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Abstract The Art Gallery Problem (AGP) asks for placing a minimum number
of stationary guards in a polygonal region P , such that all points in P are guarded. The
problem is known to be NP-hard, and its inherent continuous structure (with both the
set of points that need to be guarded and the set of points that can be used for guarding
being uncountably infinite) makes it difficult to apply a straightforward formulation
as an integer linear program. We use an iterative primal-dual relaxation approach for
solving AGP instances to optimality. At each stage, a pair of LP relaxations for a
finite candidate subset of primal covering and dual packing constraints and variables
is considered; these correspond to possible guard positions and points that are to be
guarded. Particularly useful are cutting planes for eliminating fractional solutions. We
identify two classes of facets, based on Edge Cover and Set Cover (SC) inequal-
ities. Solving the separation problem for the latter is NP-complete, but exploiting
the underlying geometric structure, we show that large subclasses of fractional SC
solutions cannot occur for the AGP. This allows us to separate the relevant subset of
facets in polynomial time. We also characterize all facets for finite AGP relaxations
with coefficients in {0, 1, 2}. Finally, we demonstrate the practical usefulness of our
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approach. Our cutting plane technique yields a significant improvement in terms of
speed and solution quality due to considerably reduced integrality gaps as compared to
the approach by Kröller et al. (ACM J Exp Algorithm 17(1): 2.3:2.1–2.3:2.23, 2012).

Keywords Art gallery problem · Geometric optimization · Algorithm engineering ·
Solving NP-hard problem instances to optimality · Art gallery polytope · Set cover
polytope · Facets · Cutting planes

1 Introduction

The Art Gallery Problem (AGP) is one of the classical problems of geometric
optimization: given a polygonal region P with n vertices, find as few stationary guards
as possible, such that any point of the region is visible by at least one of the guards. As
first proven byChvátal [5] and then shown by Fisk [10] in a beautiful and concise proof
(which is highlighted in the shortest chapter in “Proofs from THE BOOK” [1]),

⌊ n
3

⌋

guards are sometimes necessary and always sufficient when P is a simple polygon.
Worst-case bounds of this type are summarized under the name “Art-Gallery-type
theorems”, and used as a metaphor even for unrelated problems; see O’Rourke [14]
for an early overview, and Urrutia [17] for a more recent survey.

Algorithmically, the AGP is closely related to the Set Cover (SC) problem: All
points in P have to be covered by star-shaped subregions of P . The AGP is NP-hard,
even for a simply connected polygonal region P [13]. However, the SC problem has
no underlying geometry, and it is well known that geometric variants of problems may
be easier to solve or approximate than their discrete, graph-theoretic counterparts, so
it is natural to explore ways to exploit the geometric nature of the AGP. But the AGP is
far from being easily discretized, as both the set to be covered (all points in P) as well
as the covering family (all star-shaped subregions around some point of P) usually
are uncountably infinite.

It is natural to consider more discrete versions of the AGP. Ghosh [11] showed that
restricting possible guard positions to the n vertices, i. e., the AGP with vertex guards,
allows an O(log n)-approximation algorithm of complexity O(n5); conversely, Eiden-
benz et al. [9] showed that for a region with holes, finding an optimal set of vertex
guards is at least as hard as SC, so there is little hope of achieving a better approx-
imation guarantee than �(log n). While these results provide tight bounds in terms
of approximation, they do by no means close the book on the arguably most impor-
tant aspect of mathematical optimization: combining structural insights with powerful
mathematical tools in order to achieve provably optimal solutions for instances of
interesting size. Moreover, even a star-shaped polygon may require a large number of
vertex guards, so general AGP instances may have significantly better solutions than
the considerably simpler discretized version with vertex guards.

1.1 Solving AGP Instances

Computing optimal solutions for general AGP instances is not only relevant from a
theoretical point of view, but has also gained in practical importance in the context of
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modeling,mapping and surveying complex environments, such as in the fields of archi-
tecture or robotics and evenmedicine, which are seeking to exploit the ever-improving
capabilities of computer vision and laser scanning. Amit et al. [2] have considered
purely combinatorial primal and dual heuristics for general AGP instances. Only very
recently have researchers begun to combinemethods from integer linear programming
with non-discrete geometry in order to obtain optimal solutions. As we have shown in
[12], it is possible to combine an iterative primal-dual relaxation approach with struc-
tures from computational geometry in order to solve AGP instances with unrestricted
guard positions; this approach is based on considering a sequence of primal and dual
subproblems, each with a finite number of primal variables (corresponding to guard
positions) and a finite number of dual variables (corresponding to “witness” positions).

Couto et al. [6–8] used a similar approach for the AGPwith vertex guards. Tozoni et
al. [16] proposed and algorithm computes lower and upper bounds for the AGP, based
on computing finite set-cover instances with the help of a state-of-the-art IP solver.
To generate a lower bound, a finite set of witness candidates is chosen and a restricted
AGP is solved, in which only the witnesses have to be covered. For this, it suffices
to extract a finite set of potential guard positions from the visibility arrangement of
the witness set in order to ensure optimality. Similarly, finite sets of potential witness
positions for a given finite guard set can be extracted from the visibility arrangement
of the guards. This allows it to compute upper and lower bounds for the optimal AGP
value by solving discrete set cover instances. The algorithmofTozoni et al. [16] iterates
between generating tighter lower and upper bounds by refining the witness and guard
candidate sets along the iterations. It stops when lower and upper bounds coincide.
Although no theoretical convergence has been established, in tests, the approach is
able to yield optimal solutions for a large variety of instance classes, even for polygons
with up to a thousand vertices.

An approach presented in [12] considers a similar primal-dual scheme, but focuses
on the linear relaxation of the primal guard cover, whose dual is the witness packing
problem. This forms the basis of integer solutions and the approach presented in this
paper; more details are described in Sect. 3. Furthermore, we have collaborated with
the authors of [6–8,16] and produced a video [4] that highlights and illustrates the
approaches to the AGP, and also demonstrates its relevance for practical applications.

1.2 Set Cover

Also important for the work on the AGP is the discrete and finite problem of covering
a given set of objects by an inexpensive collection of subsets. This is known as the
Set Cover Problem (SC), which has enjoyed a considerable amount of attention.
Highly relevant for the purposes of this paper is the work by Balas and Ng [3] on the
discrete SC polytope, which describes all its facets with coefficients in {0, 1, 2}.

1.3 Our Results

In this paper, we extend and deepen our recent work [12] on iterative primal-dual
relaxations, by proving a number of polyhedral properties of the resulting AGP poly-
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topes and integrating them into modified versions of the algorithm presented in [12].
We provide the first study of the art gallery polytope and give a full characterization
of all its facets with coefficients in {0, 1, 2}.

Remarkably, we are able to exploit geometry to prove that only a very restricted
family of facets of the general SC polytope will typically have to be used as cutting
planes for removing fractional variables. Instead, we are able to prove that many
fractional solutions only occur in intermittent SC subproblems; thus, they simply
vanish when new guards or witnesses are introduced. This saves us the trouble of
solving an NP-complete separation problem. Computational results illustrate greatly
reduced integrality gaps for a wide variety of benchmark instances, as well as reduced
solution times. Details are as follows. Related SC results are described by Balas et al.
[3].

– We provide two variants of our primal-dual framework for solving the AGP. Both
aim at producing binary solutions, one integrates an IP in the primal phase and both
greatly benefit from our cutting planes. Our algorithms also serve as benchmark for
the cutting plane approach in our experiments.

