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Abstract We introduce and investigate a new notion of resilience in graph spanners.
Let S be a spanner of a weighted graph G. Roughly speaking, we say that S is resilient
if all its point-to-point distances are resilient to edge failures. Namely, whenever any
edge in G fails, then as a consequence of this failure all distances do not degrade in S
substantially more than in G (i.e., the relative distance increases in S are very close to
those in the underlying graph G). In this paper we show that sparse resilient spanners
exist, and that they can be computed efficiently.
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1 Introduction

Spanners are fundamental graph structures that have been extensively studied in the
last decades since theywere introduced in [24].Given a graphG, a spanner is a (sparse)
subgraph of G that preserves the approximate distance between each pair of vertices.
More precisely, a t-spanner of a graph G = (V, E) is a subgraph S = (V, ES),
ES ⊆ E , that distorts distances in G up to a multiplicative factor t : i.e., for all vertices
x, y, dS(x, y) ≤ t · dG(x, y), where dG denotes the distance in graph G. We refer to
t as the stretch factor (or distortion) of the spanner S. It is known how to compute in

O(m + n) time a (2k − 1)-spanner, with O(n1+ 1
k ) edges [2,18] (which is conjectured

to be optimal for any k), where m and n are respectively the number of edges and
vertices in the original graph G. We note that t-spanners are only considered for
t ≥ 3, as 2-spanners can have as many as �(n2) edges.

Several other spanners have been considered in the literature. For α ≥ 1 and β ≥ 0,
an (α, β)-spanner of an unweighted graph G = (V, E) is a subgraph S = (V, ES),
ES ⊆ E , that distorts distances in G up to a multiplicative factor α and an additive
term β: i.e., for all vertices x, y, dS(x, y) ≤ α ·dG(x, y)+β. In [7], it is shown how to
compute a (k, k − 1)-spanner containing O(k · n1+1/k) edges, for any integer k ≥ 2.
Note that t-spanners can be referenced to as (t, 0)-spanners, while (1, β)-spanners
are also known as purely additive spanners (dS(x, y) ≤ dG(x, y) + β). Algorithms
for computing (1,2)-spanners with O(n3/2) edges are given in [1,16,25], for (1,4)-
spanners with Õ(n7/5) edges in [11], and for (1,6)-spanners with O(n4/3) edges in
[7].

Spanners have been investigated also in the fully dynamic setting, where edges
may be added to or deleted from the original graph. In [4], efficient dynamic deter-
ministic algorithms are first presented for low-stretch spanners. A faster randomized
dynamic algorithm for spanners has been later proposed by Baswana [6]: given an
unweighted graph, a (2k−1)-spanner of expected size O(k ·n1+1/k) can bemaintained

in O
(

m
n1+1/k · polylog n

)
amortized expected time for each edge insertion/deletion,

where m is the current number of edges in the graph. For k = 2, 3 (i.e., 3- and
5-spanners, respectively), the amortized expected time of the randomized algorithm
becomes constant. The algorithm by Elkin [17] maintains a (2k − 1)-spanner with
expected O(kn1+1/k) edges in expected constant time per edge insertion and expected

O
(

m
n1/k

)
time per edge deletion. More recently, Baswana et al. [8] proposed two

faster fully dynamic randomized algorithms for maintaining (2k − 1)-spanners of
unweighted graphs: the expected amortized time per insertion/deletion is O(7k/2) for
the first algorithm and O(k2 log2 n) for the second algorithm, and in both cases the
spanner expected size is optimal up to a polylogaritmic factor.

As observed in [12], this traditional fully dynamic model may be too pessimistic
in several application scenarios, where the possible changes to the underlying graph
are rather limited. Indeed, there are cases where there can be only temporary network
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failures: namely, graph edges may occasionally fail, but only for a short period of time,
and it is possible to recover quickly from such failures. In those scenarios, rather than
maintaining a fully dynamic spanner, which has to be updated after each change, one
may be more interested in working with a static spanner capable of retaining many of
its properties during edge deletions, i.e., capable of being resilient to transient failures.

Being inherently sparse, a spanner is not necessarily resilient to edge deletions and
it may indeed lose some of its important properties during a transient failure. Indeed,
let S be a t-spanner of G: if an edge e fails in G, then the distortion of the spanner
may substantially degrade, i.e., S\e may no longer be a t-spanner or even a valid
spanner of G\e, where G\e denotes the graph obtained after removing edge e from
G. In their pioneering work, Chechik et al. [12] addressed this problem by introducing
the notion of fault-tolerant spanners, which are defined as follows. Given an integer
f ≥ 1, a spanner is said to be f -edge (resp., vertex) fault-tolerant if it preserves its
original distortion under the failure of any set of at most f edges (resp., vertices).
More formally, an f-edge (resp. vertex) fault-tolerant t-spanner of G = (V, E) is a
subgraph S = (V, ES), ES ⊆ E , such that for any subset F ⊆ E (resp. F ⊆ V ),
with |F | ≤ f , and for any pair of vertices x, y ∈ V (resp. x, y ∈ V \F) we have
dS\F (x, y) ≤ t · dG\F (x, y), where G\F denotes the subgraph of G obtained after
deleting the edges (resp. vertices) in F . Algorithms for computing efficiently fault-
tolerant spanners can be found in [5,10,12,15].

The distortion is not the only property of a spanner that may degrade because of
edge failures. Indeed, even when the removal of an edge cannot change the overall
distortion of a spanner (such as in the case of a fault-tolerant spanner), it may still
cause a sharp increase in some of its distances. Note that while the distortion is a
global property, distance increases are local properties, as they are defined for pairs
of vertices. To address this problem, one would like to work with spanners that are
not only globally resilient (such as fault-tolerant spanners) but also locally resilient.
In other terms, we would like to make the distances between any pair of vertices in
a spanner resilient to edge failures, i.e., whenever an edge fails, then the increases
in distances in the spanner must be very close to the increases in distances in the
underlying graph. More formally, given a graph G and an edge e in G, we define
the fragility of edge e as the maximum relative increase in distance between any two
vertices when e is removed from G:

fragG(e) = max
x,y∈V

{
dG\e(x, y)
dG(x, y)

}

The fragility of edge e is a measure of how much e is crucial for the distances in G, as
it provides an upper bound to the increase in distance inG between any pair of vertices
when edge e fails: the higher the fragility of e, the higher is the relative increase in some
distance when e is deleted. Note that the fragility of an edge in a subgraph cannot be
smaller than its fragility in the original graph. Thus, the bestwe can expect for a spanner
is that it preserves the same edge fragilities as in G. Unfortunately, as we will show in
the sequel, fragility of edges is not always preserved in edge fault-tolerant spanners.

Our definition of fragility is somewhat reminiscent of the notions of shortcut value
[21] and of Vickrey pricing [23] of an edge, where the distance increase is alternatively
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measured by the difference, instead of the ratio, between distances in G\e and in G.
Note that for unweighted graphs fragG(e) ≥ 2 for any edge e. Although, in our
definition, the fragility of an edge measures the maximum global distance increase
under the deletion of that edge, we show that it is equivalent to a local property, i.e.,
one only needs to guarantee a bounded distance increase for the endpoints of that
edge.

