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Abstract The parameterized complexity of a problem is generally considered “set-
tled” once it has been shown to be fixed-parameter tractable or to be complete for a
class in a parameterized hierarchy such as the weft hierarchy. Several natural para-
meterized problems have, however, resisted such a classification. In the present paper
we argue that, in some cases, this is due to the fact that the parameterized complexity
of these problems can be better understood in terms of their parameterized space or
parameterized circuit complexity. This includes well-studied, natural problems like
the feedback vertex set problem, the associative generability problem, or the longest
common subsequence problem. We show that these problems lie in and may even be
complete for different parameterized space classes, leading to new insights into the
problems’ complexity. The classes we study are defined in terms of different forms of
bounded nondeterminism and simultaneous time–space bounds.
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1 Introduction

Parameterization has become a powerful paradigm in complexity theory, both in theory
and practice. Instead of just considering the runtime of an algorithm as a function of the
input’s length, researchers now routinely analyse runtimes as multivariate functions
depending on a number of different input parameters, the length being just one of
them. While in classical complexity theory instead of “runtime” many other resource
bounds have been studied in great detail, in the parameterized world the focus has
lain almost entirely on time complexity. Two notable exceptions are the early work
of Cai et al. [5], where it is shown that the parameterized space complexity of the
vertex cover problem, the planar dominating set problem, and some other problems
is surprisingly low, and the more recent work of Guillemot [15], where the longest
common subsequence problem is investigated.

One reason why parameterized space complexity has received limited attention
is the fact that the problems commonly studied in parameterized complexity do not
appear to fit into the framework of parameterized space classes that has been estab-
lished in analogy to parameterized time classes [9,13]. On the one hand, only more
or less artificial problems have been shown to be complete for classes like para-L and
para-NL, the logarithmic space analogues of FPT, as well as for XL and XNL, the
logarithmic space analogues of XP. On the other hand, Guillemot [15] has shown com-
pleteness of a very natural parameterized problem (the longest common subsequence
problem)—but for a class defined somewhat artificially as the reduction closure of a
technical problem.

The aim of the present paper is to demonstrate that “natural” parameterized space
classes can help in understanding the complexity of “natural” parameterized problems.
We introduce two kinds of classes and prove completeness of different commonly
studied problems for them. The first kind of parameterized classes we introduce are
defined using different amounts of bounded nondeterminism. The second set of classes
are defined in terms of simultaneous restrictions on the space and time resources of
the machines. We stress that the newly introduced classes are arguably even “more
natural” than standard classes like W[2] insofar as our classes are defined in terms
of simple machine models as opposed to being defined as the reduction closures of
technical problems.

1.1 Our Contributions Regarding Classes of Bounded Nondeterminism

Bounded nondeterminism plays a key role in the definition of the weft hierarchy: the
well-known class W[P] can be defined as “FPT plus f (κ(x)) · log |x | nondeterministic
choices” where x is the input, κ(x) is its parameter, and f is some function. One of
our key observations in this paper will be that if we replace “FPT” in this definition by
parameterized space classes, we get “natural space-analogues of W[P]” like paraWL
or paraWNL (rigorous definitions are given in Sect. 3).

Our claim, that parameterized space classes defined using bounded nondeterminism
are the natural analogues of the class W[P], will be substantiated in two ways. First,
we show that a number of natural parameterized problems lie in these classes and
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some are even complete for them. For instance, the associative generability problem
parameterized by the size of the generating set is complete for the class paraWNL
(while the same problem, without the restriction to “associative” operators, is known to
be complete for W[P]). Second, we show that the newly introduced classes do not only
“happen” to be useful in classifying the complexity of previously studied problems;
rather, there is a deeper connection. We introduce a general “union operation” that
turns any language into a parameterized problem in such a way that (under certain
conditions) completeness of the language for some complexity class C carries over
to completeness of the parameterized problem for a class “paraWC .” This sheds a
new light on the just-mentioned results on the (associative) generability problem: It is
known that the decision versions of the associative and non-associative generability
problems are complete for NL and P, respectively. Our theorems on the union operation
allow us to “transfer” these classical completeness results to the parameterized world
(some extra proof effort is still needed, though). As another example of the broad
applicability of the method, we use it to show that the weighted satisfiability problem
is complete for the class paraWNC1. From this, it follows that W[sat] �= W[P] implies
NC1 �= P.

