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Abstract We present the first approximate distance oracle for sparse directed net-
works with time-dependent arc-travel-times determined by continuous, piecewise
linear, positive functions possessing the FIFO property. Our approach precomputes
(1+ ε)-approximate distance summaries from selected landmark vertices to all other
vertices in the network. Our oracle uses subquadratic space and time preprocessing,
and provides two sublinear-time query algorithms that deliver constant and (1 + σ)-
approximate shortest-travel-times, respectively, for arbitrary origin–destination pairs
in the network, for any constant σ > ε. Our oracle is based only on the sparsity of the
network, along with two quite natural assumptions about travel-time functions which
allow the smooth transition towards asymmetric and time-dependent distance metrics.
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1 Introduction

Distance oracles are succinct data structures encoding shortest path information among
a carefully selected subset of pairs of vertices in a graph. The encoding is done in such
a way that the oracle can efficiently answer shortest path queries for arbitrary origin–
destination pairs, exploiting the preprocessed data and/or local shortest path searches.
A distance oracle is exact (resp. approximate) if the returned distances by the accom-
panying query algorithm are exact (resp. approximate). A bulk of important work (e.g.,
[2,27,28,32,34–36]) is devoted to constructing distance oracles for static (i.e., time-
independent), mostly undirected networks in which the arc-costs are fixed, providing
trade-offs between the oracle’s space and query time and, in case of approximate ora-
cles, also of the stretch (maximum ratio, over all origin–destination pairs, between the
distance returned by the oracle and the actual distance). For an overview of distance
oracles for static networks, the reader is referred to [31] and references therein.

1.1 Problem Setting and Motivation

Inmany real-world applications, the arc costsmay vary as functions of time (e.g., when
representing travel-times) giving rise to time-dependent network models. A striking
example is route planning in road networks where the travel-time for traversing an
arc a = uv (modelling a road segment) depends on the temporal traffic conditions
while traversing uv, and thus on the departure time from its tail u. Consequently, the
optimal origin–destination path may vary with the departure-time from the origin.
Apart from the theoretical challenge, the time-dependent model is also much more
appropriate with respect to the historic traffic data that the route planning vendors have
to digest, in order to provide their customers with fast route plans. To seewhy it is more
appropriate, consider, for example, TomTom’s LiveTraffic service1 which provides
real-time estimations of average travel-time values, collected by periodically sampling
the average speed of each road segment in a city, using the cars connected to the service
as sampling devices. The crux is how to exploit all this historic traffic information,
in order to efficiently provide route plans that will adapt to the departure-time from
the origin. A customary way towards this direction is to consider the continuous
piecewise linear (pwl) interpolants of these sample points as arc-travel-time functions
of the corresponding instance.

Computing a time-dependent shortest path for a triple (o, d, to) of an origin o, a
destination d and a departure-time to from the origin, has been studied extensively
(see e.g., [6,14,26]). The shape of arc-travel-time functions and the waiting policy at
verticesmay considerably affect the tractability of the problem [26]. A crucial property
is the FIFO property, according to which each arc-arrival-time at the head of an arc is
a non-decreasing function of the departure-time from the tail. If waiting-at-vertices is
forbidden and the arc-travel-time functions may be non-FIFO, then subpath optimality
and simplicity of shortest paths is not guaranteed [26]. Thus, even if it exists, an optimal
route is not computable by (extensions of) well known techniques, such as Dijkstra

1 http://www.tomtom.com/livetraffic/.
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or Bellman–Ford. Additionally, many variants of the problem are also NP-hard [30].
On the other hand, if arc-travel-time functions possess the FIFO property, then the
problem can be solved in polynomial time by a straightforward variant of Dijkstra’s
algorithm (TDD), which relaxes arcs by computing the arc costs “on the fly”, when
scanning their tails. This has been first observed in [14], where the unrestricted waiting
policy was (implicitly) assumed for vertices, along with the non-FIFO property for
arcs. The FIFO property may seem unreasonable in some application scenarios, e.g.,
when travellers at the dock of a train station wonder whether to take the very next slow
train towards destination, or wait for a subsequent but faster train.

Our motivation in this work stems from route planning in urban-traffic road net-
works where the FIFO property seems much more natural, since all cars are assumed
to travel according to the same (possibly time-dependent) average speed in each road
segment, and overtaking is not considered as an option when choosing a route plan.
Indeed, the raw traffic data for arc-travel-time functions by TomTom for the city of
Berlin are compliant with this assumption [15]. Additionally, when shortest-travel-
times are well defined and optimal waiting-times at nodes always exist, a non-FIFO
arc with unrestricted-waiting-at-tail policy is equivalent to a FIFO arc in which wait-
ing at the tail is not beneficial [26]. Therefore, our focus in this work is on networks
with FIFO arc-travel-time functions.

1.2 Related Work and Main Challenge

The study of shortest paths is one of the cornerstone problems in Computer Science
and Operations Research. Apart from the well-studied case of instances with static
arc weights, several variants towards time-evolving instances have appeared in the
literature. We start by mentioning briefly the most characteristic attempts regarding
non time-dependent models, and subsequently we focus exclusively on related work
regarding time-dependent shortest path models.

In the dynamic shortest path problem (e.g., [13,19,29,33]), the arcs are allowed
to be inserted to and/or deleted from the graph in an online fashion. The focus is on
maintaining and efficiently updating a data structure representing the shortest path
tree from a single source, or at least supporting fast shortest path queries between
arbitrary vertices, in response to these changes. The main difference with the problem
we study is exactly the online fashion of the changes in the characteristics of the
graph metric. In temporal networks (e.g., [3,18,21]), each arc comes with a vector
of discrete arc-labels determining the time-slots of its availability. The goal is then
to study the reachability and/or computation of shortest paths for arbitrary pairs of
vertices, given that the chosen connecting path must also possess at least one non-
decreasing subsequence of arc-labels, as we move from the origin to the destination.
This problem is indeed a special case of the time-dependent shortest paths problem,
in the sense that the availability patterns may be encoded as distance functions which
switch between a finite and an infinite traversal cost. Typically these problems do not
possess the FIFO property, but one may exploit the discretization of the time axis,
which essentially determines the complexity of the instance to solve. In the stochastic
shortest path problem (e.g., see [5,24,25]) the uncertainty of the arcweights ismodeled
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by considering them as random variables. The goal is again the computation of paths
withminimum expected weight. This is also a hard problem, but in the time-dependent
shortest path there is no uncertainty on the behavior of the arcs. In the parametric
shortest path problem, the graph comes with two distinct arc-weight vectors. The
goal is to determine a shortest path with respect to any possible linear combination
of the two weight vectors. It is well known [22] that a shortest od-path may change
|V |Ω(|V |) times as the parameter of the linear combination changes. An upper bound of
atmost |V |O(|V |) is alsowell-known [17]. Themain differencewith the time-dependent
shortest path problem studied in the presentwork is that, when computing path lengths,
rather than (essentially) composing the arrival-time functions of the constituent arcs,
in the parametric shortest path problem the arc-lengths are simply added.

Until recently, most of the previous work on the time-dependent shortest path
problem concentrated on computing an optimal origin–destination path providing
the earliest-arrival time at destination when departing at a given time from the origin,
and neglected the computational complexity of providing succinct representations of
the entire earliest-arrival-time functions, for all departure-times from the origin. Such
representations, apart from allowing rapid answers to several queries for selected
origin–destination pairs but for varying departure times, would also be valuable for
the construction of distance summaries (a.k.a. route planning maps, or search profiles)
from central vertices (e.g., landmarks or hubs) towards other vertices in the network,
providing a crucial ingredient for the construction of distance oracles to support real-
time responses to arbitrary queries (o, d, to) ∈ V × V × R.

The complexity of succinctly representing earliest-arrival-time functions was first
questioned in [7–9], but was solved only recently by a seminal work [16] which, for
FIFO-abiding pwl arc-travel-time functions, showed that the problem of succinctly
representing such a function for a single origin–destination pair has space-complexity
(1 + K ) · nΘ(log n), where n is the number of vertices and K is the total number of
breakpoints (or legs) of all the arc-travel-time functions. Polynomial-time algorithms
(or even PTAS) for constructing point-to-point (1+ε)-approximate distance functions
are provided in [10,16], delivering point-to-point travel-time values at most 1+ε times
the true values. Such approximate distance functions possess succinct representations,
since they require only O(1 + K ) breakpoints per origin–destination pair. It is also
easy to verify that K could be substituted by the number K ∗ of concavity-spoiling
breakpoints of the arc-travel-time functions (i.e., breakpoints at which the arc-travel-
time slopes increase).

To the best of our knowledge, the problem of providing distance oracles for
time-dependent networks with provably good approximation guarantees, small
preprocessing-space complexity and sublinear query time complexity, has not been
investigated so far. Due to the hardness of providing succinct representations of
exact shortest-travel-time functions, the only realistic alternative is to use approx-
imations of these functions for the distance summaries that will be preprocessed
and stored by the oracle. Exploiting a PTAS (such as that in [16]) for com-
puting approximate distance functions, one could provide a trivial oracle with
query-time complexity Q ∈ O(log log(K ∗)), at the cost of an exceedingly high
space-complexity S ∈ O((1 + K ∗) · n2), by storing succinct representations of all
the point-to-point (1 + ε)-approximate shortest-travel-time functions. At the other
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extreme, one might use the minimum possible space complexity S ∈ O(n + m + K )

for storing the input, at the cost of suffering a query-time complexity Q ∈
O(m + n log(n)[1 + log log(1 + Kmax)]) (i.e., respond to each query by runningTDD
in real-time using a predecessor search structure for evaluating pwl functions).2 The
main challenge considered in this work is to smoothly close the gap between these two
extremes, i.e., to achieve a better (e.g., sublinear) query-time complexity, while con-
suming smaller space-complexity (e.g., o

(
(1 + K ∗) · n2)) for succinctly representing

travel-time functions, and enjoying a small (e.g., close to 1) approximation guarantee
(stretch factor).

1.3 Our Contribution

We have successfully addressed the aforementioned challenge by presenting the first
approximate distance oracle for sparse directed graphswith time-dependent arc-travel-
times, which achieves all these goals. Our oracle is based only on the sparsity of the
network, plus two assumptions of travel-time functions which are quite natural for
route planning in road networks (cf. Assumptions 1 and 2 in Sect. 2). It should be
mentioned that: (i) even in static undirected networks, achieving a stretch factor below
2 using subquadratic space and sublinear query time, is possible onlywhenm ∈ o

(
n2
)
,

as it has been recently shown [2,28]; (ii) there is important applied work [4,11,12,23]
to develop time-dependent shortest path heuristics, which however provide mainly
empirical evidence on the success of the adopted approaches.