1.1 Our contribution

To obtain spanners whose distances are resilient to transient edge failures, the fragility
of each edge in the spanner must be as close as possible to its fragility in the original
graph. In this perspective, given a positive σ , we say that a spanner S of G is σ -
resilient if fragS(e) ≤ max{σ, fragG(e)} for each edge e ∈ S, where σ ≥ 1. Note that
in case of unweighted graphs, for σ = 2 this is equivalent to fragS(e) = fragG(e)
for any e ∈ S. We show that finding sparse 2-resilient spanners may be an overly
ambitious goal, as we prove that there exists a family of dense graphs for which the
only 2-resilient spanner coincides with the graph itself. It can be easily seen that, in
general, spanners are not necessarily σ -resilient. Furthermore, it can be shown that
even edge fault-tolerant multiplicative t-spanners are not σ -resilient, since they can
only guarantee that the fragility of a spanner edge is at most t times its fragility in the
graph. In fact, we exhibit 1-edge fault tolerant t-spanners, for any t ≥ 3, with edges
whose fragility in the spanner is at least t2/2.

It seems quite natural to ask whether sparse σ -resilient spanners exist, and how
efficiently they can be computed. We show that it is possible to compute σ -resilient
3-spanners containing O(W · n3/2) edges for graphs with positive edge weights in
[wmin, wmax], where W = wmax

wmin
. The size is optimal for small edge weights. The

total time required to compute our spanners is O(mn + n2 log n) in the worst case.
To compute our σ -resilient spanners, we start from a non-resilient spanner, and then
add to it O(W · n3/2) edges from a carefully chosen set of short cycles in the origi-
nal graph. The algorithm is simple and thus amenable to practical implementations,
while the upper bound on the number of added edges is derived from sophisticated
combinatorial arguments.

The same approach can be used for turning any given t-spanner into a σ -resilient
t-spanner, for σ ≥ t > 3. Once again, the total number of edges added to the initial
spanners is O(W · n3/2). Our results for σ = t = 3 and for small edge weights
seem to be the most significant ones, both from the theoretical and from the practical
point of view. From a theoretical perspective, our σ -resilient 3-spanners have the same
asymptotic size as their non-resilient counterparts. From a practical perspective, there
is empirical evidence [3] that small stretch spanners provide the best performance in
terms of stretch/size trade-offs, and that spanners of larger stretch are not likely to be
of practical value. Table 1 puts our results in perspective with the fragility and the size
of previously known spanners. Note that, for σ = 2k−1, our resilient spanner ensures
fragS(e) ≤ max{2k − 1, fragG(e)}, while for 1-edge fault-tolerant (2k − 1)-spanner
it holds fragS(e) ≤ (2k − 1) · fragG(e). This is achieved at the price of higher space
requirements, for k > 2.
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Table 1 Fragility and size of spanners

Spanner S fragS(e) Size Refs.

(2k − 1)-spanner, k ≥ 2 Unbounded O

(
n1+

1
k

)
[2]

1-edge fault-tolerant
(2k − 1)-spanner, k ≥ 2

≤(2k − 1) · fragG (e) O

(
n1+

1
k

)
[12]

σ -resilient (2k − 1)-spanner,
σ ≥ 2k − 1, k ≥ 2

≤max{σ, fragG (e)} O

(
W · n 3

2

)
This paper

Factor W in the last line is the ratio between maximum and minimum edge weight

Also (α, β)-spanners of unweighted graphs can be turned into σ -resilient (α, β)-
spanners, for any σ ≥ α + β, using the same technique, adding O(n3/2) edges in the
worst case.

The remainder of this paper is organized as follows. We start with few preliminary
definitions and basic observations in Sect. 2. In Sect. 3 we show some negative results
on 2-resilient spanners and 1-edge fault-tolerant spanners. In Sect. 4 we describe
our algorithm for computing σ -resilient spanners. In particular, we first describe in
Sect. 4.1 a trivial approach. Next, in Sect. 4.2, we show how to bound the size of σ -
resilient spanners. Finally, in Sect. 4.3, we show how to compute efficiently σ -resilient
spanners. Section 5 lists some concluding remarks.

2 Preliminaries

We assume that the reader is familiar with standard graph terminology. In our paper,
we deal with weighted undirected graphs, i.e., undirected graphs having weights asso-
ciated to their edges. The length of a path is the sum of the weights of its edges. In
unweighted graphs the length of a path is given by the number of its edges. Note that
unweighted graphs can be seen as special cases of weighted graphs, where all the
weights are 1. A shortest path is a path of minimum length between two vertices, and
the distance between two vertices is given by the length of a shortest path between the
two vertices. Let G = (V, E) be an undirected graph. Throughout this paper, we use
the notation dG(u, v) to denote the distance between vertices u and v inG. Let F ⊆ E
be any subset of edges in G: we denote by G\F the graph obtained after deleting
edges in F from G. Note that, as a special case G\e denotes the graph obtained after
deleting edge e fromG. Similarly, we letG∪H denote the graph obtained after adding
edges in H to G, where H and G have the same set of vertices.

Let G = (V, E) be an undirected (weighted or unweighted) graph, with m edges
and n vertices. A bridge is an edge e ∈ E whose deletion increases the number of
connected components of G. Note that an edge is a bridge if and only if it is not
contained in any cycle of G. Graph G is 2-edge-connected if it does not have any
bridges. The 2-edge-connected components of G are its maximal 2-edge-connected
subgraphs. Let e be an edge inG, and denote by Ce the set of all the cycles containing e:
if G is 2-edge-connected, then Ce is non-empty for each e ∈ E . We refer to a shortest
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cycle among all cycles in Ce as a short cycle for edge e. Note that if G is 2-edge-
connected, then at least one short cycle always exists for any edge. Short cycles are
not necessarily unique: for each e ∈ E , we denote by �e(G) the set of short cycles
for e in graph G. Let G be an undirected unweighted graph: the girth of G, denoted
by girth(G), is the length of a shortest cycle in G.

A t-spanner of a graph G = (V, E) is a subgraph S = (V, ES), ES ⊆ E such that,
for all vertices x, y, dS(x, y) ≤ t · dG(x, y). For α ≥ 1 and β ≥ 0, an (α, β)-spanner
of an unweighted graph G = (V, E) is a subgraph S = (V, ES), ES ⊆ E such that,
for all vertices x, y, dS(x, y) ≤ α · dG(x, y) + β.

The fragility of an edge e = (u, v) in graph G is defined as fragG(e) =
maxx,y∈V

{
dG\e(x,y)
dG (x,y)

}
. Given a graph G and a t-spanner S of G, and given σ ≥ 1, we

say that edge e is σ -fragile in S if fragS(e) > max
{
σ, fragG(e)

}
. A t-spanner R is

σ -resilient if fragR(e) ≤ max{σ, fragG(e)} for each edge e ∈ R, i.e., if R does not
contain σ -fragile edges.

The following lemma shows that in the definition of fragility of an edge e = (u, v),
the maximum is obtained for {x, y} = {u, v}, i.e., exactly at its two endpoints.