1.2 Our Contributions Regarding Time–Space Classes

In classical complexity theory it makes little sense to study complexity classes like
“polynomial time, but using only logarithmic space” since it is well-known that L ⊆ P
holds, so any computation using logarithmic space is automatically polynomially time-
bounded. Indeed, we even know that L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE
holds. In contrast, in the parameterized world new classes arise when we restrict time
and space simultaneously: We introduce classes of problems solvable by machines
that run in fixed-parameter time and need only slice-wise logarithmic space (think
of this class as “FPT, but using only little, namely XL, space”). We will show that
different problems are complete for the arising deterministic and nondeterministic
classes, including the longest common subsequence problem parameterized by the
number of strings.

We also show that the undirected feedback vertex set problem lies in the determin-
istic version of this class (so feedback vertex sets can be found simultaneously quickly
and with little space) while the directed feedback vertex set does not, unless L = NL.
Observe that this is the first example of a (fairly natural) subclass of FPT that includes
the undirected version of the feedback vertex set problem, while it (presumably) does
not contain the directed version. We offer this as a partial explanation why it has been
so much harder to prove that the directed feedback vertex set lies in FPT: Unless
L = NL, the directed version is a provably harder problem in FPT than the undirected
version.

1.3 Related Work

Early work on parameterized space classes is due to Cai et al. [5] who introduced
the classes para-L and para-NL, albeit under different names, and showed that several
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important problems in FPT lie in these classes: the parameterized vertex cover problem
lies in para-L and the parameterized k-leaf spanning tree problem lies in para-NL.
Later, Flum and Grohe [13] showed that the parameterized model checking problem of
first-order formulas on graphs of bounded degree lies in para-L. In particular, standard
parameterized graph problems belong to para-L when we restrict attention to bounded-
degree graphs. Recently, Guillemot [15] showed that the longest common subsequence
problem (lcs) is equivalent under fpt-reductions to the short halting problem for
ntms, where the time and space bounds are part of the input and the space bound is
the parameter. Our results on the longest common subsequence problem differ from
Guillemot’s insofar as we use weaker reductions (which will be crucial in the context
of this paper since the classes we study are presumably closed only under the weaker
reductions) and prove completeness for a class defined using a machine model rather
than for a class defined as a reduction closure. Nevertheless, we gladly acknowledge
that our proof is inspired by Guillemot’s work.

1.4 Organisation of This Paper

Since this paper intends to paint a systematic picture of the world of parameterized
space classes, in Sect. 2 we first revisit standard terminology from parameterized com-
plexity theory (like “classes with precomputation” or “slicewise classes” or “parame-
terized reductions”) that have been used to define parameterized space classes. We
also revisit results from the literature concerning problems and these classes. A new
aspect in this section is the idea to use the terminology to define parameterized circuit
classes like “para-NC1.” We will see in the course of the paper that these classes play
some role in the classification of parameterized problems; as a first example, in the
course of the introductory Sect. 2 we improve the result of Cai et al. [5] that the vertex
cover problem lies in para-L by showing that the problem lies even in para-TC0.

The main topics of this paper, parameterized classes defined in terms of bounded
nondeterminism and in terms of simultaneous time and space bounds, are studied in
Sects. 3 and 4, respectively. In both cases, we motivate and then define the new classes,
investigate their structural properties, and then place as many well-known problems
as possible in the classes and prove completeness whenever possible.

2 An Introduction to Parameterized Space and Parameterized Circuit Depth

Parameterized space classes have been studied in the literature [5,9,13,15] for some
time, albeit under different names and with different objectives. In the present section
we review the definitions of these classes, which include para-L, para-NL,XL, and
XNL. Of these classes, para-L and para-NL are known to be subclasses of FPT and
have been used to differentiate between the complexity of problems that are known
to be fixed-parameter tractable (and whose complexity is, thus, “indistinguishable”
when FPT is the smallest class under consideration). We take this idea a step further
by defining even smaller parameterized circuit classes like para-NC1 or para-TC0. As
we will see, these classes can be used to classify problems even more tightly than
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was previously possible. Nevertheless, the focus of this section is on establishing the
terminology framework for the rest of the paper.