At a high level, our approach resembles the typical ones used in static andundirected
graphs (e.g., [2,28,34]): Distance summaries from selected landmarks are precom-
puted and stored so as to support fast responses to arbitrary real-time queries by
growing small distance balls around the origin and the destination, and then closing
the gap between the prefix subpath from the origin and the suffix subpath towards
the destination. However, it is not at all straightforward how this generic approach
can be extended to time-dependent and directed graphs, since one is confronted with
two highly non-trivial challenges: (i) handling directedness, and (ii) dealing with time-
dependence, i.e., deciding the arrival-times to grow balls around vertices in the vicinity
of the destination, because we simply do not know the earliest-arrival-time at destina-
tion – actually, this is what the original query to the oracle asks for. A novelty of our
query algorithms, contrary to other approaches, is exactly that we achieve the approx-
imation guarantees by growing balls only from vertices around the origin. Managing
this was a necessity for our analysis since growing balls around vertices in the vicinity
of the destination at the right arrival-time is essentially not an option.

Our specific contribution is as follows. Let U be the worst-case number of break-
points for an (1+ε)-approximation of a concave distance function stored in our oracle,
and let T DP be themaximumnumber of time-dependent shortest path probes required
for their construction. Then, we are able to construct a distance oracle that efficiently
preprocess (1+ε)-approximate distance functions from a set of landmarks, which are
uniformly and independently selected with probability ρ, to all other vertices, in order

2 Kmax denotes the maximum number of breakpoints in an arc-travel-time function.
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Table 1 Our main result (third row) and its comparison to the straightforward oracles with all-to-all
preprocessing and no preprocessing at all, for a given approximation guarantee 1 + ε of the preprocessed
data

What is preprocessed Preproc. space Preproc. time Query time

All-To-All O
(
(K ∗ + 1)n2U

)
O
⎛

⎝
n2 log(n)

· log log(Kmax)

·(K ∗ + 1)T DP

⎞

⎠ O(log log(K ∗)
)

Nothing O(n + m + K ) O(1) O
(

n log(n)·
log log(Kmax)

)

Landmarks-To-All
[This paper]

O
(
ρn2(K ∗ + 1)U

)
O
⎛

⎝
ρn2 log(n)

· log log(Kmax)

·(K ∗ + 1)T DP

⎞

⎠ O
( (

1
ρ

)r+1 · log
(
1
ρ

)

· log log(Kmax)

)

Kmax ∈ O(1)
ρ = n−a ,

U, T DP ∈ O(1)
K ∗ ∈ O(polylog(n))

Õ
(
n2−a

)
Õ
(
n2−a

)
O
(
n(r+1)a

)

The fourth row presents an explicit trade-off among preprocessing time/space and query time. Õ( ) hides
polylogarithmic factors

to provide real-time responses to arbitrary queries via a recursive query algorithm of
recursion depth (budget) r . The specific expected preprocessing and query bounds of
our oracle are presented in Table 1 (3rd row) along with a comparison with the best
previous approaches (straightforward oracles).

Our oracle guarantees a stretch factor of 1+ε
(1+ ε

ψ
)r+1

(1+ ε
ψ

)r+1−1
,whereψ is a fixed constant

depending on the characteristics of the arc-travel-time functions, but is independent of
the network size. As it is proved in Theorem 1 (Sect. 3),U and T DP are independent
of the network size n and thus we can treat them as constants. Similarly, Kmax (which
is also part of the input) is considered to be independent of the network size. But
even if it was the case that Kmax ∈ Θ(K ), this would only have a doubly-logarithmic
multiplicative effect in the preprocessing-time and query-time complexities, which
is indeed acceptable. Regarding the number K ∗ of concavity-spoiling breakpoints
of arc-travel-time functions, note that if all arc-travel-time functions are concave,
i.e., K ∗ = 0, then we clearly achieve subquadratic preprocessing space and time
for any ρ ∈ O(n−α

)
, where 0 < α < 1

r+1 . Real data (e.g., TomTom’s traffic data
for the city of Berlin [15]) demonstrate that: (i) only a small fraction of the arc-
travel-time functions exhibit non-constant behavior; (ii) for the vast majority of these
non-constant-delay arcs, the arc-travel-time functions are either concave, or can be
very tightly approximated by a typical concave bell-shaped pwl function. It is thus
only a tiny subset of critical arcs (e.g., bottleneck-segments in a large city) for which
it would be indeed meaningful to consider also non-concave behavior. Our analysis
guarantees that,when K ∗ ∈ o(n), one canfine-tune the parameters of the oracles so that
both sublinear query times and subquadratic preprocessing space can be guaranteed.
For example, assuming K ∗ ∈ O(polylog(n)), we get the trade-off presented in the 4th
row of Table 1. We also note that, apart from the choice of landmarks, our algorithms
are deterministic.
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The rest of the paper is organized as follows. Section 2 gives the ingredients and
presents an overview of our approach. Section 3 presents our preprocessing algorithm.
Our constant approximation query algorithm is presented in Sect. 4, while our PTAS
query algorithm is presented in Sect. 5. Our main results are summarized in Sect. 6.
The details on how to compute the actual path from the approximate distance values
are presented in Sect. 7. We conclude in Sect. 8. A preliminary version of this work
appeared as [20].

2 Ingredients and Overview of Our Approach

2.1 Notation

Our input is provided by a network (directed graph) G = (V, A) with n vertices
and m = O(n) arcs. Every arc uv ∈ A is equipped with a periodic, continuous,
piecewise-linear (pwl) arc-travel-time (a.k.a. arc-delay) function D[uv] : R → R>0,
such that ∀k ∈ Z,∀tu ∈ [0, T ), D[uv](k · T + tu) = D[uv](tu) is the arc-travel-time
of uv when the departure-time from u is k · T + tu . D[uv] is represented succinctly
as a continuous pwl function, by Kuv breakpoints describing its projection to [0, T ).
K = ∑

uv∈A Kuv is the number of breakpoints to represent all the arc-delay functions
in the network, and Kmax = maxuv∈A Kuv . K ∗ is the number of concavity-spoiling
breakpoints, i.e., the ones in which the arc-delay slopes increase. Clearly, K ∗ ≤ K ,
and K ∗ = 0 for concave pwl functions. The space to represent the entire network is
O(n + m + K ).

The arc-arrival function Arr [uv](tu) = tu + D[uv](tu) represents arrival-times
at v, depending on the departure-times tu from u. Note that we can express the same
delay function of an arc a = uv as a function of the arrival-time tv = tu +D[uv](tu) at
the head v. This is specifically useful when we need to work with the reverse network
(
←−
G = (V, A, (

←−
D [a])a∈A), where

←−
D [uv] is the delay of arc a = uv, measured now

as a function of the arrival-time tv at v. For instance, consider an arc a = uv with
D[uv](tu) = tu + 1, 0 ≤ tu ≤ 3. Then, tv = 2tu + 1 and 1 ≤ tv ≤ 7. Now, the
same delay function can be expressed as a function of tv as

←−
D [uv](tv) = tv − tu =

tv − tv−1
2 = tv+1

2 , for 1 ≤ tv ≤ 7.
For any (o, d) ∈ V × V , Po,d is the set of od-paths, and P = ∪(o,d)Po,d . For a

path p ∈ P , px�y is its subpath from (the first appearance of) vertex x until (the
subsequent first appearance of) vertex y. For any pair of paths p ∈ Po,v and q ∈ Pv,d ,
p • q is the od-path produced as the concatenation of p and q at v.

For any path (represented as a sequence of arcs) p = 〈a1, a2, · · · , ak〉 ∈ Po,d ,
the path-arrival function is the composition of the constituent arc-arrival func-
tions: ∀to ∈ [0, T ), Arr [p](to) = Arr [ak](Arr [ak−1](· · · (Arr [a1](to)) · · · )). The
path-travel-time function is D[p](to) = Arr [p](to) − to. The earliest-arrival-time
and shortest-travel-time functions from o to d are: ∀to ∈ [0, T ), Arr [o, d](to) =
minp∈Po,d {Arr [p](to)} and D[o, d](to) = Arr [o, d](to) − to. Finally, SP[o, d](to)
(resp. ASP[o, d](to)) is the set of shortest (resp., with stretch-factor at most (1 + ε))
od-paths for a given departure-time to.
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2.2 Facts of the FIFO Property

We consider networks (G = (V, A), (D[a])a∈A)with continuous arc-delay functions,
possessing the FIFO (a.k.a. non-overtaking) property, according to which all arc-
arrival-time functions are non-decreasing:

∀tu, t ′u ∈ R, ∀uv ∈ A, tu > t ′u ⇒ Arr [uv](tu) ≥ Arr [uv](t ′u) (1)

The FIFO property is strict, if the above inequality is strict. The following properties
(Lemmata 1–3), are, perhaps, more-or-less known. We state them here and provide
their proofs only for the sake of completeness.

Lemma 1 (FIFO Property and Arc-Delay Slopes) If the network satisfies the (strict)
FIFO property then any arc-delay function has left and right derivatives with values
at least (greater than) −1.

Proof Observe that, by the FIFO property: ∀a ∈ A,∀tu ∈ R,∀δ > 0,

Arr [a](tu) ≤ Arr [a](tu + δ) ⇔ tu + D[a](tu) ≤ tu + δ + D[a](tu + δ)
/∗ δ>0 ∗/⇔ D[a](tu + δ) − D[a](tu)

δ
≥ −1

This immediately implies that the left and right derivatives of D[a] are lower bounded
(strictly, in case of strict FIFO property) by −1. ��

It is easy to verify that the FIFO property also holds for arbitrary path-arrival-time
functions and earliest-arrival-time functions.

Lemma 2 (FIFO Property for Paths) If the network satisfies the FIFO property, then
∀p ∈ P,∀t1 ∈ R,∀δ > 0, Arr [p](t1) ≤ Arr [p](t1 + δ) . In case of strict FIFO
property, the inequality is also strict. The (strict)monotonicity holds also for Arr [o, d].
Proof To prove the FIFO property for a path p = 〈a1, . . . , ak〉 ∈ P , we use a simple
inductive argument on the prefixes of p, based on a recursive definition of path-arrival-
time functions. ∀1 ≤ i ≤ j ≤ k, let pi, j be the subpath of p starting with the i th arc
ai and ending with the j th arc a j in order. Then:

Arr [p1,k](to)
= to + D[p1,k](to) = to + D[p1,1](to)︸ ︷︷ ︸

=Arr [p1,1](to)
+D[p2,k](to + D[p1,1](to))

= Arr [p2,k]
(
Arr [p1,1](to)

) = (
Arr [p2,k] ◦ Arr [p1,1]

)
(to) = · · ·

= (Arr [ak] ◦ · · · ◦ Arr [a1]) (to) (2)

The composition of non-decreasing (increasing) functions is well known to also
be non-decreasing (increasing). Applying a minimization operation to produce the
earliest-arrival-time function Arr [o, d] = minp∈Po,d {Arr [p]}, preserves the same
kind of monotonicity. ��

123



1412 Algorithmica (2016) 74:1404–1434

It is well-known that in FIFO (or equivalently, non-FIFOwith unrestricted-waiting-
at-nodes) networks the crucial property of prefix-subpath optimality is preserved [14].
We strengthen this observation to the more general (arbitrary) subpath optimality, for
strict FIFO networks.