Lemma 1 Let G = (V, E) be a connected graph with positive edge weights, and let

e = (u, v) be any edge in G. Then fragG(e) = dG\e(u,v)

dG (u,v)
.

Proof Let x and y be any two vertices in G. To prove the lemma it suffices to show

that
dG\e(x,y)
dG (x,y) ≤ dG\e(u,v)

dG (u,v)
. We distinguish two cases, depending on whether there is a

shortest path in G between x and y that avoids edge e or not. If there is such a shortest
path, then dG\e(x, y) = dG(x, y). Since dG\e(u, v) ≥ dG(u, v), the lemma trivially
holds.

Assume now that all shortest paths between x and y in G go through edge e =
(u, v). In this case, dG(x, y) ≥ dG(u, v). If edge e is a bridge, then fragG(e) =
dG\e(u,v)

dG (u,v)
= +∞, and again the lemma trivially holds. If e is not a bridge, then the

graph G\e is connected. Since there is at least a (not necessarily shortest) path in
G\e between x and y containing the shortest path in G\e from u to v, we have that
dG\e(x, y) ≤ dG(x, y) − dG(u, v) + dG\e(u, v), or equivalently

dG\e(x, y)
dG(x, y)

≤ dG(x, y) − dG(u, v) + dG\e(u, v)

dG(x, y)
(1)

Since dG(x, y) − dG(u, v) + dG\e(u, v) ≥ dG(x, y), we can upper bound the right-
hand side of (1) by subtracting dG(x, y) − dG(u, v) ≥ 0 from both its numerator and
denominator, thus yielding the lemma. �	

Note that for unweighted graphs dG(u, v) = 1, and thus Lemma 1 can be simply
stated as fragG(e) = dG\e(u, v). The following simple lemma shows that, when
inserting new edges into a graph G, the fragility of the old edges cannot increase.

Lemma 2 Let G and H be any pair of weighted graphs on the same set of vertices, and
let G ∪ H be the graph obtained after adding edges in H to G. Then, fragG∪H (e) ≤
fragG(e) for each edge e in G.

123



Algorithmica (2016) 74:1363–1385 1369

Proof Consider an edge e = (u, v) in G. Since G ⊆ G ∪ H , dG∪H (u, v) ≤ dG(u, v).
If dG∪H (u, v) < dG(u, v), a shortest path from u to v in G ∪ H avoids edge e. This
is equivalent to saying that d(G∪H)\e(u, v) = dG∪H (u, v), and hence fragG∪H (e) =
1 ≤ fragG(e). Otherwise, dG∪H (u, v) = dG(u, v) and d(G∪H)\e(u, v) ≤ dG\e(u, v):
again, fragG∪H (e) ≤ fragG(e). �	

Since a spanner S is a subgraph of the original graph G, an immediate consequence
of Lemma 2 is the following:

Corollary 3 If S is a spanner of G, then for each edge e ∈ S we have fragS(e) ≥
fragG(e).

The fragility of all edges in a graph G = (V, E) with positive edge weights can
be trivially computed in a total of O(m2n + mn2 log n) worst-case time by simply
computing, for each edge e ∈ E , all-pairs shortest paths in graph G\e. A faster
bound of O(mn + n2 log n) can be achieved by using either a careful modification
of algorithm fast-exclude in [14] or by applying n times a modified version of
Dijkstra’s algorithm, as described in [19]. For unweighted graphs, the above bound
reduces to O(mn).

3 Some Negative Results

In this section we show some negative results on 2-resilient spanners and edge fault-
tolerant spanners. We first establish that finding sparse 2-resilient spanners may be an
overly ambitious goal, as there are dense graphs for which the only 2-resilient spanner
is the graph itself.

Theorem 4 There is an infinite family F of graphs such that for each graph G ∈ F
the following properties hold:

(1) G has �(nδ) edges, with δ > 1.72598, where n is the number of vertices of G.
(2) No proper subgraph of G is a 2-resilient spanner of G.
(3) There exists a 2-spanner S of G such that�(nδ) edges of G\S, with δ > 1.72598,

need to be added back to S in order to make it 2-resilient.

Proof The familyF is defined as the set of graphs {I3, I6, I9, . . . , I3k, . . .}, with each
I3k being the complement of the intersection graph of all the k-sets contained in a
3k-set, k ≥ 1. Given a set U , with |U | = 3k, graph I3k contains a vertex vA for each
subset A ⊂ U with |A| = k, and vertex vA is adjacent to vertex vB if and only if
A ∩ B = ∅.

Graph I3k has n = (3k
k

)
vertices. Each vertex has degree

(2k
k

)
, since this is the

number of k-sets that can be chosen from the remaining 2k elements. Thus, I3k has
m = n

2

(2k
k

)
edges. The density δ of graph I3k , where δ = log2 m

log2 n
, can be derived by

Stirling approximation as follows:

n =
(
3k

k

)
≈ 33k

22k
·
√

3

4πk

123



1370 Algorithmica (2016) 74:1363–1385

and

m = n

2
·
(
2k

k

)
≈ 33k ·

√
3

4πk

for sufficiently large k we can state that

δ = log2 m

log2 n
≈ 3k · log2 3

3k · log2 3 − 2k · log2 2
= 1 + 2

3 log2 3 − 2

giving

m = �

(
n
1+ 2

3 log2 3−2

)

where 2
3 log2 3−2 > 0.72598. This proves Property (1).

We now turn to Property (2). We first claim that there is only one path of length 2
between any pair of adjacent vertices in I3k . Indeed, for any two adjacent vertices vA

and vB , there is exactly one vertex, namely vU\(A∪B), which is adjacent to both vA and
vB . Thus each edge belongs to exactly one triangle, which implies that the fragility of
any edge in I3k is 2, and that there is only one path of length 2 between any pair of
adjacent vertices.

Let S ⊂ I3k be a 2-spanner of I3k . We show that S is not 2-resilient. Let vA and vB
be two adjacent vertices in I3k such that (vA, vB) /∈ S, and let C = U\(A ∪ B). We
know that vA, vC , vB is the only path of length 2 from vA to vB in I3k . Since S is a 2-
spanner of I3k , both (vA, vC ) and (vC , vB)must be in S. For the same reason above, the
only path of length 2 in I3k from vA to vC is vA, vB, vC , so dS\{(vA,vC )}(vA, vC ) > 2,
because (vA, vB) /∈ S. Thus fragS((vA, vC )) > 2, while fragI3k ((vA, vC )) = 2, which
implies that S is not 2-resilient.

To prove Property (3), let S be a subgraph of I3k obtained by deleting exactly
one edge from each triangle in I3k . Since each edge in I3k is contained in exactly
one triangle, there is always such an S, and it is a 2-spanner of I3k . Furthermore, by
Property (1), m

3 = �(nδ) edges, with δ > 1.72598, have to be deleted from I3k in
order to produce S. By Property (2), �(nδ) edges of I3k\S, with δ > 1.72598, need
to be added back to S in order to make it a 2-resilient 2-spanner of I3k . �	

Edge fault-tolerant spanners [12] provide a simple way to bound distance increases
under edge faults. However, they are not σ -resilient, as the next theorem shows.

Theorem 5 Let G = (V, E) be a graph.

