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Abstract Let b ∈ N≥1 and let H = (V, E) be a hypergraph with maximum vertex
degree Δ and maximum edge size l. A set b-multicover inH is a set of edges C ⊆ E
such that every vertex in V belongs to at least b edges inC . set b-multicover is the
problem of finding a set b-multicover of minimum cardinality, and for b = 1 it is the
fundamental set cover problem. Peleg et al. (Algorithmica 18(1):44–66, 1997) gave

a randomized algorithm achieving an approximation ratio of δ · (1 − ( cn
) 1

δ
)
, where

δ := Δ−b+1 and c > 0 is a constant. As this ratio depends on the instance size n and
tends to δ as n tends to ∞, it remained an open problem whether an approximation
ratio of δα with a constant α < 1 can be proved. In fact, the authors conjectured
that for any fixed Δ and b, the problem is not approximable within a ratio smaller
than δ, unless P = NP . We present a randomized algorithm of hybrid type for
set b-multicover, b ≥ 2, combining LP-based randomized rounding with greedy

repairing, and achieve an approximation ratio of δ ·
(
1 − 11(Δ−b)

72l

)
for hypergraphs

with maximum edge size l ∈ O
(
max

{
(nb)

1
5 , n

1
4
})

. In particular, for all hypergraphs

where l is constant, we get an αδ-ratio with constant α < 1. Hence the above stated
conjecture does not hold for hypergraphs with constant l and we have identified the
boundedness of the maximum hyperedge size as a relevant parameter responsible for
approximations below δ.
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1 Introduction

set b-multicover is a basic covering problem in combinatorial optimization. It is
convenient to formulate the problem in terms of hypergraphs. A hypergraph H =
(V, E) consists of a finite set V and a set E of subsets of V . We call the elements of V
vertices and the elements of E (hyper-)edges. Further let n := |V |,m := |E |. Let l be
the maximum edge size and let Δ be the maximum vertex degree, where the degree
of a vertex is the number of edges containing that vertex.

For b ∈ N a set b-multicover inH is a set of edges C ⊆ E such that every vertex in
V belongs to at least b edges in C .1 set b-multicover is the problem of finding a
set b-multicover of minimum cardinality. For b = 1 we have the well-known set cover
problem. We denote by Opt the cardinality of a minimum set b-multicover implicitly
assuming the dependence of Opt on b.

1.1 Previous Work

While the set cover problem (b = 1) has been intensively explored over decades
[2,4,6,12,13,16,17], relatively less is known for b ≥ 2. In the following we give
a brief overview of the known approximability results. We say that a polynomial-
time algorithm A achieves an approximation ratio α ≥ 1, or is an α-approximation,
if for all instances I it holds that the set b-multicover A(I ) returned by A satisfies
|A(I )| /Opt ≤ α. With a greedy algorithm an approximation ratio of 1+ ln(l) can be
obtained for constant l inO(nmb) time [15,20]. This result was improved by Berman
et al. [3], who presented a randomized algorithm that yields an expected approximation
ratio of (1 + o(1)) ln

( l
b−1

)
, when l

b is large enough, and an expected approximation

ratio of 1 + 2
√

l
b , if

l
b is small. Let δ := Δ − b + 1. An approximation ratio of δ

has been achieved in O(m · max{n,m}) time by Hall and Hochbaum [11]. The first
approximation below δ has been achieved with randomized rounding by Peleg et al.

[18], who showed an approximation ratio of δ · (1− ( cn
) 1

δ
)
, where c > 0 is a constant

bounded from below roughly by 2−250 . The essential point of this δ · (1 − ( cn
) 1

δ
)
-

approximation is that it depends on the instance size n and tends to δ as n grows.
The authors conjectured that unless P = NP , there does not exist a polynomial
time approximation algorithm with a constant approximation ratio smaller than δ. For
b = 1 it follows from the work of Khot and Regev [19] that for any arbitrary constant
ε > 0 an approximation ratio of δ − ε = Δ − ε cannot be achieved in polynomial
time under the unique games conjecture.

