
Algorithmica (2016) 74:466–484
DOI 10.1007/s00453-014-9952-y

Randomized Fixed-Parameter Algorithms
for the Closest String Problem

Zhi-Zhong Chen · Bin Ma · Lusheng Wang

Received: 3 May 2014 / Accepted: 16 October 2014 / Published online: 28 October 2014
© Springer Science+Business Media New York 2014

Abstract Given a set S = {s1, s2, . . . , sn} of strings of equal length L and an integer
d, the closest string problem (CSP) requires the computation of a string s of length
L such that d(s, si) ≤ d for each si ∈ S, where d(s, si) is the Hamming distance
between s and si . The problem is NP-hard and has been extensively studied in the
context of approximation algorithms and fixed-parameter algorithms. Fixed-parameter
algorithms provide the most practical solutions to its real-life applications in bioinfor-
matics. In this paper we develop the first randomized fixed-parameter algorithms for
CSP. Not only are the randomized algorithms much simpler than their deterministic
counterparts, their time complexities are also significantly better than the previously
best known (deterministic) algorithms.

A preliminary version of this paper appeared in the Proceedings of the 25th Annual Symposium on
Combinatorial Pattern Matching, 2014.

Z.-Z. Chen (B)
Division of Information System Design, Tokyo Denki University, Ishizaka, Hatoyama, Hiki,
Saitama 350-0394, Japan
e-mail: zzchen@mail.dendai.ac.jp

B. Ma
School of Computer Science, University of Waterloo, 200 University Ave. W, Waterloo,
ON N2L3G1, Canada
e-mail: binma@uwaterloo.ca

L. Wang
Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong SAR
e-mail: cswangl@cityu.edu.hk

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-014-9952-y&domain=pdf

Algorithmica (2016) 74:466–484 467

Keywords The closest string problem · Fixed-parameter algorithms · Randomized
algorithms · Computational biology

1 Introduction

Given a set S = {s1, s2, . . . , sn} of strings of equal length L and an integer d (called
radius), the closest string problem (CSP) requires the computation of a string s of
length L such that d(s, si) ≤ d for each si ∈ S, where d(s, si) is the Hamming
distance between s and si with radius d.

Closest string problem has attracted great attention in recent years due to its impor-
tant applications in bioinformatics [21]. For example, one needs to solve numerous
CSP instances over a binary alphabet in order to find the approximate gene clusters
using the Center Gene Cluster model [1,18]. Degenerated Primer Design [34] also
involves to solve CSP instances over the DNA alphabet. Other applications include
universal PCR primer design [10,16,20,22,30,34], genetic probe design [20], anti-
sense drug design [9,20], finding unbiased consensus of a protein family [3], and gene
regulatorymotif finding [8,12,16,20,32], etc. Consequently, CSP has been extensively
studied in computational biology [9,11,15–17,19–21,24,27–29,31,32]. In particular,
CSP has been proved to be NP-hard [14,20].

One approach toCSP is to design approximation algorithms.Along this line, Lancto
et al. [20] presented the first non-trivial approximation algorithm for CSP, which
achieves a ratio of 4

3 . Li et al. [21] designed the first polynomial-time approximation
scheme (PTAS) for CSP. Subsequently, the time complexity of the PTASwas improved
in [23,24]. However, the best-known PTAS in [23] has time complexity O(LnO(ε−2))

which is prohibitive for even a moderately small ε > 0.
A more practical approach to CSP is via fixed-parameter algorithms. Fixed-

parameter algorithms for CSP are based on the observation that the radius d in a
practical instance of CSP is usually reasonably small and hence an algorithm with
time complexity O(f (d) × poly(n)) for a polynomial function poly(n) and expo-
nential function f (d) may still be acceptable. Along this line, Stojanovic et al. [31]
designed a linear-time algorithm for the special case of CSP where d is fixed to
1. Gramm et al. [17] proposed the first fixed-parameter algorithm for CSP, which
runs in O(nL + nd · (d + 1)d) time. Ma and Sun [23] designed an algorithm that
runs in O(nL + nd · (16(|�| − 1))d) time. This algorithm is the first polynomial-
time algorithm for the special case of CSP where d is logarithmic in the input size
and the alphabet size |�| is a constant. Improved algorithms for CSP along this line
were given in [6,7,33,35]. Among them, the algorithm with the best theoretical time
complexity for general alphabets is given in [7]. For small alphabets, the best time
complexity is achieved by the algorithm in [6]. In particular, this algorithm runs in
O(nL + nd3 · 6.731d) time for binary strings, while it runs in O(nL + nd · 13.183d)

time for DNA strings. Noticeably, in order to achieve better time complexity, these
best-performing algorithms combinedmultiple techniques,whichmade the algorithms
rather complicated.

Randomization has been widely employed to design fixed-parameter algorithms
for many NP-hard problems [4,5,13,25,26] However, randomization has not been

123

468 Algorithmica (2016) 74:466–484

used to design fixed-parameter algorithms for CSP, and it was unclear if random-
ization will be of any benefit at all to solving CSP exactly. The only randomized
algorithm that we are aware of is a randomized heuristic algorithm for the binary
case of CSP proposed by Boucher and Brown [2]. With large synthetic as well as
real-genomic data, they demonstrated the heuristic algorithm could detect motifs effi-
ciently. However, no theoretical bounds on the running time or the success probability
were provided.

In this paper, we demonstrate that randomization indeed helps us design much
simpler and more efficient fixed-parameter algorithms for CSP. Several randomized
algorithms are proposed. The first algorithm is presented in Sect. 3 and is for the binary
case of CSP. The algorithm is as simple as the following: It starts with a string t that
is initialized to s1. At each iteration it selects an si with d(t, si) > d and randomly
flips one bit of t where si disagrees with t . If a center string is not found within d
iterations, the algorithm starts over again. This algorithm for binary case uses very
similar heuristic as in [2]. However, the procedure to apply the heuristic, as well as the
start and end conditions are changed in order to achieve the theoretical bounds proved in
this paper. Through rigorous analysis, we show that for any given binary CSP instance,
this surprisingly simple algorithm solves the problem in O(nL + n

√
d · (2e)d) ≈

O(nL + n
√

d · 5.437d) time with arbitrarily small constant one-sided error, where e
is the base of the natural logarithm. This time bound is significantly better than the
bound O(nL + nd3 · 6.731d) achieved by the previously best known (deterministic)
algorithm for CSP [6].

The algorithm is then extended in the rest of the paper to solve the general-alphabet
case and to provide better time complexity. More specifically, the algorithm is slightly
changed to solve the general-alphabet case in Sect. 4: Instead of flipping the bit at a
randomly selected position of t , the letter at that position is changed to a letter randomly
selected from the alphabet according to a carefully designed probability distribution.
As a result, we show that CSP can be solved in O(nL + n

√
d · (eσ)d) time with

arbitrarily small constant one-sided error, where σ is the size of the given alphabet.
For DNA strings where σ = 4, this new time bound is O(nL + n

√
d · (10.874)d),

which is significantly better than O(nL + nd · 13.183d) achieved by the best known
(deterministic) algorithm [6].