(a) Let S f be any 1-edge fault tolerant t-spanner of G. Then fragS f
(e) ≤ t · fragG(e)

for each e ∈ S f .
(b) There exist 1-edge fault-tolerant t-spanners that are not σ -resilient, for any σ <

t2/2.
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Proof We first prove (a). By definition of 1-edge fault tolerant t-spanner, we have
dS f \e(u, v) ≤ t · dG\e(u, v) for each edge e = (u, v), and since e ∈ S f we have
dS f (u, v) ≥ dG(u, v).

The fragility of e in S f is then:

fragS f
(e) = dS f \e(u, v)

dS f (u, v)
≤ t · dG\e(u, v)

dS f (u, v)
≤ t · dG\e(u, v)

dG(u, v)
= t · fragG(e).

To prove (b), consider the graph illustrated in Fig. 1. The subgraph defined by bold
edges (i.e., the whole graph except edges ei , with 1 ≤ i ≤ t) is a 1-edge fault tolerant
t-spanner. The fragility of edge e in the original graph is t , while its fragility in the
spanner is t2/2, i.e., it is greater than the fragility in the original graph by a factor of
t/2. �	

4 On σ -Resilient Spanners

In this section we present our algorithm for computing σ -resilient spanners, We start
by describing a trivial approach in Sect. 4.1. Then, in Sect. 4.2, we introduce the notion
of parsimonious sequence of cycles, which allows us to bound the size of a σ -resilient
spanner. Finally, in Sect. 4.3, we show how to compute efficiently a parsimonious
sequence of cycles.

4.1 A Simple-Minded Algorithm for Computing σ -Resilient Spanners

Given a graph G, a σ -resilient spanner R of G can be computed with the following
simple approach:

Fig. 1 A 1-edge fault tolerant t-spanner that is not σ -resilient for any σ < t2/2. Edges ei , 1 ≤ i ≤ t , are
not included in the t-spanner
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1. Initialize R to S, where S is any t-spanner of G, with t ≤ σ .
2. For each edge e = (u, v) that is σ -fragile in S, select a shortest path between u

and v in G\e and add it to R.

We refer to a shortest path between u and v in G\(u, v) as a backup path for edge
(u, v). The correctness of our approach hinges on the following theorem.

Theorem 6 Let S be a t-spanner of a weighted graph G, and let R be computed by
adding to S a backup path for each σ -fragile edge e in S, with σ ≥ t . Then R is a
σ -resilient t-spanner of G.

Proof R is trivially a t-spanner of G, since it contains a t-spanner S. It remains to
show that R is σ -resilient, i.e., fragR(e) ≤ max{σ, fragG(e)} for each edge e ∈ R.
We first claim that this holds for each edge e ∈ R\S. Indeed, in this case we have that
dR\e(u, v) ≤ dS(u, v) ≤ t · dG(u, v), where the latter inequality follows immediately
from the fact that S is a t-spanner of G, hence also R\e is a t-spanner of G. This
implies that

fragR(e) = dR\e(u, v)

dR(u, v)
≤ t · dG(u, v)

dR(u, v)
≤ t ≤ σ ≤ max{σ, fragG(e)}.

To complete the proof, it suffices to show that fragR(e) ≤ max{σ, fragG(e)} for
each edge e ∈ S. Let e = (u, v) be any edge in S. If fragS(e) ≤ σ , the fact that
S ⊆ R implies by Lemma 2 that fragR(e) ≤ σ ≤ max{σ, fragG(e)}. If fragS(e) > σ ,
then a shortest path between u and v in G\e is added as a backup path for e, at which
point the fragility of edge e in the resulting graph will be equal to fragG(e). Once
again, Lemma 2 guarantees that the fragility of e will never decrease after adding
other backup paths for different edges. At the end, when all the backup paths have
been added, we will have fragR(e) ≤ fragG(e) ≤ max{σ, fragG(e)}. �	

In the special case of unweighted graphs, Theorem 6 can be extended to (α, β)-
spanners:

Corollary 7 Let S be an (α, β)-spanner of an unweighted graph G, and let R be
computed by adding to S a backup path for each σ -fragile edge e ∈ S, with σ ≥ α+β.
Then R is a σ -resilient (α, β)-spanner of G.

Proof We proceed as in the proof of Theorem 6, except in showing that fragR(e) ≤
max{σ, fragG(e)} for each edge e ∈ R\S. Since R\e is an (α, β)-spanner of G and
dR(u, v) ≥ 1, we have

fragR(e) = dR\e(u, v)

dR(u, v)
≤ α · dG(u, v) + β

dR(u, v)
≤ α + β

dR(u, v)
≤ α + β ≤ σ

≤ max{σ, fragG(e)}.

�	

123



Algorithmica (2016) 74:1363–1385 1373

Note that this approach has the additional benefit of producing a σ -resilient spanner
R which inherits all monotone increasing properties of the underlying spanner S, i.e.,
all properties that are preserved under edge additions: for example, if S is fault-tolerant
then R is fault-tolerant too. On the other hand, there can be several choices of backup
paths for an edge with high fragility: if no particular care is taken in selecting suitable
backup paths, we may end up with a resilient spanner of large size. In more detail,
let S(n) and T (m, n) be respectively the number of edges of the initial spanner S and
the time required for its computation, where m and n are respectively the number
of edges and vertices in the original graph G. A trivial implementation of the above
algorithm computes a σ -resilient spanner R with O(n · S(n)) edges in a total of
O(T (m, n) + (m + n log n) · S(n)) time.

In the next sections we will show how to refine our algorithm in order to improve
these bounds, by reducing both the total number of edges added to the initial spanner
S and the total time required to compute a σ -resilient spanner R from S.

4.2 Improving the Size of σ -Resilient Spanners

In this section we show how to refine our algorithm in order to build a σ -resilient

3-spanner for a graph with positive edge weights, containing O(W · n 3
2 ) edges in the

worst case, where W is the ratio between maximum and minimum edge weight. Our
improvement is based on the following two high-level ideas:

(1) Bound the number of edges with high fragility (Theorem 8).
(2) Select carefully the shortest paths to be added as backup paths so that the total

number of additional edges required is small (Theorem 9).

We start by bounding the number of high fragility edges.

Theorem 8 Let G = (V, E) be a graph with positive edge weights, an let σ ≥ 1.
Then, the number of edges of G having fragility greater than σ is O(n1+1/�(σ+1)/2�).

Proof Let L be the subgraph of G containing only the edges with fragility greater
than σ in G. If L contains no cycle, then L has at most (n − 1) edges and the theorem
trivially holds.

Otherwise, letC be a cycle in L , and let 	 be the number of edges inC . Let e = (u, v)

be a maximum weight edge in C , and let e1, e2, . . . , e	−1 be the remaining edges in
C . Since L contains e and it is a subgraph of G, we have by Lemma 2:

σ < fragG(e) ≤ fragL(e) . (2)

We claim that it must be dL(u, v) = w(e). Indeed, if dL(u, v) < w(e), we would have
dL\e(u, v) = dL(u, v), and thus by Lemma 1

fragL(e) = dL\e(u, v)

dL(u, v)
= 1
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which contradicts (2). Since dL(u, v) = w(e) and w(ei ) ≤ w(e), for 1 ≤ i < 	 − 1,
we have that

σ < fragG(e) ≤ fragL(e) = dL\e(u, v)

dL(u, v)
≤

∑	−1
i=1 w(ei )

w(e)
≤ 	 − 1.

