub-problems are not consistent. Here is how
we check for this type of consistency. Let T be the set of all portals in s, s1, s2, s3, s4.
Recall that each portal point is “owned” by a square, so there might be several portal
points in T that are co-located. For each portal t ∈ T (where t is the portal of exactly
one of s, s1, s2, s3, or s4) let f (t) be the index of the facility that the tiny clients
sent to t are assigned to; this index can be found in row t and column (q + 2) of
D or D1, D2, D3, or D4 (whichever sub-problem the portal t belongs to). For each
portal t ∈ T , let f ′(t) be the index of the nearest facility to this portal inside the
square of this portal, which can be found in column (q + 2) of F or F1, F2, F3, or
F4 (again depending on which square owns portal t). For each portal t ∈ T , if f (t) is
non-zero, we check a shortest portal-respecting path from t to f (t) and consider two
cases:

Case 1: if f (t) is outside s then let ts ∈ T be the the last portal of T on this shortest
path from t to f (t) (note that ts must be a portal of s). Then we must have that
f (ts) = f (t).
Case 2: if f (t) is inside s and belongs to one of the 4 sub-squares of it, say square
si , then let ti be the last portal of T on this shortest path from t to f (t) (note that
ti must belong to si ). Then we must have that f (ti ) = f (t).

If either of these conditions are not satisfied we have an inconsistency of facilities of
tiny clients and we skip the guessed matrices for the sub-problems.

4.4 Preprocessing Step

In this subsection we describe a perturbation step which enforces the assumptions we
made about the size of the bounding box containing the points. Recall that we want:
all the points are on a unit grid, the minimum inter-node distance is at least 4, and the
maximum inter-node distance is atmost O(n4). Observe that if we scale the connection
and opening costs, then the optimum solution of the problem remains the same. Thus,
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we scale the costs by 4/cmin , where cmin is theminimum non-zero inter-node distance.
In the new instance with scaled costs, cmin is 4. From now on, we work with this
instance. Let OPT be the value of an optimal solution. We first compute a crude
approximation, A, ofOPT . For instance, this can be done byusing theO(log(n), 1+ε)-
approximation algorithm of [9]. Therefore, we have A = O(log n) · OPT . We pick
random a and b and construct a shifted quad-tree. This time, we stop as soon as the
size of squares become less than nA. We claim that the shifted quad-tree does not
cut any edge of an optimal solution with probability at least 1 − 4/n. Hence, we can
treat each leaf of this quad-tree as an independent instance where the length of the
bounding box of each instance is at most nA.

Toprove the claim, consider the case that the optimal solution consists of a collection
of line segments with length at least 4. By Lemma 4 of [4], each line segment of the
optimal solution with length s crosses at most 2s lines of unit grid. Therefore, at most
2OPT ≤ 2A lines of gird are crossed by any segment in the solution. As a result, the
probability that the shifted quad-tree cuts any of these segments is at most 2A over
the length of the leaf squares. Since the length of a leaf square is at least nA/2, the
probability is at most 4/n.

Let L be the size of the bounding box of the points. We overlay a grid of granularity
εA/(4n2 log(n)). We move the input nodes one by one to its nearest grid point whose
neighbourhood of gird-distance 4 is empty of any other node. It is not hard to see that
each original node can be assigned to a grid point of grid-distance at most 4n. There-
fore, we move each point by at most 4nεA/(4n2 log(n)), and by the triangle equality,
the cost of any solution increases by atmost nεA/(n log(n)) ≤ εOPT . Since L < nA,
the size of the bounding box after scaling is at most 2(4n) + L/(εA/(4n2 log(n))) <

8n + 41
ε
n3 log(n) = O(n4).