In Sect. 5, the algorithm is further improved by a simple strategy that avoids repeated
changes at the same position of the candidate center string t . Also, in each iteration
the selection of si maximizes d(t, si). We show that with these small changes, the
time complexity of the algorithm is reduced toO(nL +n

√
d · (2.5σ)d). Therefore, for

binary and DNA strings, the bounds are O(nL + n
√

d · 5d) and O(nL + n
√

d · 10d),
respectively.

Noticing that the time complexity O(nL + n
√

d · (2.5σ)d) is not better than the
algorithm in [7] for large σ , two different strategies are introduced in Sects. 6 and 7
to specifically deal with large alphabets. The algorithm in Sect. 6 runs in O(nL +
n
√

d · (2σ + 4)d) time. This provides better time complexity than the previously
best algorithm in [7] for large σ . For example, for protein strings (σ = 20), the new
algorithm runs in O(nL + n

√
d · 44d) time while the algorithm in [7] runs in O(nL +

nd · 47.21d) time. The algorithm in Sect. 7 has even better time complexity for large
σ . However, the resulting time bound of our analysis is not a closed-form expression.

123

Algorithmica (2016) 74:466–484 469

Via numerical computation, we show that the algorithm runs in O(nL + nd2 · 9.81d)

and O(nL + nd2 · 40.1d) time for DNA and protein strings, respectively.
Table 1 in Sect. 7 compares the time complexities of the algorithms in this paper

against the previously best-known algorithms for CSP.

2 Notations

In this paper, a string is over an alphabet with a fixed size σ ≥ 2. For each positive
integer k, [1. . .k] denotes the set {1, 2, . . . , k}. For a string s, |s| denotes the length
of s. For each i ∈ [1. . .|s|], s[i] denotes the letter of s at its i-th position. Thus,
s = s[1]s[2] . . . s[|s|]. A position set of a string s is a subset of [1. . .|s|]. For two
strings s and t of the same length, d(s, t) denotes their Hamming distance.

Two strings s and t of the same length L agree (respectively, differ) at a position
i ∈ [1. . .L] if s[i] = t[i] (respectively, s[i] �= t[i]). The position set where s and
t agree (respectively, differ) is the set of all positions i ∈ [1. . .L] where s and t
agree (respectively, differ). The following special notations will be very useful. For
two strings s1, s2 of the same length, {s1 ≡ s2} (respectively, {s1 �≡ s2}) denotes
the set of all positions where s1 and s2 agree (respectively, differ). Moreover, for
three strings s1, s2, s3 of the same length, {s1 �≡ s2 �≡ s3} denotes the position set
{s1 �≡ s2} ∩ {s1 �≡ s3} ∩ {s2 �≡ s3}, while {s1 ≡ s2 �≡ s3} denotes the position set
{s1 ≡ s2} ∩ {s2 �≡ s3}.

3 Randomized Algorithm for Binary Alphabets

To get familiar with the techniques used in this paper, we start with the binary case of
the problem in this section.

Most fixed-parameter algorithms for CSP are based on the bounded search tree
method. These algorithms start with a suboptimal solution t , and gradually change
t to the center string by altering the letters at certain positions of t . At each step, if
d(t, si) > d for an input string si , then at least one of the positions in {t �≡ si } needs
to be changed. Different strategies for choosing the position (or positions) to change
lead to very different time complexities. Gramm et al. [17] exhaustively tried every
position in a size-(d + 1) subset of {t �≡ si }, resulting in the first fixed-parameter
algorithm for CSP with time complexity O (

nL + nd · (d + 1)d
)
. Ma and Sun [23]

instead tried every subset of {t �≡ si } with bounded size and changed the positions
in a subset all at once, which led to an O (

nL + nd · (16σ − 1)d
)
algorithm with a

very nontrivial proof. Boucher and Brown [2] proposed a seemingly simple strategy to
choose a position from {t �≡ si } uniformly at random. The resulting heuristic algorithm
in their paper deviates from the bounded search tree scheme since it can alter the
original t more than d times. Although there was no theoretical proof about the better
performance of the heuristic algorithm, it worked efficiently on simulated data. Here,
we apply the same strategy under the bounded search tree method in Algorithm 1, and
show that such a randomized strategy is not only simpler, but also provides a cleaner
proof and improves the time complexity.

123

470 Algorithmica (2016) 74:466–484

s

s
t

b c
i

{t s}
{t s }i

a

Fig. 1 Strings s, t , and si immediately before Step 2.3 of the j th iteration of the while-loop in
BoundedGuess-Binary, where for each position p ∈ [1. . .L], two of the strings have the same letter at
position p if and only if they are illustrated in the same color or pattern at position p

Algorithm 1: BoundedGuess-Binary

Input: Strings s1, . . . , sn each of length L, and a nonnegative integer d.

Output: A center string of {s1, . . . , sn} with radius d if there is any, and “no”
otherwise.

1 Let t = s1 and Δ = d. If there is a string si among the input strings such that
d(t, si) > 2d, then output “no” and halt.

2 While Δ > 0, perform the following steps:

2.1 If d(t, si) ≤ d for all 1 ≤ i ≤ n, output t and halt.

2.2 Find a string si among the input strings such that d(t, si) > d.

2.3 Select a position p in {t si} uniformly at random and flip the bit of
t at position p.

2.4 Decrease Δ by 1.

3 Output “no” and halt.

Lemma 3.1 If {s1, . . . , sn} has no center string of radius d, then BoundedGuess-
Binary always outputs “no”. On the other hand, if {s1, . . . , sn} has a center string of
radius d, then with probability at least d!

(2d)d , BoundedGuess-Binary outputs a center
string of {s1, . . . , sn} with radius d.

Proof The first assertion in the lemma is obvious. So, suppose that s is a center string
of {s1, . . . , sn} with radius d such that d(s, s1) is minimized among all center strings
of {s1, . . . , sn} with radius d. For convenience, let d j = d(s, s1) − (j − 1) for all
j ≥ 1.
For each j ≥ 1, let E j be the event that the position p selected in Step 2.3 during

the j th iteration of the while-loop belongs to {s1 �≡ s}, and p has not been selected in
Step 2.3 during the previous j − 1 iterations of the while-loop. For each j ≥ 1, we
want to obtain a lower bound on the conditional probability Pr[E j | E1, . . . , E j−1].