This implies that any cycle in L must have more than (σ + 1) edges. Let L ′ be the
unweighted version of L , i.e., L ′ has the same vertices and edges as L , but its edges
are unweighted. Clearly,

girth(L ′) > σ + 1.

The theorem now follows directly from a result by Bondy and Simonovits [9], which
states that a graph with girth greater than σ + 1 contains at most O(n1+1/�(σ+1)/2�)
edges. �	

We now show that the shortest paths to be added as backup paths can be suitably
chosen, so that the total number of additional edges is small. In the following, we
assume that our input graph G is 2-edge-connected. This is without loss of generality:
if G is not 2-edge-connected, then our algorithm can be applied separately to every
2-edge-connected component of G. Let e = (u, v) be an edge of high fragility in the
initial t-spanner. Note that, in order to identify a backup path for edge e, we can refer
either to a shortest path between u and v in G\e or, equivalently, to a short cycle for
e in G (i.e., the short cycle defined by one of the shortest paths in G\e and the edge
e itself). In the following, we will identify backup paths by short cycles in G rather
than by shortest paths in G\e.

An ordered sequence of cycles C1,C2, . . . ,Cq is said to be parsimonious if the
following property holds: for any pair of cycles Ci and C j , with 1 ≤ i < j ≤ q,
if Ci and C j have two common vertices x and y, where x and y split C j into paths

P ′ and P ′′, then either P ′ ⊆ ⋃ j−1
k=1 Ck or P ′′ ⊆ ⋃ j−1

k=1 Ck . Intuitively speaking, in
a parsimonious sequence of cycles, each new cycle C j reuses as much as possible
portions of paths from the union of previous cycles C1, . . ., C j−1. Figure 2 illustrates
the notion of parsimonious sequence of cycles. The sequence of cyclesC1,C2,C3,C4
shown in the left side of Fig. 2 is not parsimonious, since each path joining a and b
alongC4 is not contained intoC1∪C2∪C3. A parsimonious sequenceC1,C2,C3,C ′

4
is shown in the right side of Fig. 2, where cycle C ′

4 is shown in bold. Cycles C ′
4 and

C3 intersect in two points, namely b and d, and the path in C ′
4 joining b to d through

c is contained in C1 ∪ C2 ∪ C3. The same holds for the path joining a and c, the two
common vertices of C1 and C ′

4, through b, and for the path joining c and e, the two
common vertices of C2 and C ′

4, through d.
The following theorembounds the total number of different edges in a parsimonious

sequence of cycles.

Theorem 9 Given a graph G, any parsimonious sequence C1,C2, . . . ,Cq of cycles
in G contains O(min{q√

n + n, n
√
q + q}) edges.
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Fig. 2 The sequence of four cycles C1,C2,C3,C4 on the left is not parsimonious, while the sequence
C1,C2,C3,C

′
4 on the right (where C ′

4 is represented by the bold line) is parsimonious

Proof Let Vj and E j be respectively the vertex set and the edge set of cycle C j , for
1 ≤ j ≤ q. We partition each edge set E j into the following three disjoint sets:

• Eold
j (old edges): edges already in some Ei , i < j , i.e., edges in E j ∩

(⋃ j−1
i=1 Ei

)
.

• Enew
j (new edges): edges with at least one endpoint not contained in

⋃ j−1
i=1 Vi .

• Ecross
j (cross edges): edges not contained in Eold

j but with both endpoints in⋃ j−1
i=1 Vi .

To prove the theorem,we have to bound the total number of edges in
⋃q

j=1 E j . Note

that we only need to bound the total number of new and cross edges (i.e., |⋃q
j=1 E

new
j |

and | ⋃q
j=1 E

cross
j |), since each old edge in Eold

j , for any 1 ≤ j ≤ q, is already
accounted for either as a new edge or as a cross edge in some cycle Ci , i < j .
Furthermore, each new edge in Enew

j can be amortized against a newly discovered

vertex (i.e., a vertex v /∈ ⋃ j−1
i=1 Vi ), and in cycle C j there can be at most two such

edges which are incident to the same newly discovered vertex v: this implies that
| ⋃q

j=1 E
new
j | ≤ 2 · n.

To complete the proof, it remains to bound the total number of cross edges in the
sequence.We do this as follows. For each cycleC j we choose arbitrarily an orientation−→
C j , in one of the two possible directions, and direct its edges accordingly. Given a
directed edge e = (x, y), we denote its endpoint x as tail(e) and its endpoint y as
head(e). We build a bipartite graph B in which one vertex class represents the n
vertices v1, v2, . . . , vn in G, and the other vertex class represents the q directed cycles−→
C1,

−→
C2, ...,

−→
Cq . There is an edge in B joining vertex v and cycle C j if and only if

v is the tail of an edge in Ecross
j (hence, the degree of C j in B is equal to the size

of Ecross
j ). Note that there is a one-to-one correspondence between edges in B and⋃q

j=1 E
cross
j . Thus, to prove the theorem it suffices to show that the number of edges

in B is O(min{q√
n + n, n

√
q + q}).

We claim that there cannot exist two vertices x and y that are tails of two pairs
of directed edges in Ecross

i and Ecross
j (see Fig. 3). Indeed, assuming i < j , the fact

that the sequence of cycles is parsimonious implies that one of the two portions of C j

defined by x and y must contain only edges in Eold
j . The previous claim implies that
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Fig. 3 On the proof of Theorem 9. If i < j , then either edge f or g in C j is not in Ecross
j . In fact, either

π1 or π2 should be included in
⋃ j−1

k=1 Ck

the bipartite graph B does not contain K2,2 as a subgraph. Determining the maximum
number of edges in B is a special case of Zarankiewicz’s problem [26]. This problem
has been solved by Kővári, Sós, Turán [20] (see also [22], p. 65), who proved that any
bipartite graph G with vertex classes of size m and n containing no subgraph Kr,s ,
with the r vertices in the class of size m and the s vertices in the class of size n, has
O

(
min

{
mn1−1/r + n,m1−1/sn + m

})
edges, where the constant of proportionality

depends on r and s. Since in our case the bipartite graph B has vertex classes of size n
and q, and r = s = 2, it follows that B contains O(min{q√

n + n, n
√
q + q}) edges,

which yields the theorem. �	

We observe that Theorem 9 is related to a result of Coppersmith and Elkin [13] on
distance preservers. Given a graphG and p pairs of vertices {(} v1, w1), (v2, w2), . . . ,

(vp, wp), a pairwise distance preserver is a subgraph S of G such that dS(vi , wi ) =
dG(vi , wi ), for 1 ≤ i ≤ p. In particular, Coppersmith and Elkin [13] showed that it is
always possible to compute a pairwise distance preserver containing O(min{p√n +
n, n

√
p+ p}) edges. Their approach relies on the uniqueness of shortest paths between

any pair of vertices, a property that does not hold in general in the case of parsimonious
sequence of cycles, while our approach relies on weaker assumptions.