Lemma 3 (Subpath Optimality in strict FIFO Networks) If the network possesses
the strict FIFO property, then ∀(u, v) ∈ V × V,∀tu ∈ R and any optimal path
p∗ ∈ SP[u, v](tu) , it holds for every subpath q∗ ∈ Px,y of p∗ that q∗ ∈
SP[x, y](Arr [p∗

u�x ](tu)). In other words, q∗ is a shortest path between its endpoints
x, y for the earliest-departure-time from x, given tu.

Proof Let t∗x = Arr [p∗
u�x ](tu). For sake of contradiction, assume that ∃q ∈ Px,y :

D[q](t∗x ) < D[q∗](t∗x ) . Then, p = p∗
u�x •q • p∗

y�v suffers smaller delay than p∗ for
departure time tu . Indeed, let ty ≡ t∗x +D[q](t∗x ) and t∗y ≡ t∗x +D[p∗

x�y](t∗x ).Due to the
alleged suboptimality of p∗

x�y when departing at time t∗x , it holds that ty < t∗y . Then:

Arr [p](tu) = tu + D[p](tu)
= tu + D[p∗

u�x ](tu)︸ ︷︷ ︸
=t∗x

+D[q](t∗x ) + D[p∗
y�v](t∗x + D[q](t∗x ))

= t∗x + D[q](t∗x )
︸ ︷︷ ︸

=ty

+D[p∗
y�v](t∗x + D[q](t∗x )) = ty + D[p∗

y�v](ty)

< t∗y + D[p∗
y�v](t∗y ) = Arr [p∗](tu)

violating the optimality of p∗ for the given departure-time tu (the inequality is due to
the strict FIFO property of the suffix-subpath p∗

y�v). ��

Lemma 3 implies that both Dijkstra’s label setting algorithm and Bellman–Ford label-
correcting algorithmalsowork in time-dependent strict FIFOnetworks, under the usual
conventions for static instances (positivity of arc-delays for Dijkstra, and inexistence
of negative-travel-time cycles for Bellman–Ford).

In the following, we shall refer to an execution of the time-dependent Dijkstra’s
algorithm (TDD) from origin o ∈ V , with departure time to ∈ [0, T ), either as “a run
of TDD from (o, to)”, or as “growing a (TDD) ball around (or centered at) (o, to) (by
running TDD)”.

The time-complexity of TDD is slightly worse than the corresponding complexity
of Dijkstra’s algorithm in the static case, since during the relaxation of each arc the
actual arc-travel-time of the arc has to be evaluated rather than simply retrieved.
For example, if each arc-travel-time function D[uv] is periodic, continuous and pwl,
represented by at most Kmax breakpoints, then the evaluation of arc-travel-times can
be done in time O(log log(Kmax)), e.g. by using a predecessor-search structure to
determine the right leg for each function. Therefore, the time complexity for TDD
would be O([m + n log(n)] log log(Kmax)).
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2.3 Towards a Time-Dependent Distance Oracle

Our approach for providing a time-dependent distance oracle is inspired by the generic
approach for general undirected graphs under static travel-time metrics. However, we
have to tackle the two main challenges of directedness and time-dependence. Notice
that together these two challenges imply an asymmetric distance metric, which also
evolves with time. Consequently, to achieve a smooth transition from the static and
undirected world towards the time-dependent and directed world, we have to quantify
the degrees of asymmetry and evolution in our metric.

Towards this direction, we introduce some metric-related parameters which quan-
tify (i) the steepness of the shortest-travel-time functions (via the parametersΛmin and
Λmax), and (ii) the degree of asymmetry (via the parameter ζ ). We make two assump-
tions on the values of these parameters, namely, that they have constant (in particular,
independent of the network size) values. These assumptions seem quite natural in
realistic time-dependent route planning instances, such as urban-traffic metropolitan
road networks. The first assumption, called Bounded Travel-Time Slopes, asserts that
the partial derivatives of the shortest-travel-time functions between any pair of origin–
destination vertices are bounded in a given fixed interval [Λmin,Λmax].
Assumption 1 (Bounded Travel-Time Slopes) There are constants Λmin ∈ [0, 1) and
Λmax ≥ 0 s.t.: ∀(o, d) ∈ V × V, ∀t1 < t2,

D[o,d](t1)−D[o,d](t2)
t1−t2

∈ [−Λmin,Λmax] .

The lower bound −Λmin > −1 is justified by the FIFO property (cf. Lemmata 1
and 2 in Sect. 2.2). Λmax represents the maximum possible rate of change of shortest-
travel-times in the network, which only makes sense to be bounded (in particular,
independent of the network size) in realistic instances such as the ones representing
urban-traffic time-dependent road networks.

Towards justifying this assumption, we conducted an experimental analysis with
two distinct data sets. The first one is a real-world time-dependent snapshot of two
weeks traffic data of the city of Berlin, kindly provided to us by TomTom [15] (consist-
ing of n = 478,989 vertices and m = 1,134,489 arcs), in which the arc-delay functions
are the continuous, pwl interpolants of five-minute samples of the average travel-times
in each road segment. The second data set is a benchmark time-dependent instance of
Western Europe’s (WE) road network (consisting of n = 18,010,173 vertices and m =
42,188,664 arcs) kindly provided by PTV AG for scientific use. The time-dependent
arc travel time functions were generated as described in [23], reflecting a high amount
of traffic for all types of roads (highways, national roads, urban roads), all of which
posses non-constant time-dependent arc travel time functions.

We conducted 10,000 random queries (o, d, to) in the Berlin (real-world) instance,
focusing on the harder case of rush-hour departure times. We computed the approxi-
mate distance functions towards all the destinations using our one-to-all approximation
algorithm (cf. Sect. 3) with approximation guarantee ε = 0.001. Our observration was
that all the shortest-travel-time slopes wereΛmax ≤ 0.1843. That is, the travel-time on
every road segment increases at a rate of at most 18.43 % as departure time changes.
An analogous experimentation with the benchmark instance of Europe (heavy-traffic
variant), again by conducting 10,000 random queries, demonstrated shortest-travel-
time slopes at most Λmax ≤ 6.1866.
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The second assumption, called Bounded Opposite Trips, asserts that for any given
departure time, the shortest-travel-time from o to d is not more than a constant ζ ≥ 1
times the shortest-travel-time in the opposite direction (but not necessarily along the
same path).

Assumption 2 (Bounded Opposite Trips) There is a constant ζ ≥ 1 such that:
∀(o, d) ∈ V × V, ∀t ∈ [0, T ), D[o, d](t) ≤ ζ · D[d, o](t).
This is also a quite natural assumption in road networks, because it is most unlikely
that a trip in one direction would be, say, more than 10 times longer than the trip in
the opposite direction (but not necessarily along the reverse path) during the same
time period. This was also justified by the two instances at our disposal. In each
instance we uniformly selected 10,000 random origin–destination pairs and departure
times randomly chosen from the rush-hour period, which is the most interesting and
diverging case. For the Berlin-instance the resulting worst-case value was ζ ≤ 1.5382.
For the WE-instance the resulting worst-case value was ζ ≤ 1.174.

A third assumption that we make is that the maximum out-degree of every node
is bounded by 2. This can be easily guaranteed by using an equivalent network of
at most double size (number of vertices and number of arcs). This is achieved by
substituting every vertex of the original graph (V, A) with out-degree greater than 2
with a complete binary tree whose leaf-edges are the outgoing edges from v in (V, A),
and each internal level consists of a maximal number of nodes with two children from
the lower level, until a 1-node level is reached. This root node inherits all the incoming
arcs from v in the original graph. All the newly inserted arcs (except for the original
arcs outgoing from v) get zero delay functions. Figure 1 demonstrates an example
of such a substitution. For each node v ∈ G with out-degree d+(v) > 2, the node
substitution operation is executed in time O(d+(v)

)
and introduces d+(v) − 1 new

nodes and d+(v) − 2 new arcs (of zero delays). Therefore, in time O(|A|) we can
ensure out-degree at most 2 and the same time-dependent travel-time characteristics,
by at most doubling the size of the graph (

∑
v∈V :d+(v)>2(d

+(v)−1) < |A| new nodes
and

∑
v∈V :d+(v)>2(d

+(v) − 2) < |A| new arcs).

2.4 Overview of Our Approach

We follow (at a high level) the typical approach adopted for the construction of approx-
imate distance oracles in the static case. In particular, we start by selecting a subset

Fig. 1 The node substitution
operation for a vertex v ∈ V
with d+

G (v) = 5. The operation
ensures an out-degree at most 2
for all the newly inserted
vertices in place of v in the
graph. The new graph elements
(nodes and arcs) are indicated
by dashed (red) lines. The solid
(black) arcs and vertices are the
ones pre-existing in the graph
(Color figure online)
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L ⊂ V of landmarks, i.e., vertices which will act as reference points for our distance
summaries. For our oracle to work, several ways to choose L would be acceptable,
that is, we can choose the landmarks randomly among all vertices, or we can choose
as landmarks the vertices in the cut sets provided by some graph partitioning algo-
rithm. Nevertheless, for the sake of the analysis we assume that landmark selection
is done by deciding for each vertex randomly and independently with probability
ρ ∈ (0, 1) whether it belongs to L . After having L fixed, our approach is determinis-
tic.

We start by constructing (concurrently, per landmark) and storing the distance
summaries, i.e., all landmark-to-vertex (1 + ε)-approximate travel-time functions,
in time and space o

(
(1 + K ∗)n2

)
. Then, we provide two approximation algorithms

for responding to arbitrary queries (o, d, to) ∈ V × V × [0, T ). The first (FCA) is
a simple sublinear-time constant-approximation algorithm (cf. Sect. 4). The second
(RQA) is a recursive algorithm growing smallTDD outgoing balls from vertices in the
vicinity of the origin, until either a satisfactory approximation guarantee is achieved,
or an upper bound r on the depth of the recursion (the recursion budget) has been
exhausted.RQA finally responds with a (1+σ)-approximate travel-time to the query
in sublinear time, for any constant σ > ε (cf. Sect. 5). As it is customary in the
distance oracle literature, the query times of our algorithms concern the determination
of (upper bounds on) shortest-travel-time from o to d. An actual path guaranteeing
this bound can be reported in additional time that is linear in the number of its arcs
(cf. Sect. 7).

