
Algorithmica (2016) 74:528–539
DOI 10.1007/s00453-014-9956-7

PTAS for Densest k-Subgraph in Interval Graphs

Tim Nonner

Received: 1 October 2013 / Accepted: 31 October 2014 / Published online: 13 November 2014
© Springer Science+Business Media New York 2014

Abstract Given an interval graph and integer k, we consider the problem of finding
a subgraph of size k with a maximum number of induced edges, called densest k -
subgraph problem in interval graphs. This problem is NP-hard even for chordal graphs
(Perl and Corneil in Discret Appl Math 9(1):27–39, 1984), and there is probably no
PTAS for general graphs (Khot and Subhash in SIAM J Comput 36(4):1025–1071,
2006). However, the exact complexity status for interval graphs is a long-standing
open problem (Perl and Corneil in Discret Appl Math 9(1):27–39, 1984), and the best
known approximation result is a 3-approximation algorithm (Liazi et al. in Inf Process
Lett 108(1):29–32, 2008). We shed light on the approximation complexity of finding a
densest k-subgraph in interval graphs by presenting a polynomial-time approximation
scheme (PTAS), that is, we show that there is an (1+ ε)-approximation algorithm for
any ε > 0, which is the first such approximation scheme for the densest k-subgraph
problem in an important graph class without any further restrictions.

Keywords Algorithms · Approximation algorithms · Graph algorithms · Approxi-
mation schemes · Interval graphs

1 Introduction

The densest k-subgraph problem is defined as follows: given a graph with n vertices
and an integer k ≤ n, find a subgraph with k vertices that maximizes the number
of induced edges. The NP-hardness is a direct consequence of the well-known fact

A preliminary version of this paper has appeared at WADS’11.

T. Nonner (B)
IBM Research, Zurich, Switzerland
e-mail: tno@zurich.ibm.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-014-9956-7&domain=pdf

Algorithmica (2016) 74:528–539 529

that finding a maximum clique is NP-hard. This contrasts to the problem of finding an
arbitrary-sized subgraph of maximum density, i.e., a subgraph with maximum average
degree, which is polynomially solvable [4]. The first approximation algorithm for
the densest k-subgraph problem with an approximation guarantee of O(n0.3885) was
given by Kortsarz and Peleg [5]. Feige et al. [6] improved this factor to O(nδ) for
some δ < 1/3. Until recently, when Bhaskara et al. [7] presented an O(n1/4+ε)-
approximation algorithm for any ε > 0, it has been a long-standing open problem
whether the factor O(n1/3) can be significantly beaten. Ashahiro et al. [8] showed
that a simple greedy strategy yields an approximation ratio of O(n/k), and Feige
and Langberg [9] showed that n/k is achievable using semidefinite programming.
On the other hand, using a random sampling technique, Arora et al. [10] presented
a polynomial-time approximation scheme (PTAS) for dense graphs with k = �(n),
that is, if the number of edges is �(n2) and k = �(n), then there is an (1 + ε)-
approximation algorithm for any ε > 0. However, there is probably no PTAS for
general graphs [2].

These weak approximation guarantees for general graphs motivated the study of
special graph classes, like perfect graphs, chordal graphs, and interval graphs. Unfor-
tunately, although a maximum clique of a perfect graph can be found in polynomial
time [11], finding a densest k-subgraph remains NP-hard even for chordal graphs and
bipartite graphs [1], two important subclasses of perfect graphs. However, the com-
plexity status of finding a densest k-subgraph in interval graphs, a subclass of chordal
graphs, has been a prominent open problem over the last three decades [1]. In an inter-
val graph, each vertex corresponds to an interval, and two vertices are connected via
an edge if their corresponding intervals overlap. Such a geometric structure occurs fre-
quently in scheduling, VLSI-design, and biology, see for instance [12]. This unknown
complexity status gave rise to the search for approximation results. Liazi et al. [3]
presented a 3-approximation algorithm for interval graphs and chordal graphs, and
there is moreover a PTAS if the clique graph is a star [13], i.e., if the intersection graph
of the maximal cliques is a star. Recently, Chen et al. [14] showed that a large family
of intersection graphs, including interval graphs, admit constant factor approxima-
tion algorithms. Finally, Backer and Keil [15] gave a 3/2-approximation algorithm for
proper interval graphs [15], a subclass of interval graphs where no interval is allowed
to contain another one. Using the shifting technique, it is actually possible to even
derive a PTAS for this case [14].

Contributions We significantly improve upon the known approximation results by
presenting a PTAS for finding a densest k-subgraph in interval graphs. Note that this
is the first PTAS for an import graph class without any further restrictions, since so
far only PTASs for dense graphs with k = �(n) [10], a quite restricted subclass of
chordal graphs [13], and proper interval graphs [14] are known. We conjecture that
finding a densest k-subgraph in interval graphs is NP-hard, but proving this (or giving
a polynomial time algorithm instead) remains a challenging open problem [1].