4.3 Efficiently Computing a Parsimonious Sequence of Short Cycles

To compute a σ -resilient t-spanner of graphG we start from a t-spanner S ofG and add
to S a parsimonious sequence of short cycles, in order to apply Theorem 9. Let ES(σ )

be the set of σ -fragile edges in S (i.e., edges e with fragS(e) > max
{
σ, fragG(e)

}
).

For each edge e ∈ ES(σ ), we find a short cycle for edge e in graph G and add that
cycle to S. To guarantee the parsimonious property, we choose in a greedy fashion
short cycles that reuse paths contained in the union of previously added cycles. We
first describe how to find σ -fragile edges and next show how to compute a short cycle
for each such edge.

The computation of σ -fragile edges can be accomplished in O(mn + n2 log n)

worst-case time by using an algorithm by Brandes for computing shortcut values
(described in [19, Section 4.2.2]). We recall here that, given an edge e in graph G,
the shortcut value of e, denoted by shvalG(e), is defined as the maximum distance
increase between any two vertices after the deletion of e:
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shvalG(e) = max
x,y∈V

{
dG\e(x, y) − dG(x, y)

}
.

Brandes’ algorithm performs n Dijkstra-like visits, each time considering a different
vertex as root; when starting a new visit from a root r , the algorithm computes the
shortcut value of each edge incident to r . It can be seen ([21, Section 3.6.3]) that the
distance increase after the deletion of edge e = (u, v) is maximum for the endpoints
of e, i.e.,

shvalG(e) = dG\e(u, v) − dG(u, v) .

As a consequence of Lemma 1, the fragility of an edge e = (u, v) can be expressed
as

fragG(e) = shvalG(e)

dG(u, v)
+ 1,

and thus it can be easily determined once the shortcut value of the same edge e is
known.

A trivial algorithm for computing a parsimonious sequence of short cycles can
be obtained as follows. For each edge (u, v) ∈ ES(σ ), we compute a shortest
path from u to v in G\(u, v): when comparing paths with the same weight, we
select the path containing the smallest number of new edges (ties can be broken
arbitrarily). This can be done by means of a slight modification of Dijkstra’s algo-
rithm and it requires a total of O (|ES(σ )| · (m + n log n)) worst-case time, which is
O

(
n1+1/�(σ+1)/2� · (m + n log n)

)
by Theorem 8.

We next show how to improve this time to O
(
mn + n2 log n

)
in the worst case.

Consider Algorithm ResilientSpanner illustrated in Fig. 4. For each vertex r
in G, we first compute all the σ -fragile edges incident to r . Next, we augment the
current spanner with one short cycle for each σ -fragile edge. Throughout, we will
guarantee the important property that the total sequence of short cycles added during
all the iterations of Algorithm ResilientSpanner is parsimonious. This will be
accomplished by Algorithm ParsimoniousCycles, invoked in Line 4, which is
the crux of the method.

Before describing the Algorithm ParsimoniousCycles in detail, we need few
preliminary definitions. Let S′ be the spanner at a generic iteration of the loop of
Algorithm ResilientSpanner. Given a vertex r , we define a shortest path tree
Tr of G rooted at r to be parsimonious if the following condition holds:

for each vertex x �= r , the path from r to x in Tr is a shortest path between r and
x in G with the smallest number of edges in G\S′.

It can be seen that, if Tr is parsimonious, then for each pair of vertices x ′, x ′′ such
that x ′ is an ancestor of x ′′ in Tr , also the path from x ′ to x ′′ in Tr is a shortest path in
G with the smallest number of edges in G\S′. Note that a parsimonious shortest path
tree Tr can be computed using a slight modification of the shortest path algorithm by
Dijkstra: whenever two or more alternative paths with the same weight reach a vertex,
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Algorithm ResilientSpanner(G, S, σ)
input:

graph G
a t-spanner S of G
a fragility threshold σ, with σ ≥ t

output:
a σ-resilient t-spanner R of G, with R ⊇ S

1. let S′ = S
2. for each vertex r in G
3. let Er be the set of σ-fragile edges in S′ incident to r
4. S′ = S′ ∪ ParsimoniousCycles(G, S′, r, Er)
5. return R = S′

Fig. 4 Algorithm ResilientSpanner

Fig. 5 On the proof of Lemma 10. Solid paths are contained in Tr

we select the path with the smaller number of edges in G\S′ (ties can be broken
arbitrarily). Moreover, let v be a vertex adjacent to r in Tr and let 
r (v) be the set
of all shortest paths from r to v in G\(r, v). We denote a path πv ∈ 
r (v) having
the smallest number of edges from G\S′ as a best backup path for edge (r, v). By
definition, a best backup path for (r, v) does not contain edge (r, v) and thus it must
contain at least one edge in G\Tr . The following lemma shows that there must exist
a best backup path for (r, v) containing exactly one edge of G\Tr .
Lemma 10 Let v be a vertex adjacent to r in Tr . There is at least one best backup
path for (r, v) that contains exactly one edge of G\Tr .
Proof Let πv be a best backup path for (r, v), and let Tr (v) be the subtree of Tr rooted
at v.

Walk along the path πv starting from the root r , and let z be the first vertex encoun-
tered in the subtree Tr (v) (see Fig. 5). Let y be the vertex immediately before z in πv;
clearly y is not in Tr (v) and (y, z) is an edge of G\Tr .

Let π(r, y) be the path between r and y in Tr . Since Tr is a parsimonious shortest
path tree, π(r, y) is a shortest path between r and y in G with the smallest number
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of edges in G\S′. The same argument holds for the path π(z, v) between z and v in
Tr . Hence, the path π ′

v = π(r, y) · (y, z) · π(z, v) obtained by concatenating the path
between r and y in Tr , edge (y, z), and the path between z and v in Tr must be a best
backup path for (r, v), and it contains only one edge, i.e., (y, z), from G\Tr . �	

We denote by single-cross backup paths the best backup paths that contain exactly
one edge from G\Tr (as in Lemma 10). Single-cross backup paths will be a crucial
ingredient for finding efficiently a parsimonious sequence of short cycles. Note that,
given a root r and a vertex v adjacent to r in Tr , combining the edge (r, v) with a
single-cross backup path for (r, v) yields a short cycle for edge (r, v).

While computing a parsimonious shortest path tree Tr in O(m + n log n) time, in
the same bound we can compute and store in each vertex x the following information:

• δ(x): the distance from r to x ;
• k(x): the number of edges from G\S′ in the (shortest) path from r to x in Tr ;
• apex(x): the vertex such that (r, apex(x)) is the first edge in the (shortest) path
from r to x in Tr ;

• p(x): the vertex immediately before x in the (shortest) path from r to x in Tr .

