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Abstract Logit choice dynamics constitute a family of randomized best response
dynamics based on the logit choice function (McFadden in Frontiers in econometrics.
Academic Press, New York, 1974) that models players with limited rationality and
knowledge. In this paper we study the all-logit dynamics [also known as simultaneous
learning (Alós-Ferrer andNetzer inGames EconBehav 68(2):413–427, 2010)], where
at each time step all players concurrently update their strategies according to the logit
choice function. In the well studied (one-)logit dynamics (Blume in Games Econ
Behav 5(3):387–424, 1993) instead at each step only one randomly chosen player is
allowed to update. We study properties of the all-logit dynamics in the context of local
interaction potential games, a class of games that has been used to model complex
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social phenomena (Montanari and Saberi 2009; Peyton in The economy as a complex
evolving system. Oxford University Press, Oxford, 2003) and physical systems (Levin
et al. in Probab Theory Relat Fields 146(1–2):223–265, 2010; Martinelli in Lectures
on probability theory and statistics. Springer, Berlin, 1999). In a local interaction
potential game players are the vertices of a social graph whose edges are two-player
potential games. Each player picks one strategy to be played for all the games she
is involved in and the payoff of the player is the sum of the payoffs from each of
the games. We prove that local interaction potential games characterize the class of
games for which the all-logit dynamics is reversible. We then compare the stationary
behavior of one-logit and all-logit dynamics. Specifically, we look at the expected
value of a notable class of observables, that we call decomposable observables. We
prove that the difference between the expected values of the observables at stationarity
for the two dynamics depends only on the rationality level β and on the distance of
the social graph from a bipartite graph. In particular, if the social graph is bipartite
then decomposable observables have the same expected value. Finally, we show that
the mixing time of the all-logit dynamics has the same twofold behavior that has been
highlighted in the case of the one-logit: for some games it exponentially depends on
the rationality level β, whereas for other games it can be upper bounded by a function
independent from β.

Keywords Logit dynamics · Markov chain · Game dynamics · Concurrent updates ·
Noisy dynamics · Reversibility

1 Introduction

In the last decade,wehaveobserved an increasing interest in understandingphenomena
occurring in complex systems consisting of a large number of simple networked com-
ponents that operate autonomously guided by their own objectives and influenced
by the behavior of the neighbors. Even though (online) social networks are a pri-
mary example of such systems, other remarkable typical instances can be found in
Economics (e.g., markets), Physics (e.g., Ising model and spin systems) and Biology
(e.g., evolution of life). A common feature of these systems is that the behavior of
each component depends only on the interactions with a limited number of other
components (its neighbors) and these interactions are usually very simple.

Game Theory is the main tool used to model the behavior of agents that are guided
by their own objective in contextswhere their gains depend also on the choicesmade by
neighboring agents.Game theoretic approaches havebeenoften proposed formodeling
phenomena in a complex social network, such as the formation of the social network
itself [4,10,16–18,21,28], the formation of opinions [14,22,30] and the spread of
innovation [38,40] as well as in physical systems [33,34]. Many of these models are
based on local interaction games [39], where agents are represented as vertices on
a social graph and the relationship between two agents is represented by a simple
two-player game played on the edge joining the corresponding vertices.

Weare interested in thedynamics that govern suchphenomena and several dynamics
have been studied in the literature like, for example, the best response dynamics [24],
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the logit dynamics [15], fictitious play [23] or no-regret dynamics [27]. Any such
dynamics can be seen as made of two components:

• Selection rule: by which the set of players that update their state (strategy) is deter-
mined;

• Update rule: by which the selected players update their strategy.

For example, the classical best response dynamics compose the best response update
rule with a selection rule that selects one player at the time. In the best response
update rule, the selected player picks the strategy that, given the current strategies of
the other players, guarantees the highest utility. The Cournot dynamics [19] instead
combine the best response update rule with the selection rule that selects all players.
Other dynamics in which all players concurrently update their strategy are fictitious
play [23] and the no-regret dynamics [27].

In this paper, we study a specific class of randomized update rules called the logit
choice function [15,35,45] which is a type of noisy best response that models in a
clean and tractable way the limited knowledge (or bounded rationality) of the players
in terms of a parameter β called inverse noise. In similar models studied in Physics, β
is the inverse of the temperature. Intuitively, a low value of β (that is, high temperature)
models a noisy scenario in which players choose their strategies “nearly at random”; a
high value of β (that is, low temperature) models a scenario with little noise in which
players pick the strategies yielding higher payoffs with higher probability.

The logit choice function can be coupled with different selection rules so to give
different dynamics. For example, in the logit dynamics [15] at every time step a
single player is selected uniformly at random and the selected player updates her
strategy according to the logit choice function. The remaining players are not allowed
to revise their strategies in this time step. One of the appealing features of the logit
dynamics is that it naturally describes an ergodic Markov chain. This means that
the underlying Markov chain admits a unique stationary distribution which we take
as solution concept. This distribution describes the long-run behavior of the system
(which states appear more frequently over a long run). The interplay between the
noise and the underlying game naturally determines the system behavior: (i) As the
noise becomes “very large” the equilibrium point is “approximately” the uniform
distribution; (ii) As the noise vanishes the stationary distribution concentrates on so
called stochastically stable states1 which, for certain classes of games, correspond to
pure Nash equilibria [1,15].

While the logit choice function is a very natural behavioralmodel for approximately
rational agents, the specific selection rule that selects one single player per time step
avoids any form of concurrency. Therefore a natural question arises:

What happens if concurrent updates are allowed?

Alos-Ferrer and Netzer [1] addressed this question by characterizing the states that
the dynamics selects when the noise vanishes (more details on the results of [1] are
given in the related work section).

1 A stochastically stable state is a state that has non-zero probability as β goes to infinity [42].
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Our contributions In this paper, we study how the logit choice function behaves in an
extreme case of concurrency. Specifically, we couple the logit choice function with a
selection rule by which all players update their strategies at every time step. We call
such dynamics all-logit, as opposed to the classical (one-)logit dynamics in which
only one player at a time is allowed to move. Roughly speaking, the all-logit are to
the one-logit what the Cournot dynamics are to the best response dynamics.

We study the all-logit dynamics for local interactionpotential games [9,39,44].Here
players are vertices of a graph, called the social graph, and each edge is a two-player
(exact) potential game. We remark that games played on different edges by a player
may be different but, nonetheless, they have the same strategy set for the player. Each
player picks one strategy that is used for all of her edges and the payoff is a (weighted)
sumof the payoffs obtained fromeach game. This class of games includes coordination
games on a network [20] (see also [44] for a survey of more recent works about these
games) that have been used tomodel the spread of innovation and of new technology in
social networks [40], and the Ising model [33,34], a model for ferromagnetism. Other
examples of local interaction potential games arise when geographical interactions
are embedded in classical potential games, such as routing games [41] or Cournot
oligopolies [37] (see also [9] and references therein). In particular, we study the all-
logit dynamics on local interaction potential games for every possible value of the
inverse noise β and we are interested on properties of the original one-logit dynamics
that are preserved by the all-logit.

As a warm-up, we discuss two classical two-player games (these are trivial local
interaction potential games played on a graph with two vertices and one edge): the
coordination game and the prisoner’s dilemma. Even though for both games the sta-
tionary distribution of the one-logit and of the all-logit are quite different, we identify
three similarities. First, for both games, both Markov chains are reversible. Moreover,
for both games, the expected number of players playing a certain strategy at the sta-
tionarity of the all-logit is exactly the same as if the expectation was taken on the
stationary distribution of the one-logit. Finally, for these games the mixing time is
asymptotically the same regardless of the selection rule. In this paper we will show
that none of these findings is accidental.

We first study the reversibility of the all-logit dynamics, an important property of
stochastic processes that is useful also to obtain explicit formulas for the stationary
distribution. We characterize the class of games for which the all-logit dynamics (that
is, theMarkov chain resulting from the all-logit dynamics) are reversible and it turns out
that this class coincideswith the class of local interaction potential games. This implies
that the all-logit dynamics of all two-player potential games are reversible; whereas
not all potential games have reversible all-logit dynamics. This is to be compared
with the well-known result saying that one-logit dynamics of every potential game are
reversible.

The tools developed for this characterization yield a closed formula for the sta-
tionary distribution of reversible all-logit dynamics. In particular, we show that the
stationary distribution of the all-logit dynamics of local interaction potential games
resembles the Gibbs measure, that describes the stationary distribution for the one-
logit [15].
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Then, we focus on the observables of local interaction potential games. An observ-
able is a function of the strategy profile (that is the sequence of strategies adopted by
the players) and we are interested in its expected values at stationarity for both the one-
logit and the all-logit. A prominent example of observable is the difference between
the number of players adopting two given strategies in a game, that we name Diff. For
example, in a local interaction potential game modeling the spread of innovation on a
social network, this observable counts the difference between the number of adopters
of the new and old technology. We show that there exists a class of observables whose
expectation at stationarity of the all-logit is the same as the expectation at stationarity
of the one-logit as long as the social network underlying the local interaction potential
game is bipartite (and thus trivially for all two-player games). This class of observables
includes theDiff observable. We extend this result by showing that for general graphs,
the extent at which the expectations of these observables differ can be upper and lower
boundedby a function ofβ andof the distance of the social graph fromabipartite graph.