3 Preprocessing Distance Summaries

The purpose of this section is to demonstrate how to construct the preprocessed
information that will comprise the distance summaries of the oracle, i.e., all landmark-
to-vertex (1 + ε)-approximate shortest-travel-time functions.

Our focus is on instances with concave, continuous, pwl arc-delay functions pos-
sessing the strict FIFO property. If there exist K ∗ ≥ 1 concavity-spoiling breakpoints
among the arc-delay functions, then we do the following: For each of them (which is
a departure-time tu from the tail u of an arc uv ∈ A) we run a reverse variant of TDD
(going “back in time”) with root (u, tu) on the network (

←−
G = (V, A, (

←−
D [a])a∈A),

where
←−
D [uv] is the delay of arc a = uv, measured now as a function of the arrival-

time tv at the head v. The algorithm proceeds backwards both along the connecting
path (from the destination towards the origin) and in time. As a result, we compute
all latest-departure-times from landmarks that allow us to determine the images (i.e.,
projections to appropriate departure-times from all possible origins) of concavity-
spoiling breakpoints to the spaces of departure-times from each of the landmarks.
Then, for each landmark, we repeat the procedure for concave, continuous, pwl arc-
delay functions—described in the rest of this section—independently for each of the
(at most) K ∗ + 1 consecutive subintervals of [0, T ) determined by these consecutive
images of concavity-spoiling breakpoints. Within each subinterval all arc-travel-time
functions are concave, as required in our analysis.
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Wemust construct in polynomial time, for all (�, v) ∈ L×V , succinctly represented
upper-bounding (1+ε)-approximationsΔ[�, v] : [0, T ) → R>0 of the shortest-travel-
time functions D[�, v] : [0, T ) → R>0, i.e., for each (�, v) ∈ L × V we have to
compute a continuous pwl function Δ[�, v] with a constant number of breakpoints,
such that∀to ∈ [0, T ), D[�, v](to) ≤ Δ[�, v](to) ≤ (1+ε)·D[�, v](to) .Analgorithm
providing such functions in a point-to-point fashion was proposed in [16]. For each
landmark � ∈ L , it has to be executed n times so as to construct all the required
landmark-to-vertex approximate functions. The main idea of that algorithm is to keep
sampling the travel-time axis of the unknown function D[�, v] at a logarithmically
growing scale, until its slope becomes less than 1. It then samples the departure-time
axis via bisection, until the required approximation guarantee is achieved. All the
sample points (in both phases) correspond to breakpoints of a lower-approximating
function. The upper-approximating function has at most twice as many points. The
number of breakpoints returned may be suboptimal, given the required approximation
guarantee: even for an affine shortest-travel-time function with slope in (1, 2] it would
require a number of points logarithmic in the ratio of max-to-min travel-time values
from � to v, despite the fact that we could avoid all intermediate breakpoints for the
upper-approximating function.

Our solution is an improvement of the approach in [16] in three aspects:

(i) It computes concurrently all the required approximate distance functions from
a given landmark, at a cost equal to that of a single (worst-case with respect
to the given origin and all possible destinations) point-to-point approximation
of [16].

(ii) Within every subinterval of consecutive images of concavity-spoiling break-
points, it requires asymptotically optimal space per landmark, which is also
independent of the network size per landmark-vertex pair, implying that the
required preprocessing space per vertex is O(|L|). This is also claimed in [16],
but it is actually true only for their second phase (the bisection). For the first
phase of their algorithm, there is no such guarantee.

(iii) It provides an exact closed form estimation (see below) of the worst-case absolute
error, which guides our method.

In a nutshell, our approach constructs two continuous pwl-approximations of the
unknown shortest-travel-time function D[�, v] : [0, T ) → R>0, an upper-bounding
approximate function D[�, v] and a lower-bounding approximate function D[�, v].
D[�, v] plays the role of Δ[�, v]. Our construction guarantees that the exact function
is always “sandwiched” between these two approximations.

To achieve a concurrent one-to-all construction of upper-bounding approximations
from a given landmark � ∈ L , our algorithm is purely based on bisection. This is
done because the departure-time axis is common for all these unknown functions
(D[�, v])v∈V . In order for this technique to work, despite the fact that the slopes
may be greater than one, a crucial ingredient is an exact closed-form estimation of
the worst-case absolute error that we provide. This helps our construction to indeed
consider only the necessary sampling points as breakpoints of the corresponding
(concurrently constructed) shortest travel-time functions. It is mentioned that this
guarantee could also be used in the first phase of the approximation algorithm in [16],
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in order to discard all unnecessary sampling points frombeing actual breakpoints in the
approximate functions. Consequently, we start by providing the closed form estima-
tion of the maximum absolute error and then we present our one-to-all approximation
algorithm.

3.1 Absolute Error Estimation

In this section, we provide a closed form for the maximum absolute error between
the upper-approximating and the lower-approximating functions of a generic shortest-
travel-time function D within a time interval [ts, t f ) ⊆ [0, T ) that contains no other
primitive image, apart possibly from its endpoints.

For an interval [ts, t f ) ⊆ [0, T ), fix an unknown, but amenable to polynomial-time
sampling, continuous (not necessarily pwl) concave function D : [ts, t f ) → R>0,
with right and left derivative values at the endpoints Λ+(ts),Λ−(t f ). Assume that
Λ+(ts) > Λ−(t f ) and L = t f − ts > 0.

Let m = D(t f )−D(ts )+ts ·Λ+(ts )−t f ·Λ−(t f )
Λ+(ts )−Λ−(t f )

and Dm = Λ+(ts) · (m − ts) + D(ts).

Lemma 4 For an interval [ts, t f ) ⊆ [0, T ) and a concanve function D : [ts, t f ) →
R>0 defined as above, consider the affine function D passing via the points
(ts, D(ts)), (t f , D(t f )). Consider also the pwl function D with three breakpoints
(ts, D(ts)), (m, Dm), (t f , D(t f )). Then, ∀t ∈ [ts, t f ), D(t) ≤ D(t) ≤ D(t) and
the maximum absolute error (MAE) between D and D in [ts, t f ) is expressed by the
following form:

MAE(ts, t f ) = (Λ+(ts)−Λ−(t f )) · (m − ts) · (t f − m)

L
≤ L · (Λ+(ts) − Λ−(t f ))

4
.

Proof Consider the affine functions (see also Fig. 2):

y(x) = D(t f ) − D(t f )

L
· x + D(ts)t f − D(t f )ts

L
,

ys(x) = Λ+(ts) · (x − ts) + D(ts) ,

y f (x) = Λ−(t f ) · (x − t f ) + D(t f ) .

The point
(
m = D(t f )−D(ts )+ts ·Λ+(ts )−t f ·Λ−(t f )

Λ+(ts )−Λ−(t f )
, Dm = ys(m) = y f (m)

)
is the inter-

section point of the lines ys(x) and y f (x). As an upper-bounding (pwl) function of D
in [ts, t f )we consider D(t) = min{ys(t), y f (t)}, whereas the lower-bounding (affine)
function of D is D(t) = y(t).

By concavity and continuity of D, we know that the partial derivatives’ values may
only decrease with time, and at any given point in [ts, t f ) the left-derivative value is
at least as large as the right-derivative value. Thus, the restriction of D on [ts, t f ) lies
entirely in the area of the triangle {(ts, D(ts)), (m, Dm), (t f , D(t f ))}. The maximum
possible distance (additive error) of D from D is:
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ts tf

D(ts)

Dmax = D(tf)

Λ-(tf) (x-tf) + D(tf)

m

Λ+
(t s) 

(x-
t s) 

+ D
(t s)

y(m)

(a) Λ+(ts) > Λ-(tf) ≥ 0
ts tf

D(ts)

D(tf)

Dmax

Λ -(tf ) (x-tf ) + D(tf )

m

Λ+
(t s) 

(x-
t s) 

+ D
(t s)

y(m)

(b) Λ+(ts) > 0 > Λ-(tf)
ts tf

Dmax = D(ts)

D(tf)

y(m)

Λ -(tf ) (x-tf ) + D(tf )

m

Λ+(ts) (x-ts) + D(ts)

(c) 0 ≥ Λ+(ts) > Λ-(tf)

Dm

Dm Dm

Fig. 2 Three distinct cases for upper-bounding the absolute error between two consecutive interpolation
points. The maximum absolute error (MAE) considered is shown by the vertical (purple) line segment at
point m of the time axis (Color figure online)

MAE(ts, t f ) = max
ts≤t≤t f

{D(t) − D(t)}

This value is at most equal to the vertical distance of the two approximation functions,
namely, at most equal to the length of the line segment connecting the points (m, y(m))

and (m, Dm)(denoted by purple color in Fig. 2). The calculations are identical for the

three distinct cases shown in Fig. 2. Let Λ = D(t f )−D(ts )
L be the slope of the line y(x).

Observe that:

Λ = D(t f ) − D(ts)

L
= (Dm − D(ts)) − (Dm − D(t f ))

L

= m − ts
L

· Dm − D(ts)

m − ts
− t f − m

L
· Dm − D(t f )

t f − m

= m − ts
L

· Λ+(ts) + t f − m

L
· Λ−(t f ) .

Thus we have:

MAE(c, d) = Dm − y(m) = (Dm − D(ts)) − (y(m) − D(ts))

= Λ+(ts) · (m − ts) − Λ · (m − ts) = (Λ+(ts) − Λ) · (m − ts)

= (Λ+(ts) − Λ−(t f )) · (m − ts) · (t f − m)

L
≤ L · (Λ+(ts) − Λ−(t f ))

4
,

since (m − ts) + (t f − m) = t f − ts = L and the product (m − ts) · (t f − m) is

maximized at m = ts+t f
2 . ��

3.2 One-To-All Approximation Algorithm

We now present our polynomial-time algorithm which provides asymptotically
space-optimal succinct representations of one-to-all (1+ ε)-approximating functions
D[�, �] = (D[�, v])v∈V of D[�, �] = (D[�, v])v∈V , for a given landmark � ∈ L
and all destinations v ∈ V , within a given time interval in which all the travel-time

123



Algorithmica (2016) 74:1404–1434 1419

functions from � are concave. Recall our Assumption 1 concerning the boundedness
of the shortest-travel-time function slopes. Given this assumption, we are able to con-
struct a generalization of the bisection method proposed in [16] for point-to-point
approximations of distance functions, to the case of a single-origin � and all reachable
destinations from it. Ourmethod, whichwe callBISECT, computes concurrently (i.e.,
within the same bisection) all the required breakpoints to describe the (pwl) lower-
approximating functions D[�, �] = (

D[�, v])
v∈V , and finally, via a linear scan of it,

the upper-approximating functions D[�, �] = (
D[�, v])

v∈V . This is possible because
the bisection is done on the (common for all travel-time functions to approximate)
axis of departure-times from the origin �. The other crucial observation is that for each
destination vertex v ∈ V we keep as breakpoints of D[�, v] only those sample points
which are indeed necessary for the required approximation guarantee per particular
vertex, thus achieving an asymptotically optimal space-complexity of our method, as
we shall explain in the analysis of BISECT. This is possible due to our closed-form
expression for the (worst-case) approximation error between the lower-approximating
and the upper-approximating distance function, per destination vertex (cf. Lemma 4).
Moreover, all the travel-times from � to be sampled at a particular bisection point
t� ∈ [0, T ) are calculated by a single time-dependent shortest-path-tree (e.g., TDD)
execution from (�, t�).