2.1 Parameterized Problems

The first main idea of parameterized complexity theory is to see a computational prob-
lem no longer as a simple language Q ⊆ Σ∗, but rather as a parameterized problem
(Q, κ)where κ : Σ∗ → N is a parameterization that maps input instances to parameter
values. In the classical definition, Downey and Fellows [10] require the parameteri-
zation to be computable, while Flum and Grohe [14] require it to be computable in
polynomial time. Since we consider parameterized space and circuit classes that lie
deep within FPT, we impose even stronger restrictions: The parameterization must
be first-order computable or, equivalently, computable by logarithmic-time-uniform
unbounded fan-in constant-depth circuits [24]. We refer readers unfamiliar with first-
order computations to the textbook of Immerman [18], but remark that the details of
the definition will not be important for the present paper. What will be important, is
the observation that the parameter function κ is always first-order computable if the
parameter is given explicitly in the input, as is the case in most applications.

A typical example of a parameterized problem is the parameterized vertex cover
problem. Formally, it is a pair (Q, κ) with Q = {code(G, k) | G is a graph having a
vertex cover of size exactly k} and κ(code(G, k)) = k, but we will use the following
standard notation for defining parameterized problems:

Problem 2.1 (p-vertex-cover)

Instance: An undirected graph G = (V, E) and a natural number k.
Parameter: k.
Question: Is there a set C ⊆ V with |C | = k such that for every edge {u, v} ∈ E

we have {u, v} ∩ C �= ∅?

In order to distinguish the parameterized problem from the classical plain language
version, we prefix the problem name by “p-”. This prefix is used to indicate that the
parameter is the “natural” or “standard” parameter. Problems such as the following
admit several natural parameterizations, however:

Problem 2.2 (longest-common-subsequence (lcs))

Instance: A set S of strings over some alphabet Σ and a natural number l.
Question: Is there a string c ∈ Σ l such that c is a subsequence of all strings in S, i. e.,

from all s ∈ S we can obtain c by just removing symbols from s?

Natural parameters for this problem are the number |S| of strings, the length l, the
size |Σ | of the alphabetΣ , or combinations thereof. We will indicate which parameter-
ization is meant by adding an index to the “p-” prefix. For example, p|S|-lcs denotes
the longest common subsequence problem parameterized via the parameter |S|.
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2.2 Variants of Fixed-Parameter “Tractability”

The second main idea of parameterized complexity theory is to assume that for a given
problem most inputs will have a “small” or even “fixed” parameter value–even though
the input may be large. Thus, we may be willing to initially invest a lot of time (or some
other resource) that depends on the parameter (which will be small), but otherwise our
computations should be efficient (for instance, polynomially time-bounded). This idea
can be formalized as follows: Let C be a classical complexity class. A parameterized
problem (Q, κ) belongs to the class para-C if there are an alphabet Π , a computable
function π : N → Π∗, and a language A ⊆ Σ∗ × Π∗ with A ∈ C such that for all
x ∈ Σ∗ we have x ∈ Q ⇐⇒ (

x, π
(
κ(x)

)) ∈ A. Note that the function π , which
is called the precomputation, only depends on the parameter and not directly on the
input itself.

The most well-known class of parameterized complexity theory, the class FPT of
“fixed-parameter tractable problems” [10], is the same as para-P (and we will use
para-P in the following to denote this class in order to keep the terminology consis-
tent). By the above definition, a problem is in para-P if it can be “solved in polynomial
time when, alongside the input, the result of an arbitrarily complex precomputation
is provided that depends, however, only on the parameter.” The definition can readily
be applied to define the parameterized space classes para-L (“solvable in logarithmic
space when the result of an arbitrarily complex precomputation is also provided”)
and para-NL (as before, only for nondeterministic machines) [14]; but it also allows
us to define parameterized circuit classes just as easily: para-NC1 contains problems
“solvable using a family of logarithmic depth circuits of bounded fan-in that get the
result of an arbitrarily complex precomputation alongside the input”, para-AC0 con-
tains problems “solvable using a family of circuits of unbounded fan-in and constant
depth that get the result of an arbitrarily complex precomputation alongside the input”,
and para-TC0 is defined the same way, only now for constant depth threshold circuits.
Observe that the “para-classes” inherit their inclusion structure from the underlying
classical complexity classes. Thus, the following chain of inclusion holds:

para-AC0 ⊆ para-TC0 ⊆ para-NC1 ⊆ para-L ⊆ para-NL

⊆ para-AC1 ⊆ para-TC1 ⊆ para-NC2 ⊆ · · · ⊆ para-P ⊆ para-NP ⊆ para-PSPACE.