Two applications highlight the significance of this result. First, observe that in the
Ising model the Diff observable defines the magnetic field of a magnet. It is interest-
ing to note that the Ising game has been mainly studied for bipartite graphs (e.g., the
two-dimensional and the three-dimensional lattice). Then, our result implies that, for
the Ising model, the all-logit dynamics are compatible with the observations and it is
arguably more natural than the one-logit (that postulate that at any given time step only
one particle updates its status and that the update strategy is instantaneously propa-
gated). Second, it has been showed that the behavior predicted by the one-logit dynam-
ics often matches the one taken by real agents in experimental testing [3,25]. Thus, by
having that some observables of one-logit and all-logit are often comparable in magni-
tude, the same experiments can highlight a good predictive power also for the all-logit.

Finally, we give the first bounds on the mixing time of the all-logit. We start by
giving a general upper bound on the mixing time of the all-logit in terms of the
cumulative utility of the game.We then look at two specific classes of games: graphical
coordination games and games with a dominant profile. For graphical coordination
games we prove an upper bound to the mixing time that exponentially depends on
β. Note that it is known [6] that the one-logit also take a time exponential in β for
converging to the stationary distribution. For games with a dominant profilewe instead
prove that the mixing time can be bounded by a function independent from β. Thus,
also for these games the mixing time of the all-logit has the same behavior of the
one-logit mixing time [6].

Related works on logit dynamics Some previous works on the logit dynamics have
focused on the identification of the stochastically stable states. These are states that are
visited with positive probability when β grows unboundedly. Blume [15] showed that,
for 2×2 coordination games, the risk dominant equilibria (see [26]) are stochastically
stable. Baron et al. [11,12] characterized the stochastically stable states for larger
classes of games, among which the local interaction potential games. Alos-Ferrer and
Netzer [1] extended this investigation to general selection rules (including the one-
logit, termed asynchronous learning, and the all-logit, termed simultaneous learning)
for general strategic games. Specifically, in [1] the authors investigate which selection
rule guarantees that only Nash equilibria are stochastically stable. They proved that if
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the selection rule is regular, that is every agent has positive probability to be the only
one selected for update, then the set of stochastically stable states is a subset of the set
of Nash equilibria. On the other side, they show that for non-regular selection rules,
such as the all-logit, this is not the case.

Works described above look at the logit dynamics as a learning dynamics, adopted
by the players to learn a Nash equilibrium (or a refinement thereof). In this work, the
focus is on the logit dynamics as model to understand the spread of innovations in
a social network and, more generally, to study potential games played on a network
(of which spread of innovations is a special case). In this setting, the focus is on the
stationary distribution of the Markov Chain induced by the dynamics for the whole
range of values of β.

Ellison [20] was the first to consider dynamics to model spread of innovations in a
network and Peyton Young [40] was the first to study the one-logit in this context. A
general upper bound on the mixing time of the one-logit dynamics for these games is
given by Berger et al. [13]. Montanari and Saberi [38] instead studied the hitting time
of the highest potential configuration and relate this quantity to a connectivity property
of the underlying network. Asadpour and Saberi [5] considered the same problem for
congestion games. The mixing time and the metastability of the one-logit dynamics
for strategic games have been studied in [6–8].

2 Definitions

In this section, we formally define the local interaction potential games and theMarkov
chain induced by the all-logit dynamics.

Strategic games Let G = ([n], S1, . . . , Sn, u1, . . . , un) be a finite normal-form strate-
gic game. The set [n] = {1, . . . , n} is the player set, Si is the set of strategies for player
i ∈ [n], S = S1 × S2 × · · · × Sn is the set of strategy profiles and ui : S → R is the
utility function of player i ∈ [n].

We adopt the standard game-theoretic notation and denote by S−i the set S−i =
S1× . . .×Si−1×Si+1× . . . Sn and, for x−i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ S−i and
y ∈ Si , we denote by (x−i , y) the strategy profile (x1, . . . , xi−1, y, xi+1, . . . , xn) ∈ S.
Also, for a subset L ⊆ [n] and strategy profile x, we denote by xL the components of
x corresponding to players in L .

Potential games We say that function � : S → R is an exact potential (or simply a
potential) for game G if for every i ∈ [n] and every x−i ∈ S−i

ui (x−i , y) − ui (x−i , z) = �(x−i , z) − �(x−i , y)

for all y, z ∈ Si . A game G that admits a potential is called a potential game [37].
The following is an important characterization of potential games in terms of the

utilities. A circuit ω = 〈x0, . . . , x�〉 of length � is a sequence of strategy profiles such
that x0 = x�, xh �= xk for 1 � h �= k � � and, for k = 1, . . . , �, there exists player
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ik such that xk−1 and xk differ only for player ik . For such a circuit ω we define the
utility improvement I (ω) as

I (ω) =
�∑

k=1

[
uik (xk) − uik (xk−1)

]
.

The following theorem then holds.

Theorem 2.1 ([37, Thm 2.8]) A game G is a potential game if and only if I (ω) = 0
for all circuits of length 4.

Local interaction potential games In a local interaction potential game G, each player
i , with strategy set Si , is represented by a vertex of a graph G = (V, E) (called social
graph). For every edge e = (i, j) ∈ E there is a two-players game Ge with potential
function�e in which the set of strategies of endpoints are exactly Si and S j .We denote
with ue

i the utility function of player i in the game Ge. Given a strategy profile x, the
utility function of player i in the local interaction potential game G sets

ui (x) =
∑

e=(i, j)

ue
i (xi , x j ).

It is easy to check that the function � = ∑
e �e is a potential function for the local

interaction potential game G. Note that we assume that the graph G is unweighted.
However, it is immediate to see that weights do not give any modeling power.

Logit choice function We study the interaction of n players of a strategic game G
that update their strategy according to the logit choice function [15,35,45] described
as follows: from profile x ∈ S player i ∈ [n] updates her strategy to y ∈ Si with
probability

σi (y | x) = eβui (x−i ,y)

∑
z∈Si

eβui (x−i ,z)
. (1)

In other words, the logit choice function leans towards strategies promising higher
utility. The parameter β � 0 is a measure of how much the utility influences the
choice of the player.

All-logit In this paper we consider the all-logit dynamics, by which all players con-
currently update their strategy using the logit choice function. Most of the previous
works have focused on dynamics where at each step one player is chosen uniformly
at random and she updates her strategy by following the logit choice function. We call
those dynamics one-logit, to distinguish them from the all-logit.

The all-logit dynamics induce a Markov chain over the set of strategy profiles
whose transition probability P(x, y) from profile x = (x1, . . . , xn) to profile y =
(y1, . . . , yn) is
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P(x, y) =
n∏

i=1

σi (yi | x) = eβ
∑n

i=1 ui (x−i ,yi )

∏n
i=1

∑
z∈Si

eβui (x−i ,z)
. (2)

Sometimes it is useful to write the transition probability from x to y in terms of the
cumulative utility of x with respect to y defined as U (x, y) = ∑

i ui (x−i , yi ). Indeed,
from the distributive property of the multiplication, it follows that

n∏

i=1

∑

z∈Si

eβui (x−i ,z) =
∑

z∈S

n∏

i=1

eβui (x−i ,zi ).

Hence, we can rewrite (2) as

P(x, y) = eβU (x,y)

T (x)
, (3)

where T (x) = ∑
z∈S eβU (x,z). For a potential game G with potential �, we define for

each pair of profiles (x, y) the quantity

K (x, y) =
∑

i

�(x−i , yi )− (n −2)�(x) = 2�(x)+
∑

i

(�(x−i , yi ) − �(x)) . (4)

Simple algebraic manipulations show that, for a potential game, we can rewrite the
transition probabilities in (3) as

P(x, y) = e−βK (x,y)

γA(x)
,

where γA(x) = ∑
z∈S e−βK (x,z).

It is easy to see that a Markov chain with transition matrix (2) is ergodic. Indeed,
for example, ergodicity follows from the fact that all entries of the transition matrix
are strictly positive.

Reversibility, Observables, Mixing time In this work we focus on three features of the
all-logit dynamics, that we formally define here.

LetM be a Markov chain with transition matrix P and state set �.M is reversible
with respect to a distribution π if, for every pair of states s, r ∈ �, the following
detailed balance condition holds

π(s)P(s, r) = π(r)P(r, s). (5)

It is easy to see that ifM is reversible with respect to π then π is also stationary, i.e.,
π P = π .

An observable O is a function O : � → R, i.e. it is a function that assigns a value
to each state of the Markov chain.

An ergodic Markov chain has a unique stationary distribution π and for every
starting state s the distribution Pt (s, ·) of the chain at time t converges to π as t
goes to infinity. The mixing time is a measure of how long it takes to get close to the
stationary distribution from the worst-case starting state, and it is defined as
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tmix(ε) = inf
{
t ∈ N : ∥∥Pt (s, ·) − π

∥∥
TV � ε for all s ∈ �

}
,

where
∥∥Pt (s, ·) − π

∥∥
TV = 1

2

∑
r∈� |Pt (s, r) − π(r)| is the total variation distance.

We will usually use tmix for tmix(1/4). We refer the reader to [32] for a more detailed
description of notational conventions about Markov chains and mixing times.