So, fix an arbitrary j ≥ 1 and consider the time point immediately before Step 2.3
of the j th iteration of the while-loop. Let a = |{t ≡ s �≡ si }|, b = |{si ≡ s �≡ t}|,
and c = |{si ≡ t �≡ s}| (cf. Fig. 1). Clearly, d(si , s) = a + c ≤ d, d(t, s) = b + c,

123

Algorithmica (2016) 74:466–484 471

and d(t, si) = a + b > d. Let � = d(t, si) − d. Then, d + � + 2c = d(t, si) + 2c =
a + b + 2c = d(si , s) + d(t, s) ≤ d + d(t, s). If events E1, …, E j−1 have occurred,
then d(t, s) = d j and the last inequality becomes � + 2c ≤ d j . This implies that
2(d j − c) ≥ d j + �. Therefore,

b = d(t, s) − c = d j − c ≥ d j + �

2
. (1)

Notice that b is precisely the number of bits in {t �≡ si } where t needs to be flipped
in order to reach s. Moreover, if events E1, …, E j−1 have occurred, then none of the
b bits has been flipped during the previous j − 1 iterations of the while-loop. Thus,
Pr[E j | E1, . . . , E j−1] is at least

b

d + �
≥ 1

2
· d j + �

d + �
≥ 1

2
· d j

d
= d j

2d
, (2)

where the second inequality is correct because d j ≤ d and � > 0.
So, the probability that all of E1, …, Ed1 occur is at least

d1∏

�=1

�

2d
≥

d∏

�=1

�

2d
= d!

(2d)d
,

where the inequality holds because d1 ≤ d.
�
Theorem 3.2 The binary case of the closest string problem can be solved in

O
(

nL + n
√

d · (2e)d
)

= O
(

nL + n
√

d · 5.437d
)

time with arbitrarily small con-

stant one-sided error.

Proof By Stirling’s formula, d!
(2d)d is at least a positive constant times the following:

√
d · (d

e)d

2ddd
= √

d

(
1

2e

)d

By Lemma 3.1, if we repeat BoundedGuess-Binary O
(

(2e)d√
d

)
= O

(
5.437d√

d

)
times,

then we will obtain a center string with arbitrarily large constant probability if there
is any.

Obviously, each iteration of the while-loop takes O(nL) time. As observed in
previous works (e.g., [17]), we can improve this time bound by carefully remembering
the previous distances and only updating them after a single position is flipped. The
conclusion is this:With anO(nL)-time preprocessing, each iteration of the while-loop
takes O(nd) time.
�

The time bound in Theorem 3.2 is better than O (
nL + nd3 · 6.731d

)
, which is the

best time bound achieved by the fastest deterministic algorithm for the binary case [6].

123

472 Algorithmica (2016) 74:466–484

4 Randomized Algorithm for General Alphabets

In this section, we extend the algorithm in Sect. 3 to the general case. In Step 2.3 of
Algorithm 1, a randomly selected p ∈ {t �≡ si } has a good chance to be such that t[p]
is different from the center string. Consequently, in the binary case, changing t[p] to
si [p] will make t one step closer to the center string. However, when the alphabet
size is greater than 2, this is not the optimal strategy any more, because si [p] can be
either equal to or different from the center string. The algorithm has to carefully bet
on one of the two cases during the search. Thus, we modify Step 2.3 in Algorithm 1
as follows:

Algorithm 2: BoundedGuess

2.3 Select a position p in {t si} uniformly at random, change t[p] to si[p] with
probability 2

σ while to each of the other σ − 2 letters with probability 1
σ .

Lemma 4.1 If {s1, . . . , sn} has no center string of radius d, then BoundedGuess
always outputs “no”. On the other hand, if {s1, . . . , sn} has a center string of radius
d, then with probability at least d!

(σd)d , BoundedGuess outputs a center string of
{s1, . . . , sn} with radius d.

Proof The first assertion in the lemma is obvious. To prove the second assertion, we
define s and d j as in the proof of Lemma 3.1. For each j ≥ 1, let E j be the event that
the position p selected in Step 2.3 during the j th iteration of the while-loop belongs
to {s1 �≡ s}, p has not been selected in Step 2.3 during the previous j − 1 iterations
of the while-loop, and the letter of t at position p is changed to that of s at position p.
The goal is to bound Pr[E j | E1, . . . , E j−1] from below.

So, fix an arbitrary j ≥ 1 and consider the time point immediately before Step 2.3
of the j th iteration of the while-loop. Let a = |{t ≡ s �≡ si }|, b = |{si ≡ s �≡ t}|,
c = |{si ≡ t �≡ s}|, and r = |{si �≡ s �≡ t}| (cf. Fig. 2). Clearly, d(si , s) = a +c+r ≤
d, d(t, s) = b + c + r , and d(t, si) = a + b + r > d. Let � = d(t, si) − d. Then,
d+�+2c+r = d(t, si)+2c+r = a+b+2c+2r = d(si , s)+d(t, s) ≤ d+d(t, s). If
events E1,…, E j−1 have occurred, thend(t, s) = d j and the above inequality becomes

t
s

s

b c
i

{t s}
{t s }i

a r
Fig. 2 Strings s, t , and si immediately before Step 2.3 of the j th iteration of the while-loop in Bound-
edGuess, where for each position p ∈ [1. . .L], two of the strings have the same letter at position p if and
only if they are illustrated in the same color or pattern at position p

123

Algorithmica (2016) 74:466–484 473

� + 2c + r ≤ d j . Thus,

2b + r = 2(d(t, s) − c − r) + r = 2d j − 2c − r = d j + (d j − 2c − r) ≥ d j + �.

(3)

For convenience, let q1 = b
d+�

and q2 = r
d+�

. Then, we have

2q1 + q2 = 2b + r

d + �
≥ d j + �

d + �
≥ d j

d
, (4)

where the first inequality follows from Eq. (3) and the second inequality is correct
because d j ≤ d and � > 0.

Notice that b + r is precisely the number of positions in {t �≡ si } where t needs to
be modified in order to reach s. Among the b + r positions, r need to be changed to
one of the σ −2 letters that are different from both t and si , while b need to be changed
to si . Moreover, if events E1, …, E j−1 have occurred, then none of the b +r positions
has been selected in Step 2.3 during the previous j − 1 iterations of the while-loop.
Thus, by the total probability rule, Pr[E j | E1, . . . , E j−1] is at least

2

σ
· q1 + 1

σ
· q2 = 1

σ
· (2q1 + q2) ≥ 1

σ
· d j

d
, (5)

where the last inequality follows from Eq. (4).
So, the probability that all of E1, …, Ed1 occur is at least

d1∏

�=1

�

σd
≥

d∏

�=1

�

σd
= d!

(σd)d
,

where the inequality holds because d1 ≤ d.
�

Theorem 4.2 The closest string problem can be solved in O
(

nL + n
√

d · (σe)d
)

time with arbitrarily small constant one-sided error.

Proof Similar to the proof of Theorem 3.2. The only difference is to use Lemma 4.1
instead of Lemma 3.1.
�

For DNA strings (σ = 4), the time bound O
(

nL + n
√

d · (σe)d
)

=
O

(
nL + n

√
d · 10.874d

)
is better than O (

nL + nd · 13.183d
)
, which is the best

time bound achieved by the fastest deterministic algorithm for the problem [6]. How-
ever, for large σ (say, σ = 20), the time bound in [7] is better.