1 We may assume that the minimum vertex degree is at least b, because otherwise the problem has no
solution.
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So, the challenge is to give an algorithm for set b-multicover, b ≥ 2, with
a worst-case ratio of the form δα, for a constant α < 1, or to prove that no such
algorithm exists, unless some complexity classes collapse. To our best knowledge no
such results have been proved since 1997.

1.2 Our Results

We present a hybrid randomized algorithm, combining LP-based randomized round-
ing and a greedy repairing, if the randomized solution is infeasible. Such a hybrid
approach is frequently used in practice. The analysis of such an algorithm is a theoret-
ical challenge and has been successfully carried out for, e.g. maximum graph bisection
[8], maximum graph partitioning problems [7,14], the vertex cover and partial vertex
cover problem in graphs and hypergraphs [5,6,9,12]. In Theorem 4 we show that our

algorithm achieves for hypergraphs with l = O
(
(nb)

1
5

)
an approximation ratio of

δ ·
(
1 − 11(Δ−b)

72l

)
with constant probability. Using a different technique for the analysis

we prove the same approximation ratio againwith constant probability for hypergraphs

with l = O
(
n

1
4

)
(Theorem 5). Depending on the value of b both results outperform

each other, for different ranges of l. While Theorem 4 covers a wider range for l if

b = Ω(n
1
4 ), Theorem 5 is the better result for smaller values of b. Together we achieve

the approximation ratio stated above for hypergraphs with l = O
(
max

{
(nb)

1
5 , n

1
4

})
.

Note that in both cases our results improve over the ratio of Peleg et al. [18]: for

any l satisfying l = O
(
(Δ − b) · n 1

δ

)
our ratio is at most the ratio of Peleg et al., and

it is the better the smaller l is. In the important case of l being a constant, our ratio is
δ · (1 − c), c ∈ (0, 1) a constant independent of n.

This shows that the above stated non-approximability conjecture does not hold for
hypergraphs with constant l, including the class of l-uniform hypergraphs (with con-
stant l). The conjecture might be true in general, but according to our result reductions
must use edge sizes depending on n.

In conclusion, the crucial algorithmic point of this paper is the identification of
the maximum edge size l as a complexity-theoretic relevant hypergraph parameter
governing the approximability of set b-multicover and leading to approximations
below δ in worst case.

The methods developed in this paper go beyond the well-know analysis of ran-
domized rounding with Chernoff bounds for sums of independent random variables.
The challenge is to combine the different subroutines of the hybrid algorithm in the
analysis as the repairing step depends on the randomized cover generation, modeled by
sums of dependent random variables. For example, we invoke the powerful bounded
difference inequality based on the Azuma-Hoeffding martingale bound. Its particular
effect is the identification of local hypergraph parameters important for the analysis,
in our setting it is the maximum edge size l.

The paper is organized as follows: in Sect. 2 we give definitions and probabilistic
tools. In Sect. 3 we present our hybrid randomized algorithm for set b-multicover.
In Sects. 4 and 5we analyze the algorithm in two differentwayswhich together provide
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the proof for our stated approximation ratio result. Finally in Sect. 6 we sketch some
future work.

2 Definitions and Tools

LetH = (V, E)be ahypergraph,withV andE being its sets of vertices andhyperedges.
For every vertex v ∈ V we define the vertex degree of v as d(v) := |{E ∈ E | v ∈
E}|. The maximum vertex degree is Δ := maxv∈V d(v). Let l denote the maximum
cardinality of a hyperedge from E . For a set X ⊆ V we denote by Γ (X) := {E ∈ E |
X ∩ E �= ∅} the set of edges incident in X . It is convenient to order the vertices and
edges, i.e., V = {v1, . . . , vn} and E = {E1, . . . , Em}, and to identify the vertices and
edges with their indices.
set b-multicover:

Let H = (V, E) be a hypergraph and b ∈ N. We call C ⊆ E a set b-multicover if
no vertex i ∈ V is contained in fewer than b hyperedges of C . set b-multicover is
the problem of finding a set b-multicover with minimum cardinality.