Figure 1 depicts an overview of the classes that we study in the present paper;
we will come back to it at different times. The just-introduced para-classes form the
“spine” of the diagram.

To get a better feeling for the classes, let us rephrase their definitions in terms of
direct “O-bounds” on the involved machines and circuits. A parameterized problem
(Q, κ) is in para-P if there is a function f : N → N such that the question x ∈ Q can be
decided within time f (κ(x))·|x |O(1) (this is the classical definition of “fixed-parameter
tractable”, see [10,14]). By comparison, (Q, κ) is in para-L if x ∈ Q can be decided
within space f (κ(x)) + O(log |x |); and for para-PSPACE the space requirement is
f (κ(x)) · |x |O(1). A problem (Q, κ) is in para-NC1 if x ∈ Q can be decided by
bounded-fan-in circuits of depth f (κ(x))+ O(log |x |) and size f (κ(x)) · |x |O(1); and
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Fig. 1 The different classes studied in the present paper together with the most important completeness
and membership results obtained. Bounded nondeterminism classes are shown in red, time–space classes in
blue. Some of the X-classes are shown both left and right to keep the diagram readable. Solid lines represent
class inclusions, dashed lines connect problems to classes. An arrow from a problem X to a class D with
a reduction type at the tip means that X is hard for the class D under this reduction (Color figure online)
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it is in para-TC0 if x ∈ Q can be decided by threshold circuits of size f (κ(x)) · |x |O(1)

and constant depth (the depth may neither depend on the input length nor on the
parameter).

The most well-studied problem in parameterized complexity theory is undoubtedly
the vertex cover problem, one of the first problems that has been identified to lie in
para-P. Cai et al. [5] have later observed that the problem lies in an even smaller
class, namely in para-L. A careful look at their proof reveals that the problem even
lies in the (potentially) smaller class para-TC0 as we will prove in Theorem 2.4 in
a moment. Cai et al. also claim that a number of other problems, such as the planar
dominating set problem, lie in para-L: Their argument is that the standard search
tree technique can easily be implemented in logarithmic space, showing that this and
many other problems can be placed in para-L. We do not improve these results that
rely on the search tree technique; indeed, we are not convinced that the method yields
para-L-algorithms as claimed and propose that the complexity of problems like the
planar dominating set problem should be reinvestigated. In their proof of p-vertex-
cover ∈ para-L Cai et al. do not employ the search tree technique. Rather, they use
kernelizations, a concept which we first review and then adapt in order to prove the
stronger result p-vertex-cover ∈ para-TC0.

2.3 Kernelization

A third main ingredient of parameterized complexity theory is the idea of kernelization.
A kernelization K of a parameterized problem (Q, κ) is a function that maps every
problem instance x to a kernel K (x)whose size depends only on κ(x) (and not directly
on x) such that x ∈ Q if, and only if, K (x) ∈ Q. The kernel can be regarded as a
much smaller “replacement” of the original problem that retains all of its computational
complexity.

The importance of the notion of kernelization lies in the well-known fact that a
(decidable) problem (Q, κ) lies in para-P if, and only if, it has a kernelization K that
is computable in polynomial time: First, suppose (Q, κ) has a kernelization K . On an
input x , first compute the kernel K (x) and, then, decide K (x) ∈ Q using “brute force.”
Although this last step may take a lot of time, the time is still bounded in terms of κ(x)
since the size of K (x) is. Second, suppose (Q, κ) ∈ para-P via some machine needing
time f (κ(x)) · |x |c. On an input x , a kernelization K first tests whether f (κ(x)) < |x |
holds. If so, it solves the question x ∈ Q directly in time |x |c+1 and outputs a constant-
size instance K (x) that is in Q if, and only if, x is. Otherwise, when f (κ(x)) ≥ |x |,
the kernelization can simply map x to itself.