– We show how to employ cutting planes for an iterative primal-dual framework for
solving the AGP. This is interesting in itself, as it provides an approach to tackling
optimization problemswith infinitelymany constraints and variables. The particular
challenge is to identify constraints that remain valid for any choice of infinitelymany
possible primal and dual variables, as we are not solving one particular IP, but an
iteratively refined sequence.

– Based on a geometric study of the involved SC constraints, we characterize all facets
of involvedAGP polytopes that have coefficients in {0, 1, 2}. In the SC setting, these
facets are capable of cutting off fractional solutions, but the separation problem is
NP-complete.We use geometry to prove that only some of these facets are able to cut
off fractional solutions in an AGP setting under reasonable assumptions, allowing
us to solve the separation problem in polynomial time.

– We provide a class of facets based on Edge Cover (EC) constraints.
– We demonstrate the practical usefulness of our results by showing greatly improved
solution speed and quality for a wide array of large benchmarks.

2 Preliminaries

We consider a polygonal region P with n vertices that may have holes, i. e., that does
not have to be simply connected. For a point p ∈ P , we denote by V(p) the visibility
polygon of p in P , i. e., the set of all q ∈ P , such that the straight-line connection
pq lies completely in P . P is star-shaped if P = V(p) for some p ∈ P . The set of
all such points is the kernel of P , denoted by kernel(P). For a set S ⊆ P,V(S) :=
∪p∈SV(p).

A set C ⊆ P is a guard cover of P , if V(C) = P . The AGP asks for a guard cover
of minimum cardinality c; this is the same as covering P by a minimum number of
star-shaped sub-regions of P . Note that Chvátal’s Watchman Theorem [5] guarantees
c ≤ ⌊ n

3

⌋
. For simplicity, we abbreviate x(G) := ∑

g∈G xg , for any vector x .
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3 Mathematical-Programming Formulation and LP-Based Solution Procedure

In order to keep this work self-contained, we briefly recapitulate our previously pub-
lished [12] LP formulations of the AGP as well as how to use them to obtain fractional
optimal Art Gallery solutions. Then we motivate the necessity to integrate cutting
planes to cut off those fractional solutions in order to obtain binary ones. Furthermore,
we specify requirements for cutting planes, allowing us to seamlessly integrate them
in our framework.

Let P be a polygon and G,W ⊆ P sets of points for possible guard locations
and witnesses, i. e., points to be guarded, respectively. We assume W ⊆ V(G), which
is easily guaranteed by initially including all vertices of P in G. The AGP that only
requires coveringW exclusively using guards inG can be formulated as an IP denoted
by AGP(G,W ):

min
∑

g∈G
xg (1)

s. t.
∑

g∈G∩V(w)

xg ≥ 1 ∀w ∈ W (2)

xg ∈ {0, 1} ∀g ∈ G, (3)

where the original AGP is AGP(P, P). Chvátal’s Watchman Theorem [5] guarantees
that only a finite number of variables in AGP(P, P) are non-zero, but it still has
uncountably many variables and constraints, so it cannot be solved directly. Thus we
consider finite G,W ⊂ P and iteratively solve AGP(G,W ) while adding points to G
andW . For dual separation and to generate lower bounds, we require the LP relaxation
AGR(G,W ) obtained by relaxing the integrality constraint (3) to:

0 ≤ xg ≤ 1 ∀g ∈ G. (4)

The dual of AGR(G,W ) is

max
∑

w∈W
yw (5)

s. t.
∑

w∈W∩V(g)

yw ≤ 1 ∀g ∈ G (6)

0 ≤ yw ≤ 1 ∀w ∈ W. (7)

The algorithms based on this formulation and the following argumentation are pre-
sented in pseudocode in Sect. 4 (Algorithms 1 and 2).

The relation between a solution of AGR(G,W ) and AGR(P, P) is not obvious,
see Fig. 2 for the following argumentation. In [12], we show that AGR(P, P) can be
solved optimally for many problem instances by using finite G andW . The procedure
uses primal/dual separation (i. e., cutting planes and column generation) to connect
AGR(G,W ) to AGR(P, P):
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Input: Polygon P
1: G ← W ← all vertices of P
2: A ← ∅
3: (lowerBound, upperBound) ← (1, ∞)

4: repeat
5: repeat
6: (x∗, y∗) ← optimize AGR(G,W, A)

7: W ← W ∪ run primal separation
8: A ← A ∪ separate cuts
9: if separation failed and x∗ is integral then
10: upperBound ← min(upperBound, objective value of x∗)

11: end if
12: until separation failed or lowerBound = upperBound
13: repeat
14: (x∗, y∗) ← optimize AGR(G,W, A)

15: G ← G ∪ run dual separation
16: A ← A ∪ separate cuts
17: if separation failed then
18: lowerBound ← max(lowerBound, �objective value of y∗�)
19: end if
20: until separation failed or lowerBound = upperBound
21: until lowerBound = upperBound or time limit reached

Algorithm 1: The LP mode algorithm only solves LPs.

Input: Polygon P
1: G ← W ← all vertices of P
2: A ← ∅
3: (lowerBound, upperBound) ← (1, ∞)

4: repeat
5: repeat
6: x∗ ← optimize AGP(G,W, A)

7: W ← W ∪ run primal separation
8: if separation failed then
9: upperBound ← min(upperBound, objective value of x∗)

10: end if
11: until separation failed or lowerBound = upperBound
12: repeat
13: (x∗, y∗) ← optimize AGR(G,W, A)

14: G ← G ∪ run dual separation
15: A ← A ∪ separate cuts
16: if separation failed then
17: lowerBound ← max(lowerBound, �objective value of y∗�)
18: end if
19: until separation failed or lowerBound = upperBound
20: until lowerBound = upperBound or time limit reached

Algorithm 2: The IP mode algorithm has one difference to Algorithm 1: It solves IPs
in the primal separation phase, thus only producing binary upper bounds.

For some finite sets G and W , we solve AGR(G,W ) using the simplex method.
This produces an optimal primal solution x∗ and dual solution y∗ with objective value
z∗. The primal is a minimum covering of W by the guards in G, the dual a maximum
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Fig. 1 An optimal fractional solution of value 5 without (left) and an optimal integer solution of value 6
with cutting planes (right). Circles show guards, fill-in indicates fractional amount. Cutting planes enforce
at least two guards in the left and three in the right area, both marked in gray

Fig. 2 The AGP and its relaxations for G,W ⊆ P . Dotted arrows represent which conclusions may be
drawn from the primal and dual solutions x∗ and y∗

packing of witnesses in W , such that each guard in G sees at most one of them. We
analyze x∗ and y∗ as follows:

1. If there exists a point w ∈ P \ W with x∗(G ∩ V(w)) < 1, then w corresponds to
an inequality of AGR(P, P) that is violated by x∗. The new witness w is added to
W , and the LP is re-solved. If such a point w cannot be found, x∗ is optimal for
AGR(G, P), and z∗ is an upper bound for AGR(P, P).

2. If there exists a point g ∈ P \ G with y∗(W ∩ V(g)) > 1, then it corresponds
to a violated dual inequality of AGR(P, P). We create the LP column for g and
re-solve the LP. If such a g does not exist, y∗ is an optimal dual solution for
AGR(P,W ) and z∗ is a lower bound for AGR(P, P).