3 Warm-Up: Two-Player Games

In this section, we compare the behavior of the one-logit and the all-logit dynamics for
two simple two-player potential games (thus two simple local information potential
games): a coordination game and thePrisoner’s Dilemma. The analysis of these games
highlights that the stationary distribution of the two dynamics can significantly differ.
However, it turns out that for both games the Markov chain induced by the all-logit
is reversible, just as for the one-logit dynamics. More surprisingly, we see that the
expected number of players taking a certain action in each one of these games is
exactly the same regardless whether the expectation is taken according the stationary
distribution of the all-logit or of the one-logit. Finally, we observe that the mixing
time of the all-logit dynamics is asymptotically the same as the mixing time of the
one-logit. Next sections will show that these results are not accidental.

Two-player coordination games These are games in which the players have an advan-
tage in selecting the same strategy. They are often used to model the spread of a
new technology [40]: two players have to decide whether to adopt or not a new tech-
nology. Each player prefers to adopt the same technology as the other player. We
denote by −1 the strategy of adopting the new technology and by +1 the strategy of
adopting the old technology. The game is formally described by the following payoff
matrix

− +
− a, a c, d
+ d, c b, b (6)

We assume that a > d and b > c (meaning that players prefer to coordinate)
and that a − d = b − c = � (meaning that there is not a risk dominant strat-
egy [23]). It is easy to see that this game is a potential game. It is well known that
the stationary distribution of the one-logit of a potential game is the Gibbs distribu-
tion, that assigns to x ∈ S probability e−β�(x)/Z , where Z = ∑

x∈S e−β�(x) is the
partition function.

The transition matrix of the Markov chain induced by the all-logit dynamics is

P =

⎛

⎜⎜⎜⎜⎝

−− −+ +− ++
−− (1 − p)2 p(1 − p) p(1 − p) p2

−+ (1 − p)p p2 (1 − p)2 (1 − p)p
+− p(1 − p) (1 − p)2 p2 p(1 − p)

++ p2 p(1 − p) p(1 − p) (1 − p)2

⎞

⎟⎟⎟⎟⎠
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where p = 1/(1 + e�β). Observe that this transition matrix is doubly-stochastic,
implying that the stationary distribution of the all-logit is uniform (and hence very dif-
ferent from the one-logit case). However, it is easy to check that the chain is reversible
and themixing time is�

(
e�β

)
(as in the one-logit case).Moreover, the expected num-

ber of players adopting the new strategy at stationarity is one, both when considering
the one-logit and the all-logit dynamics.

Prisoner’s Dilemma The Prisoner’s Dilemma game is described by the payoff matrix
given in (6), where with−1we denote the strategy Confess andwith+1 the strategy
Defect. Moreover, payoffs satisfy the following conditions: (i) a > d (so that
−− is a Nash equilibrium); (ii) b < c (so that ++ is not a Nash equilibrium); (iii)
2a < c + d < 2b (so that ++ is the social optimum and −− is the worst social
profile). It is easy to check that the game is a potential game.

The transition matrix of the Markov chain induced by the all-logit dynamics is

P =

⎛

⎜⎜⎜⎜⎝

−− −+ +− ++
−− (1 − p)2 p(1 − p) p(1 − p) p2

−+ (1 − p)(1 − q) p(1 − q) q(1 − p) pq
+1 (1 − p)(1 − q) q(1 − p) p(1 − q) pq
++ (1 − q)2 q(1 − q) q(1 − q) q2

⎞

⎟⎟⎟⎟⎠

wherewe let p = 1/(1+e(a−d)β)be the probability that a player does not confess given
the other player is currently confessing and q = 1/(1 + e(c−b)β) be the probability
that a player does not confess given the other player is currently not confessing. Note
that both p and q go to 0 as β goes to infinity.

It is easy to check that the transition matrix is reversible (as for the one-logit). The
stationary distribution is

π(−−) = (1 − q)2

(1 + p − q)2
π(++) = p2

(1 + p − q)2

π(−+) = π(+−) = p(1 − q)

(1 + p − q)2
.

Moreover, we can see that themixing time is upper bounded by a constant independent
of β (as for the one-logit). You may also check that the expected number of confessing
prisoners is exactly the same in the stationary distribution of the one-logit and of the
all-logit. Indeed,

2π(−−) + π(−+) + π(+−) = 2 · 1 − q

1 − p − q
= 2 · eβ(a−d) + 1

eβ(a−d) + eβ(b−c) + 2
,

and the last term turns out to be exactly the expected number of confessing prisoners
according to the one-logit.
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4 Reversibility and Stationary Distribution

Reversibility is an important property of Markov chains and, in general, of stochastic
processes. Roughly speaking, for a reversibleMarkov chain the stationary frequency of
transitions from a state s to a state r is equal to the stationary frequency of transitions
from r to s. It is easy to see that the one-logit for a game G are reversible if and
only if G is a potential game. This does not hold for the all-logit. Indeed, we will
prove that the class of games for which the all-logit are reversible is exactly the
class of local interaction potential games. The tools developed in this proof will also
enable us to show that the stationary distribution πA of the all-logit dynamics of local
interaction potential games has a form that resembles theGibbsmeasure, that describes
the stationary distribution of the one-logit. Specifically, Corollary 4.11 shows that for
any profile x ∈ S

πA(x) =
∑

y∈S e−βK (x,y)

Z A
,

where Z A = ∑
x,y∈S e−βK (x,y).

4.1 Reversibility Criteria

As previously stated, a Markov chain M is reversible if there exists a distribution π

such that the detailed balance condition (5) is satisfied. The Kolmogorov reversibil-
ity criterion allows us to establish the reversibility of a process directly from the
transition probabilities. Before stating the criterion, we introduce the following nota-
tion. A directed path  from state s ∈ � to state r ∈ � is a sequence of states
〈s0, s1, . . . , s�〉 such that s0 = s and s� = r . The probability P () of path  is defined
as P () = ∏�

j=1 P(s j−1, s j ). The inverse of path  = 〈s0, s1, . . . , s�〉 is the path

−1 = 〈s�, s�−1, . . . , s0〉. Finally, a cycleC is simply a path from a state s to itself.We
are now ready to state Kolmogorov’s reversibility criterion (see, for example, [29]).

Theorem 4.1 (Kolmogorov’s Reversibility Criterion) An irreducible Markov chain
M with state space � and transition matrix P is reversible if and only if for every
cycle C it holds that

P (C) = P
(

C−1
)

.

The following lemmawill be very useful for proving reversibility conditions for the
all-logit dynamics and for stating a closed expression for its stationary distribution.

Lemma 4.2 Let M be an irreducible Markov chain with transition probability P and
state space �. M is reversible if and only if for every pair of states s, r ∈ �, there
exists a constant cs,r such that for all paths  from s to r , it holds that

P ()

P
(
−1

) = cs,r .
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Proof Fix s, r ∈ � and consider two paths,1 and2, from s to r . LetC1 andC2 be the
cyclesC1 = 1◦−1

2 andC2 = 2◦−1
1 , where ◦ denotes the concatenation of paths.

IfM is reversible then, by the Kolmogorov Reversibility Criterion, P (C1) = P (C2) .

On the other hand,

P (C1) = P (1) · P
(
−1
2

)
and P (C2) = P (2) · P

(
−1
1

)
.

Thus

P (1)

P
(
−1
1

) = P (2)

P
(
−1
2

) .

For the other direction, fix s� ∈ � and, for all s ∈ �, set π̃(s) = cs�,s/Z , where
Z = ∑

r cs�,r is the normalizing constant. Now consider any two states s, r ∈ �

of M, let 1 be any path from s� to s and set 2 = 1 ◦ 〈s, r〉 (that is, 2 is 1
concatenated with the edge (s, r)). We have that

π̃(s)

π̃(r)
= cs�,s

cs�,r

= P (1)

P
(
−1
1

) ·
P

(
−1
2

)

P (2)

= P (1)

P
(
−1
1

) ·
P

(
−1
1

)
· P(r, s)

P (1) · P(s, r)

= P(r, s)

P(s, r)

and therefore M is reversible with respect to π̃ . 	


4.2 All-Logit Reversibility Implies Potential Games

In this section, we prove that if the all-logit for a game G are reversible then G is a
potential game.

The following lemma shows a condition on the cumulative utility of a game G that
is necessary and sufficient for the reversibility of the all-logit of G.

Lemma 4.3 The all-logit for gameG are reversible if and only if the following property
holds for every x, y, z ∈ S:

U (x, y) − U (y, x) =
(

U (x, z) + U (z, y)
)

−
(

U (y, z) + U (z, x)
)
. (7)
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Proof To prove the only if part, pick any three x, y, z ∈ S and consider paths 1 =
〈x, y〉 and 2 = 〈x, z, y〉. From Lemma 4.2 we have that reversibility implies

P (1)

P
(
−1
1

) = P (2)

P
(
−1
2

) .