5 An O(nL + n
√

d · (2.5σ)d) Time Algorithm

In this section, we obtain a more efficient algorithm by refining BoundedGuess in
Sect. 4.

123

474 Algorithmica (2016) 74:466–484

First, a close inspection of the proof of Lemma 4.1 reveals that we do not need to
modify a position of t again once it has been modified. Thus, if we record the already
modified positions with a set F , and avoid those positions in later steps, the algorithm’s
time complexity may be reduced. More specifically, we can augment Step 1 by also
initializing F = ∅, modify Step 2.3 by selecting p from {t �≡ si } \ F instead of
from {t �≡ si }, and augment Step 2.4 by also adding p to F . A crucial observation is
that if we find an si in Step 2.2 so that d(t, si) is maximized, then we can prove that
{t �≡ si } \ F is significantly smaller than {t �≡ si }. Consequently, the probability of
selecting a correct position in Step 2.3 is increased. This will be proved in Lemma 5.1.

Secondly, if d(t, si) − d ≥ 2 for the string si found in Step 2.2, then we still have
d(t, si) > d after modifying only one position of t in Step 2.3 and hence the same si

can be used in Step 2.3 during the next iteration of the while-loop. More generally,
if d(t, si) − d = � for the string si found in Step 2.2, then we can use si in Step 2.3
during � consecutive iterations of the while-loop.

Based on the above observations, we now obtain a new algorithm as follows:

Algorithm 3: NonRedundantGuess

1 Let t = s1, Δ = d, and F = ∅. If there is a string si among the input strings
such that d(t, si) > 2d, then output “no” and halt.

2 While Δ > 0, perform the following steps:

2.1 If d(t, si) ≤ d for every input string si, then output t and halt.

2.2 Find a string si among the input strings such that d(t, si) is maximized.

2.3 Compute = d(t, si) − d.

2.4 Select a set R of positions in {t si} \ F uniformly at random.

2.5 For each p ∈ R, change t[p] to si[p] with probability 2
σ ; and to each of

the other σ − 2 letters with probability 1
σ .

2.6 Decrease Δ by and add the positions in R to F .

3 Output “no” and halt.

To analyze NonRedundantGuess, we first define several notations. For each integer
j ≥ 1, we let si j (respectively, � j or R j) denote the string si (respectively, the integer �
or the set R) obtained in Step 2.2 (respectively, Step 2.3 or 2.4) during the j th iteration
of the while-loop. Moreover, for each j ≥ 1, we let t j (respectively, Fj) denote the
string t (respectively, the set F) immediately before the j th iteration of the while-loop.

The next lemma is the key to analyzing NonRedundantGuess.

Lemma 5.1 For every integer j ≥ 2, |Fj ∩ {t j �≡ si j }| ≥ d(t j ,s1)−�1+� j
2 .

Proof First, recall that for any two sets A and B,

|(A \ B) ∪ (B \ A)| = |A| + |B| − 2|A ∩ B|. (6)

123

Algorithmica (2016) 74:466–484 475

By the algorithm, Fj = {t1 �≡ t j }. So, t1 and si j disagree at each position in(
Fj \ {t j �≡ si j }

) ∪ ({t j �≡ si j } \ Fj
)
, and in turn

∣∣(Fj \ {t j �≡ si j }
) ∪ ({t j �≡ si j } \ Fj

)∣∣ ≤ d(t1, si j).

Moreover, si1 maximizes d(t1, si1) and so d(t1, si j) ≤ d(t1, si1) = d + �1. Thus, we
have ∣∣(Fj \ {t j �≡ si j }

) ∪ ({t j �≡ si j } \ Fj
)∣∣ ≤ d + �1. (7)

Applying Eq. (6) to the left side of Eq. (7), we obtain

|Fj | + |{t j �≡ si j }| − 2|Fj ∩ {t j �≡ si j }| ≤ d + �1. (8)

Obviously, |Fj | = d(t j , s1) and |{t j �≡ si j }| = d +� j . Combining these two equalities
with Eq. (8), we finally obtain the inequality in the lemma.
�

Lemma 5.2 If {s1, . . . , sn} has no center string of radius d, then NonRedundantGuess
always outputs “no”. On the other hand, if {s1, . . . , sn} has a center string of radius

d, then with probability �(
√

d · (
(1+ε)

1+ε
2 (1−ε)

1−ε
2

21+εσ
)d), NonRedundantGuess outputs

a center string of {s1, . . . , sn} with radius d, where ε = �1/d.

Proof The first assertion in the lemma is obvious. To prove the second assertion, we
define s as in the proof of Lemma 3.1. For each j ≥ 1, let d j = d(s, t j). Moreover,
for each j ≥ 1, let E j be the event that R j is a subset of {s1 �≡ s} and the letter of t at
each position p ∈ R j is changed to that of s at position p in Step 2.5 during the j th
iteration of the while-loop. The goal is to bound Pr[E j | E1, . . . , E j−1] from below.

For convenience, let R j = {p j,1, . . . , p j,� j } for all j ≥ 1. Without loss of gener-
ality, we can assume that R j is obtained by the following procedure: For each j ≥ 1
and 1 ≤ h ≤ � j , select p j,h from {t j �≡ si j } \ (

Fj ∪ {p j,1, . . . , p j,h−1}
)
uniformly at

random.
For each j ≥ 1 and 1 ≤ h ≤ � j , let E j,h denote the event that p j,h belongs to

{t j �≡ s} \ (
Fj ∪ {p j,1, . . . , p j,h−1}

)
and the letter of t j at position p j,h is changed to

that of s at position p j,h in Step 2.5 during the j th iteration of the while-loop.
By the first inequality in Eq. (4) and the equality in Eq. (5) (cf. the proof of

Lemma 4.1), we have Pr[E1,h | E1,1, . . . , E1,h−1] ≥ (d1−(h−1))+(�1−(h−1))
(d+�1−(h−1))σ and in

turn

Pr[E1] ≥
�1−1∏

h=0

d1 + �1 − 2h

(d + �1 − h)σ
. (9)

Now, consider an arbitrary integer j ≥ 2. Since we assume that E1,…, E j−1 occur,

d(t j , s1) = d1 − d j . By Lemma 5.1, |Fj ∩ {t j �≡ si j }| ≥ d1−d j −�1+� j
2 . So, by the first

123

476 Algorithmica (2016) 74:466–484

inequality in Eq. (4), and the equality in Eq. (5) (cf. the proof of Lemma 4.1), we have

Pr[E j,h | E1, . . . , E j−1, E j,1, . . . , E j,h−1]≥
(
d j − (h − 1)

) + (
� j − (h − 1)

)

(
d+� j − d1−d j −�1+� j

2 − (h − 1)
)

σ

= 2
(
d j + � j − 2(h − 1)

)

(
2d − d1 + �1 + d j + � j − 2(h − 1)