Technique and outline If k is constant, then we can easily find a densest k-subgraph
in polynomial time by simply enumerating all

(n
k

) = O(nk) subgraphs of size k. Hence,
the difficulty of the problem stems from the fact that k is part of the input. Now, let V
be the vertices of the input interval graph, and let V ∗ ⊆ V with |V ∗| = k be a subset
of vertices that induce a densest k-subgraph. Consider some clique C ⊆ V , and let

123

530 Algorithmica (2016) 74:528–539

C∗ = C∩V ∗ be the subclique ofC contained inV ∗. Assume then thatwe already know
the vertices V ∗\C , and hence we only need to pick some k − |V ∗\C | vertices from
C that maximize the number of induced edges in combination with V ∗\C . Clearly,
C∗ will solve this simplified problem. However, we might need to enumerate

(|C|
|C∗|

)

subcliques ofC in order tofindC∗ (or another subcliqueof similar quality),which is not
possible in polynomial time if |C∗| is not constant. Therefore, we show in Sect. 4 that,
by losing an (1−ε)-factor in the number of induced edges for an arbitrary small ε > 0,
it suffices to only consider a polynomial number of subcliques (Lemma 4). To extend
this search space restriction to the whole interval graph, we first need to introduce
the notion of a sequence representation in Sect. 3 which allows us to decompose
any densest k-subgraph into a sequence of cliques. Finally, we present a backward
dynamic program in Sect. 5 that finds a densest k-subgraph in this restricted search
space in polynomial time. The principle of reducing the search space in order to make
it treatable by dynamic programming in polynomial time has been succesfully applied
during the last decades [16,17] to obtain approximation schemes. However, finding
the right reduction and dynamic program is a highly problem-specific challenge.

Sparsest subgraphs Also the inverse problem, where the goal is to find a subgraph
of size k that minimizes the number of induced edges, called sparsest k-subgraph
problem, has attracted a considerable amount of attention, see [18] and the references
therein. As for the densest k-subgraph problem, it is also not known whether this
problem is NP-hard or not for interval graphs. Just recently, Watrigant, Bougeret, and
Giroudeau [18] showed NP-hardness for the superclass of chordal graphs, for which
they alsogave a constant factor approximation algorithm.Moreover, theyused the same
kind of arguments as in this paper to obtain a PTAS for proper interval graphs. Hence,
the presented techniques seem to be quite general to deal with problems regarding the
overlap structure in interval graphs.

2 Preliminaries

Let G = (V, E) be an interval graph, i.e., each vertex in V corresponds to an interval,
and twovertices are connected via an edge in E if their corresponding intervals overlap.
Hence,we can also think of the vertices inV as intervals. For an interval subsetV ′ ⊆ V ,
let E(V ′) denote the number of edges of the subgraph of G induced by V ′, i.e., the
number of overlaps between intervals in V ′. Hence, our goal is to find an interval set
V ∗ ⊆ V of size k that maximizes E(V ∗). We also refer to such a subset as a densest k-
interval subset. Let OPT := E(V ∗) denote this maximal number of overlaps. Finally,
for two disjoint interval sets V ′, V ′′ ⊆ V , let E(V ′, V ′′) denote the number of edges
of the bipartite subgraph of G induced by these two interval sets, i.e., the number of
overlaps between intervals in V ′ and intervals in V ′′. Observe that a clique C ⊆ V is
a set of intervals with ∩I∈C I �= ∅.

Let lI ∈ R and rI ∈ R denote the left and right endpoint of an interval I ∈ V ,
respectively, and assume that all endpoints of intervals are distinct, which can be easily
ensured without changing the overlap structure. This also ensures that all intervals are
distinct. We write I1 < I2 for two intervals I1, I2 ∈ V if rI1 < lI2 . In this case, we also
say that the pair I1, I2 is consecutive. Analogously, we call a sequence of intervals

123

Algorithmica (2016) 74:528–539 531

I1, I2, . . . , Is ∈ V with I1 < I2 < · · · < Is a consecutive interval sequence. Finally,
for an interval I ∈ V , let VI ⊆ V be the set of all intervals I ′ ∈ V with I ⊆ I ′.

Lemma 1 For any densest k-interval subset V ∗ ⊆ V ,wemayassume for each interval
I ∈ V ∗ that VI ⊆ V ∗.

Proof Assume for contradiction that there is an interval I ∈ V ∗ and another interval
I ′ ∈ VI \V ∗. In this case, since I ⊂ I ′, we could replace interval I by interval I ′
without modifying the size of V ∗ and without decreasing E(V ∗). Therefore, iterating
this scheme terminates and gives us a densest k-interval subset V ∗ that satisfies the
property from the claim. ��

3 Sequence Representation

In this section, we show how to decompose any densest k-interval subset into a
sequence of cliques, called a sequence representation. The purpose of this representa-
tion is to have a systematic way to enumerate enough k-interval subsets in order to find
a densest one via a dynamic program as explained in Sect. 5. However, since there are
superpolynomial many possible sets in this enumeration, it does not straight-forward
result in a polynomial time algorithm. We deal with this problem in Sect. 4.