We are now ready to complete the low-level details of Algorithm
ResilientSpanner of Fig. 4 by showing how to implement Algorithm
ParsimoniousCycles, whose pseudo-code is illustrated in Fig. 6. We first sketch
themain ideas behind the algorithm.We are given the current spanner S′, a vertex r , and
the set Er of σ -fragile edges incident to r . In the following, we denote by πv a single-
cross backup path for (r, v). The objective of Algorithm ParsimoniousCycles
is to compute πv for each vertex v such that (r, v) ∈ Er . By Lemma 10, πv must be
of the form πv = π(r, y) · (y, z) · π(z, v), where π(u, w) denotes the unique path
between vertices u and w in Tr , and (y, z) is an edge in G\Tr with apex(y) �= v and
apex(z) = v. To compute πv , it thus suffices to identify such an edge (y, z) in G\Tr ,
so that the following two properties hold:

(1) The path πv = π(r, y) · (y, z) · π(z, v) is a shortest path in G\(r, v). Note that
the weight of the path π(r, y) · (y, z) · π(z, v) can be computed in constant time
as (δ(y) + w(y, z) + (δ(z) − w(r, v))).

(2) Among all shortest paths between r and v inG\(r, v), πv has the smallest number
of edges from G\S′. Note that the number of edges from G\S′ in π(r, y) · (y, z) ·
π(z, v) can be computed in constant time as (k(y) + k(z)) if (y, z) ∈ S′, and as
(k(y) + k(z) + 1) otherwise.

Having this in mind, Algorithm ParsimoniousCycles works as follows. It
stores in best(v) the currently best single-cross backup path computed for each edge
(r, v) ∈ Er , where best(v) is initialized in Lines 2–3 of Fig. 6. Next, the algorithm
scans all edges (y, z) in G\Tr such that (r, apex(z)) ∈ Er , as illustrated in Lines
4–5. Note that apex(y) �= apex(z) is further checked on Line 5, since by Lemma 10
when apex(y) = apex(z) then the edge (y, z) cannot be in a single-cross backup
path. Otherwise, the edge (y, z) can potentially induce a single-cross backup path
γ = π(r, y) · (y, z) ·π(z, apex(z)) for edge (r, apex(z)): if γ improves the previously
known value for best(apex(z)), then best(apex(z)) gets updated in Line 8. At the end
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Algorithm ParsimoniousCycles(G, S , r, Er)
input:

graph G,
t-spanner S of G,
the root vertex r,
the set Er of σ-fragile edges in S incident to r

output:
a set of short cycles, one for each edge in Er

1. compute a parsimonious shortest path tree Tr

2. for each v such that (r, v) ∈ Er

3. set the current backup path best(v) = ∅
4. for each y ∈ V \ r
5. for each edge (y, z) ∈ G \ Tr with apex(y) = apex(z) and such that (r, apex(z)) ∈ Er

6. let γ = π(r, y) · (y, z) · π(z, apex(z)) /* where · denotes path concatenation */
7. if path γ improves over best(apex(z))
8. best(apex(z)) = γ
9. let Cr = ∅
10. for each v such that (r, v) ∈ Er

11. Cr = Cr ∪ {best(v) ∪ (r, v)}
12. return Cr

Fig. 6 Algorithm ParsimoniousCycles

of the loop in Lines 4–8, the algorithm has computed πv = best(v) for all edges
(r, v) ∈ Er . On Lines 9–11 it returns the corresponding short cycles.

The next theorem shows that the set of short cycles computed in Algorithm
ResilientSpanner by the n calls to ParsimoniousCycles yields a parsi-
monious sequence (of short cycles).

Theorem 11 There exists an ordering of the short cycles computed by Algorithm
ResilientSpanner so that the resulting sequence is parsimonious.

Proof Let r1, r2, . . . , rn be the order in which the vertices in G are considered as
roots by Algorithm ResilientSpanner (on Line 2 in Fig. 4). For each root ri ,
with 1 ≤ i ≤ n, let Eri be the set of σ -fragile edges incident to ri in the original
spanner S. Note that Algorithm ResilientSpanner computes a short cycle Ci, j

for each edge (ri , vi, j ) ∈ Eri , with 1 ≤ j ≤ |Eri |. Moreover, the short cycle Ci, j

consists of a single-cross backup path for edge (r, vi, j ) and the edge (ri , vi, j ) itself.
To prove the theorem, we show that the sequence of short cycles, Ci, j , for 1 ≤ i ≤ n
and 1 ≤ j ≤ |Eri |, sorted lexicographically by increasing (i, j), is parsimonious.

Let Ci, j and Ci ′, j ′ be any two short cycles in this sequence that share two vertices,
with the pair (i ′, j ′) preceding pair (i, j) lexicographically. We now distinguish two
cases, depending on whether (i ′ < i) or (i ′ = i and j ′ < j).

Case i ′ < i : when cycleCi, j is computedbyAlgorithmParsimoniousCycles,
all the edges in Ci ′, j ′ are already in the current spanner S′. Recall that Ci, j is a
short cycle for edge (ri , vi, j ), and let (y, z) be the unique edge in Ci, j that does
not belong to Tri . By Lemma 10, the short cycle Ci, j consists of the edge (y, z)
plus two subpaths in Tri : a path π1 from ri to y and a path π2 consisting of edge
(ri , vi, j ) followed by a path from vi, j to z (see Fig. 7). If Ci, j and Ci ′, j ′ share two
vertices a and b, two cases may occur: either a and b are in the same subpath or
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they are in two different subpaths of Ci, j . Furthermore, since both Ci, j and Ci ′, j ′
are short cycles, the portion of Ci, j from a to b must have the same weight as the
portion of Ci ′, j ′ from a to b. We now consider the two cases separately.
In the first case, assume without loss of generality that both a and b are in π1 (see
Fig. 7a). Note that at this point the portion of the cycle Ci ′, j ′ between a and b is
already contained in S′. Since Tri is a parsimonious shortest path tree, the subpath
π1 in Tri must contain the minimum number of edges in G\S′, which implies
that also the portion of the subpath π1 between a and b must be contained in S′
(i.e., cycles Ci ′, j ′ and Ci, j satisfy the condition for being part of a parsimonious
sequence).
In the second case, assume without loss of generality that a is in π1 and b is
in π2 (see Fig. 7b). Once again, at this point the portion of the cycle Ci ′, j ′
between a and b is already contained in S′. When Ci, j is computed by Algorithm
ParsimoniousCycles, the portion of Ci, j between a and b passing through
edge (y, z) must be contained in S′ (otherwise the portion of Ci ′, j ′ between a to b
would have produced a cycle with the same weight and fewer edges ofG\S′). Once
again, cycles Ci ′, j ′ and Ci, j satisfy the condition for being part of a parsimonious
sequence.

Case i ′ = i and j ′ < j : cycles Ci, j and Ci, j ′ are computed during the same
call of Algorithm ParsimoniousCycles from a root ri . Since Algorithm
ParsimoniousCycles computes single-cross backup paths, each short cycle
produced passes through the root ri and traverses exactly two subtrees of ri . We
observe that if Ci, j and Ci, j ′ do not share any subtree, then they can intersect only
at the root ri . Hence, only the following two cases are possible for short cycles Ci, j

and Ci ′, j ′ intersecting at two vertices:

• Ci, j andCi, j ′ are contained in the same two subtrees: this case is shown in Fig. 8a.
The intersection among cycles Ci, j and Ci, j ′ is the path in Tri joining the lowest
common ancestor a of y and z′ and the lowest common ancestor b of y′ and z,
where (y, z) (resp., (y′, z′)) is the cross edge for Ci, j (resp., Ci, j ′ ). In this case,
any relative ordering among Ci, j and Ci, j ′ produces a parsimonious sequence.