Both separation problems can be solved efficiently using the overlay of the visibility
polygons of all points g ∈ G with x∗

g > 0 (for the primal case) and all w ∈ W with
y∗
w > 0 (for the dual case), which decomposes P into a planar arrangement of bounded
complexity.

Should the upper and the lower bound meet, we have an optimal solution of
AGR(P, P), but AGR(P, P) is the LP relaxation of AGP(P, P), so its optimal solu-
tion may contain fractional guard values [12], compare Fig. 1. At this point, it is
possible to solve AGP(G, P) using primal separation only, which produces binary
upper bounds; but they do not necessarily match the lower bounds, which are still
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obtained using the relaxation. This scenario can prevent our procedure from terminat-
ing, even if it found an optimal Art Gallery solution, because it might be unable to
prove its optimality. Algorithm 2 in Sect. 4 explores that approach.

In the remainder of this paper, we explore the use of cutting planes to cut off large
classes of fractional solutions obtained by a procedure like the one described above,
increasing lower bounds and enhancing integrality. Let α be such a cutting plane.
Recall that AGP(P, P) has an infinite number of both variables and constraints. That
means that it is not enough forα to be feasible forAGP(G,W ) for the current iteration’s
finite sets G and W ; α must remain feasible in all future iterations of our algorithm.
Formally, feasibility for AGP(G,W ) is insufficient; instead, we require α not to cut off
any x ∈ {0, 1}G ′

for an arbitrary P ⊇ G ′ ⊇ G, such that x is feasible for AGP(G ′, P).
An LP with a set A of such additional constraints is denoted by AGR(G,W, A), its
IP counterpart by AGP(G,W, A). Note that AGP(G, P) and AGP(G, P, A) have the
same set of feasible solutions. By AGP(G,W ), we sometimes denote the set of its
feasible solutions rather than the IP itself, as in conv(AGP(G,W )). See Sect. 4 for
LP- and IP-based algorithms using the framework presented in this section.

4 Algorithms

The algorithm of Kröller et al. [12] produces fractional solutions of the AGP. We
present two modifications, Algorithms 1 and 2, focused on obtaining binary solutions.

Our first modification, used in both algorithms, is that we do not run primal and
dual separation, compare Sect. 3, in every iteration. Instead, we repeatedly run primal
(dual) separation until a primally (dually) feasible solution has been obtained and
then switch to running dual (primal) separation until a feasible dual (primal) solution
has been found, and so on. We call these phases primal (dual) phases and repeat
an alternating sequence of them, until primally and dually feasible solutions with
matching bounds have been found.

4.1 LP Mode

Algorithm 1 relies on cutting planes to cut off fractional solutions that are feasible for
AGR(G, P), but not AGP(G, P). Those cutting planes are constraints in the primal
LP, and variables in the dual. This means that they have two effects: They enhance the
integrality of acquired solutions and they increase the lower bound.

The issue with this approach is that we are not guaranteed to find a binary solution,
because we might not have a cutting plane available which is able to cut off the current
primal solution.

4.2 IP Mode

The typical approach of eliminating fractional solutions in linear optimization is to
employ an integer program (IP). In Algorithm 2, we solve AGP(G,W, A) for finite
G,W ⊂ P and iteratively apply primal separation to the result, which produces
feasible binary solutions.
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Unfortunately, this procedure does not necessarily find optimal solutions of
AGP(P, P), because it does not generate new guard positions: For generating guards
we need a dual solution, which an IP cannot provide. To counter that, we use the dual
phase of Algorithm 1where we solve the LPAGR(G,W, A). This step is supported by
cutting planes, which help increase the lower bound and thus reducing the integrality
gap.

Note that Algorithm 2 is not guaranteed to terminate, because an optimal fractional
and an optimal binary solution may require different guard locations [12]. This effect
is weakened, but not completely suppressed by the use of cutting planes. The impact
is that there is an integrality gap between the upper and the lower bounds, which can
be large.

5 Set Cover Facets

For finite sets of guards andwitnessesG,W ⊂ P,AGP(G,W ) is an SC polytope. This
motivates the investigation of SC-based facets. In this section, we discuss a family of
facets inspired by Balas et al. [3] and show that their separation, while NP-complete in
the SC setting, can, under reasonable assumptions, be solved in polynomial time when
exploiting the underlying geometry of the AGP. Additionally, we present a complete
list of all AGP facets only using coefficients in {0, 1, 2}.

5.1 A Family of Facets

Let P be a polygon andG,W ⊂ P finite sets of guard and witness positions. Consider
a finite non-empty subset ∅ ⊂ S ⊆ W of witness positions; the overlay of visibility
regions of S is called αS . It implies the partition P = J0 ∪̇ J1 ∪̇ J2, see Fig. 3. This is
the geometry that is analogous to what Balas and Ng [3] did for the SC polytope.

1. J2 := {g ∈ P | S ⊆ V(g)}, the set of points in P covering all of S.
2. J0 := {g ∈ P | V(g) ∩ S = ∅}, the set of positions in P that see none of S.
3. J1 := P \ (J2 ∪ J0) the set of positions in P that cover a non-trivial subset of S.

Fig. 3 Polygon and witness
selection S = {w1, w2, w3, w4}.
Guards located in J2 can cover
all of S, and those in J1 some
part of it, while those in J0 cover
none of S

w2

w1

w4

w3

J0

J2
J1
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Every feasible solution of the AGP has to cover S. Thus, it takes one guard in J2, or
at least two guards in J1 to cover S. For any G, this induces the following constraint
(8); for the sake of simplicity, we will also refer to this by αS .

∑

g∈J2∩G
2xg +

∑

g∈J1∩G
xg ≥ 2 (8)

In the context of our iterative algorithm, it is important to representαS independently
from G. This is achieved by storing the visibility overlay of the witnesses in S, which
implicitly makes the regions J0, J1 and J2 available. Any guard g ∈ Ji in current or
future iterations simply gets the coefficient i .

Sufficient coverage of S is necessary for sufficient coverage of P , so (8) is valid
for any x ∈ {0, 1}G that is feasible for AGP(G, P), thus fulfilling our requirement
of remaining feasible in future iterations. However, covering S may require more
than two guards in J1, so (8) does not always provide a supporting hyperplane of
conv(AGP(G,W )).

When choosing a single witness S = {w}, we obtain J2 = V(w), J1 = ∅ and
J0 = P \ V(w). The resulting constraint is Inequality (2), the witness-induced con-
straint of w, multiplied by two. For a choice of S with two witnesses, S = {w1, w2},
constraint (8) yields the sum of the witness-induced constraints of w1 and w2. Thus,
we consider |S| ≥ 3 in the remainder of this section.

In order to show when (8) defines a facet of conv(AGP(G,W )), we first need to
apply a result of [3] to the AGP setting.

Lemma 1 Let P be a polygon and G,W ⊂ P finite sets of guard and witness posi-
tions. Then conv(AGP(G,W )) is full-dimensional, if and only if

∀w ∈ W : |V(w) ∩ G| ≥ 2 (9)

Proof We start by proving necessity. If every witness is seen by at least two guards, the
|G| vectors xi = 1−ei are linearly independent and feasible solutions of AGP(G,W ),
so conv(AGP(G,W )) is full-dimensional.