For the one-sided deviation we will use the Chebychev–Cantelli inequality:

Theorem 1 (see [1]) Let X be a non-negative random variable with finite mean E(X)

and variance Var(X). Then for any a > 0 we have

Pr(X ≥ E(X) + a) ≤ Var(X)

Var(X) + a2
·

A further useful concentration result is the bounded differences inequality:

Theorem 2 (See [10]) Let X = (X1, X2, . . . , Xn) be a family of independent random
variables with Xk taking values in a set Ak for each k. Suppose that the real-valued
function f defined on A1 × · · · × An satisfies | f (x) − f (x ′)| ≤ ck for every pair of
vectors x and x ′ that differ only in the kth coordinate. Then for any t > 0

Pr [ f (X) ≤ E( f (X)) − t] ≤ exp

(
−2t2
∑n

k=1 c
2
k

)

.

The following estimate on the variance of a sum of dependent random variables can
be proved as in the book of Alon and Spencer:

Lemma 1 (see [1]) Let X be the sum of n 0/1 random variables, i.e. X = X1 +
. . . + Xn. Let Λ be the set of all unordered pairs i, j ∈ {1, . . . , n}, i �= j such
that Xi and X j are not independent. Let γ = ∑

{i, j}∈Λ E(Xi X j ), then it holds that
Var(X) ≤ E(X) + 2γ .

For a sum of independent random variables we will use the large deviation inequality
due to Angluin and Valiant:
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Theorem 3 (see [10]) Let X1, . . . , Xn be independent {0, 1}-random variables. Let
X =∑n

i=1 Xi . For every β > 0 it holds that

Pr[X ≥ (1 + β) · E(X)] ≤ exp

(
−β2

E(X)

3

)
.

3 The Randomized Algorithm

Let H = (V, E) be a hypergraph and let (ai j )(i, j)∈[n]×[m] be its incidence matrix,
where ai j = 1 if vertex i is contained in edge j , and ai j = 0 otherwise. An integer,
linear programming formulation of set b-multicover is the following:

(b − ILP) min
m∑

j=1

x j

m∑

j=1

ai j x j ≥ b for all i ∈ [n]

x j ∈ {0, 1} for all j ∈ [m].
Its linear programming relaxation, denoted by b−LP, is given by relaxing the inte-

grality constraints to x j ∈ [0, 1] for all j ∈ [m]. We already defined Opt as the value
of an optimal solution for b−ILP. Let Opt∗ be the value of an optimal solution to
b−LP. Clearly, Opt∗ ≤ Opt. Let x∗ = (x∗

1 , . . . , x
∗
m) be an optimal solution of b−LP.

So Opt∗ =∑m
j=1 x

∗
j .

Algorithm 1: SET b-MULTICOVER
Input : b ∈ N, ε ∈ (0, 1), a hypergraphH = (V, E) with maximum degree Δ

Output: A set b-multicover C
1. Initialize C := ∅ and set λ := (1 − ε)δ.
2. Obtain an optimal solution x∗ ∈ [0, 1]m by solving the LP relaxation.
3. Set S0 := {E j ∈ E | x∗

j = 0}, S≥ := {E j ∈ E | x∗
j ≥ 1

λ }
and S< := {E j ∈ E | 0 �= x∗

j < 1
λ
}.

4. Take all edges of S≥ into the cover C and set E = E \ S0.
5. (Randomized Rounding) For all edges E j ∈ S< include the edge E j in

the cover C , independently for all such E j , with probability λx∗
j .

6. (Repairing) Repair the cover C (if necessary) as follows: Include arbitrary
edges from S<, incident to vertices not covered by b edges, to C until all
vertices are covered by at least b edges.