4.5 Wrap-up

Proof of Theorem 4 Recall that in the preprocessing step, the cost of the solution
increases by a factor of at most (1 + ε). When we restrict our solution to be portal-
respecting, we lose another 1 + ε factor. In the dynamic programming, we find the
best solution under these restrictions with respect to rounded demand values. When
we restore the demands to their original values, we increase them by a factor of at most
1 + ε, which increases the cost by at most another 1 + ε factor. As a result, we find
a solution whose cost is at most (1 + ε)3 factor away from the optimal value. As we
stated before, the total blow-up in facility capacities incurred due to rounding of large
and small clients is at most 2ε. In addition, the assignment of tiny clients may result in
another ε blowup of capacity for each facility. Finally, when we round the fractional
assignment of small clients using the Shmoys-Tardos algorithm, we may have another
blowup of at most ε. Therefore, in total, we may have a violation of capacities by at
most 4ε. This shows that the bicriteria factor of our algorithm is ((1 + ε)3, 1 + 4ε).
By setting ε < ε′/4, we have the claimed performance, because (1+ ε′/4)3 ≤ 1+ ε′
for 0 < ε′ ≤ 1.

Now, we analyse the time complexity. The preprocessing step and construction of
the shifted quad-tree can be done in time O(n log n) [4]. Let T be the number of
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table entries for each square s. It can be seen that T = O(n8(m+1)(q+2)). When s
corresponds to a leaf of the quad-tree all the entries of the table can be computed in
constant time. We compute the table entries corresponding to each non-leaf square s
in time O(T 5) which is to enumerate all combinations of possible entries for s and its
four children. Therefore, for any fixed ε > 0 the overall running time of the dynamic
programming algorithm is in nO(m) = nO(log n/ε). ��

Remark 4 We presented our algorithm and the proof forR2. One can generalize these
to d dimensions where the performance ratio remains the same and the running time
increases to nO((log n/ε)d−1) which is still quasi-polynomial time for constant d > 0.

5 Discussion

We presented a reduction from the UCFLP to a restricted version in which all demand
values are large (i.e., larger than ε) and presented two algorithms for the case of ε = 1

2
and 1

3 . These implied two constant factor approximation algorithms for the UCFLP
with capacity bounds within factor 3/2 and 4/3. We suspect similar results can be
found with capacity violations bounded within factor 1 + ε for any ε > 0. We also
showed that at a loss of factor 1/ε, we can ignore the opening cost of facilities, and
that if there is an (α(ε), 1 + ε)-approximation for these instances then there is an
(α′(ε), 1+ ε)-approximation for the general case. We guess that it should be possible
to design constant factor (perhaps depending on ε) approximation for RCFLP(ε) with
a violation of at most 1 + ε on capacities. The elimination of small clients (and
facility costs) makes the problem a generalization of the bin packing, where there
is an associated cost function for assigning each item (client j) to each bin (facility
i) and it seems one might be able to use the scaling/grouping techniques used for
bin-packing here. For instance, with a simple grouping technique and rounding down
each demand value to its closest power of 1+ ε, we can reduce the number of distinct
demand types to a function of ε. Using this, one can guess (enumerate) the number
of different facility “types” similar to what Fernandez de la Vega and Lueker [16] did
for the bin packing problem. Here, a facility type shows how many of each client type
must be present in a facility. However, it is not clear what the next step should be.
Perhaps a suitable configuration LP at this step could be useful.

The readermightwonder if local search algorithms analogous to the ones used in the
splittable CFLPmight work here. Themain issue in the splittable CFLP is to decide the
subset of the facilities that should be opened. As stated above, as a consequence of our
reduction, we can assume there is no opening costs and we can open all the facilities.
Thus, the local search operations defined in the splittable CFLP are ineffective here as
the main difficulty is how to assign the clients to open facilities. Another possibility
is that after guessing the facility types as discussed above, we run a local search to
assign these facility types to the facilities. For each assignment of the facility types
to the facilities, we can run a min-cost max-flow algorithm for each type to decide
where each client should go.Unfortunately, themost natural local search operationswe
tried (for example swapping facility types assigned to two facilities) have bad locality
gaps.
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For the case of Euclidean metrics, one might ask if the stronger structural theorem
of Kolliopoulos and Rao [24] for the standard facility location problem which only
needs O(1/ε) portals instead of O(log n/ε) portals for each square could be used to
improve the running time of our algorithm fromquasi-polynomial to a true polynomial.
The difficulty is that Kolliopoulos and Rao critically use the fact that we can assign a
client to any open facility in the solution of the UFLP in the proof of their structural
theorem, while in our case, this is not true. It is an interesting question whether it is
possible to find a similar structural theorem for the UCFLP with O(1/ε) portal points
for each square; that would imply a PTAS for the Euclidean UCFLP.
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