Now we consider sufficiency. If V(w) ∩ G = ∅ for some w ∈ W , there is no
feasible solution at all; if V(w) ∩G = {g}, there is none with xg = 0, so there cannot
be more than |G| − 1 linearly independent solutions, and conv(AGP(G,W )) is not
full-dimensional. ��

We require some terminology adapted from [3]. Two guards g1, g2 ∈ J1 are a 2-
cover of αS , if S ⊆ V(g1) ∪ V(g2). The 2-cover graph of G and αS is the graph with
nodes in J1 ∩ G and an edge between g1 and g2 if and only if g1, g2 are a 2-cover of
αS . In addition, we have T (g) = {w ∈ V(g) ∩ W | V(w) ∩ G ∩ (J0 \ {g}) = ∅}.
Theorem 1 Given a polygon P and finite G,W ⊂ P, let conv(AGP(G,W )) be full-
dimensional and let αS be as defined in (8), such that S is maximal, i. e., there is no
w ∈ W \ S with V(w) ⊆ V(S). Then the constraint induced by αS defines a facet of
conv(AGP(G,W )), if and only if:

1. Every component of the 2-cover graph of αS and G has an odd cycle.
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2. For every g ∈ J0 ∩ G such that T (g) �= ∅ there exists either
(a) some g′ ∈ J2 ∩ G such that T (g) ⊆ V(g′);
(b) some pair g′, g′′ ∈ J1 ∩ G such that T (g) ∪ S ⊆ V(g′) ∪ V(g′′).

Proof G and W are finite, so AGP(G,W ) is an instance of SC with universe W and
subsets G, while conv(AGP(G,W )) describes a full-dimensional SC polytope.

Our claim follows from Theorem 2.6 of Balas et al. [3], because the conditions as
well as the notion of 2-cover graphs and T are equivalent. The only difference is that
we need to intersect Ji with G in order to obtain finite sets, as our Ji is a region in P ,
while that of Balas et al. naturally is a finite set of variables. ��

5.2 Geometric Properties of αS

It is easy to construct SC instances for any choice of |S| ≥ 3, such that the SC version
of αS cuts off a fractional solution [3]. Finding αS in the SC setting is NP-complete,
see below. But in the following, we show that in an AGP setting, only αS with |S| = 3
actually plays a role in cutting off fractional solutions under reasonable assumptions,
allowing us to separate it in polynomial time.

Lemma 2 Let P be a polygon, G,W ⊂ P finite sets of guard and witness positions
and ∅ ⊂ S ⊆ W. If every guard in J1 ∩ G belongs to some 2-cover of αS and S is
minimal for G, i. e., there is no proper subset T ⊂ S such that αT and αS induce the
same constraint for G, the matrix of AGP(G, S) contains a permutation of the full
circulant of order k = |S|, which is

Ck−1
k =

⎛

⎜⎜⎜⎜
⎝

0 1 · · · 1

1 0
. . .

...
...

. . .
. . . 1

1 · · · 1 0

⎞

⎟⎟⎟⎟
⎠

∈ {0, 1}k×k . (10)

Proof As G and W are finite, conv(AGP(G,W )) is an SC polytope with universe
W and subsets G. Then, as above, the claim follows from Balas et al. or, or more
accurately, fromTheorem 3.1 of [3]: Our definition of S beingminimal forG complies
with the definition of a minimal C-equivalent subset in [3]; the notion of matrix AJ1

S
corresponds to our AGP(J1 ∩ G, S), i. e., a submatrix of AGP(G, S). ��

Lemma 2 holds, because the 2-cover property holds if and only if no guard’s coeffi-
cient in αS can be reduced without turning Inequality (8) invalid [3]. As S is minimal,
removing w from S must increase coefficients, i. e., reclassify a guard g ∈ J1 ∩ G to
J2. So V(g) ∩ S = S \ {w}. Such a guard exists for every w ∈ S.

Lemma2 also states that separatingαS is equivalent to finding permutations ofCk−1
k

in the LP matrix of AGR(G,W ). It is possible to reduce a simple graph’s adjacency
matrix to a polygon with guards G and witnesses W , such that AGR(G,W ) contains
a permutation of Ck−1

k if and only if the graph contains a clique of size k or higher:
Introduce a guard and a witness for each of the graph’s vertices, place all of them into
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a convex polygon, and add a hole between a guard and a witness if they represent the
same vertex or if the two vertices are not connected. Hence, the separation problem is
NP-complete.

In the following, we examine when the separation of αS is useful for our iterative
algorithm. As αS is represented by one or several permutations of Ck−1

k , we need to
introduce the notion of a polygon corresponding to Ck−1

k . This allows us to examine
the underlying geometry of αS in the AGP.

Definition 1 (Full Circulant Polygon) A polygon P along with G(P) = {g1, . . . , gk}
⊂ P andW (P) = {w1, . . . , wk} ⊂ P for 3 ≤ k ∈ N is called Full Circulant Polygon,
or Pk−1

k , if

∀ 1 ≤ i ≤ k : V(gi ) ∩ W (P) = W (P) \ {wi } (11)

∀w ∈ P : |V(w) ∩ G(P)| ≥ k − 1 (12)

We may refer to G(P) and W (P) by just G and W , respectively.

Note that in Pk−1
k the full circulant Ck−1

k completely describes the visibility rela-
tions between G and W . This implies that the optimal solution of AGR(G,W ) is
1

k−1 ·1, with cost k
k−1 . It is feasible for AGR(G, Pk−1

k ) by Property (12), as any point

w ∈ Pk−1
k is covered by at least (k − 1) · 1

k−1 = 1.

Figure 4 captures construction attempts for models of Ck−1
k . P2

3 exists; however,
as we prove in Theorem 2, the polygons for k ≥ 4 are either star-shaped or not full
circulant. If they are star-shaped, the optimal solution is to place one guard within the
kernel. If they are not full circulant polygons, the optimal solution of AGR(G,W ) is
infeasible for AGR(G, P) and the current fractional solution is intermittent, i. e., cut
off in the next iteration. Both cases eliminate the need for a cutting plane, and we may
avoid the NP-complete separation problem by restricting separation to k = 3.

In the followingweprove that Pk−1
k is star-shaped for k ≥ 4.We startwithLemma3,

which shows that any pair of guards in G is sufficient to cover Pk−1
k .

w2
w1

w3

g1
g3

g2
w2

w1

w4

w3

g3 g2

g1g4

g∗

g2

g3 g4

g1

w3

w1

w4

w2
w∗

Fig. 4 P2
3 (left) and two attempts for P3

4 (middle and right). In the left case, Inequality (8) enforces using

two guards instead of three 1
2 -guards. The first attempt for P3

4 (middle) is star-shaped; here a cutting plane

would cut off the intermediate fractional solution of four 1
3 -guards, but as soon as g

∗ is found, the fractional
solution is replaced by a binary one with just one guard, with or without cutting plane. Finally, the second
attempt for P3

4 (right) is not star-shaped, but again, there is no need for a cutting plane to cut off the

fractional solution of four 1
3 -guards: w

∗ is only covered by 2
3 , sow∗ is separated by our algorithm and then

enforces the use of at least two guards in the next iteration; again, with or without cutting plane
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Lemma 3 Let Pk−1
k be a full circulant polygon. Then Pk−1

k is the union of the visibility

polygons of any pair of guards in G
(
Pk−1
k

)
= {g1, . . . , gk}:

∀1 ≤ i < j ≤ k : Pk−1
k = V(gi ) ∪ V(g j ) (13)

Proof Suppose Pk−1
k is a full circulant polygon, but Pk−1

k �= V(gi ) ∪ V(g j ) for
1 ≤ i < j ≤ k. Then there exists some w ∈ Pk−1

k with gi /∈ V(w), as well as
g j /∈ V(w), implying that |V(w) ∩ G| ≤ k − 2, a contradiction to Property (12) of
Definition 1. ��

The next step is Lemma 4, which drastically restricts the possible structure of Pk−1
k .