For a consecutive interval pair I1, I2 ∈ V , letCI1 I2 denote the clique of all intervals
I ∈ V with lI1 < lI < rI1 and rI1 < rI < rI2 . Moreover, let C ′

I1 I2
denote the clique of

all intervals I ∈ V with rI1 < lI < rI2 and rI2 ≤ rI . Note that I2 ∈ C ′
I1 I2

, but clique
CI1 I2 might be empty. We illustrate the cliques CI1 I2 and C

′
I1 I2

in Fig. 1.
To avoid case distinctions, we add a dummy interval I∞ to V with I < I∞ for any

other interval I ∈ V \{I∞}. Our goal is then to find a densest (k + 1)-interval subset
V ∗ ⊆ V with I∞ ∈ V ∗. Since I∞ does not overlap with any other interval in V , this
slightly modified problem is equivalent to our original problem of simply finding a
densest k-interval subset. Specifically, removing I∞ from a solution V ′ ⊆ V for this
modified problem yields a solution for our original problem with the same number of
interval overlaps E(V ′). Hence, OPT denotes themaximal number of interval overlaps
in both cases.

We say that an interval subset V ′ ⊆ V admits a sequence representation if there
is a consecutive interval sequence I1, I2, . . . , Is and a sequence of (possibly empty)
cliques Q1, Q2, . . . , Qs−1 with Qi ⊆ CIi Ii+1 for each 1 ≤ i < s such that

Fig. 1 Example intervals in the cliques CI1 I2 and C ′
I1 I2

123

532 Algorithmica (2016) 74:528–539

Fig. 2 Overlap structure of the cliques Q1, Q2, . . . , Qs−1

V ′ =
s⋃

i=1

VIi ∪
s−1⋃

i=1

Qi .

In other words, for each interval I ∈ V ′, we either have that there is an index 1 ≤ i ≤ s
with Ii ⊆ I , or there is an index 1 ≤ i < s with I ∈ Qi . We schematically depict
the overlap structure of the cliques Q1, Q2, . . . , Qs−1 in Fig. 2. Note here that any
clique Qi might only overlap with interval Ii but not with interval Ii+1. If I∞ ∈ V ′,
note that it must then hold for any such sequence representation that Is = I∞.

The following lemma says that we only have to consider interval subsets that admit
a sequence representation. Therefore, it suffices to enumerate all these subsets to find
a densest one.

Lemma 2 We may assume that any densest (k + 1)-interval subset V ∗ ⊆ V with
I∞ ∈ V ∗ admits a sequence representation.

Proof Given a densest (k + 1)-interval subset V ∗ ⊆ V with I∞ ∈ V ∗, we inductively
construct the claimed sequence representation. During each iteration, we want to
conserve the invariant that the currently constructed interval sequence I1, I2, . . . , Ii
and cliques Q1, Q2, . . . , Qi−1 are a sequence representation of {I ∈ V ∗ | lI ≤ lIi }.
Since we extend this interval sequence by one interval in each iteration, this already
gives that we end up with the claimed sequence representation I1, I2, . . . , Is and
Q1, Q2, . . . , Qs−1 of V ∗. Note that we obtain that finally Is = I∞.

To start this inductive construction, let I1 ∈ V ∗ be the interval with leftmost left
endpoint lI1 subject to the constraint that there is no interval I ∈ V ∗ with I ⊂ I1.
Recall that we know from Lemma 1 that we may assume that VI1 ⊆ V ∗. Hence, to
see that the invariant described above holds, we only have to show that also {I ∈ V ∗ |
lI < lI1} ⊆ VI1 . Recall here the assumption that all left endpoints of intervals are
distinct, and thus I = I1 if lI = lI1 . Now, assume for contradiction that there is an
interval I ∈ V ∗ with lI < lI1 and I /∈ VI1 . Hence, we obtain that rI < rI1 . Let then
I ′ ∈ V ∗ be an interval with the properties that I ′ ⊆ I and there is no interval I ′′ ∈ V ∗
with I ′′ ⊂ I ′. If lI ′ > lI1 , then I ′ ⊂ I1, which contradicts the selection of I1. On the
other hand, if lI ′ < lI1 , then I1 is not an interval with leftmost left endpoint, which
contradicts the selection of I1 as well. This shows that the invariant holds after the
first iteration. Now assume that, for some i ≥ 1, we have a sequence representation
I1, I2, . . . , Ii and Q1, Q2, . . . , Qi−1 of {I ∈ V ∗ | lI ≤ lIi }. If Ii = I∞, then we
are done. Otherwise, let Ii+1 ∈ V ∗ be the interval with leftmost left endpoint lIi+1

subject to the constraints that Ii < Ii+1 and there is no interval I ∈ V ∗ with I ⊂ Ii+1.