)
σ

≥ 2
(
d j − (h − 1)

)

(
2d − d1 + �1 + d j − (h − 1)

)
σ

,

where the last inequality is because � j − (h − 1) ≥ 0. In turn,

Pr[E j | E1, . . . , E j−1] ≥
� j −1∏

h=0

2
(
d j − h

)

(
2d − d1 + �1 + d j − h

)
σ

=
d j∏

i=d j −� j +1

2i

(2d − d1 + �1 + i)σ
. (10)

Therefore, Pr[E1 ∧ E2 ∧ · · ·] is at least
�1−1∏

i=0

d1 + �1 − 2i

(d + �1 − i)σ
·

d1−�1∏

i=1

2i

(2d − d1 + �1 + i)σ

=
(
2

σ

)d1
·
�1−1∏

i=0

d1+�1
2 − i

(d + �1 − i)
·

d1−�1∏

i=1

i

(2d − d1 + �1 + i)

=
(
2

σ

)d1
·
(

d1+�1
2

)
! d! (d1 − �1)! (2d − d1 + �1)!

(
d1−�1

2

)
! (d + �1)! (2d)!

(11)

For convenience, let δ = d1
d . By the triangle inequality, d(s1, si1) ≤ d(s, s1) +

d(s, si1) = d1 + d(s, si1) ≤ d1 + d and in turn �1 = d(s1, si1) − d ≤ d1. So, δ ≥ ε.
Now, by Eq. (11) and Stirling’s formula, the probability is at least a positive constant

times the following:

√
d ·

(
2δ−ε

4σ δ
· (δ + ε)

δ+ε
2 (δ − ε)

δ−ε
2 (2 − δ + ε)2−δ+ε

(1 + ε)1+ε

)d

(12)

By elementary calculus, one can verify that Eq. (12) is a decreasing function of δ

for δ ≥ ε. Therefore Eq. (12) reaches its minimum value when δ = 1. Consequently,
the probability is at least a positive constant times the following:

√
d ·

(
(1 + ε)

1+ε
2 (1 − ε)

1−ε
2

21+εσ

)d

(13)

123

Algorithmica (2016) 74:466–484 477

This completes the proof.
�
Theorem 5.3 The closest string problem can be solved in

O
⎛

⎝nL + n
√

d ·
(

21+εσ

(1 + ε)
1+ε
2 (1 − ε)

1−ε
2

)d
⎞

⎠

time with arbitrarily small constant one-sided error, where ε = �1/d.

Proof Similar to the proof of Theorem 3.2. The only difference is to use Lemma 5.2
instead of Lemma 3.1.
�
Corollary 5.4 The closest string problem can be solved in O

(
nL + n

√
d · (2.5σ)d

)

time with arbitrarily small constant one-sided error.

Proof By elementary calculus, one can verify that for a fixed σ , Eq. (13) achieves the

minimum value
√

d · (2
5σ

)d
at ε = 0.6. This completes the proof.
�

The time bound in Corollary 5.4 is better than that in Theorem 4.2.

6 More Efficient Algorithm for Large Alphabets

When σ < 16, the time complexity in Corollary 5.4 is better than the previously best
known algorithms [6,7]. However, for large σ (such as σ = 20 for protein sequences),
the algorithm in [7] is still better. In this section, we refine NonRedundantGuess to
obtain a new algorithm (named LargeAlphabet1) that has a time complexity O(nL +
n
√

d · (2σ + 4)d). This time complexity is better than the one of Corollary 5.4 for
σ ≥ 9. Also, the new time complexity is smaller than that of the algorithm in [7] for
reasonably large alphabet sizes (such as σ = 20).

When the alphabet size is large, the most expensive factor in the time complexity
in Corollary 5.4 is the σ d . This factor arises from the fact that for each position that
needs to be changed in Step 2.5 of NonRedundantGuess, we need to guess the letter
from σ − 1 possibilities and in total there can be as many as d such guessing events.
However, in the first iteration of the while-loop of NonRedundantGuess, there can be
a large number of positions p ∈ {t �≡ si } such that t[p] needs to be changed to si [p].
Denote the set of these positions by B. For the positions in B, the algorithm actually
does not need to guess the letters. Moreover, by Lemma 3.1 in [7], |B| ≥ �1. Based on
this fact, we obtain LargeAlphabet1 by modifying Step 2.5 of NonRedundantGuess
as follows:

Algorithm 4: LargeAlphabet1

2.5 If Δ = d, then change t[p] to si[p] for each p ∈ R. Otherwise, for each p ∈ R,
change t[p] to si[p] with probability 2

σ ; and to each of the other σ−2 letters
with probability 1

σ .

123

478 Algorithmica (2016) 74:466–484

Lemma 6.1 If {s1, . . . , sn} has no center string of radius d, then LargeAlphabet1
always outputs “no”. On the other hand, if {s1, . . . , sn} has a center string of radius

d, then with probability �

(
d · √

ε(1 − ε) ·
(

εε(1−ε)1−ε

21+εσ 1−ε

)d
)

, LargeAlphabet1 outputs

a center string of {s1, . . . , sn} with radius d, where ε = �1/d.

Proof We inherit the notations fromSect. 5. The first assertion in the lemma is obvious.
To prove the second assertion, we first observe that {s1 �≡ si1} contains at least �1
positions p such that s1[p] should be changed to si1 [p]. This follows from Lemma 3.1
in [7]. Consequently, we have

Pr[E1] ≥ 1
(

d + �1
�1

) = �1! d!
(d + �1)! . (14)

Obviously, for j ≥ 2, Eq. (10) in the proof of Lemma 5.2 still holds. Therefore,
Pr[E1 ∧ E2 ∧ · · ·] is at least

�1! d!
(d + �1)! ·

d1−�1∏

i=1

2i

(2d − d1 + �1 + i)σ
≥ �1! d!

(d + �1)! ·
d−�1∏

i=1

2i

(d + �1 + i)σ

= d! �1! (d − �1)!
(2d)! ·

(
2

σ

)d−�1

, (15)

where the inequality can be easily verified because the inequality d1 ≤ d implies that
(d1 − �1)! · (2d − d1 + �1)! ≥ (d − �1)! · (d + �1)!. Therefore, by Stirling’s formula,

Pr[E1 ∧ E2 ∧ · · ·] is �

(
d · √

ε(1 − ε) ·
(

εε(1−ε)1−ε

21+εσ 1−ε

)d
)
.
�

Theorem 6.2 The closest string problem can be solved in

O
(

nL + n · 1√
ε(1 − ε)

·
(

21+εσ 1−ε

εε(1 − ε)1−ε

)d
)

time with arbitrarily small constant one-sided error, if 0 < ε = �1/d < 1.

Proof Similar to the proof of Theorem 3.2. The only difference is to use Lemma 6.1
instead of Lemma 3.1.
�
Corollary 6.3 The closest string problem can be solved inO

(
nL + n

√
d · (2σ + 4)d

)

time with arbitrarily small constant one-sided error.