Lemma 4 Let Pk−1
k be a full circulant polygon with G

(
Pk−1
k

)
= {g1, . . . , gk}.

Suppose k ≥ 4. Then Pk−1
k has no holes.

Proof Refer to Fig. 5. Suppose Pk−1
k has a hole H . Each edge li of H induces a

half-space Hi . There are three such edges l1, l2, l3, such that H1 ∩ H2 ∩ H3 = ∅,
for otherwise the outside of H would be convex by Helly’s Theorem. Let wi denote a
point in the interior of li .

In order for w1 to fulfill (12), at least k − 1 of the guards in G must be located in
V(w1) ⊆ H1. Analogously, there must be k − 1 guards in H2. Covering w1 and w2
with a total of k guards is only possible if at least k − 2 guards of G are located in the
intersection of the two half-spaces: |H1 ∩ H2 ∩ G| ≥ k−2. If there are only k′ < k−2
guards inH1 ∩H2, it takes (k − 1)− k′ additional guards inH1 \H2 to cover w1 and

w2

w1

w3

l1

l2

l3

H

H1

H2

H3

Fig. 5 A hole H in Pk−1
k with H1 ∩ H2 ∩ H3 = ∅. There are k − 1 guards in H1 and in H2, so there

must be k − 2 in their intersection. This only leaves 2 guards for H3
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Fig. 6 P2
3 , a possible AG

interpretation of C2
3 with a hole.

It proves that the bound of k ≥ 4
in Lemma 4 is tight

g2 g1

g3

w2w1

w3

inH2 \H1 to cover w2, resulting in a total of k′ + 2(k − 1− k′) = 2k − (k′ + 2) > k
guards, a contradiction.

As H1 ∩ H2 ∩ H3 = ∅, there can be at most 2 guards in V(w3) ⊆ H3, which
violates Property (12) for k ≥ 4, a contradiction. ��

As shown in Fig. 6, k ≥ 4 is tight: a triangle with a concentric triangular hole is an
example of P2

3 , with guards in the outside corners and witnesses on the inside edges.
We require one final technical lemma before proceeding to the main theorem,

Theorem 2.

Lemma 5 Consider two disjoint non-empty convex polygons, described as the inter-
section of half-spaces: P1 = ⋂

i=1,...,n Hi and P2 = ⋂
i=n+1,...,n+m Hi . Then some

Hi , 1 ≤ i ≤ n + m separates P1 and P2.

Proof n + m ≤ 2 is trivial, so consider n + m ≥ 3. Because of P1 ∩ P2 =⋂
i=1,...,n+m Hi = ∅, Helly’s Theorem applied to the two-dimensional convex half-

spacesHi implies the existence of three half-spacesHi ,H j , andHk, i < j < k, with
Hi ∩H j ∩Hk = ∅. Without loss of generality, we assume i = 1, j = 2 and k = n+1,
which provides

H1 ∩ H2︸ ︷︷ ︸
⊇P1

∩Hn+1︸ ︷︷ ︸
⊇P2

= ∅, (14)

so it follows that P1 ∩ Hn+1 = ∅ with P2 ⊆ Hn+1 by construction, and Hn+1 is the
half-space whose existence is the claim. ��

Now all preliminaries for the main theorem of the section are met and we can
proceed to show Theorem 2, which claims that full circulant polygons are star-shaped
for k ≥ 4.

Theorem 2 A full circulant polygon Pk−1
k with k ≥ 4 is star-shaped.

Proof Refer to Fig. 7. Let Pk−1
k with k ≥ 4 be a full circulant polygon. The guards in

G = G
(
Pk−1
k

)
must be covered by a total of k − 1 guards, i. e., they must also fulfill

(12), so each guard can see at least k − 2 others. Without loss of generality, let g1 and
g2 denote two guards in each other’s field of view.
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g1
g2

P1
P2

P2

L

K

K ∩ L

P1

P12

ḡ

P ′

w′

Fig. 7 Pk−1
k with guards g1 and g2. P1 and P2 are the gray areas at the top. P1 is seen by g1 but not by

g2; an analogous property holds for P2. The rest of P
k−1
k is P12, a star-shaped polygon entirely seen by

both g1 and g2, K is its kernel. L is the area whose view into P1 ∪ P2 is not blocked by any edge of P
k−1
k

that coincides with P1 ∪ P2. It contains all of g3, . . . , gk . If P
′ would be added to Pk−1

k , K would be cut
off below the dashed line containing w′ and K ∩ L = ∅. But then no point in L , including g3, . . . , gk ,
could see w′, a contradiction to the property of Pk−1

k requiring k − 1 guards to see any of its points

Now consider P12 = V(g1) ∩ V(g2) ⊆ Pk−1
k , the subset of Pk−1

k seen by both g1
and g2. It is star-shaped, because g1 and g2 are in its kernel, which we denote by K .
The rest of Pk−1

k , i. e., Pk−1
k \ P12, consists of two types of areas:

1. P1 = Pk−1
k \ (P12 ∪ V(g2)), points visible from g1, but not from g2.

2. P2 = Pk−1
k \ (P12 ∪ V(g1)), points visible from g2, but not from g1.

Together, g1 and g2 cover every w ∈ Pk−1
k , because Pk−1

k = V(g1) ∪ V(g2) due to
Lemma 3. Thus, Pk−1

k = P12 ∪̇ P1 ∪̇ P2.
We now examine which guards can see what part of P12, P1 and P2. For that, we

classify three types of edges. Gray edges are those edges of Pk−1
k that coincide with

P1 or P2, white edges denote the other edges of P
k−1
k . Finally, edges of P12 not part

of Pk−1
k that separate P1 ∪ P2 from P12 are referred to as white-gray edges. Note that

white-gray edges do not block the view of any guard in Pk−1
k , because they are merely

edges of the auxiliary polygon P12. K is the intersection of all half-spaces induced by
white or white-gray edges, because a star’s kernel is the intersection of all half-spaces
induced by its edges.
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All points able to cover all of P1 ∪ P2 must be contained in

L =
{
g ∈ R2 | no gray edge blocks g′s view into P1or P2

}

=
⋂

e is gray edge

Half-space induced by e. (15)

Some points in L may be located outside of Pk−1
k , and even those points of L inside

of Pk−1
k may not be able to see all of P1 ∪ P2, due to white edges blocking their view.

ḡ in Fig. 7 is an example for this case: it cannot see the rightmost part of P2. However,
L �= ∅, because g3, . . . , gk ∈ L ∩ Pk−1

k . Every gi ∈ G with 3 ≤ i ≤ k is able to
see all of P1 ∪ P2: gi can see all of P1, because g2, gi are a 2-cover of P

k−1
k ; gi can

entirely see P2, because g1, gi are also a 2-cover by Lemma 3.
The remaining part of the proof involves two steps. First, we argue that any point

in K ∩ L can see all of Pk−1
k ; then we show that K ∩ L �= ∅, i. e., that Pk−1

k is
star-shaped. For the first step, assume there exists some g ∈ K ∩ L . Now g has the
following properties:

1. g ∈ Pk−1
k , because K ⊆ Pk−1

k .
2. g can see all of P12 by definition of K , which includes the interior of P12, all white

and all white-gray edges.
3. Because Pk−1

k has no holes by Lemma 4, g’s view on the white-gray edges is
not blocked; and due to g ∈ L , there is nothing left that can block g’s view into
P1 ∪ P2.