Then, by definition of P (i ) and (3),

eβU (x,y)

T (x)
T (y)

eβU (y,x) = eβU (x,z)

T (x)
eβU (z,y)

T (z)
T (y)

eβU (y,z)

T (z)
eβU (z,x) ,

which in turn implies (7).
As for the if part, let us fix state z ∈ S and define π̃(x) = P(z,x)

Z ·P(x,z) , where Z is the
normalizing constant. For any x, y ∈ S, we have

π̃(x)
π̃(y)

= P(z, x)
P(x, z)

· P(y, z)
P(z, y)

= eβU (z,x)

eβU (x,z) · eβU (y,z)

eβU (z,y) · T (x)
T (y)

= eβU (y,x)

eβU (x,y) · T (x)
T (y)

= P(y, x)
P(x, y)

,

where the first equality follows from the definition of π̃ , the second and the fourth
follow from (3) and the third follows from (7). Therefore, the detailed balance equation
holds for π̃ and thus the Markov chain is reversible. 	


We are now ready to prove that the all-logit are reversible only for potential games.

Proposition 4.4 If the all-logit for game G are reversible then G is a potential game.

Proof We show that if the all-logit are reversible then the utility improvement I (ω)

over any circuit ω of length 4 is 0. The theorem then follows from Theorem 2.1.
Consider circuit ω = 〈x, z, y,w, x〉 and let i be the player in which x and z differ

and let j be the player in which z and y differ. Then y andw differ in player i andw and
x differ in player j . In other words, z = (x−i , yi ) = (y− j , x j ) and w = (x−i , y j ) =
(y−i , xi ). Therefore we have that

U (x, y)=∑
k �=i, j uk(x) + ui (z) + u j (w) U (y, x)=∑

k �=i, j uk(y) + ui (w) + u j (z)
U (x, z)=∑

k �=i, j uk(x) + ui (z) + u j (x) U (z, y)=∑
k �=i, j uk(z) + ui (z) + u j (y)

U (y, z)=∑
k �=i, j uk(y) + ui (y) + u j (z) U (z, x)=∑

k �=i, j uk(z) + ui (x) + u j (z)

By plugging the above expressions into (7) and rearranging terms, we obtain

(
ui (z) − ui (x)

)
+

(
u j (y) − u j (z)

)
+

(
ui (w) − ui (y)

)
+

(
u j (x) − u j (w)

)
= 0

which shows I (ω) = 0. 	
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4.3 A Necessary and Sufficient Condition for All-Logit Reversibility

In the previous section we have established that the all-logit are reversible only for
potential games and therefore, from now on, we only consider potential games G with
potential function �. Proposition 4.5 below gives a necessary and sufficient condition
for reversibility that involves only the potential function. The condition will then be
used in the next section to prove that local interaction potential games are exactly the
games whose all-logit are reversible.

Proposition 4.5 The all-logit for a game G with potential � are reversible if and only
if, for all strategy profiles x, y ∈ S,

K (x, y) = K (y, x), (8)

where K is as defined in (4).

Proof If K (x, y) = K (y, x), then

∑

i

(
�(y−i , xi ) − �(y)

)
−

∑

i

(
�(x−i , yi ) − �(x)

)
= 2

(
�(x) − �(y)

)
.

Hence, for any pair of strategy profiles x, y we have

U (x, y) − U (y, x) = n
(
�(x) − �(y)

)
+

∑

i

(
ui (x−i , yi ) − ui (x)

)

−
∑

i

(
ui (y−i , xi ) − ui (y)

)

= n
(
�(x) − �(y)

)
+

∑

i

(
�(y−i , xi ) − �(y)

)

−
∑

i

(
�(x−i , yi ) − �(x)

)

= (n + 2)
(
�(x) − �(y)

)
.

It is then immediate to check that (7) holds.
As for the other direction, we proceed by induction on the Hamming distance

between x and y. Let x and y be two profiles at Hamming distance 1; that is, x and y
differ in only one player, say j . This implies that (y j , x− j ) = y and (x j , y− j ) = x.
Moreover, for i �= j , (yi , x−i ) = x and (xi , y−i ) = y. Thus,

K (x, y) − K (y, x) =
∑

i

(
�(yi , x−i ) − �(xi , y−i )

)
− (n − 2)

(
�(x) − �(y)

)

=
(
�(y j , x− j ) − �(x j , y− j )

)
+

∑

i �= j

(
�(yi , x−i ) − �(xi , y−i )

)
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− (n − 2)
(
�(x) − �(y)

)

=
(
�(y) − �(x)

)
+ (n − 1)

(
�(x) − �(y)

)

− (n − 2)
(
�(x) − �(y)

)
= 0.

Now assume that the claim holds for any pair of profiles at Hamming distance k < n
and let x and y be two profiles at distance k +1. Let j be any player such that x j �= y j

and let z = (y j , x− j ): z is at distance at most k from x and from y. Consider paths
1 = 〈x, y〉 and 2 = 〈x, z, y〉. From Lemma 4.2 we have that reversibility implies

eβK (x,y)

γA(x)
γA(y)

eβK (y,x) = eβK (x,z)

γA(x)
eβK (z,y)

γA(z)
γA(y)

eβK (y,z)

γA(z)
eβK (z,x) .

Hence K (x, y) − K (y, x) =
(

K (x, z) − K (z, x)
)

+
(

K (y, z) − K (z, y)
)
and the

thesis follows from the inductive hypothesis. 	


4.4 Reversibility and Local Interaction Potential Games

Here we prove that the games whose all-logit are reversible are exactly the local
interaction potential games.

A potential� : S1×· · ·× Sn → R is a two-player potential if there exist u, v ∈ [n]
such that, for any x, y ∈ S with xu = yu and xv = yv we have �(x) = �(y). In other
words, � is a function of only its u-th and v-th argument. An interesting fact about
two-player potential games is given by the following lemma.

Lemma 4.6 Any two-player potential satisfies (8).

Proof Let � be a two-player potential and let u and v be its two players. Then we
have that for w �= u, v, �(yw, x−w) = �(x) and that �(yu, x−u) = �(xv, y−v) and
�(yv, x−v) = �(xu, y−u). Thus

K (x, y) = �(yu, x−u) + �(yv, x−v)

and K (y, x) = �(xv, y−v) + �(xu, y−u) = �(yu, x−u) + �(yv, x−v). 	

We say that a potential � is the sum of two-player potentials if there exist N two-

player potentials �1, . . . , �N such that � = �1 + · · · + �N . It is easy to see that
generality is not lost by further requiring that 1 � l �= l ′ � N implies (ul , vl) �=
(ul ′ , vl ′), where ul and vl are the two players of potential �l . At every game G whose
potential is the sumof two-player potentials, i.e.,� = �1+· · ·+�N , we can associate
a social graph G that has a vertex for each player of G and has edge (u, v) if and only
if there exists l such that potential �l depends on players u and v. In other words,
each game whose potential is the sum of two-player potentials is a local interaction
potential game.

Observe that the sum of two potentials satisfying (8) also satisfies (8). Hence we
have the following proposition.
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Proposition 4.7 The all-logit dynamics for a local interaction potential game are
reversible.

Next we prove that if an n-player potential � satisfies (8) then it can be written as
the sum of at most N = (n

2

)
two-player potentials, �1, . . . , �N and thus it represents

a local interaction potential game. We do so by describing an effective procedure that
constructs the N two-player potentials.

Let us fix a strategy w�
i for each player i and denote as w� the strategy profile

(w�
1, . . . , w

�
n). Moreover, we fix an arbitrary ordering (u1, v1), . . . , (uN , vN ) of the

N unordered pairs of players. For a potential � we define the sequence ϑ0, . . . , ϑN

of potentials as follows: ϑ0 = � and, for i = 1, . . . , N , set

ϑi = ϑi−1 − �i (9)

where, for x ∈ S, �i (x) is defined as

�i (x) = ϑi−1(xui , xvi ,w
�−ui vi

).

Observe that, for i = 1, . . . , N , �i is a two-player potential and its players are ui

and vi . From Lemma 4.6, �i satisfies (8). Hence, if � satisfies (8), then also ϑi , for
i = 1, . . . , N , satisfies (8).

By summing for i = 1, . . . , N in (9) we obtain

N∑

i=1

ϑi =
N−1∑

i=0

ϑi −
N∑

i=1

�i .

Thus

� − ϑN =
N∑

i=1

�i .

The next two lemmas prove that, if � satisfies (8), then ϑN is identically zero. This
implies that � is the sum of at most N non-zero two-player potentials and thus a local
interaction potential game.

A ball B(r, x) of radius r � n centered in x ∈ S is the subset of S containing all
profiles y that differ from x in at most r coordinates.

Lemma 4.8 For any n-player potential function � and for any ordering of the pairs
of players, ϑN (x) = 0 for every x ∈ B(2,w�).