7. Return the cover C .

Let us briefly explain the ingredients of the algorithm SET b-MULTICOVER.
We startwith an empty setC , whichwe extend to a feasible cover. Firstwe solve theLP-
relaxation b-LP in polynomial time, saywith some known polynomial-time procedure,
e.g. the interior point method. Next, we remove the edges with a corresponding LP-
variable of value zero, because they will not be taken into the set b-multicover by
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randomized rounding. Then randomized rounding is performed followed by a greedy
repairing step, if the solution is infeasible, so the resulting cover is always feasible.

4 The First Analysis

Let X1, . . . , Xm be {0, 1}-random variables defined as follows:

X j =
{
1 if the edge E j was picked into the cover before repairing

0 otherwise.

Note that the X1, . . . , Xm are independent for a given x∗ ∈ [0, 1]m . For all i ∈ [n] we
define the {0, 1}- random variables Zi as follows:

Zi =
{
1 if the vertex vi is covered by at least b edges before repairing

0 otherwise.

Then Y := ∑m
j=1 X j is the cardinality of the cover after randomized rounding and

W :=∑n
i=1 Zi is the number of at least b time covered vertices after this step.

The following lemma shows that all vertices are almost covered after step 4 of
Algorithm 1.

Lemma 2 Let 0 < ε ≤ 1
4 and b, d,Δ ∈ N with 2 ≤ b ≤ d − 1 ≤ Δ − 1. Let

λ = (1− ε)δ and let x j ∈ [0, 1], j ∈ [d], such that∑d
j=1 x j ≥ b. Then at least b− 1

of the x j fulfill the inequality x j ≥ 1
λ
.

Proof Suppose that there exist atmost b−2 values x j that fulfill the inequality.W.l.o.g.
let xb−1, . . . , xd be the variables which do not fulfill it. Then we have

d∑

j=1

x j ≤ b − 2 +
d∑

j=b−1

x j < b − 2 + d − b + 2

λ

= b − 2 + d − b + 2

Δ − b + 1︸ ︷︷ ︸
≤ 3

2

· 1

1 − ε
≤ b − 2 + 3

2
· 4
3

= b.

This contradicts
∑d

j=1 x j ≥ b. �

Let us consider a fixed vertex v ∈ V with d = deg(v) > b. By Lemma 2 there do
exist at least b − 1 edges in S≥ that contain v. Thus at most one additional edge per
vertex is needed to obtain a feasible cover. We are now able to bound the number of
additional edges taken into the cover in the repairing step by n − W and receive in
total

|C | ≤ Y + n − W. (1)

For the computation of the expectation of W we need the following lemma (see
Lemma 2.2, [18]).
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Lemma 3 For all n ∈ N, α > 0 and x1, . . . , xn, z ∈ [0, 1] with∑n
i=1 xi ≥ z and

αxi < 1 for all i ∈ N, we have
∏n

i=1(1 − αxi ) ≤ (1 − α z
n )n, and this bound is the

tight maximum.

The next lemma is an adaption of Lemma 2 in [6] to set b-multicover.

Lemma 4 Let l and Δ be the maximum size of an edge resp. the maximum vertex
degree, not necessarily constants. Let ε > 0 and λ = (1 − ε)δ as in Algorithm 1.

(i) E(W ) ≥ (1 − ε2)n.
(ii) Opt∗ ≥ nb

l .

(iii) If x∗
j > 0 for all j ∈ [m], then Opt∗ ≥ mb

Δ
.

(iv) If λ ≥ 1, then Opt∗ ≤ E(Y ) ≤ λOpt∗.

Proof (i) Let i ∈ [n], r = d(i) − b + 1 and zi ∗ :=∑E j∈(Γ (vi )\S≥) x
∗
j .

If
∣∣S≥ ∩ Γ (vi )

∣∣ ≥ b, then Pr(Zi = 0) = 0. Otherwise we get by Lemma 2∣
∣S≥ ∩ Γ (vi )

∣
∣ = b − 1 and z∗i ≥ 1. Therefore

Pr(Zi = 0) =
∏

E j∈Γ (vi )\S≥

(
1 − λx∗

j

)

≤
∏

E j∈Γ (vi )\S≥

(
1 − λ

x∗
j

z∗i

)

Lem 3≤
(
1 − λ

r

)r
≤
(
1 − λ

δ

)r

= (1 − (1 − ε))r ≤ ε2.