It is an easy, but very useful observation that the above arguments all work when
“polynomial time” is replaced by “logarithmic space” or by some circuit class. We
spell this out in the following lemma:

Lemma 2.3 Let (Q, κ) be a decidable parameterized problem. Then

1. (Q, κ) ∈ Para-L if, and only if, (Q, κ) has a kernelization K computable in
logarithmic space; and

2. (Q, κ) ∈ Para-ACi if, and only if, (Q, κ) has a kernelization K computable by a
family of ACi -circuits. The same holds for TCi - and NCi -circuits.
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We are now ready to improve on the result of Cai et al. [5] that the vertex cover
problem lies in para-L. The key observation of Cai et al. was that the well-known Buss
kernelization can be computed in logarithmic space. We argue that the kernelization
can even be done using a TC0-circuit family.

Theorem 2.4 p-vertex-cover ∈ para-TC0.

Proof The Buss kernelization is based on three reduction rules: Suppose an undirected
graph G is given and we wish to determine whether G contains a vertex cover of size k.
First, if G contains a vertex of degree at least k + 1, then this vertex must be present
in every vertex cover of size k and, thus, we can remove the vertex and ask whether
the remaining graph has a vertex cover of size k −1. Second, if G contains an isolated
vertex, we can remove this vertex. Third, when the first two rules can no longer be
applied, if the graph has more than k(k + 1) vertices, it cannot have a vertex cover
of size k since a set of k vertices can cover at most k(k + 1) edges when each vertex
has maximum degree k. Observe that the first reduction rule can actually be applied
in parallel to all vertices, that is, we can remove all vertices of degree k + 1 or more
at the same time from the graph. Similarly, we can also remove all isolated vertices in
parallel.

Cai et al. have observed that finding out whether a vertex has degree larger than
k + 1 or is isolated can be done in logarithmic space and, thus, we can compute the
reduced graph resulting from applying the first two reduction rules in logarithmic
space. Since we can also test in logarithmic space whether the reduced graph has
size at most k(k + 1), the whole kernelization is computable in logarithmic space. To
prove the stronger claim of the theorem, just observe that constant-depth threshold
circuits where the thresholds in the gates are at most k(k + 1) actually suffice to (a)
determine whether a vertex has degree larger than k + 1 or is isolated, to (b) compute
the reduced graph resulting from first removing all high-degree vertices and then all
isolated vertices, and (c) to test whether the reduced graph has size at most k(k + 1).
Thus, p-vertex-cover has a TC0-kernelization. �

2.4 Slicewise Parameterized Classes

The core idea behind the para-classes was to capture problems that can be solved by
algorithms whose resource consumption is arbitrarily bounded in the parameter, but
otherwise have a “fixed degree of efficiency” with respect to the overall input size. Less
“ambitious” classes result when we only require that the “degree of efficiency” with
respect to the overall input size is defined by the parameter. This can be formalized
in the following way: A parameterized problem (Q, κ) is in the X-class XC if for
every number w ∈ N the slice Qw := { x | x ∈ Q and κ(x) = w} lies in C . It is
immediate from the definition that para-C ⊆ XC holds. For the underlying class P,
a parameterized problem (Q, κ) is in XP if it is solvable in time O

(|x | f (κ(x))
)
. For

logarithmic space we have that a problem is in XL or XNL if it can be solved in
deterministic or nondeterministic space f (κ(x)) · O(log |x |), respectively. The class
XP is in wide use in parameterized complexity theory [10,14]; the logarithmic space
classes XL and XNL have been studied before [9,13].

123



670 Algorithmica (2015) 71:661–701

When one tries to determine the smallest para-class and the smallest X-class that
contain a given problem, quite different complexities may result. For instance, the
problem p-clique, where we ask whether a graph has a clique of size k and k is the
parameter, is not believed to lie in para-P (it is W[1]-complete), but clearly lies in
XAC0: For any fixed k we can easily build a circuit family that contains

(|V |
k

)
constant-

depth subcircuits, each of which tests whether a certain selection of k vertices from
the vertex set V forms a clique. A similar argument shows that p-vertex- cover
∈ XAC0 holds.

2.5 Parameterized Reductions

Reductions are the core tool of complexity theory for comparing the complexity of
problems. They are, of course, also available in the context of parameterized com-
plexity theory: A parameterized reduction from a parameterized problem (Q1, κ1) to
(Q2, κ2) is a mapping r : Σ∗

1 → Σ∗
2 such that

1. for all x ∈ Σ∗
1 we have x ∈ Q1 if, and only if, r(x) ∈ Q2 and

2. κ2
(
r(x)

) ≤ g
(
κ1(x)

)
for some computable function g.