123

Algorithmica (2016) 74:528–539 533

Fig. 3 Example construction of a clique Q ∈ Pε(C)

Moreover, define Qi := V ∗ ∩CIi Ii+1 . Using nearly the same arguments as for the first
iteration shows that the invariant is conserved during each iteration. ��

4 Simple Sequence Representations

In this section, we explain how to remove sufficiently many k-interval subsets from the
enumeration via sequence representations introduced in Sect. 3 to reach polynomial
size. The main ingredient is to exploit the overlap structure of a clique in a sequence
representation in order to replace it by a sufficiently good onewhich is easier to describe
(Lemma 4), and hence reduces the size of the enumeration.

Consider some fixed but arbitrary small ε > 0, and assume that 1/ε is integral
and ε ≤ 1. Moreover, let C ⊆ V be some clique, and let I ′

1, I
′
2, . . . , I

′
u with rI ′

1
>

rI ′
2

> . . . > rI ′
u
be an ordering of the intervals in C according to their right endpoints.

Recall here the assumption that all interval endpoints are distinct. We will show how
the following inputs define a subclique Q ⊆ C :

(1) an integer v with 2 ≤ v ≤ 2/ε + 2,
(2) an integer sequence j1, j2, . . . , jv with j1 = 1 < j2 < . . . < jv = u + 1,
(3) an integer sequence h1, h2, . . . , hv−1 with 0 ≤ ht ≤ jt+1− jt for each 1 ≤ t < v.

We define Q as follows: for each 1 ≤ t < v, Q contains exactly the ht intervals in
Ct := {I ′

jt
, I ′

jt+1, . . . , I
′
jt+1−1} with leftmost left endpoints. Thus, any such combina-

tion of inputs defines a subclique Q ⊆ C . Let then Pε(C) be the set of all subcliques
constructed in this way for all possible such inputs. Since |C | = u ≤ n, we imme-
diately obtain the polynomial bound |Pε(C)| ≤ (2/ε + 1) · n2/ε · n2/ε+1, and thus
|Pε(C)| = nO(1/ε2).

Example Consider the clique C of intervals I ′
1, I

′
2, . . . , I

′
7 depicted in Fig. 3 which

are ordered according to their right endpoints. Then, for the inputs v = 4, j1 =
1 < j2 = 4 < j3 = 7 < j4 = 8, h1 = h2 = 2, and h3 = 0, we add the set
Q = {I ′

1, I
′
3, I

′
5, I

′
6} to Pε(C), which are the intervals with solid lines in Fig. 3. To

see this, note that I ′
1 and I ′

3 are the h1 intervals in C1 = {I ′
1, I

′
2, I

′
3} with leftmost left

endpoints, and I ′
5 and I ′

6 are the h2 intervals in C2 = {I ′
4, I

′
5, I

′
6} with leftmost left

endpoints. Since h3 = 0, Q does not contain the single interval in C3 = {I ′
7}.

Let V ′ ⊆ V be an interval subset with a sequence representation I1, I2, . . . , Is and
Q1, Q2, . . . , Qs−1. We then say that V ′ admits a simple sequence representation if

123

534 Algorithmica (2016) 74:528–539

additionally Qi ∈ Pε(CIi Ii+1) for each 1 ≤ i < s. The following lemma is critical for
the correctness of the PTAS, since it allows us to trade the size of the search space for
accuracy.

Lemma 3 There is an interval subset V ′ ⊆ V with |V ′| = k + 1, I∞ ∈ V ′, and
E(V ′) ≥ (1 − 8ε)OPT that admits a simple sequence representation.

To prove Lemma 3, we need one preliminary lemma.

Lemma 4 Consider an interval subset V ′ ⊆ V with a sequence representation
I1, I2, . . . , Is and Q1, Q2, . . . , Qs−1. Then, for any 1 ≤ i < s, there exists a clique
Q ∈ Pε(CIi Ii+1) with |Q| = |Qi | such that replacing the clique Qi by Q decreases
E(V ′) by at most ε|Qi ||Q′

i |, where Q′
i := V ′ ∩ C ′

Ii Ii+1
. Moreover, if |Qi | = 1, then

E(V ′) does not decrease at all.

Proof We abbreviate C = CIi Ii+1 and C ′ = C ′
Ii Ii+1

throughout this proof, and let
I ′
1, I

′
2, . . . , I

′
u with rI ′

1
> rI ′

2
> . . . > rI ′

u
be an ordering of the intervals inC according

to their right endpoints. First, consider the case that |Qi | = 1. In this case, there is one
input that defines a set Q ∈ Pε(C) with exactly Q = Qi . Specifically, if Qi = {I ′

t }
for t < u, then we use the input j1 = 1 < j2 = t < j3 = t + 1 < j4 = u + 1, h1 =
h3 = 0, and h2 = 1. Recall here the assumption that ε ≤ 1, and hence 2/ε + 2 ≥ 4,
which ensures that we can set v = 4. On the other hand, if Qi = {I ′

u}, then we use the
input j1 = 1 < j2 = u < j3 = u + 1, h1 = 0, and h2 = 1. This proves the second
part of the claim. Hence, we may assume that |Qi | > 1 in what follows.