So g ∈ kernel
(
Pk−1
k

)
, provided that K ∩ L �= ∅; we show the latter as follows.

K and L are two-dimensional polyhedra, each of their edges is a facet. Suppose
their intersection is empty; then by Lemma 5, there must be a facet of one of them that
separates them from each other. We consider three cases, because K has two types of
edges and L has one:

1. The facet is a facet of K , induced by a white edge e. Now consider a point w in
the interior of e. w is seen by g1 and g2, but not by any of the points g3, . . . , gk ,
because g3, . . . , gk ∈ L , and e induces a facet separating K from L . Due to k ≥ 4,
this makes |V(w) ∩ G| ≥ k − 1, i. e., (12), impossible and thus contradicts the
requirement of Pk−1

k being a full circulant polygon. This would be the case in
Fig. 7, if Pk−1

k had the extension P ′, which would cut off the lower part of K and
thus separate K from L . However, then only g1 and g2 but none of g3, . . . , gk
could see w′, which violates (12).

2. The facet is a facet of K , induced by a white-gray edge e. As e is a white-gray
edge, there is a part of P1 or P2 adjacent to e. This part cannot be seen from
any point in L , because the facet induced by e is a facet of K and separates K
from L by assumption, and because Pk−1

k has no holes by Lemma 4. However,
g3, . . . , gk ∈ L not being able to see P1 or P2 contradicts (12).

3. The facet is a facet of L . This means that there is some gray edge e corresponding
to that facet. A point w in e’s interior is not seen by g1 or g2, because the facet
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g14

g13

g11

g12

g24

g23

g21

g22

g34

g33

g31

g32

Fig. 8 Three instances of P3
4 embedded into a larger polygon. Setting all guards to 1

3 is feasible and

optimal, even though no guard is placed in any of the P3
4 kernels

separates K from L . So s is not seen by more than k − 2 guards, and thus violates
(12).

All cases lead to contradiction, and thus K ∩L �= ∅. Therefore, Pk−1
k has a non-empty

kernel, and is star-shaped for k ≥ 4, as claimed. ��
Theorem 2 does not rule out situations in which Pk−1

k , for k ≥ 4 is part of a larger
polygon, as shown in Fig. 8. This example has no integrality gap; placing at least five
copies of P3

4 around an appropriate central subpolygon with a hole can actually create
one. However, such cases are much harder to come by, making the k ≥ 4 facets a lot
less useful for cutting off fractional solutions.

Theorem 2 does, however, provide a very useful separation heuristic. As the sepa-
ration problem is NP-complete for unlimited k, but solvable in polynomial time for a
fixed k, it is clear that k must be limited in a practical algorithm. Theorem 2 justifies
choosing k = 3 from a theoretical point of view, by stating that the underlying geome-
try for k > 3 is star-shaped, i. e., allows placing one non-fractional guard in its kernel,
seeFigure 4.Aswe show inSect. 7, this can also be validated in an experimental setting.

5.3 All Art Gallery Facets with Coefficients {0, 1, 2}

For finite G,W ⊂ P,AGP(G,W ) is also an SC instance. Balas and Ng identified
all SC facets with coefficients in {0, 1, 2} [3]; so we present all AGP facets with
coefficients {0, 1, 2}. This includes three trivial facet classes, (16)–(18), which are
unable to cut off fractional solutions of AGR(G,W ). The only non-trivial facet in this
inventory is the one of type αS described above.

xg ≥ 0 (16)

is a facet of a full-dimensional conv(AGP(G,W )), and only if |V(w) ∩ G \ {g}| ≥ 2
for all w ∈ W , i. e., if every witness sees at least two guards other than g.

A second type of AGP facet is the upper bound of one for every guard value. It is
a facet of every full-dimensional conv(AGP(G,W )) [3]:

xg ≤ 1 (17)
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The third and last trivial AGP facet with coefficients in {0, 1, 2} is
∑

g∈V(w)∩G
xg ≥ 1 (18)

This simply is the constraint induced by the witness w ∈ W , which enforces suf-
ficient coverage of w. It is facet defining and only if two conditions hold: First,
there must not be any witness w′ ∈ W with V(w′) ∩ G ⊂ V(w) ∩ G. Other-
wise, the coverage of w would be implied by that of w′. Second, for any guard
g ∈ G \ V(w), there exists some other guard g′ ∈ V(w) ∩ G that can see all of{
w′ ∈ V(g) ∩ W | ḡ /∈ V(w′),∀ḡ ∈ G \ (V(w) ∪ {g})}, compare [3].
The fourth, and the only non-trivial, AGP facet with coefficients in {0, 1, 2} is

the facet of type αS presented in Inequality (8) and Theorem 1, which is thoroughly
analyzed above.

6 Edge Cover Facets

Solving AGR(G,W ) for finite G,W ⊂ P , such that no guard can see more than two
witnesses is equivalent to solving fractional edge cover (EC) on the graph with nodes
W , an edge between v �= w ∈ W for each g ∈ G with V(g) ∩ W = {v,w}, and a
loop for each g ∈ G with V(g) ∩ W = {w}. The fractional EC polytope is known to
be half-integral [15], which can be exploited to show that fractional solutions always
form odd-length cycles of 1

2 -guards.
In the conclusions of [12], we proposed a class of valid inequalities motivated by

this. The idea is to identify k witnesses W = {w1, . . . , wk}, such that no point exists
that can see more than two of them. Then at least

⌈ k
2

⌉
binary guards are needed for

covering W . Two examples are shown in Fig. 9.

w4w3

w2

w1

w5

g1

g5

g4

g3

g2 w2
w1

w3

g1

g3

g2

Fig. 9 Two situations, in which no guard exists that can see more than two witnesses.On the left, assigning
g1 = · · · = g5 = 1

2 results in an optimal fractional solution of 5
2 , compare [12]. Applying (19) yields

g1 + · · · + g5 ≥ 5+1
2 = 3 and cuts off this fractional solution. On the right, the optimal fractional solution

is g1 = g2 = g3 = 1
2 . (19) provides the constraint g1 + g2 + g3 ≥ 3+1

2 = 2, which cuts off that fractional
solution as well
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∑

g∈V(W )∩G
xg ≥

⌈
k

2

⌉
(19)

Obviously, for any choice of P ⊇ G ′ ⊇ G, (19) does not cut off any feasible
solution x ∈ {0, 1}G ′

of AGP(G ′, P), as long as no point in P exists that sees more
than two of thesewitnesses.Hence, analogously to the SC cuts, a cut can be represented
as visibility overlay αW and kept in future iterations once it has been identified.

It is not hard to show that these are facet defining under relatively mild conditions.

Theorem 3 Let P be a polygon with finite sets of guard and witness positions G,W ⊂
P, such that conv(AGP(G,W )) is full-dimensional. Let W = {w1, . . . , wk} ⊆ W be
an odd subset of k ≥ 3 witnesses, such that

1. No guard sees more than two witnesses in W.
2. If a guard sees two witnesses wi �= w j ∈ W, they are a successive pair, i. e.,

i + 1 = j or i = 1 and j = k.
3. Each of the k successive pairs is seen by some g ∈ G.
4. No guard inside of V (W ) sees a witness outside of W .