Proof We distinguish three cases based on the distance of x from w�.
x = w�: for every i � 1, we have
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ϑi (w�) = ϑi−1(w�) − �i (w�) = ϑi−1(w�) − ϑi−1(w�) = 0.

x is at distance 1 from w�: That is, there exists u ∈ [n] such that x = (xu,w�−u), with
xu �= w�

u . Let us denote by t (u) the smallest t such that the t-th pair contains u. We
next show that for i � t (u), ϑi (x) = 0. Indeed, we have that if u is a component of
the i-th pair then

ϑi (x) = ϑi−1(x) − �i (x) = ϑi−1(x) − ϑi−1(x) = 0;

On the other hand, if u is not a component of the i-th pair then

ϑi (x) = ϑi−1(x) − �i (x) = ϑi−1(x) − ϑi−1(w�) = ϑi−1(x);

x is at distance 2 from w�: That is, there exist u and v such that x = (xu, xv,w�−uv),
with xu �= w�

u and xv �= w�
v . Let t be the index of the pair (u, v). Notice that t �

t (u), t (v). We show that ϑt (x) = 0 and that this value does not change for all i > t .
Indeed, we have

ϑt (x) = ϑt−1(x) − �t (x) = ϑt−1(x) − ϑt−1(x) = 0;

If instead neither of u and v belongs to the i-th pair, with i > t , then we have

ϑi (x) = ϑi−1(x) − �i (x) = ϑi−1(x) − ϑi−1(w�) = ϑi−1(x);

Finally, suppose that the i-th pair, for i > t , contains exactly one of u and v, say u.
Then we have

ϑi (x) = ϑi−1(x) − �i (x) = ϑi−1(x) − ϑi−1(xu,w�−u).

We conclude the proof by observing that t (u) � t � i − 1 and thus, by the previous
case, ϑi−1(xu,w�−u) = 0. 	


The next lemma shows that if a potential ϑ satisfies (8) and is constant in a ball of
radius 2, then it is constant everywhere.

Lemma 4.9 Let ϑ be a function that satisfies (8). If there exist x ∈ S and c ∈ R such
that ϑ(y) = c for every y ∈ B(2, x), then ϑ(y) = c for every y ∈ S.

Proof Fix h > 2 and suppose that ϑ(z) = c for every z ∈ B(h − 1, x). Consider
y ∈ B(h, x) \ B(h − 1, x) and observe that (yi , x−i ) ∈ B(h − 1, x) and (xi , y−i ) ∈
B(h − 1, x) for every i such that xi �= yi . Then, since ϑ satisfies (8), we have
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(h − 2) (ϑ(x) − ϑ(y)) =
∑

i : xi �=yi

(
ϑ(yi , x−i ) − ϑ(xi , y−i )

)
= 0,

that implies ϑ(y) = ϑ(x) = c. 	


We can thus conclude that if the all-logit of a potential game G are reversible then
G is a local interaction potential game. By combining this result with Proposition 4.4
and Proposition 4.7, we obtain

Theorem 4.10 The all-logit dynamics of game G are reversible if and only if G is a
local interaction potential game.

As a corollary of this theorem we have a closed form for the stationary distribution
of the all-logit for local interaction potential games.

Corollary 4.11 (Stationary distribution) Let G be a local interaction potential game
with potential function �. Then the stationary distribution of the all-logit for G is

πA(x) ∝
∑

y∈S

e−βK (x,y). (10)

Proof Fix any profile y. The detailed balance equation gives for every x ∈ S

πA(x)
πA(y)

= P(y, x)
P(x, y)

= eβ(K (x,y)−K (y,x)) γA(x)
γA(y)

.

By Proposition 4.5 we have

πA(x) = γA(x) · πA(y)
γA(y)

.

Since the term πA(y)
γA(y) is constant for each profile x, the claim follows. 	


Note that for a local interaction potential gameG with potential function�, wewrite
π1(x), the stationary distribution of the one-logit of G, as π1(x) = γ1(x)/Z1 where
γ1(x) = e−β�(x) is the Boltzmann factor and Z1 = ∑

x γ1(x) is the partition function.
FromCorollary 4.11, we derive thatπA(x), the stationary distribution of the all-logit of
G, can be written in similar way; that is, πA(x) = γA(x)

Z A
, where γA(x) = ∑

y e−βK (x,y)

and

Z A =
∑

x∈S

γA(x) =
∑

x,y∈S

e−βK (x,y).

The Z A factor can thus be considered as the partition function of the all-logit.
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5 Observables of Local Information Potential Games

In this section, we study observables of local interaction potential games and we
focus on the relation between the expected value 〈O, π1〉 of an observable O at the
stationarity of the one-logit and its expected value 〈O, πA〉 at the stationarity of the
all-logit dynamics. We start by studying invariant observables, that is, observables for
which the two expected values coincide. In Theorem 5.6, we give a sufficient condition
for an observable to be invariant. The sufficient condition is related to the existence
of a decomposition of the set S × S that splits quantity K appearing in the expression
for the stationary distribution of the all-logit of the local interaction potential game G
(see Eq. 10) into a sum of two potentials. In Theorem 5.6 we show that if G admits
such a decomposition μ and, in addition, observable O is also decomposed by μ (see
Definition 5.2) then O has the same expected value at the stationarity of the one-logit
and of the all-logit. We then go on to show that all local interaction potential games
on bipartite social graphs admit a decomposition permutation (see Theorem 5.4) and
give examples of invariant observables.

We then look at local interaction potential games G on general social graphs G and
show that the expected values of a decomposable observable O with respect to the
stationary distributions of the one-logit and of the all-logit differ by a quantity that
depends on β and on how far away the social graph G is from being bipartite (which in
turn is related to the smallest eigenvalue of G [43]). This proves that the all-logit can
be often taken as a close approximation of the one-logit and, hence, of those settings
in which the latter gives good predictions [3,25].

The above findings follow from a relation between the partition functions of the
one-logit and of the all-logit that might be of independent interest. More precisely, in
Theorem 5.1 we show that if the game G admits a decomposition then the partition
function of the all-logit is the square of the partition function of the one-logit. The
partition function of the one-logit is easily seen to be equal to the partition function
of the canonical ensemble used in Statistical Mechanics (see for example [31]). It is
well known that a partition function of a canonical ensemble that is the union of two
independent canonical ensembles is the product of the two partition functions. Thus
Theorem 5.1 (and Corollary 5.5) can be seen as a further confirmation that the all-logit
can be decomposed into two independent one-logit dynamics.

5.1 Decomposable Observables for Bipartite Social Graphs

We start by introducing the concept of a decomposition and we prove that for all local
interaction potential games on a bipartite social graph there exists a decomposition.
Then we define the concept of a decomposable observable and prove that a decom-
posable observable has the same expectation at stationarity for the one-logit and the
all-logit.

Definition 5.1 A permutation

μ : (x, y) → (μ1(x, y), μ2(x, y))

123



530 Algorithmica (2015) 73:511–546

of S × S is a decomposition for a local interaction potential game G with potential �
if, for all (x, y), we have that

K (x, y) = �(μ1(x, y)) + �(μ2(x, y)),

μ1(x, y) = μ2(y, x) and μ2(x, y) = μ1(y, x).

Roughly speaking, a decomposition is a tool that allows us to see K as the sum of
two potentials and in this way it relates the stationary distribution of the all-logit and
of the one-logit. Indeed, if μ decomposes local interaction potential game G then

πA(x) =
∑

y

π1(μ1(x, y)) · π1(μ2(x, y)).

In turn, this will help us in proving the relationship between the expectation of some
observables according to these stationary distributions.

We first show a relation between the partition functions of the one-logit and of the
all-logit that might be of independent interest.

Theorem 5.1 If a local interaction potential game G admits a decomposition μ, then
Z A = Z2

1 .

Proof From (10) and from the fact that μ is a permutation of S × S, we have

Z A =
∑

x,y

e−βK (x,y) =
∑

x,y

e−β[�(μ1(x,y))+�(μ2(x,y))] =
∑

x,y

e−β[�(x)+�(y)] = Z2
1 .

	

Wenext prove that for all local interaction potential games on a bipartite social graph

there exists a decomposition. We start by showing that we can decompose K (x, y) in
the contributions of each edge of the social graph G of the local interaction potential
game G. Specifically, for strategy profiles x and y and edge e = (u, v) of G we define
Ke(x, y) as

Ke(x, y) = �e(xu, yv) + �e(yu, xv). (11)

Then we have the following lemma that will be useful for giving a sufficient condition
for having a decomposition.

Lemma 5.2

K (x, y) =
∑

e

Ke(x, y).

Proof By definition K (x, y) = ∑
i �(x−i , yi ) − (n − 2)�(x). Then by expressing �

as sum of the potential over the edges we have

K (x, y) =
∑

i

∑

e

�e(x−i , yi ) − (n − 2)�(x).
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Then observe that edge e = (u, v) and each of the (n −2) vertices i �= u, v contribute
�e(xu, xv) to the sum. On the other hand, the total contribution for e = (u, v) and
i = u, v is Ke(x, y) = �e(yu, xv) + �e(xu, yv). Therefore we obtain

K (x, y) =
∑

i

∑

e=(u,v)

�e(x−i , yi ) − (n − 2)�(x)

=
∑

e=(u,v)

[
(n − 2)�e(xu, xv) + Ke(x, y)

] − (n − 2)�(x)

=
∑

e

Ke(x, y).

	

From Lemma 5.2, we then achieve the following sufficient condition for a permu-

tation to be a decomposition.

Lemma 5.3 Let G be a local interaction potential game with potential � on a graph
G. Consider a permutation (x, y) → (x̃, ỹ) such that for all x, y ∈ S and for each
edge e = (u, v) of G at least one of the following equalities holds

(x̃u, x̃v, ỹu, ỹv) = (xu, yv, yu, xv), (12)

(x̃u, x̃v, ỹu, ỹv) = (yu, xv, xu, yv). (13)

Then, K (x, y) = φ(x̃) + φ(ỹ).