So we get for the expectation of W

E(W ) =
n∑

i=1

Pr(Zi = 1) =
n∑

i=1

(1 − Pr(Zi = 0))

≥
n∑

i=1

(
1 − ε2

)

= (1 − ε2
)
n.

(ii) Using the ILP constraints we have

nb ≤
n∑

i=1

∑

E j∈Γ (i)

x∗
j =

m∑

j=1

∣∣E j
∣∣ x∗

j ≤ l ·
m∑

j=1

x∗
j = l · Opt∗.

123



Algorithmica (2016) 74:574–588 581

(iii) Let us consider the dual LP of b-LP:

(D) max
n∑

i=1

yi b

∑

i∈E
yi ≤ 1 for all E ∈ E,

yi ∈ [0, 1] for all i ∈ [n].

Let (y∗
i )i∈[n] be an optimal solution for (D) with value Opt∗(D) = Opt∗ (duality

theorem). By complementary slackness if x∗
j > 0, then

∑
i∈E j

y∗
i = 1. Therefore

mb =
∑

E∈E
b
∑

y∗
i =1=

∑

E∈E

∑

i∈E
by∗

i =
∑

i∈V
d(i)by∗

i ≤ Δ
∑

i∈V
by∗

i = Δ · Opt∗.

(iv) For S ⊆ E we set Opt∗(S) := ∑
E j∈S x

∗
j . By using the LP relaxation and the

definition of the sets S≥ and S<, and since λ ≥ 1, we get

Opt∗ ≤ |S≥| + λOpt∗(S<)
︸ ︷︷ ︸

=E(|C|)
≤ λOpt∗(S≥)
︸ ︷︷ ︸

≥|S≥|
+λOpt∗(S<) = λOpt∗.

�

We wish to get an approximation ratio strictly better than δ. Before we continue let us
rule out the case where already a trivial solution leads to a good approximation.

Lemma 5 If there exists a constant c > 1 with δ·Opt∗
c·bn > 1, then it is trivial to compute

a set b-multicover of size bn, which is an δ
c -approximation.

Proof It is always possible to choose for every vertex b arbitrary edges containing it,
because the minimum vertex degree is at least b. Hence we need at most bn edges to
cover all vertices. Since bn < δ

c · Opt∗, we have a δ
c -approximation, which is strictly

better than a δ-approximation by a constant factor. �

By Lemma 5 we may restrict ourselves to the case where the above trivial situation
does not hold. Therefore, we assume from now on

1 >
δ · Opt∗
c · bn

Lem.4(i i)≥ δ

c · l . (2)

We will use (2) to guarantee non-trivial approximations in the following theorems.
For example, in the next theorem we have by (2), 11(Δ−b)

72l ∈ [0, 1] taking c = 72/11,

so 1 − 11(Δ−b)
72l ≥ 0.

Theorem 4 Let b ∈ N≥2 and let H be a hypergraph with maximum vertex degree Δ

and maximum edge size l, 3 ≤ l ≤ 2−1/4 · 3−1
︸ ︷︷ ︸

≈0.28

·(nb) 1
5 .
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Algorithm 1 returns a set b-multicover of size

|C | ≤
(
1 − 11(Δ − b)

72l

)
δ · Opt∗

with probability at least 1 − (exp(−2) + exp(−6)) ≈ 0.862 in polynomial time.

Proof We choose

ε := δ · Opt∗(1 + β)

6bn
with β =

√
2l√
nb

. (3)

For l <
(nb)

1
2

4
√
2

we have β < 1
4 . By the assumption on l in Theorem 4 this upper bound

on l is satisfied. Further let us introduce the constants c1 := 45
8 and c2 := 6

c1
> 1. We

can assume δ·Opt∗
c2·bn ≤ 1 (Lemma 5). Now

ε = δ · Opt∗(1 + β)

6bn
= δ · Opt∗(1 + β)

c1c2bn
≤ 1 + β

c1
<

5

4c1
= 4

18
<

1

4
. (4)

set b-multicover is trivial or even unsolvable for Δ ≤ b. So we may assume
Δ ≥ b + 1, hence λ = (1− ε)δ ≥ (1− ε)2 > (1− 4

18 )2 > 1, which is important for
using Lemma 4 later on.