Let the (unknown) concave travel-time function we wish to approximate be within
a subinterval [ts, t f ) ⊆ [0, T ). Let Dmin[�, v](ts, t f ) = mint∈[ts ,t f ]{D[�, v](t)}, and
Dmax[�, v](ts, t f ) = maxt∈[ts ,t f ]{D[�, v](t)}. Due to the concavity of D[�, v] in
[ts, t f ], we have that Dmin[�, v](ts, t f ) = min{D[�, v](ts), D[�, v](t f )}.

The BISECT algorithm proceeds as follows: for any subinterval [ts, t f ] ⊆ [0, T ]
we distinguish the destination vertices into active, i.e., the ones for which the desired
value ε ·Dmin[�, v](ts, t f ) of themaximum absolute error within [ts, t f ] (whose closed
form is provided by Lemma 4) has not been reached yet, and the remaining inactive.
Starting from [ts, t f ] = [0, T ], as long as there is at least one active destination vertex
for [ts, t f ], we bisect this time interval and recur on the subintervals

[
ts, (ts + t f )/2

]

and
[
(ts + t f )/2, t f

]
. Prior to recurring to the two new subintervals, every destination

vertex v ∈ V that is active for [ts, t f ] stores the bisection point (ts + t f )/2 (and the
corresponding sampled travel-time) in a list LBP[�, v] of breakpoints for D[�, v]. All
inactive vertices just ignore this bisection point. The bisection procedure is terminated
as soon as all vertices have become inactive.

Apart from the list LBP[�, v] of breakpoints for D[�, v], a linear scan of this list
allows also the construction of the list UBP[�, v] of breakpoints for D[�, v]: per
consecutive pair of breakpoints in LBP[�, v] that are added to UBP[�, v], we must
also add their intermediate breakpoint (m, Dm) toUBP[�, v] (cf. proof of Lemma 4).

In what follows, L[�, v] = |LBP[�, v]| is the number of breakpoints for D[�, v],
U [�, v] = |UBP[�, v]| is the number of breakpoints for D[�, v] and, finally,U∗[�, v]
is the minimum number of breakpoints of any (1 + ε)-upper approximating function
of D[�, v], within the time-interval [0, T ).

The following theorem summarizes the space-complexity and time-complexity
of our bisection method for providing concurrently one-to-all shortest-travel-time
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approximate travel-time functions in time-dependent instances with concave,3 con-
tinuous, pwl arc-travel-time functions, with bounded shortest-travel-time slopes.

Theorem 1 For a given � ∈ L and any v ∈ V,BISECT computes an asymptotically
optimal, independent of the network size, number of breakpoints

U [�, v] ≤ 4U∗[�, v]
≤ 4 log1+ε

(
Dmax[�, v](0, T )

Dmin[�, v](0, T )

)
∈ O

(
1

ε
log

(
Dmax[�, v](0, T )

Dmin[�, v](0, T )

))

where Dmax[�, v](0, T ) and Dmin[�, v](0, T ) denote the maximum and minimum
shortest-travel-time values from � to v within [0, T ). The number T DP of time-
dependent (forward) shortest-path-tree probes for the construction of all the lists of
breakpoints for (D[�, v])v∈V , is:

TDP ∈ O
(
maxv∈V

{
log

(
T · (Λmax + 1)

εDmin[�, v](0, T )

)}
· 1
ε

· maxv∈V
{
log

(
Dmax[�, v](0, T )

Dmin[�, v](0, T )

)})
.

Proof The time complexity of BISECT will be asymptotically equal to that of the
worst-case point-to-point bisection from � to some destination vertex v. In particular,
BISECT concurrently computes the new breakpoints for the lower-bounding approx-
imate distance functions of all the active nodes, within the same TDD-run. This is
because the departure-time axis is common for all the shortest-travel-time functions
from the common origin �. Moreover, due to being able to (exactly) calculate the
worst-case maximum absolute error per destination vertex in each interval of the
bisection, the algorithm is able to deactivate (and thus, stop producing breakpoints
for) those vertices which have already reached the required approximation guarantee.
The already deactivated node will remain so until the end of the algorithm. Never-
theless, the bisection continues as long as there exists at least one active destination
vertex.

We now bound the number of breakpoints produced by BISECT. The initial
departure-times interval to bisect is [0, T ). Assume that we are currently at an interval
[ts, t f ) ⊆ [0, T ), of length t f − ts . A new bisection halves this subinterval and creates

new breakpoints at
ts+t f
2 , one for each vertex that remains active. Thus, at the k-th

level of the recursion tree all the subintervals have length L(k) = T/2k . Since for
any shortest-travel-time function and any subinterval [ts, t f ) of departure-times from
� it holds that 0 ≤ Λ+[�, v](ts) − Λ−[�, v](t f ) ≤ Λmax + 1 (cf. Assumption 1), the
absolute error between D[�, v] and D[�, v] in this interval is (by Lemma 4) at most
L(k)·(Λmax+1)

4 ≤ T ·(Λmax+1)
2k+2 . This implies that the bisection will certainly stop at a

level kmax of the recursion tree at which for any subinterval [ts, t f ) ⊆ [0, T ) and any

3 If concavity is not ensured, then these numbers must be multiplied by 1 + K ∗, since the proposed
approximation procedure has to be repeated per subinterval of consecutive images of concavity-spoiling
breakpoints.

123



Algorithmica (2016) 74:1404–1434 1421

destination vertex v ∈ V the following holds:

MAE[�, v](ts, t f ) ≤ T · (Λmax + 1)

2kmax+2 ≤ εDmin[�, v](ts, t f ) ≤ εDmin[�, v](0, T )

From this we conclude that setting

kmax = max
v∈V

{⌈
log2

(
T · (Λmax + 1)

εDmin[�, v](0, T )

)⌉}
− 2 (3)

is a safe upper bound on the depth of the recursion tree.
On the other hand, the parents of the leaves in the recursion tree correspond to

subintervals [ts, t f ) ⊂ [0, T ) for which the absolute error of at least one vertex v ∈ V
is greater than εDmin[�, v](ts, t f ), indicating that (in worst case) no pwl (1 + ε)-
approximation may avoid placing at least one interpolation point in this subinterval.
Therefore, the proposed bisection method BISECT produces at most twice as many
interpolation points (to determine the lower-approximating vector function D[�, �])
required for any (1 + ε)-upper-approximation of D[�, �]. But, as suggested in [16],
by taking as breakpoints the (at most two) intersections of the horizontal lines (1 +
ε) j · Dmin[�, v](0, T ) with the (unknown) function D[�, v], one would guarantee
the following upper bound on the minimum number of breakpoints for any (1 + ε)-
approximation of D[�, v] within [0, T ):

U∗[�, v] ≤
⌈
log1+ε

(
Dmax[�, v](0, T )

Dmin[�, v](0, T )

)⌉
−1

Therefore, ∀v ∈ V it holds that:

L[�, v] ≤ 2 · log1+ε

(
Dmax[�, v](0, T )

Dmin[�, v](0, T )

)
(4)

The produced list UBP[�, v] of breakpoints for the (1 + ε)-upper-approximation
D[�, v] produced by BISECT uses at most one extra breakpoint for each pair of
consecutive breakpoints in LBP[�, v] for D[�, v]. Therefore, ∀v ∈ V :

U [�, v] ≤ 4 · log1+ε

(
Dmax[�, v](0, T )

Dmin[�, v](0, T )

)
∈ O

(
1

ε
log

(
Dmax[�, v](0, T )

Dmin[�, v](0, T )

))

We now proceed with the time-complexity of BISECT. We shall count the number
T DP of time-dependent shortest-path (TDSP) probes, e.g., TDD runs, to compute all
the candidate breakpoints during the entire bisection. The crucial observation is that
the bisection is applied on the common departure-time axis: In each recursive call from
[ts, t f ], all the new breakpoints at the new departure-time tmid = ts+t f

2 , to be added to
the breakpoint lists of the active vertices, are computed by a single (forward) TDSP-
probe. Moreover, for each vertex v, every breakpoint of LBP[�, v](0, T ) requires a
number of (forward) TDSP-probes that is upper bounded by the path-length leading
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to the consideration of this point for bisection, in the recursion tree. Any root-to-node
path in this tree has length at most kmax, therefore each breakpoint of LBP[�, v](0, T )

requires at most kmax TDSP-probes, to be computed. In overall, taking into account
relations (3) and (4), the total number T DP of forward TDSP probes required to
construct LBP[�, �](0, T ), is upper-bounded by

T DP ≤ kmax · max
v∈V |LBP[�, v](0, T )|

∈ O
(
max
v∈V

{⌈
log

(
T (Λmax + 1)

εDmin[�, v](0, T )

)⌉}
1

ε
max
v∈V

{
log

(
Dmax[�, v](0, T )

Dmin[�, v](0, T )

)})

We can construct UBP[�, �](0, T ) from LBP[�, �](0, T ) without any execution of
a TDSP-probe by just sweeping, once for every vertex v ∈ V, LBP[�, v](0, T ) and
adding all the intermediate breakpoints required. The time-complexity of this proce-
dure is O(|LBP[�, �](0, T )|) and this is clearly dominated by the time-complexity
(number of TDSP-probes) for constructing LBP[�, �](0, T ) itself. ��

Let U = max(�,v)∈L×V {U [�, v]}. Theorem 1 dictates that U and T DP are inde-
pendent of n and they only depend on the degrees of asymmetry and time-dependence
of the distance metric. Therefore, they can be treated as constants. Combining the
performance of BISECT with the fact that the expected number of landmarks is
E {|L|} = ρn, it is easy to deduce the required preprocessing time and space com-
plexities for constructing all the (1 + ε)-approximate landmark-to-vertex distance
summaries, which is culminated in the next theorem.

Theorem 2 The preprocessing phase of our time-dependent distance oracle has
expected space/time complexities E {S} ∈ O(ρn2(1 + K ∗)U

)
and E {P} ∈

O(ρn2 log(n) log log(Kmax)(1 + K ∗)T DP
)
.