To define the set Q ∈ Pε(C) for the first part of the claim, we have to define the
respective inputs of Q used during the construction of Pε(C). To this end, for each
1 ≤ j ≤ u, let b j := E({I ′

j }, Q′
i) denote the number of intervals in Q′

i which overlap
with I ′

j . Consequently, since the intervals I ′
1, I

′
2, . . . I

′
u ∈ C are ordered according

to their right endpoints and all intervals in Q′
i ⊆ C ′ are right of these intervals as

schematically depicted in Fig. 1, we obtain that |Q′
i | ≥ b1 ≥ b2 ≥ . . . ≥ bu . Using

this, we now inductively construct a sequence j1, j2, . . . , jv with j1 = 1 < j2 <

. . . < jv = u + 1 as follows:
Since j1 = 1, the start of this inductive construction is well-defined. Now assume

that we have already defined some integers j1, j2, . . . , jt . Then, if b jt −b jt+1 > ε|Q′
i |,

set jt+1 := jt + 1. Otherwise, let jt+1 > jt be the maximal index such that still
b jt −b jt+1 ≤ ε|Q′

i |. If this index is the last index u, then set jt+1 := u+1 instead, and
terminate this inductive construction. This gives the integer sequence j1, j2, . . . , jv .

Observe that it holds for any 1 ≤ t ≤ v −2 that b jt −b jt+2 > ε|Q′
i |. Consequently,

since b1 ≤ |Q′
i |, we obtain that v ≤ 2/ε + 2. Moreover, for each 1 ≤ t < v, we either

have that jt+1 = jt + 1 or b jt − b jt+1 ≤ ε|Q′
i |.

Example Assume that C is the clique from Fig. 3, and moreover assume that
ε|Q′

i | = 5, b1 = 10, b2 = 8, b3 = 6, b4 = 6, b5 = 0, b6 = 0, and b7 = 0. In any
case, we have j1 = 1. Consequently, it holds that j2 = 4 is themaximal index such that
still b j1 −b j2 = 4 ≤ ε|Q′

i |. Next, since b j2 −b j2+1 = 6 > ε|Q′
i |, we set j3 := j2 +1.

Finally, j4 = 7 is the maximal index such that still b j3 − b j4 = 0 < ε|Q′
i |. However,

since this is the last index, we set j4 := 8 instead.

123

Algorithmica (2016) 74:528–539 535

Finally, for each 1 ≤ t < v, define ht := |Qi ∩ Ct |, and hence
∑v−1

t=1 ht = |Qi |.
The sequences j1, j2, . . . , jv and h1, h2, . . . , hv−1 are the inputs required to define the
claimed set Q ∈ Pε(C). Because of the definition of the sequence h1, h2, . . . , hv−1,
we immediately obtain |Q| = |Qi |. For each 1 ≤ t < v, observe that the construction
of Q implies that Q ∩ Ct contains the ht intervals in Ct with leftmost left endpoints.

We still have to show that the interval set Q constructed above has the claimed
property. First, since |Q| = |Qi |, we have E(Q) = E(Qi) = E(V ′ ∩ C). Therefore,
to bound the decrease of E(V ′) due to replacing Qi by Q, we only need to show that
E(Q, V ′\C) ≥ E(Qi , V ′\C) − ε|Qi ||Q′

i |. To this end, we partition V ′\C into four
pairwise disjoint parts:

V< := {I ∈ V ′\C | rI < rIi },
V= := {I ∈ V ′\C | lI < rIi ≤ rI },
V> := {I ∈ V ′\C | rIi < lI < rIi+1},
V� := {I ∈ V ′\C | lI > rIi+1}.

Since these sets are pairwise disjoint, we may consider them separately:
Case V<: Consider some index 1 ≤ t < v, and recall that Q ∩ Ct contains the ht

intervals inCt with leftmost left endpoints. On the other hand, Qi ∩Ct also contains ht
intervals from Ct , but these are not necessarily the ones with leftmost left endpoints.
Consequently, since V< are the intervals left of rIi and it holds for any interval I ∈ Ct

that rIi ∈ I , this shows that E(Q ∩ Ct , V<) ≥ E(Qi ∩ Ct , V<). Combining this for
all indices 1 ≤ t < v finally gives that E(Q, V<) ≥ E(Qi , V<).

Case V=: Since |Q| = |Qi | and rIi ∈ I for each interval I ∈ C , we have that
E(Q, V=) = E(Qi , V=).