Proof If ε = 0, then �1 = 0 and so LargeAlphabet1 takesO(nL) time because s1 itself
is a center string of {s1, . . . , sn} with radius d. Moreover, if ε = 1, then �1 = d and

so the equality in Eq. (15) implies that LargeAlphabet1 takes O
(

nL + n
√

d · 4d
)

time. So, assume that 0 < ε < 1. Then, 1
ε(1−ε)

= O (d). Consider the function

123

Algorithmica (2016) 74:466–484 479

f (ε) = 21+εσ 1−ε

εε(1−ε)1−ε . By elementary calculus, one can verify that f takes the maximum

value 2σ + 4 at ε = 2
σ+2 . Now, the corollary follows from Theorem 6.2.
�

Obviously, when σ ≥ 9, the time bound in Corollary 6.3 is better than that in
Corollary 5.4. In particular, for protein strings (i.e., when σ = 20), the time bound in

Corollary 6.3 becomesO
(

nL + n
√

d · 44d
)
, which is better than the best time bound

O (
nL + nd · 47.21d

)
achieved by a deterministic algorithm for the problem [7].

Since the value of ε = �1/d in Theorems 5.3 and 6.2 is known at the very begin-
ning of NonRedundantGuess and LargeAlphabet1, one can choose between the two
algorithms depending on which of the two bounds in Theorems 5.3 and 6.2 is smaller.
For σ ≥ 5, numerical computation shows that this combined algorithm has a bet-
ter time complexity than the bounds proved in Corollaries 5.4 and 6.3. For exam-
ple, when σ = 20, we can show that the combined algorithm has time complexity

O
(

nL + n
√

d · 43.54d
)
.

7 More Efficient Algorithm for Nonbinary Alphabets

In this section, we refine NonRedundantGuess in a different way to obtain a new
algorithm (named LargeAlphabet2). The improvement has two consequences. First,
LargeAlphabet2 runs faster than the algorithm in [7] for every σ ≥ 2; whereas
LargeAlaphabet1 developed in the previous section has a higher complexity than the
algorithm in [7] for very large alphabets (σ > 36). Secondly, we will show that for
σ ≥ 3, the combination of NonRedundantGuess and LargeAlphabet2 has a better time
bound than all other bounds obtained in this paper and the algorithm in [7]. However,
the only drawback of LargeAlphabet2 is that we are unable to obtain a closed-form
expression for its time complexity.

We inherit the notations from Sect. 5. Recall that the idea behind LargeAlphabet1 is
as follows: In the first iteration of the while-loop, we first randomly guess �1 positions
from {t �≡ si } and then change the letter of t at each guessed position p to si [p]. The
idea behind LargeAlphabet2 is to randomly guess more in the first iteration. More
specifically, in the first iteration, we guess B = {si ≡ s �≡ t}, H = {t �≡ si �≡ s},
and s[p] for each p ∈ H . The crucial point is that after we change t[p] to s[p] for
each p ∈ B ∪ H in the first iteration, we can decrease � down to min{d − |B| −
|H |, |B| − �1} (instead of down to d − |B| − |H |). This follows from Lemma 3.1 in
[7].

Based on the discussion in the last paragraph, we obtain LargeAlphabet2 from
NonRedundantGuess by replacing Steps 2.4 through 2.6 with the next step:

Lemma 7.1 Let ε be as in Lemma 5.2. If {s1, . . . , sn} has no center string of radius
d, then LargeAlphabet2 always outputs “no”. On the other hand, if {s1, . . . , sn} has

a center string of radius d, then with probability at least �
(

γ d

d

)
, LargeAlphabet2

123

480 Algorithmica (2016) 74:466–484

Algorithm 5: LargeAlphabet2
2.4 If � < d, then perform Steps 2.4, 2.5, and 2.6 of NonRedundantGuess.

Otherwise, perform the following three steps:
2.4.1 Select an integer h ∈ {0, 1, . . . , d − �}, a subset H of {t �≡ si } with

|H | = h, and a subset B of {t �≡ si } \ H with � ≤ |B| ≤ d − h all
uniformly at random.

2.4.2 Let R = B ∪ H . For each p ∈ R,change t[p] to si [p] if p ∈ B, while
change t[p] to one of the σ − 2 letters not equal to si [p] uniformly at
random if p ∈ H .

2.4.3 Set � = min{d − |R|, |B| − �} and F = R. 1

1Instead of setting F = R, we can set F = {t �≡ si }. This change can only speed up the algorithm. The
reason for setting F = R is for the clarity of the proof by using Lemma 5.1

outputs a center string of {s1, . . . , sn} with radius d, where

γ =

⎧
⎪⎪⎨

⎪⎪⎩

(1−ε)
1−ε
2 (1+ε)1+ε

(3+ε)
3+ε
2

if σ = 2

min
0≤α≤1−ε

1
(σ−2)α

(1−ε−α
σ

) 1−ε−α
2 2

1−ε+α
2 αα(1+ε−α)(1+ε−α)

(3+ε−α)
3+ε−α

2
otherwise.

(16)

Proof We inherit the notations fromSect. 5. The first assertion in the lemma is obvious.
To prove the second assertion, we first calculate Pr[E0 ∧ E1], where E0 is the event
R1 = {s1 �≡ s} ∩ {s1 �≡ si1}. Clearly, both events E0 and E1 occur if and only if

1. The set B selected in Step 2.4.1 is {si1 ≡ s �≡ s1},
2. The set H selected in Step 2.4.1 is {s1 �≡ si1 �≡ s}, and
3. t[p] is changed to s[p] in Step 2.4.2 for each p ∈ H .

For convenience, let b1 = |{si1 ≡ s �≡ s1}| and h1 = |{s1 �≡ si1 �≡ s}|. Note that
the number of different combinations for B, H , and the letters in H is bounded from
above by

d ·
(

d + �1
h1

)
· (σ − 2)h1 ·

d−h1∑

b=�1

(
d + �1 − h1

b

)
≤ d ·

(
d + �1

h1

)
(σ − 2)h12d+�1−h1 .