Proof Observe that, if one of Equation (12) and (13) holds,

�e(x̃u, x̃v) + �e(ỹu, ỹv) = �e(xu, yv) + �e(yu, xv) = Ke(x, y).

The corollary then follows by summing over all edges e. 	

We are now ready for the main result of the section.

Theorem 5.4 Let G be a local interaction potential game on a bipartite graph G.
Then G admits a decomposition.

Proof Let (L , R) be the sets of vertices in which G is bipartite. For each (x, y) ∈ S×S
define

x̃ = μ1(x, y) = (xL , yR) and ỹ = μ2(x, y) = (yL , xR). (14)

First of all, observe that themapping is an involution and thus it is also a permutation
and that μ1(x, y) = μ2(y, x) and μ2(x, y) = μ1(y, x). Since G is bipartite, for every
edge (u, v) exactly one endpoint is in L and exactly one is in R. If u ∈ L , then we have
that (x̃u, x̃v, ỹu, ỹv) = (xu, yv, yu, xv) and thus (12) is satisfied. If instead u ∈ R, then
we have that (x̃u, x̃v, ỹu, ỹv) = (yu, xv, xu, yv) and thus (13) is satisfied. Therefore
for each edge one of (12) and (13) is satisfied. By Lemma 5.3, we can conclude that
the mapping is a decomposition. 	
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Consider a local interaction potential game on a bipartite graph G = (L , R, E)

and let us denote by L(x) (respectively, R(x)) the set of profiles agreeing with x for
every vertex of L (respectively, of R). That is, L(x) = {y : yL = xL} and R(x) =
{y : yR = xR}. The following corollary of Theorem 5.1 and Theorem 5.4 proves an
interesting characterization of the stationary distribution of the all-logit dynamics for
local interaction potential games on bipartite graphs that might be of independent
interest.

Corollary 5.5 Let G be a local interaction potential game on a bipartite graph G =
(L , R, E). For every profile x, we have

πA(x) = π1(L(x)) · π1(R(x)).

Proof Observe that

π1(L(x)) · π1(R(x)) = 1

Z2
1

∑

(y,z)∈L(x)×R(x)

e−β(�(y)+�(z)).

For each pair (y, z) ∈ L(x) × R(x), consider the profile wy,z = (zL , yR). Then,
(y, z) = μ(x,wy,z), where μ is the decomposition (14). Note that the correspondence
between pairs (y, z) ∈ L(x) × R(x) and profiles w is actually a bijection. Indeed, for
each profile w ∈ S, the pair (μ1(x,w), μ2(x,w)) belongs to L(x)× R(x). Hence and
from Theorem 5.1, it follows that

π1(L(x)) · π1(R(x)) = 1

Z A

∑

w

e−β(�(μ1(x,w))+�(μ2(x,w)))

= 1

Z A

∑

w

e−βK (x,w) = πA(x).

	

We now define the concept of a decomposable observable.

Definition 5.2 An observable O is decomposable for local interaction potential game
G if there exists a decomposition μ of G such that, for all (x, y), we have that

O(x) + O(y) = O(μ1(x, y)) + O(μ2(x, y)).

We next prove that a decomposable observable has the same expectation at station-
arity of the one-logit and the all-logit.

Theorem 5.6 If observable O is decomposable then

〈O, π1〉 = 〈O, πA〉.
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Proof Suppose that O is decomposed byμ. Then we have that, for all x ∈ S, πA(x) =∑
y π1(μ1(x, y)) · π1(μ2(x, y)) and thus

〈O, πA〉 =
∑

x

O(x) · πA(x)

=
∑

x,y

O(x) · π1(μ1(x, y)) · π1(μ2(x, y))

= 1

2

∑

x,y

[
O(x) + O(y)

] · π1(μ1(x, y)) · π1(μ2(x, y))

In the last equality we have used that μ1(x, y) = μ2(y, x) and μ2(x, y) = μ1(y, x)
which implies that

∑

x,y

O(x) · π1(μ1(x, y)) · π1(μ2(x, y)) =
∑

x,y

O(y) · π1(μ1(x, y)) · π1(μ2(x, y)).

Now, since O is decomposable we have that O(x) + O(y) = O(μ1(x, y)) +
O(μ2(x, y)) and thus we can write

〈O, πA〉 = 1

2

∑

x,y

[
O(μ1(x, y)) + O(μ2(x, y))

] · π1(μ1(x, y)) · π1(μ2(x, y))

= 1

2

∑

x,y

[
O(x) + O(y)

] · π1(x) · π1(y)

=
∑

x,y

O(x) · π1(x) · π1(y)

=
∑

x

O(x) · π1(x) ·
∑

y

π1(y)

= 〈O, π1〉.
	


We now give examples of decomposable observables.

The Diff observable For a local interaction potential game in which players have
only two strategies, namely −1 and +1, we define the observable Diff that returns
the (signed) difference between the number of vertices adopting the strategy −1 and
the number of vertices adopting strategy +1. That is, Diff(x) = ∑

u xu . In local
interaction potential games used to model the diffusion of new technology in a social
network [40], Diff is a measure of how widely the new technology has been adopted.
The Diff observable is also meaningful in the Ising model for ferromagnetism (see,
for example, [34]) as it coincides with the measured magnetism.

To prove that Diff is decomposable we consider the mapping defined in (14) and
observe that, for every vertex u and for every (x, y) ∈ S×S, we have xu+yu = x̃u+ ỹu .
Whence we conclude that Diff(x) + Diff(y) = Diff(x̃) + Diff(ỹ).
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The MonoC observable Another interesting decomposable observable is the signed
difference MonoC between the number of “−1”-monochromatic edges of the social
graph (that is, edges in which both endpoints play −1) and the number of “+1”-
monochromatic edges. A monochromatic edge is a simple clique in which all vertices
adopt the same strategy (notice that bipartite graphs do not have cliques larger than
two). That is, MonoC(x) = 1

2

∑
(u,v)∈E (xu + xv). Again, we consider the mapping

defined in (14) and the decomposability ofMonoC follows from the property that, for
every (x, y) ∈ S × S, we have xu + yu = x̃u + ỹu .

Corollary 5.7 Observables Diff and MonoC are decomposable and thus, for local
interaction potential games on bipartite social graphs,

〈Diff, π1〉 = 〈Diff, πA〉 and 〈MonoC, π1〉 = 〈MonoC, πA〉.

5.2 General Graphs

Let us start by slightly generalizing concepts of decomposition and decomposable
observable.

Definition 5.3 A permutation

μ : (x, y) → (μ1(x, y), μ2(x, y))

of S × S is an α-decomposition for a local interaction potential game G with potential
� if, for all (x, y), we have that

|K (x, y) − �(μ1(x, y)) − �(μ2(x, y))| � α,

μ1(x, y) = μ2(y, x) and μ2(x, y) = μ1(y, x).

Note that a decomposition is actually a 0-decomposition (see Definition 5.1).

Definition 5.4 An observable O is α-decomposable if it is decomposed by an α-
decomposition.

We prove that for all local interaction potential games there exists an α-
decomposition with α depending only on how far away the social graph G is from
being bipartite. Specifically, for each edge e of the social graph we define the weight
we = maxx,y∈Ge (�e(x) − �e(y)), i.e., we is the maximum difference in the potential
�e of the two-player game Ge played on edge e. We say that a subset of edges of
G is bipartiting if its removal makes the graph bipartite. We denote with B(G) the
bipartiting subset of minimum weight and with b(G) its weight. Note that quantity
b(G) is related to the bipartiteness ratio of G which in turn is related to the smallest
eigenvalue of G [43].

We have the following theorem.

Theorem 5.8 Let G be a social interaction game on a graph G. Then G admits an
α-decomposition for any α � 2 · b(G).
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Proof Let us name as G ′ = (L , R, E ′) the bipartite graph obtained by deleting from
G the edges of B(G) and consider themapping (14).We know this mapping is actually
a permutation and μ1(x, y) = μ2(y, x) and μ2(x, y) = μ1(y, x). We will show that,
for every x, y

|K (x, y) − �(x̃) − �(ỹ)| � 2 · b(G), (15)

where x̃ = μ1(x, y) and ỹ = μ2(x, y).
Observe that K (x, y) = ∑

e∈E ′ Ke(x, y) + ∑
e∈E\E ′ Ke(x, y). From Theorem 5.4,

for each edge e = (u, v) ∈ E ′ we have Ke(x, y) = �e(x̃u, x̃v) + �e(ỹu, ỹv). As for
each edge e = (u, v) ∈ E \ E ′ we have that the endpoints are either both in L or both
in R. In both cases, it turns out that

�e(x̃u, x̃v) + �e(ỹu, ỹv) = �e(xu, xv) + �e(yu, yv).

Then we distinguish four cases:

1. yu = xu and yv = xv . In this case Ke(x, y) = 2 · �e(xu, xv) and thus Ke(x, y) =
�e(x̃u, x̃v) + �e(ỹu, ỹv).

2. yu �= xu and yv = xv . In this case Ke(x, y) = �e(xu, xv) + �e(yu, xv) and thus
Ke(x, y) = �e(x̃u, x̃v) + �e(ỹu, ỹv).