Case V�: Since no interval V� overlaps with an interval in C , we trivially obtain
E(Q, V�) = 0 = E(Qi , V�). Therefore, combining this case with the last two
cases, we see that the next case is the only case where E(V ′) might decrease.

Case V>: Since the consecutive interval pair Ii , Ii+1 is part of a sequence repre-
sentation of V ′, there is no interval I ∈ V ′ with rIi < lI < rIi+1 and rI < rIi+1 .
Therefore, we obtain that V> = Q′

i := V ′ ∩ C ′. Hence, we only need to upper

bound E(Qi , Q′
i) − E(Q, Q′

i) = ∑v−1
t=1 at , where, for each 1 ≤ t < v, we define

at := E(Qi ∩ Ct , Q′
i) − E(Q ∩ Ct , Q′

i). Now note that, for each 1 ≤ t < v, each
interval in Ct overlaps with at least b jt+1 and at most b jt intervals in Q′

i . On the other
hand, the sets Qi ∩ Ct and Q ∩ Ct both contain exactly ht intervals. Combining this,
we find that at ≤ ht (b jt −b jt+1), where we define b jv := 0. Therefore, we obtain that

v−1∑

t=1

at =
∑

t : jt+1> jt+1

at ≤
∑

t : jt+1> jt+1

ht (b jt − b jt+1)

≤ ε|Q′
i |

∑

t : jt+1> jt+1

ht ≤ ε|Q′
i ||Qi |.

The equality in the first line is due to the fact that if jt+1 = jt + 1, then trivially
Qi ∩ Ct = Q ∩ Ct , since |Ct | = 1, and consequently at = 0. Moreover, the first

123

536 Algorithmica (2016) 74:528–539

inequality in the second line is due to the earlier observation that either jt+1 = jt + 1
or b jt − b jt+1 ≤ ε|Q′

i |. Hence, by combining all these arguments, we conclude that
E(Q, V>) ≥ E(Qi , V>) − ε|Qi ||Q′

i |.
Combining all four cases proves the claim. ��
Proof of Lemma 3 Consider a densest (k+1)-interval subset V ∗ ⊆ V with I∞ ∈ V ∗

and E(V ∗) = OPT. We know from Lemma 2 that we may assume that V ∗ admits a
sequence representation I1, I2, . . . , Is and Q1, Q2, . . . , Qs−1. Moreover, Lemma 4
implies that, for each 1 ≤ i < s, we can replace Qi by a clique Q ∈ Pε(CIi Ii+1)

with |Q| = |Qi | such that E(V ∗) decreases by at most ε|Qi ||Q′
i |, and if |Qi | = 1,

then E(V ∗) does not decrease at all. Iterating these replacements yields the claimed
interval subset V ′. We will argue in the following paragraph that these replacements
can indeed be done iteratively without amplifying these decreases.

Assume that, for some 1 ≤ i < s, we have already replaced Qt for each t > i
as described above. However, we obtain that the only such replacement that might
affect the next replacement of Qi by some clique Q ∈ Pε(CIi Ii+1) is the one with
t = i + 1. Therefore, consider the clique Q′ ∈ Pε(CIi+1 Ii+2) that replaced Qi+1.
Becausewe always select intervals with leftmost left endpoints during the construction
of Q′ and |Qi+1| = |Q′|, we can identify each interval I ∈ Qi+1 with an interval
I ′ ∈ Q′ with lI ′ ≤ lI . Hence, since Q ⊆ CIi Ii+1 is left of CIi+1 Ii+2 , we even have
that E(Q, Q′) ≥ E(Q, Qi+1). Consequently, replacing Qi by Q will still decrease
E(V ∗) by at most ε|Qi ||Q′

i |, even if we replace Qi+1 by Q′ first.
To bound the total decrease of E(V ∗), observe that

E(V ∗) − E(V ′) ≤
∑

i :|Qi |>1

ε|Qi ||Q′
i |

≤ ε

(
s−1∑

i=1

2|Qi |(|Qi | − 1) +
s−1∑

i=1

2|Q′
i |(|Q′

i | − 1)

)

= ε

(
s−1∑

i=1

4E(Qi) +
s−1∑

i=1

4E(Q′
i)

)

≤ ε8E(V ∗)

which completes the proof of the lemma. The first line is due to Lemma 4
and the arguments above. The second line is due to the simple observation that
ab ≤ 2(a(a − 1)+ b(b− 1)) for any pair of integers a > 1 and b ≥ 1. Moreover, the
third line uses the fact that E(C) = (|C|

2

) = |C |(|C | − 1)/2 for any clique C ⊆ V .
Finally, the fourth line is due to the fact that the cliques Q1, Q2, . . . , Qs−1 ⊆ V ∗ are
pairwise disjoint, and hence

∑s−1
i=1 E(Qi) ≤ E(V ∗). The same holds for the cliques

Q′
1, Q

′
2, . . . , Q

′
s−1 ⊆ V ∗. ��

5 Dynamic Programming

In this section, we finally show how to enumerate all simple sequence representations
from Sect. 4 via a dynamic program. To this end, we have a dynamic programming
array � with integral entries of the form

123

Algorithmica (2016) 74:528–539 537

�(h, s, Is−1, Is, Qs−1),

where h is an integer with 0 ≤ h ≤ k+1, s is an integer with 2 ≤ s ≤ n, Is−1, Is ∈ V
are two consecutive intervals, and Qs−1 ∈ Pε(CIs−1 Is).