Naturally, we still need to impose some restrictions on the amount of resources
that may be used to compute r . For fixed parameter tractable reductions (fpt-reduc-
tions)—the reductions commonly used in parameterized complexity theory—r must
be computable in time f (κ1(x)) · |x |O(1), that is, by a “para-P-machine.” Since we
study classes deep inside para-P, we need two weaker kinds of reductions: Ideally,
we would always like to use parameterized first-order reductions (pfo-reductions),
where r must be computable by a logarithmic-time-uniform para-AC0-circuit family.
(Again, we refer the interested reader to [18] for the relationship between first-order
queries and constant-depth circuits, which also explains the name “parameterized first-
order reductions.”) Sometimes, however, these reductions will be too weak, such as
in Theorem 3.14. There, we use parameterized logspace reductions (pl-reductions)
where we require r to be computable in space f (κ(x)) + O(log |x |), that is, by a
para-L-machine.

Using standard arguments one can show that all classes in this paper are closed with
respect to pfo-reductions, all classes above para-L are closed under pl-reductions, and
all classes above para-P are closed under fpt-reductions.

Concerning completeness for the classes we have introduced up to now, Flum
and Grohe [13] have observed that completeness for classes like para-P, para-NL,
and para-L is “uninteresting” in the sense that complete problems for the underlying
classical complexity classes are always complete for the parameterized versions when
parameterized trivially. For instance, the standard distance problem for directed graphs
is pfo-complete for para-NL with the trivial parameterization κ(x) = 1 for all x . (The
distance problem becomes much more interesting when parameterized by its natural
parameter, namely the distance. We address this problem is Theorem 3.14.) Concerning
the X-classes, only few, typically fairly artificial problems have been identified to
be complete for XL and XNL. As a by-product of our study of time–space classes
in Sect. 4, we will identify a number of natural new such problems, including the
acceptance problem for finite multihead automata, parameterized by the number of
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heads, and the acceptance problem for cellular automata, parameterized by the number
of cells.

3 Bounded Nondeterminism

The interplay of nondeterminism and parameterized space seems simple at first sight:
NL is closed under complement and NPSPACE is even equal to PSPACE, so only
XNL and para-NL appear to be of interest. A closer look reveals, however, that useful
and interesting new classes arise when we bound the amount of nondeterminism used
by machines in dependence on the parameter. For the definition of these classes it is
helpful to view nondeterministic machines as deterministic machines augmented by
“choice tapes” or “tapes filled with nondeterministic bits.” These are extra tapes for
a deterministic Turing machine, and an input word is accepted if there is at least one
bitstring that we can place on this extra tape at the beginning of the computation such
that the Turing machine accepts. It is well-known that NP and NL can be defined in this
way using deterministic polynomial-time or logarithmic-space machines, respectively,
that have one-way access to a choice tape. (For NP it makes no difference whether
we have one- or two-way access, but logarithmic-space machines with access to a
two-way choice tape can accept all of PSPACE since logarithmic space suffices to
verify that the choice tape contains a valid computation consisting of a sequence of
configurations, each of which has polynomial size.)

Classes of bounded nondeterminism arise when we restrict the length of the bit-
strings on the choice tape. For instance, the classes βh for h ≥ 1, see [21] and also [2]
for variants, are defined in the same way as NP above, only the length of the bitstring
on the choice tape may be at most O(logh n). Classes of parameterized bounded non-
determinism arise when we restrict the length of the bitstring on the choice tape in
dependence not only on the input length, but also on the parameter. Furthermore, in
the context of bounded-space computations, it also makes a difference whether we
have one-way or two-way access to the choice tapes.

In the following, we will first define the arising classes rigorously and then prove
the crucial Lemma 3.5 that “links” the complexity of classical problems to the parame-
terized complexity of what we call the “union versions” of the classical problems. This
lemma will be the cornerstone of our proofs that a number of fairly natural problems
are complete for different parameterized classes of bounded nondeterminism—such
as the associative generability problem. One problem for which the lemma does not
help is the distance problem in graphs parameterized by the distance; we do, however,
identify a fairly natural class for which this problem is complete.