Thus, Pr[E0 ∧ E1] ≥ 1
d(σ−2)h12d+�1−h1

· h1!(d+�1−h1)!
(d+�1)! . So, if h1 = 0, then

Pr[E0 ∧ E1] ≥ 1

d · 2d+�1
(17)

Otherwise, by Stirling’s formula, Pr[E0 ∧ E1] is at least a positive constant times the
following:

√
h1(d + �1 − h1)

d + �1
· hh1

1 (d + �1 − h1)
d+�1−h1

d(σ − 2)h12d+�1−h1(d + �1)d+�1
(18)

123

Algorithmica (2016) 74:466–484 481

Let d1 = d(s1, s) ≤ d be the precise number of changes required to convert s1 to
s. Suppose that both E0 and E1 have occurred. Then, Lemma 3.1 in [7] guarantees
that after the first iteration of the while-loop, we need to further modify at most
min(d1 − b1 − h1, b1 − �1) ≤ d1−h1−�1

2 positions of t . Thus, after the first iteration,
� is an upper bound on the remaining necessary changes to t , and F consists of
the already fixed positions of t that will be excluded from future changes. Hence,
after the first iteration, the behavior of LargeAlphabet2 will be the same as that of
NonRedundantGuess. Therefore, by Lemma 5.1 and Eq. (10), we know that for each
j ≥ 2,

Pr[E j | E0, E1, . . . , E j−1] ≥
d j∏

i=d j −� j +1

2i

(2d − d1 + �1 + i)σ
. (19)

Let m = � d1−h1−�1
2 �. Then, Pr[E2 ∧ E3 ∧ · · · | E0, E1] is bounded from below by

� d1−h1−�1
2 �∏

i=1

2i

(2d − d1 + �1 + i)σ
= 2mm!(2d − d1 + �1)!

σm(2d − d1 + �1 + m)! . (20)

Note that if m = 0, then the right side of Eq. (20) is 1. So, we may assume that
m ≥ 1 and hence d1 − h1 − �1 ≥ 2. Moreover, by Stirling’s formula, Eq. (20) is at
least a positive constant times the following:

2mmm(2d − d1 + �1)
2d−d1+�1

σm(2d − d1 + �1 + m)2d−d1+�1+m
·
√
2πm(2d − d1 + �1)√
2d − d1 + �1 + m

(21)

By elementary calculus, one can easily verify that the first factor in Eq. (21) is a
decreasing function in m, and the second factor is at least 1. Thus, Eq. (21) is at least

2m̃ m̃m̃(2d − d1 + �1)
2d−d1+�1

σ m̃(2d − d1 + �1 + m̃)2d−d1+�1+m̃
(22)

where m̃ = d1−h1−�1
2 .

We claim that Eq. (22) is a decreasing function in d1. To see this claim, let f (d1)
denote the logarithm of Eq. (22). It suffices to show that f (d1) is a decreasing function
in d1. We have

f ′(d1) = 1

2
ln

2

σ
+ ln

√
m̃(2d − d1 + �1 + m̃)

2d − d1 + �1
≤ 1

2
ln

2

σ
+ ln

2d − d1 + �1 + 2m̃

2(2d − d1 + �1)
.

Obviously, 2 ≤ σ . Moreover, 2d − d1 + �1 + 2m̃ = 2d − h1 ≤ 2(2d − d1 + �1)

for d1 ≤ d. So, f ′(d1) ≤ 0 and in turn f (d1) is a decreasing function in d1. This
completes the proof of the claim.

123

482 Algorithmica (2016) 74:466–484

By the claim, Eq. (22) is at least

(d − h1 − �1)
d−h1−�1

2 2
3d+�1−h1

2 (d + �1)
d+�1

σ
d−h1−�1

2 (3d + �1 − h1)
3d+�1−h1

2

.

Hence, by Eq. (17) and 18, Pr[E0 ∧ E1 ∧ E2 ∧ · · ·] is

�

⎛

⎝ (d − h1 − �1)
d−h1−�1

2 hh1
1 (d + �1 − h1)

d+�1−h12
d−�1+h1

2

d · σ
d−h1−�1

2 (σ − 2)h1(3d + �1 − h1)
3d+�1−h1

2

⎞

⎠ (23)

Therefore, if we let α = h1
d and ε = �1

d , then

Pr[E0 ∧ E1 ∧ E2 ∧ · · ·] = �

(
γ d

d

)
,

where γ is as defined in Eq. (16).
�
Thus, we have the following theorem.

Theorem 7.2 The closest string problem can be solved in O(nL + nd2 · (1
γ
)d) time

with arbitrarily small constant one-sided error, where γ is as defined in Eq. (16).

Proof Similar to the proof of Theorem 3.2. The only difference is to use Lemma 7.1
instead of Lemma 3.1.
�

Table 1 The time complexities of the previously best-known algorithms and the algorithms developed in
this paper.

Algorithm Reference c = f (σ) σ = 2 σ = 4 σ = 20 σ = 50

3-String [6] See caption 6.73 13.18 51.23 113.3

CloseString2 [7] See caption 8 13.92 47.21 100.4

BoundedGuess Theorem 4.2 eσ 5.44 10.87 54.37 135.9

NonRedundantGuess Corollary 5.4 2.5σ 5 10 50 125

LargeAlphabet1 Corollary 6.3 2σ + 4 8 12 44 104

LargeAlphabet2 Theorem 7.2 – 5.83 10.47 40.13 86.84

NonRedundantGuess + LargeAlphabet2 Sect. 7 – 5 9.81 40.09 86.84

Here, if the time complexity of an algorithm is of the form poly(n, L) · cd for some constant c and a
polynomial poly(n, L), then the row of the table corresponding to the algorithm shows the values of c
at different alphabet sizes. “NonRedundantGuess+LargeAlphabet2” means the algorithm that emulates
the two algorithms in parallel and halts once one of them stops. If a closed-form expression exists for
an algorithm, the column “c = f (σ)” shows c as a function of σ . For the 3-string algorithm in [6], c =
1.612

(
σ + β2 + β − 2

)
in general where β = α2+1−2α−1+α−2 with α = 3

√√
σ − 1 + 1, but its time

bound for σ = 2 has a better analysis. For the algorithm in [7], c = √
2σ + 4√8

(√
2 + 1

) (
1 + √

σ − 1
)−

2
√
2 in general, but its time bound for σ = 2 has a better analysis

Bold values indicate either the previously best or the currently best bound

123

Algorithmica (2016) 74:466–484 483

Although it is difficult to find a closed-form expression for the value of 1
γ
, we can

perform numerical computation to obtain an approximate upper bound on 1
γ
for any

given σ . Row “LargeAlphabet2” in Table 1 shows the results for several specific σ .
Note that the time bound in Theorem 7.2 is not as good as those in Corollaries 5.4
and 6.3 for small σ (such as σ = 4) but is significantly better for large σ (say, σ = 20
or 50). Furthermore, numerical computation also shows that for every σ ≥ 2, the
bound in Theorem 7.2 is better than the time bound in [7].

For σ ≥ 3, numerical computation shows that the smaller bound between the two
in Theorems 5.3 and 7.2 is better than the bounds in Corollaries 5.4 and 6.3 and
Theorem 7.2. For example, when σ = 4 (respectively, σ = 20), we can show that
the smaller bound between the two in Theorems 5.3 and 7.2 is O (

nL + nd2 · 9.81d
)

[respectively, O (
nL + nd2 · 40.1d

)
].

Acknowledgments We thank the anonymous referees for very helpful comments. Zhi-Zhong Chen was
supported in part by the Grant-in-Aid for Scientific Research of the Ministry of Education, Science, Sports
and Culture of Japan, under Grant No. 24500023. Bin Ma was supported in part by Natural Sciences and
Engineering Research Council of Canada (RGPIN 238748). Lusheng Wang was supported by a GRF grant
from Hong Kong SAR government Project No. [CityU 123013] and a grant from National Foundation of
China Project No. [61373048].