3. yu = xu and yv �= xv . In this case Ke(x, y) = �e(xu, xv) + �e(xu, yv) and thus
Ke(x, y) = �e(x̃u, x̃v) + �e(ỹu, ỹv).

4. yu �= xu and yv �= xv . In this case Ke(x, y) = �e(yu, xv) + �e(xu, yv). Since
|�e(xu, xv) − �e(yu, xv)| � we and |�e(yu, yv) − �e(xu, yv)| � we, then

|Ke(x, y) − �e(x̃u, x̃v) − �e(ỹu, ỹv)| � 2we.

By summing the contribution of every edge we achieve (15). 	


Finally, we next prove that for an α-decomposable observable the extent at which
the expectations at stationarity for the one-logit and the all-logit differ depends only
on α and β.

Theorem 5.9 If observable O is α-decomposable then

e−2αβ · 〈O, π1〉 � 〈O, πA〉 � e2αβ · 〈O, π1〉.

Proof Bymimicking the proof of Theorem 5.1, we have e−αβ Z2
1 � Z A � eαβ Z2

1 and

e−αβ
∑

y

γ1(μ1(x, y)) · γ1(μ2(x, y)) � γA(x) � eαβ
∑

y

γ1(μ1(x, y)) · γ1(μ2(x, y)).

The theorem then follows by the same arguments given in the proof of Theorem 5.6.
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6 Mixing Time

The all-logit dynamics for a strategic game have the property that, for every pair of
profiles x, y and for every value of β, the transition probability from x to y is strictly
positive. In order to give upper bounds on the mixing time, we will use the following
simple well-known lemma (see e.g. Theorem 11.5 in [36]).

Lemma 6.1 Let P be the transition matrix of an ergodic Markov chain with state
space �. For every r ∈ � let us name αr = min{P(s, r) : s ∈ �} and α = ∑

r∈� αr .
Then the mixing time of P is tmix = O(1/α).

We now give an upper bound holding for every game. Recall that for a strategic
game G, in Sect. 2 we defined the cumulative utility function for the ordered pair of
profiles (x, y) as U (x, y) = ∑n

i=1 ui (x−i , yi ). Let us name �U the size of the range
of U ,

�U = max{U (x, y) : x, y ∈ S} − min{U (x, y) : x, y ∈ S}.

By using Lemma 6.1 we can give a simple upper bound on the mixing time of the
all-logit dynamics for G as a function of β and �U .

Theorem 6.2 (General upper bound) For any strategic game G the mixing time of the
all-logit dynamics for G is O (

eβ�U
)
.

Proof Let P be the transition matrix of the all-logit dynamics for G and let x, y ∈ S
be two profiles. From (3) we have that

P(x, y) = eβU (x,y)
∑

z∈S eβU (x,z) = 1∑
z∈S eβ(U (x,z)−U (x,y)) � 1

|S|eβ�U
.

Hence for every y ∈ S it holds that

αy � e−β�U

|S|

and α = ∑
y∈S αy � e−β�U . The thesis then follows from Lemma 6.1. 	


Next sections will give specific bounds for two specific classes of games (that
contain the games analyzed in the Sect. 3), namely graphical coordination games and
games with a dominant profile. These results show that the mixing time of the all-logit
dynamics has the same twofold behavior that has been highlighted in the case of the
one-logit: for some games it depends exponentially on β, whereas for other games it
can be upper-bounded by a function independent from β.
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6.1 Graphical Coordination Games

A graphical coordination game is a local interaction potential game in which all edges
play the coordination game described in Eq. (6). By applying Theorem 6.2 we obtain
the following upper bound.

Theorem 6.3 The mixing time of the all-logit for a graphical coordination game on
a graph G = (V, E) is

tmix = O
(

e2β(max{a,b}−min{c,d})|E |) .

Proof Suppose that a � b. Then, consider the profile x+ in which each player plays
the strategy +1. It is easy to see that U (x, y) � U (x+, x+) = ∑

i a · deg(i), where
deg(i) is the degree of i in G. The case a < b is equivalent except that we now
consider the profile x− in which each player plays the strategy −1. Similarly, suppose
that c � d. ThenU (x, y) � U (x−, x+) = ∑

i c ·deg(i). The case d < c is equivalent
except we invert the role of x− and x+. Hence

�U =
∑

i

max{a, b} · deg(i) −
∑

i

min{c, d} · deg(i)

= 2β(max{a, b} − min{c, d})|E |.

The thesis then follows from Theorem 6.2. 	

This bound shows that the mixing time of the all-logit for graphical coordination

games exponentially depends on β, as in the case of the one-logit dynamics. However,
the bound given in the previous theorem can be very loose with respect to the known
results about the mixing time of the one-logit for graphical coordination games [6]. It
would be interesting to understand at which extent the above bounds can be improved
(in “Appendix” we slightly improve these bounds for a very special graphical coordi-
nation game, namely the Curie–Weiss model for ferromagnetism adopted in Statistical
Physics) and, in particular, if it is possible to show that the mixing time of the all-logit
is upper bounded by the mixing time of the one-logit.

6.2 Games with Dominant Strategies

Theorems 6.3 shows that for graphical coordination games the mixing time grows
with β. In this section we show that for games with a dominant profile, such as the
prisoner’s dilemma analyzed in Sect. 3, the time that the all-logit take for converging
to the stationary distribution is upper bounded by a function independent of β, as in
the case of the one-logit dynamics [6].

Specifically, we say that strategy s� ∈ Si is a dominant strategy for player i if for
all s′ ∈ Si and all strategy profiles x ∈ S,

ui (s
�, x−i ) � ui (s

′, x−i ).

123



538 Algorithmica (2015) 73:511–546

A dominant profile x� = (x�
1, . . . , x�

n) is a profile in which x�
i is a dominant strategy for

player i = 1, . . . , n. Then,we can derive the following upper bound on themixing time
of the all-logit dynamics for games with a dominant profile, whose proof resembles
the one used for proving a similar result for the one-logit given in [6].

Theorem 6.4 Let G be an n-player games with a dominant profile where each player
has at most m strategies. The mixing time of the all-logit for G is

tmix = O (
mn) .

Proof The proof uses the coupling technique (see, for example, Theorem 5.2 in [32]).
Let P be the transition matrix of the all-logit dynamics for G. For every pair of

profiles x and y, we consider a coupling (X, Y ) of the distributions P(x, ·) and P(y, ·)
such that for every player i the probability that both chains choose strategy s for player
i is exactly min{σi (s | x), σi (s | y)}. Observe that, with such a coupling, once the two
chains coalesce, i.e. X = Y , they stay together.

We next observe that for all starting profiles x and y, it holds that

Px,y (X1 = Y1) � Px,y
(
X1 = x� and Y1 = x�

)
� 1

mn
.

Indeed both chains are in profile x� after one step if and only if every player chooses
strategy x�

i in both chains. From the properties of the coupling, it follows that this
event occurs with probability

∏

i

min{σi (x�
i | x), σi (x�

i | y)} �
∏

i

1

|Si | � 1

mn
,

where the first inequality follows from (1) and the fact that x�
i is a dominant strategy

for i .
Therefore we have that the probability that the two chains have not yet coupled

after k time steps is

Px,y (Xk �= Yk) �
(
1 − 1

mn

)k

� e−k/mn
,

which is less than 1/4 for k = O(mn). By applying the Coupling Theorem [32,
Theorem 5.2] we have that tmix = O (mn). 	


7 Conclusions and Open Problems

In this paper, we considered the selection rule that assigns positive probability only to
the set of all players. A natural extension of our work would follow the lead of [1,2]
and consider general selection rules. What is the impact of these selection rules on
reversibility and on observables? Notice that if we consider the selection rule that
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selects exactly one player at each round and player i with probability pi > 0 (the one-
logit set pi = 1/n for all i) then the stationary distribution is the same as the stationary
distribution of the one-logit. Therefore, all observables have the same expected value
and all potential games are reversible.

It is a classical result that the stationary distribution of the one-logit (the micro-
canonical ensemble, in Statistical Mechanics parlance) is the distribution that max-
imizes the entropy among all the distributions with a fixed average potential. Can
we say something similar for the stationary distribution of the all-logit? A promising
direction along this line of research is suggested by results in Sect. 5: at least in some
cases the stationary distribution of the all-logit can be seen as a composition of simpler
distributions.

Appendix: Mixing Time of the All-Logit for the Curie–Weiss Model

Here we prove upper and lower bounds on the mixing time of the all-logit dynamics
for a special graphical coordination game, the CW-game. In such a game we set
a = b = +1 and c = d = −1. Thus, the utility of player i ∈ [n] is the sum of the
number of players playing the same strategy as i , minus the number of players playing
the opposite strategy; that is, the utility of player i ∈ [n] at profile x = (x1, . . . , xn) ∈
{−1,+1}n is

ui (x) = xi

∑

j �=i

x j .

It is easy to see that the potential function for this game is

�(x) = −
∑

{i, j}∈([n]
2 )

xi x j .

Due to the high level of symmetry of the game, the potential of a profile x depends
only on the number of players playing ±1. Indeed, we can rewrite the potential of x
as

�(x) = −Diff2(x) − n

2
,

where Diff is the observable described in Sect. 5.1.