Proof For every landmark � ∈ L and every destination vertex d, there are (1 + K ∗)
subintervals that need to be bisected and BISECT can generate at most U new
breakpoints in each such interval. Since there are n destinations, the total num-
ber of breakpoints that need to be stored for all landmarks (and all destinations) is
|L|n(1 + K ∗)U . This total number of breakpoints can be computed concurrently for
all landmarks and all destinations (cf. proof of Theorem 1) by |L|(1+ K ∗)T DP runs
ofTDD. Each such runs takes timeO((m + n log(n)) log log(Kmax)), where the extra
log log(Kmax) term in the Dijkstra-time is due to the fact that the arc-travel-times are
continuous pwl functions of the departure-time from their tails, represented as col-
lections of breakpoints. A predecessor-search structure would allow the evaluation of
such a function to be achieved in time O(log log(Kmax)). The space and time bounds
now follow from the fact that m = O(n) and E {|L|} = ρn. ��

4 Constant-Approximation Query Algorithm

Our next step towards a distance oracle is to provide a fast query algorithm pro-
viding constant approximation to the shortest-travel-time values of arbitrary queries
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Fig. 3 The rationale of FCA.
The dashed (blue) path P is a
shortest od-path for (o, d, to).
The dashed-dotted (green and
red) path Q • Π is the
via-landmark od-path indicated
by the algorithm, if the
destination vertex is out of the
origin’s TDD ball (Color figure
online)

td = to + D[o,d](to)

Ro

x

lo

w od
P  SP[o,d](to)

to

Q  SP[o,lo](to)

Π  ASP[lo,d](to+Ro)

FCA(o, d, to)
1. if o ∈ L then return (Δ[o, d](to)) /∗ (1 + ε)−approximate answer ∗/

2. Bo = TDD-ball around (o, to) until either d or the first landmark is settled
3. if d ∈ Bo then return (D[o, d](to)) /∗ exact answer ∗/

4. �o = Bo ∩ L;Ro = D[o, �o](to);
5. return (Ro + Δ[�o, d](to + Ro)) /∗ (1 + ε + ψ)−approximation ∗/

Fig. 4 The pseudocode describing FCA

(o, d, to) ∈ V × V × [0, T ). The proposed query algorithm, called Forward Constant
Approximation (FCA), grows an outgoing ball

Bo := B[o](to) = {x ∈ V : D[o, x](to) ≤ min{D[o, d](to), D[o, �o](to)}}

from (o, to), by running TDD until either d or the closest landmark �o ∈
argmin�∈L{D[o, �](to)} is settled. We call Ro = min{D[o, d](to), D[o, �o](to)} the
radius of Bo. If d ∈ Bo, thenFCA returns the exact travel-time D[o, d](to); otherwise,
it returns the approximate travel-time value Ro + Δ[�o, d](to + Ro) via �o. Figure 3
gives an overview of the whole idea. Figure 4 provides the pseudocode.

4.1 Correctness of FCA

The next theorem demonstrates that FCA returns od-paths whose travel-times are
constant approximations to the shortest travel-times.

Theorem 3 ∀(o, d, to) ∈ V × V × [0, T ), FCA returns either an exact path
P ∈ SP[o, d](to), or a via-landmark od-path Q • Π , s.t. Q ∈ SP[o, �o](to), Π ∈
ASP[�o, d](to + Ro), and D[o, d](to) ≤ Ro + Δ[�o, d](to + Ro) ≤ (1 + ε) ·
D[o, d](to) + ψ · Ro ≤ (1 + ε + ψ) · D[o, d](to) , where ψ = 1 + Λmax(1 +
ε)(1 + 2ζ + Λmaxζ ) + (1 + ε)ζ .

Proof In case that d ∈ Bo, there is nothing to prove since FCA returns the exact
distance. So, assume that d /∈ Bo, implying that D[o, d](to) ≥ Ro. As for the returned
distance value Ro + Δ[�o, d](to + Ro), it is not hard to see that this is indeed an
overestimation of the actual distance D[o, d](to). This is because Δ[�o, d](to + Ro)

is an overestimation (implying also a connecting �od-path) of D[�o, d](to + Ro), and
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of course Ro = D[o, �o](to) corresponds to a (shortest) o�o-path that was discovered
by the algorithm on the fly. Therefore, Ro +Δ[�o, d](to + Ro) is an overestimation of
an actual od-path for departure time to, and cannot be less than D[o, d](to). We now
prove that it is not arbitrarily larger than this shortest distance:

Ro + Δ[�o, d](to + Ro) ≤ Ro + (1 + ε)D[�o, d](to + Ro)
/∗ triangle ∗/

≤ Ro + (1 + ε)[D[�o, o](to + Ro) + D[o, d](to+Ro + D[�o, o](to+Ro))]
/∗ Assum.1 ∗/

≤ Ro + (1 + ε)[(1 + Λmax)D[�o, o](to + Ro) + ΛmaxRo + D[o, d](to)]
/∗ Assum.2 ∗/

≤ Ro + (1 + ε)[(1 + Λmax)ζD[o, �o](to + Ro) + ΛmaxRo + D[o, d](to)]
/∗ Assum.1 ∗/

≤ Ro + (1 + ε)[(1 + Λmax)ζ(Ro + ΛmaxRo) + ΛmaxRo + D[o, d](to)]
=

[
1 + (1 + ε)(1 + Λmax)

2ζ + (1 + ε)Λmax

]
R0 + (1 + ε)D[o, d](to)

= [1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ )+(1 + ε)ζ ]︸ ︷︷ ︸
=ψ

R0 + (1 + ε)D[o, d](to)

= (1 + ε) · D[o, d](to) + ψ · Ro

��
Note that FCA is a generalization of the 3-approximation algorithm in [2] for

symmetric (i.e., ζ = 1) and time-independent (i.e., Λmin = Λmax = 0) network
instances, the only difference being that the stored distance summaries we consider are
(1+ε)-approximations of the actual shortest-travel-times. Observe that our algorithm
smoothly departs, through the parameters Λmin,Λmax and ζ , towards both asymmetry
and time-dependence of the travel-time metric.

4.2 Complexity of FCA

The main cost of FCA is to grow the ball Bo = B[o](to) by running TDD. Therefore,
what really matters is the number of vertices in Bo, since the maximum out-degree
is 2. Recall that L is chosen randomly by selecting each vertex v to become a land-
mark independently of other vertices, with probability ρ ∈ (0, 1). Hence, for any
o ∈ V and any departure-time to ∈ [0, T ), the size of the outgoing TDD-ball
Bo = B[o](to) centered at (o, to) until the first landmark vertex is settled, behaves
as a geometric random variable with success probability ρ ∈ (0, 1). Consequently,
E {|Bo|} = 1/ρ, and moreover (as a geometrically distributed random variable),
∀k ≥ 1 ,P {|Bo| > k} = (1−ρ)k ≤ e−ρk . By setting k = (1/ρ) ln(1/ρ)we conclude
that: P {|Bo| > (1/ρ) ln(1/ρ)} ≤ ρ. Since the maximum out-degree is 2, TDD will
relax at most 2k arcs. Hence, we have established the following.

Theorem 4 For the query-time complexity QFCA of FCA the following hold:

E {QFCA} ∈ O((1/ρ) ln(1/ρ) log log(Kmax)) .

P

{
QFCA ∈ Ω

(
(1/ρ) ln2(1/ρ) log log(Kmax)

)}
∈ O(ρ) .
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5 (1+ σ)-Approximate Query Algorithm

The Recursive Query Algorithm (RQA) improves the approximation guarantee of the
chosen od-path provided by FCA, by exploiting carefully a number of recursive calls
of FCA, based on a given bound—called the recursion budget r—on the depth of the
recursion tree to be constructed. Each of the recursive calls accesses the preprocessed
information and produces another candidate od-path. The crux of our approach is the
following: We ensure that, unless the required approximation guarantee has already
been reached by a candidate solution, the recursion budget must be exhausted and
the sequence of radii of the consecutive balls that we grow from centers lying on
the unknown shortest path, is lower-bounded by a geometrically increasing sequence.
We prove that this sequence can only have a constant number of elements until the
required approximation guarantee is reached, since the sum of all these radii provides
a lower bound on the shortest-travel-time that we seek.

A similar approach was proposed for undirected and static sparse networks [2], in
which a number of recursively growing balls (up to the recursion budget) is used in
the vicinities of both the origin and the destination nodes, before eventually apply-
ing a constant-approximation algorithm to close the gap, so as to achieve improved
approximation guarantees.

In our case the network is both directed and time-dependent. Due to our ignorance of
the exact arrival time at the destination, it is difficult (if at all possible) to grow incoming
balls in the vicinity of the destination node. Hence, our only choice is to build a
recursive argument that grows outgoing balls in the vicinity of the origin, sincewe only
know the requested departure-time from it. This is exactly what we do: As long as we
havenot discovered the destination nodewithin the explored area around the origin, and
there is still some remaining recursion budget r − k > 0 (k ∈ {0, . . . , r}), we “guess”
(by exhaustively searching for it) the next node wk along the (unknown) shortest od-
path. We then grow a new out-ball from the new center (wk, tk = to + D[o, wk](to)),
until we reach the closest landmark-vertex �k to it, at distance Rk = D[wk, �k](tk).
This new landmark offers an alternative od-path solk = Po,k • Qk • Πk by a new
application of FCA, where Po,k ∈ SP[o, wk](to), Qk ∈ SP[wk, �k](tk), and Πk ∈
ASP[�k, d](tk+Rk) is the approximate suffix subpath provided by the distance oracle.
Observe that solk uses a longer optimal prefix-subpath Pk which is then completed
with a shorter approximate suffix-subpath Qk • Πk . Figure 5 provides an overview of
RQA’s execution. Figure 6 provides the pseudocode of RQA.