Then the constraint
∑

g∈V(W )∩G
xg ≥

⌈∣∣W
∣∣

2

⌉

(20)

is a facet of conv(AGP(G,W )).

Proof As no guard sees more than two witnesses of W , it is clear that it takes at least⌈ k
2

⌉
guards to cover W .

It remains to be shown how to construct n = |G| affinely independent solutions of
AGP(G,W ). In order to do that, we separate the guards into three groups G1 ∪̇ G2 ∪̇
G3 = G with |Gi | = ni :

1. G1 is a set of one guard for each successive pair as in Condition 3.
2. G2 contains all guards in V

(
W
)
that are not already part of G1:

G2 = (V (W ) ∩ G
) \ G1 (21)

3. G3 holds the rest of the guards, which are outside of V(W ):

G3 = G \ V (W ) (22)

In the following, we describe a solution x ∈ {0, 1}G by x = (
xG1 , xG2 , xG3

)
, where

xGi ∈ {0, 1}Gi denotes the vector (xg1 , . . . , xgni ) with Gi = {g1, . . . , gni }. The first
set of n1 solutions is
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Fig. 10 Small von Koch, Orthogonal, Simple and Spike test polygons
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Fig. 11 Relative gap over time in IP-mode for 1000-vertex von Koch-type polygons. a No cuts. b EC.
c SC3. d SC3 and EC. e SC4

123



Algorithmica (2015) 73:411–440 431

0
20

40
60

80
100

120
140

160
180

200
220

240
260

280
300

320
340

360
380

400
420

440
460

480
500

520
540

560
580

600

0

2

4

6

8

10

12

14

16

18

20

Q4

Q3

Q2

Q1

Q0

0
20

40
60

80
100

120
140

160
180

200
220

240
260

280
300

320
340

360
380

400
420

440
460

480
500

520
540

560
580

600

0

2

4

6

8

10

12

14

16

18

20

Q4

Q3

Q2

Q1

Q0

0
20

40
60

80
100

120
140

160
180

200
220

240
260

280
300

320
340

360
380

400
420

440
460

480
500

520
540

560
580

600

0

2

4

6

8

10

12

14

16

18

20

Q4

Q3

Q2

Q1

Q0

0
20

40
60

80
100

120
140

160
180

200
220

240
260

280
300

320
340

360
380

400
420

440
460

480
500

520
540

560
580

600

0

2

4

6

8

10

12

14

16

18

20

Q4

Q3

Q2

Q1

Q0

0
20

40
60

80
100

120
140

160
180

200
220

240
260

280
300

320
340

360
380

400
420

440
460

480
500

520
540

560
580

600

0

2

4

6

8

10

12

14

16

18

20

Q4

Q3

Q2

Q1

Q0

time [s]

time [s]time [s]

time [s] time [s]

ga
p 

[%
]

ga
p 

[%
]

ga
p 

[%
]

ga
p 

[%
]

ga
p 

[%
]

(a) (b)

(c)

(e)

(d)

Fig. 12 Relative gap over time in IP-mode for the 1000-vertex Orthogonal-type polygons. a No cuts,
b EC, c SC3, d SC3 and EC, e SC4

x1 = ((1, 0, 1, 0, . . . , 1, 0, 1), 0, 1)

x2 = ((1, 1, 0, 1, . . . , 0, 1, 0), 0, 1)

x3 = ((0, 1, 1, 0, . . . , 1, 0, 1), 0, 1)

...

xn1 = ((0, 1, 0, 1, . . . , 0, 1, 1), 0, 1) , (23)

which exists because of Condition 3 and the choice of G1. It fulfills (20) with equality
because it uses

⌈ k
2

⌉
guards, and it is feasible, because W and W \ W are covered by

construction and guards not in G3 do not interfere with the coverage of witnesses in
W \ W .

The second set provides n2 solutions by using the i-th unit vector as xG2 .

xi = (
x ′, ei , 1

)
(24)
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Fig. 13 Relative gap over time in IP-mode for the 1000-vertex Simple-type polygons. a No cuts, b EC,
c SC3, d SC3 and EC, e SC4

As every successive pair of witnesses is covered by some guard in G1, a choice of x ′
such that xi fulfills (20) with equality is always possible.

The third and last set of n3 solutions is constructed by subtracting ei from 1 in the
vector xG3 :

xi = ((1, 0, 1, 0, . . . , 1, 0, 1), 0, 1 − ei ) . (25)

It fulfills (20) with equality. Setting one guard value to zero in G3 is feasible because
in a full-dimensional conv(AGP(G,W )), every witness is seen by at least two guards,
compare Lemma 1.

All in all, we have n1 + n2 + n3 = n feasible, affinely independent solutions of
AGP(G,W ) fulfilling (20) with equality, so (20) has dimension n − 1 and is a facet,
as claimed. ��
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Fig. 14 Relative gap over time in IP-mode for the 200-vertex Spike-type polygons. a No cuts, b EC,
c SC3, d SC3 and EC, e SC4

7 Computational Experience

A variety of experiments on benchmark polygons demonstrates the usefulness of our
cutting planes, as well as the appropriateness of our separation heuristic of using only
k = 3 for the SC related facets from Sect. 5.

We test our cutting planes in two variations of our algorithm, IP and LP mode, i. e.,
Algorithms 2 and 1 from Sect. 4. An in-depth presentation of the results is conducted
in Sects. 7.1 and 7.2.

Just as in [12], we employed four different classes of benchmark polygons.

1. Random von Koch polygons are inspired by fractal Koch curves, see Fig. 10, left.
2. Random floorplan-like Orthogonal polygons as in Fig. 10, second polygon.
3. Random non-orthogonal Simple polygons as in Fig. 10, third polygon.
4. Random Spike polygons (mostly with holes) as in Fig. 10, fourth polygon.

Each polygon class was evaluated for different sizes n ∈ {60, 200, 500, 1000}, where
n is the approximate number of vertices in a polygon.
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Fig. 15 Relative gap over time in LP-mode for the 500-vertex von Koch-type polygons. a No cuts, b EC,
c SC3, d SC3 and EC, e SC4

Different combinations of cut separators were also employed. The EC-related cuts
from Sect. 6 are referred to as EC cuts, while the SC-related cuts of Sect. 5 that rely
on separating a maximum of 3 ≤ k witnesses are denoted by SCk cuts. Note that for
3 ≤ m ≤ k, SCk cuts also include all SCm cuts.

Whenever our algorithm separates cuts, it applies all configured cut separators and
we test the following combinations: no cut separation at all, SC3 cuts only, SC4 cuts
only, EC cuts only, and SC3 and EC cuts at the same time.

In total, we have two modes, five combinations of separators, four classes of poly-
gons, and four polygon sizes; for each combination, we tested 10 different polygons.
The experiments were run on 3.0GHz Intel dual core PCs with 2GB of memory, run-
ning 32 bit Debian 6.0.5 with Linux 2.6.32-686. Our algorithms were not parallelized,
used version 4.0 of the “Computational Geometry Algorithms Library” (CGAL) and
CPLEX 12.1. Each test run had a time limit of 600s.