First we focus on two statements that will help us bounding |C | with a constant
probability.

Claim 1

Pr

⎛

⎝W ≤ n
(
1 − ε2

)−
√√√√δ ·

m∑

k=1

|Ek |2
⎞

⎠ ≤ exp(−6) (5)

Proof of Claim 1 Consider the function f (X1, . . . , Xm) := ∑n
i=1 Zi . Then we have

for any two vectors x = (x1, . . . , xk, . . . , xn) and x ′ = (x1, . . . , x ′
k, . . . , xn) that only

differ in the k-th coordinate

∣∣ f (x1, . . . , xk, . . . , xn) − f (x1, . . . , x
′
k, . . . , xn)

∣∣ ≤ |Ek |

for all k ∈ [m]. Therefore we can use Theorem 2 with ck = |Ek | for all k ∈ [m] and
t =

√
δ ·∑m

k=1 |Ek | and receive

Pr

⎛

⎝W ≤ n
(
1 − ε2

)−
√√√
√δ ·

m∑

k=1

|Ek |2
⎞

⎠ ≤ Pr

⎛

⎝W ≤ E(W ) −
√√√
√δ ·

m∑

k=1

|Ek |2
⎞

⎠

≤ exp

(
−2δ ·∑m

k=1 |Ek |2
∑m

k=1 |Ek |2
)

= exp(−2δ)

≤ exp(−6).
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Claim 2 For β =
√
2l√
nb

it holds that

Pr
(
Y ≥ λ(1 + β)Opt∗

) ≤ exp(−2) (6)

Proof of Claim 2 To show the following inequalities we invoke Lemma 4 and Theo-
rem 3:

Pr
(
Y ≥ λ(1 + β)Opt∗

) Lem 4(iv)≤ Pr(Y ≥ E(Y )(1 + β))

Th 3≤ exp

(
−β2

E(Y )

3

)

Lem 4(iv)≤ exp

(
−β2Opt∗

3

)

Lem 4(i i)≤ exp

(
−nbβ2

3l

)

Def.β= exp

(
−2l

3

)

l≥3≤ exp(−2).

With Claims 1 and 2 we have with probability at least 1 − (exp(−2) + exp(−6)) ≈
0.862:

|C | (1)≤ Y + n − W

≤ λ(1 + β)Opt∗ + nε2
︸ ︷︷ ︸

(∗)

+
√√√√δ ·

m∑

k=1

|Ek |2
︸ ︷︷ ︸

(∗∗)

.

Next we bound (∗) and (∗∗) separately and combine their bounds later.
We start with (∗):

(∗) = δ(1 + β)(1 − ε)Opt∗ + nε2

Def.ε=
(

(1 + β)(1 − ε) + δ · Opt∗(1 + β)2

36nb2

)
δ · Opt∗

Def.ε=
(

(1 + β)

(
1 − δ · Opt∗(1 + β)

6nb

)
+ δ · Opt∗(1 + β)2

36nb2

)
δ · Opt∗

=
(

(1 + β) − δ · Opt∗(1 + β)2

6nb
+ δ · Opt∗(1 + β)2

36nb2

)
δ · Opt∗

=
(
1 −

(
(6b − 1)δ(1 + β)2Opt∗

36nb2
− β

))
δ · Opt∗
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Lem.4(i i)≤
(
1 − (6b − 1)δ(1 + β)2 − 36βlb

36lb

)
δ · Opt∗

=
(

1 − (6 − 1
b )δ(1 + β)2 − 36βl

36l

)

δ · Opt∗

Def.β=
(

1 − δ

36l

(

(6 − 1

b
)(1 + β)2 − 36

√
2l2

δ
√
nb

))

δ · Opt∗

b≥2≤
(

1 − δ

36l

(
11

2
(1 + β)2 − 36

√
2l2

δ
√
nb

))

δ · Opt∗

bound on l≤
(
1 − δ

36l

(
11

2
(1 + β)2 − 8

2δ

))
δ · Opt∗

≤
(
1 − δ

36l

(
11

2
− 8

2δ

))
δ · Opt∗

=
(
1 − 11δ − 8

72l

)
δ · Opt∗.