The indexing of Is−1, Is , and Qs−1 with s is just for convenience. Our goal is to fill
this array such that �(h, s, Is−1, Is, Qs−1) = E(V ′) for an interval subset V ′ ⊆ V
with |V ′| = h that maximizes E(V ′) subject to the constraint that V ′ admits a simple
sequence representation I1, I2, . . . , Is and Q1, Q2, . . . , Qs−1. Hence, only the last
parts in this sequence representation are defined by the entry. We can bound the size
of � by n4 · maxIs−1,Is |Pε(CIs−1 Is)|. The second part of this product is simply the
maximal size of Pε(CIs−1 Is) for any consecutive interval pair Is−1, Is . Consequently,
since we already know that Pε(CIs−1 Is) has polynomial size for any such interval pair
Is−1, Is ∈ V , we immediately obtain that the array � has polynomial size as well.

We initialize � by filling all entries of the form �(h, 2, I1, I2, Q1) with |Q1 ∪
VI1 ∪ VI2 | = h. Specifically, for any integer h with 0 ≤ h ≤ k + 1, any consecutive
interval pair I1, I2, and any interval set Q1 ∈ Pε(I1, I2) with |Q1 ∪ VI1 ∪ VI2 | = h,
we set �(h, 2, I1, I2, Q1) := E(Q1 ∪VI1 ∪VI2). All other entries of � are initialized
as −∞.

To define a recurrence relation, assume that we have already filled all entries of the
form �(h, s − 1, Is−2, Is−1, Qs−2), and now we want to use them to fill all entries of
the form �(h, s, Is−1, Is, Qs−1), i.e., we want to increase the sequence length s by
one. To this end, we can use the following recurrence relation:

�(h, s, Is−1, Is, Qs−1)

= max
Is−2<Is−1,Qs−2∈Pε (CIs−2 Is−1)

{
�

(
h − |Qs−1| − |VIs\VIs−1 |, s − 1, Is−2, Is−1, Qs−2

)

+E
(
Qs−2 ∪ VIs−1 , Qs−1 ∪ VIs\VIs−1

) + E
(
Qs−1 ∪ VIs\VIs−1

)}

In words, we take the maximum over all intervals Is−2 ∈ V with Is−2 < Is−1 and all
cliques Qs−2 ∈ Pε(CIs−2 Is−1). Since Pε(CIs−1 Is) has polynomial size as already used
above, this recurrence relation can be clearly implemented in polynomial time. Hence,
in combination with the size of � listed above, we find that it takes polynomial time
to fill �.

To see the correctness of this recurrence relation, consider an interval subset V ′ ⊆ V
that realizes an entry of the form �(h, s, Is−1, Is, Qs−1), and let I1, I2, . . . , Is and
Q1, Q2, . . . , Qs−1 be a simple sequence representation of V ′. Let then V ′′ ⊆ V ′
be the subset with the shorter simple sequence representation I1, I2, . . . , Is−1 and
Q1, Q2, . . . , Qs−2. Hence, we have that V ′\V ′′ = Qs−1 ∪ VIs\VIs−1 . Now observe
that, as schematically illustrated in Fig. 4, the only intervals in V ′′ whichmight overlap
with an interval in V ′\V ′′ are the ones in Qs−2 ∪ VIs−1 . Consequently, we obtain the
decomposition

E(V ′) = E(V ′′) + E(Qs−2 ∪ VIs−1 , Qs−1 ∪ VIs\VIs−1) + E(Qs−1 ∪ VIs\VIs−1)

as used in the recurrence relation. Thus, since V ′ minimizes E(V ′), we have that also
V ′′ minimizes E(V ′′), since we could otherwise improve V ′ by replacing the intervals

123

538 Algorithmica (2016) 74:528–539

Fig. 4 Overlap structure during a recurrence relation

V ′′ by another interval subset. This shows that E(V ′′) realizes the entry

�(h − |Qs−1| − |VIs\VIs−1 |, s − 1, Is−2, Is−1, Qs−2).

Combining these facts shows the correctness of the recurrence relation.

Theorem 5 There is a PTAS for finding a densest k-subgraph in interval graphs. The
running time is nO(1/ε4).