5.1 Correctness and Quality of RQA

The correctness ofRQA implies that the algorithm always returns some od-path. This
is true due to the fact that it either discovers the destination node d as it explores new
nodes in the vicinity of the origin node o, or it returns the shortest of the approximate
od-paths sol0, . . . , solr via one of the closest landmarks �o, . . . , �r to “guessed” nodes
w0 = o, w1, . . . , wr along the shortest od-path P ∈ SP[o, d](to), where r is the
recursion budget. Since the preprocessed distance summaries stored by the oracle
provide approximate travel-times corresponding to actual paths from landmarks to
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to

lk

d

P0,k  SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk  SP[wk , lk](tk)

Πk  ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

=

Fig. 5 Overview of the execution of RQA (Color figure online)

RQA(o, d, to, r)
1. if o ∈ L then return (ASP [o, d](to), Δ[o, d](to)) /∗ (1 + ε)−approximation ∗/

2. B[o](to) := TDD-ball from (o, to) until either d or a landmark is settled
3. if d ∈ Bo then return (D[o, d](to)) /∗ exact suffix-subpath ∗/

4. �0 ∈ B[o](to) ∩ L; R0 = D[o, �0](to)
5. sol0 = (Q0 • Π0 , Δ[sol0](to) = R0 + Δ[�0, d](to + R0)) /∗ via-�o approximation ∗/

6. k := 0; tk = to;
7. while k < r do
7.1. “guess” the first vertex wk+1 ∈ SP [wk, d](tk) \ B[wk](tk)/∗ exhaustive search ∗/

7.2. tk+1 = tk + D[wk, wk+1](tk);
7.3. if wk+1 ∈ L
7.4. then return (P0,k+1 • Π[wk+1, d](tk+1), tk+1 − t0 + Δ[wk+1, d](tk+1))

/∗ approximate answer via wk+1 ∗/

7.5. B[wk+1](tk+1) := TDD-ball until d or a landmark is settled
7.6 if d ∈ B[wk+1](tk+1) then

7.7. then solk+1 =
(

P0,k+1 • Pk+1,d,
Δ[solk+1](to) = tk+1 − to + D[wk+1, d](tk+1)

)

7.8. else
7.8.1 �k+1 ∈ L ∩ B[wk+1](tk+1); Rk+1 = D[wk+1, �k+1](tk+1)

7.8.2 solk+1 =

⎛
⎜⎝

P0,k+1 • Qk+1 • Πk+1,

Δ[solk+1](to) = tk+1 − to + Rk+1

+ Δ[�k+1, d](tk+1 + Rk+1)

⎞
⎟⎠

/∗ approximate answer via �k+1 ∗/

7.9. k = k + 1
8. endwhile
9. return min0≤k≤r {solk}

Fig. 6 The recursive algorithmRQA providing (1+σ)-approximate time-dependent shortest paths. Qk ∈
SP[wk , �k ](tk ) is the shortest path connecting wk to its closest landmark w.r.t. departure-time tk . P0,k ∈
SP[o, wk ](to) is the prefix of the shortest od-path that has been already discovered, up to vertex wk .
Πk = ASP[�k , d](tk + Rk ) denotes the (1+ ε)-approximate shortest �kd-path precomputed by the oracle

vertices in the graph, it is clear thatRQA always returns an od-path whose travel-time
does not exceed the alleged upper bound on the actual distance.

Our next task is to study the quality of the 1+σ stretch provided byRQA. Let δ > 0
be a parameter such that σ = ε + δ and recall the definition of ψ from Theorem 3.
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The next lemma shows that the sequence of ball radii grown from vertices of the
shortest od-path P[o, d](to) by the recursive calls of RQA is lower-bounded by a
geometrically increasing sequence.

Lemma 5 Let D[o, d](to) = td − to and suppose that RQA does not discover d
or any landmark wk ∈ SP[o, d](to) ∩ L, k ∈ {0, 1, . . . , r}, in the explored area
around o. Then, the entire recursion budget r will be consumed and in each round k

of recursively constructed balls we have that either Rk >
(
1 + ε

ψ

)k · δ
ψ

· (td − to) or

∃ i ∈ {0, 1, . . . , k} : D[soli ](to) ≤ (1 + ε + δ) · D[o, d](to) .

Proof As long as none of the discovered nodes o = w0, w1, . . . , wk is a landmark
node and the recursion budget has not been consumed yet, RQA continues guessing
new nodes of P ∈ SP[o, d](to). If any of these nodes (say, wk) is a landmark node,
the (1 + ε)-approximate solution P0,k • Π [wk, d](tk) is returned and we are done.
Otherwise, RQA will certainly have to consume the entire recursion budget.

For any k ∈ {0, 1, . . . , r}, if ∃ i ∈ {0, 1, . . . , k} : D[soli ](to) ≤ (1 + ε + δ) ·
D[o, d](to) then there is nothing to prove from that point on. The required disjunction
trivially holds for all rounds k, k + 1, . . . , r . We therefore consider the case in which
up to round k − 1 of the recursion no good approximation has been discovered, and
we shall prove inductively that either solk is a (1 + ε + δ)-approximation, or else

Rk >
(
1 + ε

ψ

)k · δ
ψ

· (td − to).

Basis Recall that FCA is used to provide the suffix-subpath of the returned solution
sol0, whose prefix (from o to �o) is indeed a shortest path. Therefore:

D[sol0](to) ≤ R0 + Δ[�0, d](to + R0)
/∗ Theorem 3 ∗/

≤ (1 + ε) · D[o, d](to) + ψ · R0 =
(
1 + ε + ψR0

td−to

)
· (td − to)

Clearly, either ψR0
td−to

≤ δ ⇔ R0 ≤ δ
ψ

· (td − to), which then implies that we already

have a (1 + ε + δ)-approximate solution, or else it holds that R0 > δ
ψ

· (td − to).
Hypothesis We assume inductively that ∀ 0 ≤ i ≤ k, no (1 + ε + δ)-approximate

solution has been discovered up to round k, and thus it holds that Ri >
(
1 + δ

ψ

)i ·
δ
ψ

· (td − to).
Step We prove that for the (k + 1)-st recursive call, either the new via-landmark
solution solk+1 = P0,k+1 • Qk+1 • Πk+1 is a (1 + ε + δ)-approximate solution, or

else Rk+1 >
(
1 + δ

ψ

)k+1 · δ
ψ

· (td − to). For the travel-time along this path we have:

D[solk+1](to)
≤ tk+1 − to + Rk+1 + Δ[�k+1, d](tk+1 + Rk+1)

/∗ Theorem 3 ∗/
≤ tk+1 − to + (1 + ε) · D[wk+1, d](tk+1) + ψ · Rk+1

/∗ wk+1∈SP[o,d](to) ∗/= tk+1 − to + (1 + ε) · (td − tk+1) + ψ · Rk+1

= (1 + ε) · (td − to) − ε · (tk+1 − to) + ψ · Rk+1
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/∗ tk+1−to≥R0+...+Rk ∗/
≤ (1 + ε) · (td − to) − ε · (R0 + . . . + Rk) + ψ · Rk+1

/∗ Induction Hypothesis ∗/
< (1 + ε)(td − to) − ε

k∑

i=0

(
1 + ε

ψ

)i
δ

ψ
(td − to) + ψRk+1

=
(

1 + ε − εδ

ψ
·

k∑

i=0

(
1 + ε

ψ

)i

+ ψ · Rk+1

td − to

)

· (td − to)

=
(

1 + ε − δ ·
[(

1 + ε

ψ

)k+1

− 1

]

+ ψ · Rk+1

td − to

)

· (td − to)

Once more, it is clear that either D[solk+1](to) ≤ (1 + ε + δ) · D[o, d](to), or else it
must hold that Rk+1 >

(
1 + ε

ψ

)k+1 · δ
ψ

· (td − to) as required. ��

The next theorem shows thatRQA indeed provides (1+σ)-approximate distances
in response to arbitrary queries (o, d, to) ∈ V × V × [0, T ).

Theorem 5 For the stretch of RQA the following hold:

1. If r =
⌈

ln(1+ ε
δ )

ln
(
1+ ε

ψ

)

⌉

−1 for δ > 0, then,RQA guarantees a stretch 1+σ = 1+ε+δ.

2. For a given recursion budget r ∈ N, RQA guarantees stretch 1 + σ , where

σ = σ(r) ≤ ε · (1+ε/ψ)r+1

(1+ε/ψ)r+1−1
.

Proof If none of the via-landmark solutions is a (1 + ε + δ)-approximation, then:

td − to ≥ R0 + R1 + · · · + Rr

/∗ Lemma 5 ∗/
>

δ

ψ
· (td − to) ·

r∑

i=0

(
1 + ε

ψ

)i

= δ

ψ
· (td − to) ·

(
1 + ε

ψ

)r+1 − 1

1 + ε
ψ

− 1
= δ

ε
· (td − to) ·

[(
1 + ε

ψ

)r+1

− 1

]

⇒ ε

δ
>

(
1 + ε

ψ

)r+1

− 1 ⇒
{
r <

ln(1+ε/δ)
ln(1+ε/ψ)

− 1
δ < ε

(1+ε/ψ)r+1−1

If r =
⌈

ln(1+ε/δ)
ln(1+ε/ψ)

− 1
⌉

≤ ψ/δ
1−ε/ψ

−1 ∈ O
(

ψ
δ

)
, we have reached a contradiction.4 For

this value of the recursion budgetRQA either discovers the destination node, or at least
a landmark node that also belongs to SP[o, d](to), or else it returns a via-landmark
path that is a (1 + ε + δ)-approximation of the required shortest od-path.

On the other hand, for a given recursion budget r ∈ N, it holds that σ = σ(r) =
ε + ε

(1+ε/ψ)r+1−1
= ε·(1+ε/ψ)r+1

(1+ε/ψ)r+1−1
is guaranteed by RQA. ��

4 The inequality r ≤ ψ/δ
1−ε/ψ

− 1 holds due to the following bound: ∀z ≥ − 1
2 , z − z2 ≤ ln(1 + z) ≤ z.
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Note that for time-independent, undirected-graphs (for which Λmin = Λmax = 0
and ζ = 1) it holds that ψ = 2 + ε. If we equip our oracle with exact rather than
(1+ε)-approximate landmark-to-vertex distances (i.e., ε = 0), then in order to achieve
σ = δ = 2

t+1 for some positive integer t , our recursion budget r is upper bounded by
ψ
δ

− 1 = t . This is exactly the amount of recursion required by the approach in [2] to
achieve the sameapproximation guarantee. That is, at its one extreme (Λmin = Λmax =
0, ζ = 1, ψ = 2) our approachmatches the bounds in [2] for the same class of graphs,
without the need to grow balls from both the origin and destination vertices. Moreover,
our approach allows for a smooth transition from static and undirected-graphs to
directed-graphs with FIFO arc-delay functions. The required recursion budget now
depends not only on the targeted approximation guarantee, but also on the degree of
asymmetry (the value of ζ ≥ 1) and the steepness of the shortest-travel-time functions
(the value of Λmax) for the time-dependent case. It is noted that we have recently
become aware of an improved bidirectional approximate distance oracle for static
undirected graphs [1] which outperforms [2] in the stretch-time-space tradeoff.

5.2 Complexity of RQA

It only remains to determine the query-time complexity QRQA of RQA. This is pro-
vided by the following theorem.

Theorem 6 For the query-time complexity QRQA of RQA the following hold:

E
{QRQA

} ∈ O((1/ρ)r+1 · ln(1/ρ) · log log(Kmax)).

P

{

QRQA ∈ O
((

ln(n)

ρ

)r+1 [
ln ln(n) + ln

(
1

ρ

)]
log log(Kmax)

)}

∈ 1 − O
(
1

n

)
.