In the remaining part of this section, we refer to quartiles by Q0,Q1,Q2,Q3 and
Q4. Q1 is the first quartile, which is between the lowest 25% and the rest of the values.
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Fig. 16 Relative gap over time in LP-mode for the 500-vertex Orthogonal-type polygons. a No cuts,
b EC, c SC3, d SC3 and EC, e SC4

Q2 is the second quartile or the median value and Q3, the third quartile, splits the upper
25% from the lower 75%. For the sake of simplicity, the minimum and the maximum
are denoted by Q0 and Q4, respectively.

7.1 IP Mode

The IP mode, Algorithm 2, is a variation of the one introduced in [12], which always
determines binary solutions at the expense of not necessarily terminating due to the
integrality gap. Our experiments confirm that the integrality gap is drastically reduced
by our cutting planes.

In Fig. 11 we present the relative gap over time for the five tested cut separator
selections for the von Koch-type polygons with 1000 vertices. Figure 11a shows the
relative gap over timewithout cut separation. After about 400s, gaps are fixed between
0 and 6%, the median gap being 2%. When applying the EC separator (Fig. 11b),
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Fig. 17 Relative gap over time in LP-mode for the 500-vertex Simple-type polygons. a No cuts. b EC,
c SC3, d SC3 and EC, e SC4

75% of the gaps drop to zero and the largest gap is 2%. Using the SC3 separator
(Fig. 11c) yields an even better result in terms of both speed and relative gap. All gaps
are closed, many of them earlier than with the EC separator. Combining both, see
Fig. 11d, yields a result comparable to using only SC3. Moving to the SC4 separator
(Fig. 11e) yields a weaker performance: computation times go up, and not all gaps
reach 0% within the allotted time, because separation takes longer without improving
the gap. This illustrates the practical consequences of Theorem 2.

The remaining test cases, i. e., the remaining polygon classes, confirm our interpre-
tation. We briefly summarize only the deviating observations.

For the Orthogonal-type polygons with 1000 vertices in Fig. 12, EC and SC3
separation yield an improvement over using no separation: The maximum relative gap
drops and some gaps reach their 600s levels earlier. Joint application of SC3 and EC
provides the best results. SC4 and SC3 separation only differ in the extreme cases of
the minimum and the maximum relative gap.
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Fig. 18 Relative gap over time in LP-mode for the 200-vertex Spike-type polygons. a No cuts, b EC,
c SC3, d SC3 and EC, e SC4

The 1000-vertex Simple polygons, see Fig. 13, allow a slight improvement of the
relative gap with EC as well as SC3 separation; joint application yields the best results.
A difference to the other experiments is that the SC4 separator performs slightly better
than the SC3 separator—an isolated observation.

Our separators have no measurable impact on the Spike-type polygons, see Fig. 14.
Larger instances of this type of polygon take much time when solving the first couple
of IP, which means our separators are triggered late in the 600s time limit—or not at
all.

7.2 LP Mode

Analogously to the IP mode, we test the separators in LP mode, i. e., Algorithm 1. The
difference to Algorithm 2 is that in the primal phase, it solves the LP AGR(G,W, A)
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Table 1 After 600s, for each polygon/size combination and for every tested cut separator combination,
this table shows for how many percent of the polygons a binary solution was found as well as their median
relative gap

Vertices No cuts (%) EC (%) SC3 (%) EC and SC3 (%) SC4 (%)

von Koch

60 90, 0.0 90, 0.0 100, 0.0 100, 0.0 100, 0.0

200 30, 0.0 20, 0.0 90, 0.0 90, 0.0 80, 0.0

500 20, 1.4 50, 0.0 60, 0.0 90, 0.0 70, 0.0

1000 0, n/a 20, 0.0 60, 0.0 40, 0.0 30, 0.0

Orthogonal

60 80, 0.0 80, 0.0 100, 0.0 100, 0.0 100, 0.0

200 40, 7.5 60, 1.7 90, 0.0 90, 0.0 90, 0.0

500 10, 1.3 10, 1.3 80, 0.0 90, 0.0 80, 1.3

1000 0, n/a 0, n/a 40, 2.0 40, 2.1 40, 2.0

Simple

60 100, 0.0 100, 0.0 100, 0.0 100, 0.0 100, 0.0

200 40, 3.5 50, 0.0 100, 0.0 90, 0.0 100, 0.0

500 10, 0.0 10, 0.0 80, 0.0 80, 0.0 70, 0.0

1000 0, n/a 0, n/a 50, 0.7 50, 0.0 50, 0.7

Spike

60 100, 0.0 100, 0.0 100, 0.0 100, 0.0 100, 0.0

200 10, 0.0 20, 0.0 100, 0.0 100, 0.0 100, 0.0

500 0, n/a 0, n/a 20, 0.0 20, 0.0 10, 0.0

1000 0, n/a 0, n/a 0, n/a 0, n/a 0, n/a

instead of the IP. If a solution of AGR(G,W, A) is feasible for AGR(G, P, A) and if
it happens to be binary, it is an upper bound, otherwise it is discarded and the primal
phase is continued.

The challenge of theLPmode is to find a binary solution at all, because the algorithm
might stick to fractional optimal solutions that are not handled by any cut separator.
Instances unsolved because of this are considered to have an infinite gap; they result
in diagrams in which only the lower quartiles are visible.

Figures 15, 16, 17 and 18 show the relative gap over time diagrams for the 500-
vertex von Koch, Orthogonal and Simple, as well as the 200-vertex Spike polygons.

For the von Koch polygons in Fig. 15, the EC separator provides a slight improve-
ment, the SC3 separator a stronger improvement; the best result is obtained when
using both of them. SC4 separation is weaker than SC3 separation.

The EC separator does not improve the situation for the Orthogonal polygons,
Fig. 16, but the SC3 separator boosts solution percentage beyond 75%. Joint applica-
tion of both separators results in even smaller gaps. SC4 cut separation yields mixed
results: The median relative gap is larger, while the Q3 gap is smaller but takes approx-
imately 350s longer to reach its value. In addition, the Q1 curve takes much longer to
drop to zero as well.
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The situation for the Simple polygons in Fig. 17 is as follows. EC separation has
no impact on the results, when applied alone as well as when used jointly. As above,
SC3 separation is better than SC4 separation, it solves more instances.

EC cuts have no impact on the Spike polygons, Fig. 18, but SC3 helps solving all
of them instead of less than 25%. In this case, the SC4 separator is approximately 10s
faster in the Q1,Q2 and Q3 quartiles and 30s for the maximum.

We present Table 1 that summarizes the solution percentage after 600s in LP mode
as well as the median relative gap.

8 Conclusion

In this paper, we have shown how we can exploit both geometric properties and
polyhedral methods of mathematical programming to solve a classical and natural,
but highly challenging problem from computational geometry.

We have shown how to integrate cutting planes into linear programming formula-
tions of the Art Gallery Problem (AGP), a linear program with a potentially infinite
number of both variables and constraints. Additionally, we provided three trivial and
two non-trivial facets of the AGP polytope based on Set Cover and Edge Cover,
including a complete list of all AGP facets with coefficients in {0, 1, 2}.

Furthermore, we have exploited the underlying geometric properties of the AGP to
identify a subset of one of our facet classes, that

1. can be separated in polynomial time, although the general separation problem is
NP-complete.

2. is theoretically justified by showing that geometry behind the cutting planes is
star-shaped for the cases excluded in separation.

3. is justified by experimental data.

This promises to pave the way for a range of practical AGP applications that have
to deal with additional real-life aspects. We are optimistic that our basic approach can
also be used for other geometric optimization problems.
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