Proof Use the dynamic programming approach explained above to compute all
entries �(h, s, Is−1, Is, Qs−1) with h = k + 1 and Is = I∞, and let V ′ be the
interval set that realizes an optimal such entry, i.e., one that maximizes E(V ′) =
�(h, s, Is−1, Is, Qs−1). By the definition of�, we obtain that V ′ is a densest (k+1)-
interval subset with I∞ ∈ V ′ subject to the constraint that V ′ admits a simple sequence
representation. Consequently, by Lemma 3, we find that E(V ′\{I∞}) = E(V ′) ≥
(1 − 8ε)OPT. This proves the claim. ��

6 Conclusion

In this paper, we described a PTAS for the densest k-subgraph problem in interval
graphs, which is the first PTAS for this problem in an important graph class without
any further restrictions.We conjecture that the densest k-subgraph problem is NP-hard
in interval graphs, but a proof is still outstanding. A similar technique as in this paper
can be used to obtain a PTAS for the sparsest k-subgraph problem in proper interval
graphs [18]. This basically requires taking the ht intervals with rightmost left endpoint
in Sect. 4 and moreover replacing max by min in the recurrence relation in Sect. 5.
However, lifting this technique to non-proper interval graphs remains challenging.
Although a similar lemma as Lemma 1 holds as well, the bounding of the cost change
due to clique replacements as done in Sect. 4 fails in this case. Another interesting
open question is whether the techniques introduced in this paper can be applied to the
superclass of chordal graphs as well. We think that this transfer is not possible because
chordal graphs lack the nice geometric structure of interval graphs.

123

Algorithmica (2016) 74:528–539 539

References

1. Perl, Y., Corneil, D.G.: Clustering and domination in perfect graphs. Discret. Appl. Math. 9(1), 27–39
(1984)

2. Khot, Subhash: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM
J. Comput. 36(4), 1025–1071 (2006)

3. Liazi, Maria, Milis, Ioannis, Zissimopoulos, Vassilis: A constant approximation algorithm for the
densest k-subgraph problem on chordal graphs. Inf. Process. Lett. 108(1), 29–32 (2008)

4. Lawler, EugeneL.:CombinatorialOptimization—Networks andMatroids.Holt, Rinehart andWinston,
New York (1976)

5. Kortsarz, G., Peleg, D.: On choosing a dense subgraph. In Proceedings of the 34th Annual Symposium
on Foundations of Computer Science (FOCS’93), pp. 692–701 (1993)

6. Feige, Uriel, Peleg, David, Kortsarz, Guy: The dense k-subgraph problem. Algorithmica 29(3), 410–
421 (2001)

7. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities:
an O(n1/4)-approximation for densest k-subgraph. In Proceedings of the 42nd ACM Symposium on
Theory of Computing (STOC’10), pp. 201–210 (2010)

8. Asahiro,Yuichi, Iwama,Kazuo,Tamaki,Hisao,Tokuyama,Takeshi:Greedilyfinding adense subgraph.
J. Algorithms 34(2), 203–221 (2000)

9. Feige, Uriel, Langberg, Michael: Approximation algorithms for maximization problems arising in
graph partitioning. J. Algorithms 41(2), 174–211 (2001)

10. Arora, Sanjeev, Karger, David R., Karpinski, Marek: Polynomial time approximation schemes for
dense instances of np-hard problems. J. Comput. Syst. Sci. 58(1), 193–210 (1999)

11. Gröschel, M., Lovász, László, Schrijver, Alexander: Geometric Algorithms and Combinatorial Opti-
mizatio. Springer, New York (1988)

12. Golumbic, Martin Charles, Trenk, Ann N.: Tolerance Graphs. Cambridge University Press, Cambridge
(2004)

13. Liazi, Maria, Milis, Ioannis, Pascual, Fanny, Zissimopoulos, Vassilis: The densest k-subgraph problem
on clique graphs. J. Comb. Optim. 14(4), 465–474 (2007)

14. Chen, D.Z., Fleischer, R., Li, J.: Densest k-subgraph approximation on intersection graphs. In Pro-
ceedings of the 8th International Workshop on Approximation and Online Algorithms (WAOA’10),
pp. 83–93 (2010)

15. Backer, Jonathan, Mark Keil, J.: Constant factor approximation algorithms for the densest k-subgraph
problem on proper interval graphs and bipartite permutation graphs. Inf. Process. Lett. 110(16), 635–
638 (2010)

16. Arora, Sanjeev: Polynomial time approximation schemes for euclidean traveling salesman and other
geometric problems. J. ACM 45(5), 753–782 (1998)

17. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems.
J. ACM 22, 463–468 (1975)

18. Watrigant, R., Bougeret, M., Giroudeau, R.: Approximating the sparsest k-subgraph in chordal graphs.
In Proceedings of the 11th Workshop on Approximation and Online Algorithms (WAOA’13) (2013)

123

	PTAS for Densest k-Subgraph in Interval Graphs
	Abstract
	1 Introduction
	2 Preliminaries
	3 Sequence Representation
	4 Simple Sequence Representations
	5 Dynamic Programming
	6 Conclusion
	References