• Ci, j and Ci, j ′ share one subtree: this case is shown in Fig. 8b. Also in this case,
cycles Ci, j and Ci, j ′ share exactly a path, namely the path between the root ri and
the lowest common ancestor of z and y′. The same argument as in the previous
case applies. �	
The following theorems bound the running time of Algorithm

ResilientSpanner and the number of edges in the computed σ -resilient t-
spanner.

Theorem 12 Algorithm ResilientSpanner runs in O(mn+n2 log n) time in the
worst case.

Proof We first bound the time required by Algorithm ParsimoniousCycles in
Fig. 4. The parsimonious shortest path tree Tr in Line 1 can be computed by a slight
modification of Dijkstra’s shortest path algorithm in O(m + n log n) worst case time,
together with the auxiliary information about δ(x), k(x), apex(x) and p(x) for each
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(a) (b)

Fig. 7 Proof of Theorem 11. Case i ′ < i

(a) (b)

Fig. 8 Proof of Theorem 11. Case i ′ = i

vertex x ∈ Tr . Using this auxiliary information, each edge (y, z) can be processed
in constant time in Lines 5–8. This implies that the total time spent through the loop
in Lines 4–8 is bounded by O(m). Also the time spent in the initialization (Lines
2–3) and for returning all short cycles (Lines 9–12) is O(m). As a result, each call to
Algorithm ParsimoniousCycles can be implemented in time O(m + n log n) in
the worst case.

We now turn to Algorithm ResilientSpanner of Fig. 6. As it was previously
mentioned, all the σ -fragile edges (Lines 2–3) can be computed in O(mn + n2 log n)

worst-case time by usingBrandes’ algorithm for computing shortcut values [19]. Since
each call to Algorithm ParsimoniousCycles requires O(m+n log n)worst-case
time, the overall running time of the algorithm is O(mn + n2 log n) in the worst case.

�	
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Theorem 13 Let G be a graph with n vertices, with positive edge weights in
[wmin, wmax], and let W = wmax

wmin
. Algorithm ResilientSpanner computes a σ -

resilient t-spanner R of G, σ ≥ t , with R ⊇ S, containing O
(
W · n3/2) edges.

Proof ByTheorem6, the subgraph R computedbyAlgorithmResilientSpanner
is a σ -resilient t-spanner of G, since it is obtained by adding a parsimonious sequence
C of short cycles to a t-spanner S, one for each σ -fragile edge e in S.

Let Ce be the cycle in �e(G) added to the spanner, and let S(n) be the number of
edges in S. We partition σ -fragile edges e ∈ S into three subsets, E	, Em and Eh ,
according to their fragility in G. For each subset we separately bound the number of
edges in the union of cycles in C.
Low fragility edges: E	 = {

e ∈ S | σ < fragG(e) ≤ 5
}
. By Theorem 8, we have

|E	| = O

(
min

{
S(n), n

1+ 1⌊
σ+1
2

⌋ })
= O

(
n
1+ 1⌊

σ+1
2

⌋ )
,

Thus, if 3 ≤ σ < 5 we have |E	| = O
(
min

{
S(n), n3/2

})
, while E	 = ∅ for

σ > 5. Let e be any edge in E	. Since fragG(e) ≤ 5, cycle Ce contains at most
5W + 1 edges (Ce contains exactly fragG(e) · W + 1 edges when w(e) = wmax
and all other edges in Ce have weight wmin). So, we have∣∣∣∣∣∣

⋃
e∈E	

Ce

∣∣∣∣∣∣
= O

(
W · n3/2

)
for 3 ≤ σ < 5,

while
∣∣∣⋃e∈E	

Ce

∣∣∣ = 0 for σ ≥ 5;

Medium fragility edges: Em = {
e ∈ S | 5 < fragG(e) < log n

}
. By Theorem 8,

since the fragility of each edge in Em is greater than max {σ, 5}, then

|Em | = O
(
min

{
S(n), n1+

1
�(σ+1)/2� , n

4
3

})
= O

(
min

{
n1+

1
�(σ+1)/2� , n

4
3

})
.

Each cycle Ce, with e ∈ Em , contains at most log n · W + 1 edges, so we have

∣∣∣∣∣∣
⋃
e∈Em

Ce

∣∣∣∣∣∣
= O

(
W · log n · min

{
n1+

1
�(σ+1)/2� , n

4
3

})

High fragility edges: Eh = {
e ∈ S | fragG(e) ≥ log n

}
. By Theorem 8, |Eh | =

O
(
n1+

2
log n

)
= O(n), and by Theorem 9 we have

∣∣∣∣∣∣
⋃
e∈Eh

Ce

∣∣∣∣∣∣
= O

(
n · √|Eh |

)
= O

(
n

3
2

)
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The total number of edges in R depends on values of σ and W :

• for 3 ≤ σ < 5
the number of edges is O

(
W · n 3

2

)
;

• for 5 ≤ σ < log n and W = �
((

n
1
2− 1

�(σ+1)/2�
)

/ log n
)

the number of edges is O
(
W · log n · n1+ 1

�(σ+1)/2�
)
;

• for σ ≥ log n, or σ ≥ 5 and W = O
((

n
1
2− 1

�(σ+1)/2�
)

/ log n
)

the number of edges is O
(
n

3
2

)
.

�	
Note that, in the case of unweighted graphs, the number of edges in R is always
O

(
n3/2

)
. Thanks to Corollary 7, Algorithm ResilientSpanner can also be used

to compute a σ -resilient (α, β)-spanner R of an unweighted graph, for any σ ≥ α+β,
containing O

(
n3/2

)
edges in the worst case.

5 Conclusions and Open Problems

In this paper, we have investigated a new notion of resilience in graph spanners by
introducing the concept of σ -resilient spanners. In particular, we have shown that it is
possible to compute small stretch σ -resilient spanners of optimal size for graphs with
small positive edge weights.

The techniques introduced for small stretch σ -resilient t-spanners can be used to
turn any generic spanner (e.g., a fault-tolerant spanner, or, in the unweighted case, an
(α, β)-spanner, for σ ≥ α + β > 3) into a σ -resilient spanner, by adding a suitably
chosen set of at most O(W · n3/2) edges (that is, O(n3/2) in the unweighted case).

Note that our upper bound on the size of σ -resilient spanners does not depend on σ ,
while the construction shows that the size decreases as σ increases. This leaves open
the question of whether an improved analysis may yield better bounds for σ > 3. We
expect that in practice our σ -resilient t-spanners, for σ ≥ t > 3, will be substantially
sparser than what it is implied by Theorem 13, and thus of higher value in applicative
scenarios. Towards this aim, we plan to perform a thorough experimental study. It
also remains an open question whether σ -resilient spanners of weighted graphs exist
whose size does not depend on edge weights.

The concept of fragility can be naturally extended to vertices. In this framework,
the study of vertex resilient spanners deserves further investigation.
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