3.1 Classes and Structural Results

Definition 3.1 Let C be a complexity class defined in terms of a deterministic Turing
machine model (like L or P). We define para∃↔C as the class of parameterized prob-
lems (Q, κ) for which there exists a C-machine M , an alphabetΠ , and a computable
function π : N → Π∗ such that: For every x ∈ Σ∗ we have x ∈ Q if, and only if,
there exists a bitstring b ∈ {0, 1}∗ such that M accepts with (x, π(κ(x))) on its input
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tape and b on the two-way choice tape. We define para∃→C similarly, only access to
the choice tape is now one-way. For the classes para∃↔

f logC and para∃→
f logC the length

of b may be at most f (κ(x)) · O(log |x |) for some computable function f .

Observe that, as argued earlier, para∃↔P = para∃→P = para-NP and para∃→L =
para-NL. Also observe that para∃↔

f logP = para∃→
f logP = W[P] by one of the many

definitions of W[P], see also [14].
The above definition can easily be extended to the case where a universal quantifier

is used instead of an existential one and where sequences of quantifiers are used. This
is interpreted in the usual way as having a choice tape for each quantifier and the
different “exists … for all”-conditions must be met in the order the quantifiers appear.
For instance, for problems in para∃↔

f log∃→L we have x ∈ Q if, and only if, there
exists a bitstring of length f (κ(x)) · O(log |x |) for the first, two-way-readable choice
tape for which an NL-machine accepts. The classes para-NL[ f log], para-L-cert, and
para-NL-cert introduced in an ad hoc manner by us in [11] can now be represented
systematically: They are para∃→

f logL, para∃↔
f logL, and para∃↔

f log∃→L, respectively.
In order to make the notation more useful in practice, instead of “∃→” let us write

“N” and instead of “∃→
f log” we write “β” as is customary. As a new notation, instead

of “∃↔
f log” and “∀↔

f log” we write “W” and “W∀,” respectively. The three classes of [11]
now become paraβL, paraWL, and paraWNL. Also observe that W[P] = paraWP
holds.

To get a better intuition on the W-operator, note that it provides machines with
“ f (κ(x)) · O(log |x |) bits of nondeterministic information.” Equivalently, one could
require that we are provided with “ f (κ(x)) many nondeterministically chosen posi-
tions in the input, given in the form of a bit vector of the same length as the input with
exactly f (κ(x))many 1’s.” This allows us to also apply the W-operator to classes like
NC1 that are not defined in terms of Turing machines. An example of a parameterized
problem in paraWNC1 is p-weighted-sat: For a given propositional formula φ and
parameter k, the k nondeterministically chosen positions define the weight-k satisfy-
ing assignment of the variables, and we only need NC1-circuits to evaluate φ on such
an assignment, see [3]. We will have a more detailed look on this problem later.

The right half of Fig. 1 shows how the classes of bounded nondeterminism are
related to the X-classes and para-classes introduced in the previous section.

3.1.1 Union Problems

Before we prove completeness of different natural problems for the just-introduced
classes, we first present a new technical notion, the “union operation,” and prove a
technical lemma that will greatly simplify our later completeness proofs. The union
operation “turns” P-, NL-, L-, and NC1-complete problems into paraWP-, paraWNL-,
paraWL-, and paraWNL-complete problems, respectively.

For numerous problems studied in complexity theory the input consists of a string
in which some positions can be “selected” and the objective is to select a “good”
subset of these positions. For instance, for the satisfiability problem we must select
some variables such that setting them to true makes a formula true; for the circuit
satisfiability problem we must select some input gates such that setting them to 1
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makes the circuit evaluate to 1; and for the exact cover problem we must select some
sets from a family of sets such that they form a partition of the union of the family.
The union operation will provide us with a terminology for formulating all of these
problems in a uniform way and to link them to the W-operator.

Let Σ be an alphabet that contains none of the three special symbols ?, 0, and 1.
We call a word t ∈ (Σ ∪ {?})∗ a template. We call a word s ∈ (Σ ∪ {0, 1})∗ an
instantiation of t if s is obtained from t by replacing exactly the ?-symbols arbitrarily
by 0- or 1-symbols. Given instantiations s1, . . . , sk of the same template t , their union
is the instantiation of t that has a 1 exactly at those positions i where at least one s j

has a 1 at position i (the union is the “bitwise or” of the instantiated positions and is
otherwise equal to the template).