References

1. Böcker, S., Jahn, K., Mixtacki, J., Stoye, J.: Computation of median gene clusters. J. Comput. Biol.
16(8), 1085–1099 (2009)

2. Boucher, C., Brown, D.: Detecting motifs in a large data set: applying probabilistic insights to motif
finding. In: Proceedings of the Conference on Bioinformatics and Computational Biology (BICoB),
pp. 139–150 (2009)

3. Ben-Dor,A., Lancia,G., Perone, J., Ravi, R.: Banishing bias fromconsensus sequences. In: Proceedings
of the 8th Annual Symposium on Combinatorial Pattern Matching, pp. 247–261 (1997)

4. Chen, J., Lu, S.: Improved parameterized set splitting algorithms: a probabilistic approach. Algorith-
mica 54(4), 472–489 (2008)

5. Chen, J., Lu, S., Sze, S.H., Zhang, F.: Improved algorithms for path, matching, and packing problems.
In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
298–307 (2007)

6. Chen, Z.-Z., Ma, B., Wang, L.: A three-string approach to the closest string problem. J. Comput. Syst.
Sci. 78, 164–178 (2012)

7. Chen, Z.-Z.,Wang, L.: Fast exact algorithms for the closest string and substring problems with applica-
tion to the planted (�, d)-motif model. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1400–1410
(2011)

8. Davila, J., Balla, S., Rajasekaran, S.: Space and time efficient algorithms for planted motif search. In:
Proceedings of the International Conference on Computational Science, pp. 822–829 (2006)

9. Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Genetic design of drugs without side-effects. SIAM J.
Comput. 32(4), 1073–1090 (2003)

10. Dopazo, J., Rodríguez, A., Sáiz, J.C., Sobrino, F.: Design of primers for PCR amplification of highly
variable genomes. CABIOS 9, 123–125 (1993)

11. Evans, P.A., Smith, A.D.: Complexity of approximating closest substring problems. In Proceedings of
the 14th International Symposium on Foundations of Complexity Theory, pp. 210–221 (2003)

12. Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of motif search prob-
lems. Combinatorica 26(2), 141–167 (2006)

13. Feng, Q., Wang, J., Li, S., Chen, J.: Random methods for parameterized problems. In: Proceedings of
the 19th International Computing and Combinatorics Conference (COCOON), pp. 89–100 (2013)

14. Frances, M., Litman, A.: On covering problems of codes. Theor. Comput. Sci. 30, 113–119 (1997)

123

484 Algorithmica (2016) 74:466–484

15. Gramm, J., Guo, J., Niedermeier, R.: On exact and approximation algorithms for distinguishing sub-
string selection. In: Proceedings of the 14th International Symposium on Foundations of Complexity
Theory, pp. 159–209 (2003)

16. Gramm, J., Hüffner, F., Niedermeier, R.: Closest strings, primer design, and motif search. In: Florea,
L. et al. (eds.) Currents in Computational Molecular Biology. Poster Abstracts of RECOMB 2002, pp.
74–75

17. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related
problems. Algorithmica 37, 25–42 (2003)

18. Hufsky, F., Kuchenbecker, L., Jahn, K., Stoye, J., Böcker, S.: Swiftly computing center strings. In:
Proceedings of the 10th International Workshop on Algorithms in Bioinformatics, pp. 325–336 (2010)

19. Jiao, Y., Xu, J., Li, M.: On the k-closest substring and k-consensus pattern problems. In: Proceedings
of the 15th Annual Symposium on Combinatorial Pattern Matching, pp. 130–144 (2004)

20. Lanctot, K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string search problems. Inf. Comput.
185, 41–55 (2003)

21. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. ACM 49(2), 157–171 (2002)
22. Lucas, K., Busch,M.,Mösinger, S., Thompson, J.A.: An improvedmicrocomputer program for finding

gene- or gene family-specific oligonucleotides suitable as primers for polymerase chain reactions or
as probes. CABIOS 7, 525–529 (1991)

23. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems. SIAM J. Comput.
39(4), 1432–1443 (2010)

24. Marx, D.: Closest substring problemswith small distances. SIAM J. Comput. 38(4), 1382–1410 (2008)
25. Marx, D.: Randomized techniques for parameterized algorithms. In: Proceedings of the 7th Interna-

tional Symposium on Parameterized and Exact Computation (IPEC), p. 2 (2012)
26. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset.

In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), pp. 469–478
(2011)

27. Mauch, H., Melzer, M.J., Hu, J.S.: Genetic algorithm approach for the closest string problem. In:
Proceedings of the 2nd IEEEComputer Society Bioinformatics Conference (CSB), pp. 560–561 (2003)

28. Meneses,C.N., Lu,Z.,Oliveira,C.A.S., Pardalos, P.M.:Optimal solutions for the closest-string problem
via integer programming. INFORMS J. Comput. 16, 419–429 (2004)

29. Nicolas, F., Rivals, E.: Complexities of the centre and median string problems. In: Proceedings of the
14th Annual Symposium on Combinatorial Pattern Matching, pp. 315–327 (2003)

30. Proutski, V., Holme, E.C.: Primer master: a new program for the design and analysis of PCR primers.
CABIOS 12, 253–255 (1996)

31. Stojanovic, N., Berman, P., Gumucio, D., Hardison, R., Miller, W.: A linear-time algorithm for the
1-mismatch problem. In: Proceedings of the 5th International Workshop on Algorithms and Data
Structures, pp. 126–135 (1997)

32. Wang, L., Dong, L.: Randomized algorithms for motif detection. J. Bioinform. Comput. Biol. 3(5),
1039–1052 (2005)

33. Wang, L., Zhu, B.: Efficient algorithms for the closest string and distinguishing string selection prob-
lems. In: Proceedings of the 3rd International Frontiers ofAlgorithmicsWorkshop, pp. 261–270 (2009)

34. Wang, Y., Chen, W., Li, X., Cheng, B.: Degenerated primer design to amplify the heavy chain variable
region from immunoglobulin cDNA. BMC Bioinform. 7(Suppl. 4), S9 (2006)

35. Zhao, R., Zhang, N.: A more efficient closest string algorithm. In: Proceedings of the 2nd International
Conference on Bioinformatics and Computational Biology (2010)

123

	Randomized Fixed-Parameter Algorithms for the Closest String Problem
	Abstract
	1 Introduction
	2 Notations
	3 Randomized Algorithm for Binary Alphabets
	4 Randomized Algorithm for General Alphabets
	5 An bigO(nL+n sqrt d cdot (2.5 sigma) d) Time Algorithm
	6 More Efficient Algorithm for Large Alphabets
	7 More Efficient Algorithm for Nonbinary Alphabets
	Acknowledgments
	References