Now we continue with (∗∗). Note that

b

Δ
(Δ − b + 1) =

(
Δ − b

Δ

)
b + b

Δ
≥ Δ − b

Δ
+ b

Δ
= 1.

From this we can immediately deduce

m

δ

Def. δ= m

Δ − b + 1
≤ mb

Δ
. (7)

We make use of this in the following calculation:

(∗∗) =
√√√√δ ·

m∑

k=1

|Ek |2

≤
√

δml2 = l
√
m

δ√
δ

(7)≤ l

√
mb

Δ
δ

Lem.4(i i i)≤ l
√
Opt∗ · δ

= l
5
2

l
√
l

√
Opt∗ · δ

bound on l≤ 3
√
nb

√
Opt∗

72 · l√l
δ

Lem.4(i i)≤ 3

72l
δ · Opt∗.
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Together we get

|C | ≤ (∗) + (∗∗)

≤
(
1 − 11δ − 8

72l

)
δ · Opt∗ + 3

72l
δ · Opt∗

=
(
1 − 11δ − 11

72l

)
δ · Opt∗

=
(
1 − 11(Δ − b)

72l

)
δ · Opt∗.

�


5 An Alternative Analysis

In this section we estimate the expected size of the set b-multicover after repairing.
This is a non-trivial new aspect, because we have to simultaneously couple the out-
comes of randomized rounding and repairing in the expectation. After estimating the
expectation, we will use concentration inequalities, leading to the same approxima-

tion ratio we accomplished in the last section, but for hypergraphs with l = O(n
1
4 ).

Together with Theorem 4 we achieve the claimed ratio for l ∈ O
(
max{(nb) 1

5 , n
1
4 }
)

as desired.
First we compute the expectation and the variance of the cardinality of the set b-

multicover returned byAlgorithm1.We keep inmind that we do not consider instances
where a trivial cover with nb edges yields a good approximation (Lemma 5).

Lemma 6 LetH be a hypergraph with maximum vertex degreeΔ and maximum edge
size l ≥ 3. Let ε = δ·Opt∗

6bn . Then Algorithm 1 returns a set b-multicover C with

E(|C |) ≤ δ ·
(
1 − (6 − 1/b)δ

36l

)
Opt∗.

Proof By Lemma 5 we can assume that

δOpt∗

6bn
∈ [0, 1

4
].

Therefore it holds that λ = δ
(
1 − δOpt∗

6bn

)
≥ 3

4δ > 1.

Now we can bound the expectation by

E(|C |) (1)≤ E(Y ) + n − E(W )

Lem.4≤ λOpt∗ + ε2n

= δ(1 − ε)Opt∗ + ε2n
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Def.ε= δ ·
(
1 − δOpt∗

6bn
+ δOpt∗

36b2n

)
Opt∗

= δ ·
(
1 − (6b − 1)δOpt∗

36b2n

)
Opt∗

Lem.4(i i)≤ δ ·
(
1 − (6 − 1/b)δ

36l

)
Opt∗.

�

The variance is estimated as follows.

Lemma 7 Var(|C |) ≤ δlE(|C |).
Proof For j ∈ [m] let X̂ j = 1 if and only if the edge E j is contained in the set
b-multicover after repairing. Thus, it holds that |C | = ∑m

j=1 X̂ j . Further let Λ, γ be

defined as in Lemma 1. As X̂ j = 1 for all j ∈ S≥, X̂ j is a non-trivial variable only for
j ∈ S<, and we may restrict us to such j . Let i, j ∈ S<. For any pair of edges from
S< we have

E(X̂i X̂ j ) ≤ min{Pr(X̂i = 1),Pr(X̂ j = 1)} (8)

≤ Pr(X̂i = 1) + Pr(X̂ j = 1)

2
.