The upper bound Observe that, for the Curie–Weiss model we have�U = 2n(n −1),
hence by using Theorem 6.3 we get directly that

tmix = O
(

e2βn(n−1)
)

. (16)

Hence it follows that mixing time is O(1) for β = O(1/n2) and it is O(poly(n)) for
β = O(log n/n2).
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In what follows we show that factor “2” at the exponent in (16) can be removed
and that a slightly better upper bound can be given for β > log n/n.

Lemma 7.1 For every x, y ∈ � it holds that

P(x, y) � q(n+|Diff(y)|)/2(1 − q)(n−|Diff(y)|)/2

where

q = 1

1 + e2β(n−1)
.

Proof Consider a profile y ∈ {−1,+1}n . Observe that the number of players playing
+1 and −1 in y can be written as n+Diff(y)

2 and n−Diff(y)
2 , respectively. If Diff(y) > 0,

i.e. if the number of players playing +1 is larger than the number of players playing
−1, then the profile that minimizes P(x, y) is profile x− = (−1, . . . ,−1)where every
player plays −1. If we name

q = e−β(n−1)

e−β(n−1) + eβ(n−1)
= 1

1 + e2β(n−1)

the probability that a player in x− chooses strategy +1 for the next round, we have
that

P(x−, y) = q
n+Diff(y)

2 (1 − q)
n−Diff(y)

2 .

On the other hand, if Diff(y) < 0, then P(x, y) is minimized when x = x+ =
(+1, . . . ,+1) and, since q is also the probability that a player in x+ chooses strategy
−1 for the next round, we have that

P(x+, y) = q
n−Diff(y)

2 (1 − q)
n+Diff(y)

2

and the thesis follows. 	

Nowwe can give an upper bound on themixing time by using Lemmata 6.1 and 7.1.

Theorem 7.2 (Upper bound) The mixing time of the all-logit dynamics for the Curie–
Weiss model is

tmix = O
(

neβn2
)

.

If β � log n/n the mixing time is

tmix = O
(

neβn2

2n

)
.
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Proof From Lemma 7.1 it follows that for every y ∈ {−1,+1}n we have

αy = min{P(x, y) | x ∈ {−1,+1}n} � q(n+|Diff(y)|)/2(1 − q)(n−|Diff(y)|)/2.

Hence

α =
∑

y∈{−1,+1}n

αy �
∑

y∈{−1,+1}n

q(n+|Diff(y)|)/2(1 − q)(n−|Diff(y)|)/2. (17)

Now observe that there are
( n

n−k
2

)
profiles y such that Diff(y) = k, and since q � 1/2,

the largest terms in (17) are the ones such that Diff(y) is as close to zero as possible.
In order to give a lower bound to α we will thus consider only profiles y such that
Diff(y) = 0, when n is even, and profiles y such that Diff(y) = ±1, when n is odd.
Case n even: If we consider only profiles y such that Diff(y) = 0 in (17) we have that

α �
(

n

n/2

)
[q(1 − q)]n/2.

By using a standard lower bound for the binomial coefficient (see e.g. Lemma 9.2
in [36]) we have that

(
n

n/2

)
� 2n

n + 1
.

As for [q(1 − q)]n/2 we have that

q(1 − q) = 1

1 + e2β(n−1)
· 1

1 + e−2β(n−1)

= 1

e2β(n−1) + 2 + e−2β(n−1)

= 1

e2β(n−1)
(
1 + 2e−2β(n−1) + e−4β(n−1)

) . (18)

Now observe that for every β � 0 we can bound 1 + 2e−2β(n−1) + e−4β(n−1) � 4.
Thus we have that

[q(1 − q)]n/2 � 1

2neβn(n−1)
. (19)

Hence

α �
(

n

n/2

)
[q(1 − q)]n/2 � 1

(n + 1)eβn(n−1)
.

And by using Lemma 6.1 we have

tmix = O
(

neβn(n−1)
)

.

123



542 Algorithmica (2015) 73:511–546

If β is large enough, say β � log n/n, in (18) we can bound

1 + 2e−2β(n−1) + e−4β(n−1) � 1 + 1

n
.

Thus, in this case we have that

[q(1 − q)]n/2 � 1

eβn(n−1) (1 + 1/n)(n/2)
� 1

eβn(n−1) · √
e
. (20)

Hence α � 2n

(n+1)e1/2+βn(n−1) and

tmix = O
(

neβn(n−1)

2n

)
.

Case n odd: If we consider only profiles y such that Diff(y) = ±1 in (17) we get

α � 2

(
n

n+1
2

)
q

n+1
2 (1 − q)

n−1
2 = 2

(
n

n+1
2

)
(q(1 − q))n/2

√
q

1 − q
.

Now observe that
√

q

1 − q
= e−β(n−1) and

(
n

n+1
2

)
� 1

2
· 2n

n + 1
.

By using bounds (19) and (20) for [q(1 − q)]n/2 we get tmix = O
(

neβ(n2−1)
)
for

every β � 0 and tmix = O
(

neβ(n2−1)

2n

)
for β � log n/n. 	


The lower bound In order to give a lower bound on themixing time, we first show that,
for the Curie–Weiss model, K (x, y) can be written as a function of Diff(x), Diff(y)
and of the Hamming distance between the two profiles.

Lemma 7.3 Let x, y ∈ {−1,+1}n be two profiles with magnetization Diff(x) and
Diff(y) respectively and let hx,y be their Hamming distance, i.e. the number of players
where they differ. Then

K (x, y) = n − Diff(x) · Diff(y) − 2hx,y.

Proof As stated above, �(x) = n−Diff2(x)
2 . In order to evaluate K (x, y) =∑n

i=1 �(x−i , yi ) − (n − 2)�(x) let us name n1, n2 and n3 as follows

n1 = #{i ∈ [n] : xi = yi };
n2 = #{i ∈ [n] : xi = +1, yi = −1};
n3 = #{i ∈ [n] : xi = −1, yi = +1}.
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In other words, n1 is the number of players playing the same strategy in profiles x and
y, n2 is the number of players playing +1 in x and −1 in y, and n3 the number of
players playing −1 in x and +1 in y. It holds that

n∑

i=1

�(x−i , yi ) = n1
n − Diff2(x)

2
+ n2

n − (Diff(x) − 2)2

2
+ n3

n − (Diff(x) + 2)2

2

= 1

2

(
(n1 + n2 + n3)(n − Diff2(x))

+ 4(n2 − n3)Diff(x) − 4(n2 + n3)
)
. (21)

Now observe that n1 + n2 + n3 = n, 2(n2 − n3) = Diff(x)−Diff(y), and (n2 + n3) =
hx,y. Hence from (21) we get

n∑

i=1

�(x−i , yi ) = 1

2

(
n(n + Diff2(x)) + 2(Diff(x) − Diff(y))Diff(x) − 4hx,y

)

= n2

2
− n − 2

2
Diff2(x) − Diff(x)Diff(y) − 2hx,y.

(22)

Thus K (x, y) = n − Diff(x) · Diff(y) − 2hx,y. 	

Since the Hamming distance between two profiles is at most n, from the above lemma
we get the following observation.

Observation 7.4 Let x, y be two profiles with Diff(x) · Diff(y) � 0, then K (x, y) �
−n.

Now we can give a lower bound on the mixing time by using the bottleneck-ratio
technique.

Theorem 7.5 (Lower bound) The mixing time of the all-logit dynamics for the Curie–
Weiss model is

tmix = �

(
eβn(n−2)

4n

)
.

Proof Let S− ⊆ {−1,+1}n be the set of profiles x such that Diff(x) < 0, i.e.

S− = {x ∈ {−1,+1}n : Diff(x) < 0}

and observe that π(S−) � 1/2. From Observation 7.4 we have that for every x ∈ S−
and y ∈ S+ = {−1,+1}n \ S− it holds that

π(x)P(x, y) = e−βK (x,y)

Z
� eβn

Z
. (23)
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Moreover, if we name x− the profile where everyone is playing −1 we have that

π(S−) � π(x−) � 1

Z
e−2β�(x−) = 1

Z
eβn(n−1). (24)

Hence, by using bounds (23) and (24), and the fact that the size of S− is at most 2n−1,
we can bound the bottleneck at S− with

B(S−) = Q(S−, S+)

π(S−)
=

∑
x∈S−

∑
y∈S+ π(x)P(x, y)

π(S−)
� 22n−2eβn

eβn(n−1)
= 22n−2

eβn(n−2)
.

By using the bottleneck-ratio theorem (see e.g. Theorem 7.3 in [32]) it follows that

tmix = �

(
eβn(n−2)

22n

)
.

	

Remark In this section we proved upper and lower bounds on the mixing time of the
all-logit dynamics for the Curie–Weiss model. In particular, the upper bound shows
that for β = O(1/n2) the mixing time is constant and for β = O(log n/n2) it
is at most polynomial. The lower bound shows that, for every constant ε > 0, if
β > (1+ε)(log 4)/n the mixing time is exponential. When β is between�(log n/n2)

and �(1/n) we still cannot say if mixing is polynomial or exponential. This is to be
compared with the mixing time of the one-logit dynamics: in this case, the dynamics
are known to quickly converge to the stationary distribution for β = O(log n/n2) and
to take super-polynomial time for β = ω(log n/n2) [6]. Hence, the mixing time of
the all-logit asymptotically matches the mixing time of the one-logit.
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