Proof Recall that for any vertex w ∈ V and any departure-time tw ∈ [0, T ), the size
of the outgoing TDD-ball Bw = B[w](tw) centered at (w, tw) until the first landmark
vertex is settled, behaves as a geometric random variable with success probability ρ ∈
(0, 1). Thus,E {|Bw|} = 1

ρ
and∀β ∈ N, P {|Bw| > β} ≤ exp(−ρ ·β). By applying the

trivial union bound, one can then deduce that: ∀W ⊆ V,P {∃w ∈ W : |Bw| > β} ≤
|W | exp(−ρβ) = exp (−ρβ + ln(|W |)).

Assume now that we somehow could guess an upper bound β∗ on the number of
vertices in every ball grown by an execution of RQA. Then, since the out-degree is
upper boundedby2,weknow that the boundary ∂B of eachball Bwill have size |∂B| ≤
2|B|. This in turn implies that the branching tree that is grown in order to implement
the “guessing” of step 7.1 inRQA (cf. Fig. 6) via exhaustive search, would be bounded
by a complete (2β∗)-ary tree of depth r . For each node in this branching treewe have to
grow a newTDD-ball outgoing from the corresponding center, until a landmark vertex
is settled. The size of this ball will once more be upper-bounded by β∗. Due to the
fact that the out-degree is bounded by 2, at most 2β∗ arcs will be relaxed. Therefore,
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the running time of growing each ball is O(β∗ ln(β∗)). At the end of each TDD
execution, we query the oracle for the distance of the newly discovered landmark to
the destination node. This will have a cost ofO(log log((K ∗ + 1) ·U )), whereU is the
maximum number of required breakpoints between two concavity-spoiling arc-delay
breakpoints in the network, since all the breakpoints of the corresponding shortest-
travel-time function are assumed to be organized in a predecessor-search data structure.
The overall query-time complexity of RQA would thus be bounded as follows:

QRQA ≤ (2β∗)r+1 − 1

2β∗ − 1
· O(β∗ ln(β∗) + log log((K ∗ + 1) ·U )

)

∈ O
(
(β∗)r+1 ln(β∗) + βr log log((K ∗ + 1) ·U )

)

Assuming that log log((K ∗ + 1) · U ) ∈ O(β∗ log(β∗)), we have that QRQA ∈
O((β∗)r+1 ln(β∗)

)
. If we are only interested on the expected running time of

the algorithm, then each ball has expected size O
(
1
ρ

)
and thus E

{QRQA
} ∈

O
((

1
ρ

)r+1
ln
(
1
ρ

))
.

In general, if we set β∗ = r ln(n)
ρ

, then we know that RQA will grow |W | ∈
O
((

r ln(n)
ρ

)r)
balls, and therefore:

P

{
∀w ∈ W, |Bw| ≤ r ln(n)

ρ

}
≥ 1 − exp

(
−ρ

r ln(n)

ρ
+ r · [ln ln(n) + ln(1/ρ)]

)

∈ 1 − O
(
1

n

)

Thus, we conclude that:

P

{

QRQA ∈ O
((

ln(n)

ρ

)r+1

·
[
ln ln(n) + ln

(
1

ρ

)])}

∈ 1 − O
(
1

n

)
.

��

6 Main Results

In this section, we summarize the main result of our paper and establish the tradeoff
between preprocessing, query time and stretch. Recall thatU is the worst-case number
of breakpoints for an (1+ε)-approximation of a concave (1+ε)-approximate distance
function stored in our oracle, and T DP is the maximum number of time-dependent
shortest path probes during their construction.5 The following theorem summarizes
our main result.

5 As it is proved in Theorem 1, U and T DP are independent of the network size n.
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Theorem 7 For sparse time-dependent network instances compliant with Assump-
tions 1 and 2, a distance oracle is provided with the following characteristics: (a)
it selects among all vertices, uniformly and independently with probability ρ, a set
of landmarks; (b) it stores (1 + ε)-approximate distance functions (summaries) from
every landmark to all other vertices; (c) it uses a query algorithm equipped with a
recursion budget (depth) r . Our time-dependent distance oracle achieves the following
expected complexities:

(i) preprocessing space O(ρn2(1 + K ∗)U
)
;

(ii) preprocessing time O(ρn2(1 + K ∗) log(n) log log(Kmax)T DP
)
;

(iii) query time O
((

1
ρ

)r+1
log

(
1
ρ

)
log log(Kmax)

)
.

The guaranteed stretch is 1+ ε
(1+ ε

ψ
)r+1

(1+ ε
ψ

)r+1−1
, where ψ is a fixed constant depending on

the characteristics of the arc-travel-time functions, but is independent of the network
size.

Proof Immediate consequence of Theorems 2, 5, and 6. ��
Note that, apart from the choice of landmarks, our preprocessing and query algo-

rithms are deterministic. The following theorem expresses explicitly the tradeoff
between subquadratic preprocessing, sublinear query time and stretch of the proposed
oracle.

Theorem 8 LetG = (V, A, (D[a])a∈A)be a sparse time-dependent network instance
compliant with Assumptions 1 and 2. Assume that our distance oracle is deployed on
G for: (a) creating the landmark set uniformly at random with probability ρ = n−a,

for some a ∈
(
0, 1

r+1

)
; (b) computing with the BISECTION method the (1 + ε)-

approximate distance summaries for landmark-to-vertex distances; (c) running RQA
to respond to arbitrary queries (o, d, to) ∈ V × V × [0, T ), with approximation

guarantee 1+γ ε, for some constant γ = (1+ε/ψ)r+1

(1+ε/ψ)r+1−1
> 1 . Provided that the degree

of disconcavity of G is K ∗ ∈ polylog(n), then the following expected complexities
hold:

Preprocessing space: E {S} ∈ Õ
(
n2−a

)

Preprocessing time: E {P} ∈ Õ
(
n2−a

)

Query time: E {Q} ∈ Õ
(
n(1+r)a

)

Proof Since we have assumed that K ∗ ∈ polylog(n) and since by Theorem 1 U and
T DP are independent of the network size n and hence can be treated as constants, it
follows from Theorem 7 that the expected preprocessing space and time complexities,
E {S} ∈ Õ(n2−a

)
and E {P} ∈ Õ(n2−a

)
, are indeed subquadratic. It similarly follows

from the same theorem that the expected query time is E
{
QRQA

} ∈ Õ(n(1+r)a
)
.

Hence, to complete the proof is remains to show that Õ(n(1+r)a
)
is also sublinear, i.e.,
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(r + 1)a < 1. Recall that, by Theorems 7 and 5, a (1 + γ ε)-approximate solution

is returned, for γ = (1+ε/ψ)r+1

(1+ε/ψ)r+1−1
which holds by our assumption. Alternatively, to

assure a desired approximation guarantee 1 + γ ε for arbitrary queries, value γ > 1
and a given approximation guarantee 1+ ε for the preprocessed distance summaries,
we should set appropriately the recursion budget to

r =
log

(
γ

γ−1

)

log
(
1 + ε

ψ

) − 1

��

7 Approximate Shortest Path Reconstruction

As it is customary in the distance oracles literature, the query-time complexities of
our algorithms concern only the determination, for a given query (o, d, to) ∈ V ×
V × [0, T ), of an upper bound Δ[o, d](to) on the shortest-travel-time D[o, d](to), or
equivalently an arrival-time τd := to + Δ[o, d](to) at d which guarantees this upper
bound on the travel-time.

Our goal in this section is to describe a method for reconstructing an actual od-
path (roughly) guaranteeing this travel-time bound, in time (additional to the already
reported query-time) that is roughly linear in the number of its constituent arcs. Indeed,
our goal is only to exploit the precomputed landmarks-to-vertices approximate dis-
tance summaries, along with the value τd that was computed on the fly, in order to
discover such a path. Indeed, the origin-to-landmark path is computed “on-the-fly”
and the main challenge is to construct the remaining landmark-to-destination approx-
imate path that would guarantee the reported arrival-time at the destination. A natural
approach would be to mimick the path reconstruction from the destination back to the
landmark, based only on the (upper bound on the) arrival-time at the destination, as
is typically done in the time-independent case. This would indeed be possible, if we
had at our disposal exact landmark-to-vertices distance summaries. But we can only
afford for (1+ ε)-approximate distance summaries of the actual travel-time functions
and thus the only thing we know is that τd ∈ to + D[o, d](to) · [1, 1 + ε]. Thus, we
cannot be sure that such a reconstruction is indeed possible: It might be the case that
τd = td := to + D[o, d](to)while at the same time some of the approximate distances
from the landmark to intermediate vertices along the path are indeed inexact.

To resolve this issue, we shall exploit the fact that the approximate distance sum-
maries created during preprocessing, correspond to travel-time functions along a
shortest-paths tree from the landmark to all possible destinations, for the given depar-
ture time. This tree is actually a valid approximate shortest paths tree, not only for
the sampled departure time, but also for the entire time-interval of departures till the
next sample point. Due to the sparsity of the graph, we can be sure that only a con-
stant number of bits is required per breakpoint in the pwl-approximations, in order for
each vertex to memoize its own parent in such a tree (as a function of the departure-
time from the landmark). The path reconstruction is then conducted by moving from
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the destination towards the landmark, evaluating the right leg of the corresponding
approximate distance summary in each intermediate vertex, so that the appropriate
parent (and the latest departure time from it) is selected. In overall, the construction
time will be almost linear in the number of arcs constituting the required approximate
shortest path (times an O(log log(Kmax)) factor, for evaluating the right leg in the
approximate distance summary of each intermediate vertex).

8 Conclusions

We have presented the first time-dependent distance oracle for sparse networks, com-
pliant with Assumptions 1 and 2, that achieves subquadratic preprocessing space and
time, sublinear query time, and stretch factor arbitrarily close to 1. Our approach is
based on a new algorithm, built upon the bisection method, that computes one-to-all
approximate distance summaries from a set of selected landmarks to all other vertices
of the network as well as on a new recursive query algorithm. Our assumptions, justi-
fied by an experimental analysis of real-world and benchmark data, allow us to achieve
a smooth transition, from the undirected (symmetric) and static world to the directed
(asymmetric) and time-dependent world, through two parameters that quantify the
degree of asymmetry (ζ ) and its evolution over time (expressing the steepness of the
shortest travel-time functions via Λmin and Λmax).

It would be quite interesting to come up with a new method for computing
approximate distance summaries, that avoids the dependence of the preprocessing
complexities on the number K ∗ of concavity-spoiling breakpoints.

Finally, almost all distance oracles with provable approximation guarantees in the
literature, even for the static case, target at sublinearity in query times with respect to
the network size. A very important aspect would be to propose query algorithms that
are indeed sublinear not only in worst-case, but also sublinear on the Dijkstra rank of
the destination vertex.
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