According to Lemma 2, there exist for every vertex at least b − 1 edges from S≥
containing it. Consequently, themaximumvertex degree in the subhypergraph induced
by S<, which is considered for randomized rounding and repairing, is at most Δ −
(b − 1) = δ. So for a fixed edge Ei ∈ S<

∑

j∈Ei

∣∣Γ ({v j }) ∩ S<

∣∣− 1 ≤
∑

j∈Ei

(δ − 1) ≤ l(δ − 1)

random variables X̂ j depend on X̂i . Now

γ =
∑

{Ei ,E j }∈Λ

E(X̂i X̂ j )
(8)≤

∑

{Ei ,E j }∈Λ

Pr(X̂i = 1) + Pr(X̂ j = 1)

2

<

m∑

i=1

∑
j∈Ei

∣∣Γ ({v j }) ∩ S<

∣∣− 1

2
Pr(X̂i = 1) ≤ l(δ − 1)

2
E(|C |).

By Lemma 1 we have:

Var(|C |) = Var(|C \ S≥|) ≤ E(|C \ S≥|) + l(δ − 1)E(|C |) ≤ lδE(|C |).

�


123



Algorithmica (2016) 74:574–588 587

Finally we use the statements about expectation and variance to obtain our second
main result. Note that due to Lemma 5 and (2), 11(Δ−b)

72l ∈ [0, 1], so the approximation
factor in the following theorem is non-negative.

Theorem 5 Let b ∈ N, b ≥ 2, let H be a hypergraph with maximum edge size

l ≤
√

11
72n

1
4 and maximum vertex degree Δ and let ε = δ·Opt∗

6bn . Algorithm 1 returns a
set b-multicover C of size

|C | ≤ δ

(
1 − 11(Δ − b)

72l

)
Opt∗

with probability at least 1 − 1
1+b ≥ 2/3 in polynomial time.

Proof Let A be the event |C | > δ
(
1 − 11(Δ−b)

72l

)
Opt∗. To prove the claimed upper

bound for |C |, we estimate the concentration of |C | around its expectation. This can
be done as follows:

Pr (A) = Pr

(
|C | > δ

(
1 − 11δ

72l

)
Opt∗ + 11δOpt∗

72l

)

b≥2≤ Pr

(
|C | > δ

(
1 − (6 − 1/b)δ

36l

)
Opt∗ + 11δOpt∗

72l

)

Lem 6≤ Pr

(
|C | > E(|C |) + 11δOpt∗

72l

)

Th 1≤ Var(|C |)
Var(|C |) +

(
11δOpt∗

72l

)2 = 1

1 +
(
11δOpt∗

72l

)2

Var(|C|)

.

We may continue,

(
11δOpt∗

72l

)2

Var(|C |)
Lem 7≥

(
δ

121(Opt∗)2

(72)2l3E(|C |)
)

E(|C|)≤δOpt∗≥ 121 · Opt∗
(72)2l3

Lem.4(i i i)≥ 121bn

(72)2l4
,

since l ≤
√

11
72n

1
4 we have 121bn

(72)2l4
≥ b.

Therefore we get Pr
(
|C | ≥ l

(
1 − 11(Δ−b)

72l

)
Opt∗

)
≤ 1

1+b ≤ 1
3 . �


6 Future Work

An interesting problem is the derandomization of our algorithms, where the challenge
comes from the fact that we have a hybrid algorithm. Furthermore, attempts should be
made to prove (or disprove) the non-approximability conjecture of Peleg et al. [18].
Our work indicates that hypergraphs where l is a function of n would be helpful for
this task. Another interesting problem is the partial set multicover, where only
a subset of vertices needs to be covered.
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