Given a language A ⊆ (Σ ∪ {0, 1})∗, we define three different kinds of union
problems for A. As we will see in a moment, the first kind is linked to the W-operator
while the last kind links several well-known languages from classical complexity
theory to well-known parameterized problems. We will also see that the three kinds
of union problems for a language A often all have the same complexity.

Problem 3.2 (p-family-union-A for a language A ⊆ (Σ ∪ {0, 1})∗)

Instance: A template t ∈ (Σ ∪ {?})∗ and a family (S1, . . . , Sk) of k sets of instan-
tiations of t .

Parameter: k.
Question: Are there si ∈ Si for i ∈ {1, . . . , k} such that their union lies in A?

Problem 3.3 (p-subset-union-A for a language A ⊆ (Σ ∪ {0, 1})∗)

Instance: A template t ∈ (Σ ∪{?})∗, a set S of instantiations of t , and a number k.
Parameter: k.
Question: Is there a subset R ⊆ S of size |R| = k such that the union of R’s

elements lies in A?

Problem 3.4 (p-weighted-union-A for a language A ⊆ (Σ ∪ {0, 1})∗)

Instance: A template t ∈ (Σ ∪ {?})∗ and a number k.
Parameter: k.
Question: Is there an instantiation s ∈ A of t containing exactly k many 1-symbols?

To get an intuition for these definitions, think of instantiations as words written on
transparencies with 0 rendered as an empty box and 1 as a checked box. Then for the
family union problem we are given k heaps of transparencies and the task is to pick
one transparency from each heap such that “stacking them on top of each other” and
“looking at the result” yields an element of A. For the subset union problem, we are
only given one stack and must pick k elements from it. We call the weighted union
problem a “union” problem partly in order to avoid a clash with existing terminology
and partly because the weighted union problem is the same as the subset union problem
for the special set S containing all instantiations of the template of weight 1.

Concerning the promised link between well-known languages and parameterized
problems, let A be the circuit-value-problem (cvp) where we use Σ to encode
a circuit and use 0’s and 1’s solely to describe an assignment to the input gates.
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Then the input for p-weighted-union-cvp is a circuit with ?-symbols instead of
a concrete assignment, together with a number k, and the question is whether we
can replace exactly k of the ?-symbols by 1’s (and the others by 0’s) so that the
resulting instantiation lies in cvp. Clearly, p-weighted-union-cvp is exactly the
W[P]-complete problem p-weighted-circuit-sat, which asks whether there is a
satisfying assignment for a given circuit that sets exactly k input gates to 1. For a similar
example, let A be the propositional formula evaluation problem bf, where we are given
a propositional formula φ with n variables, encoded sensibly over some alphabet Σ ,
followed by a bitstring of length n that encodes an assignment of truth values to the
variables. The problem p-weighted-union-bf is then the W[sat]-complete problem
p-weighted-sat.

Concerning the promised link between union problems and the W-operator, recall
that the operator provides machines with f (κ(x)) nondeterministic indices as part of
the input. In particular, a W-machine can nondeterministically mark f (κ(x)) different
“parts” of the input—like one element from each of f (κ(x)) many sets in a family,
like the elements of a size- f (κ(x)) subset of some set, or like f (κ(x))many positions
in a template. With this observation it is not difficult to see that if A ∈ C , then all union
versions of A lie in paraWC . A much deeper observation is that the union versions
are also often complete for these classes. In the next theorem, which states this claim
precisely, the following definition of a format-respecting first-order projection p from
a language A ⊆ Γ ∗ to a language B ⊆ (Σ ∪ {0, 1})∗ is used: First, p must be a first-
order reduction from A to B, that is, x ∈ A ⇐⇒ p(x) ∈ B and p is computable
using a first-order query or, equivalently, a logarithmic-time-uniform constant-depth
circuit family. Second, p must be a projection, meaning that each symbol of p(x)
depends on at most one symbol of x . Third, p must be format-respecting, meaning
that for each word length n there must be a single template tn ∈ (Σ ∪ {?})∗ such
for all x ∈ Γ n the word p(x) is an instantiation of tn . In other words, the symbols
of Σ are used for the fixed parts of the target string that do not change for input
strings x of the same length, while in p(x) the positions with the symbol ? vary
with x .

Lemma 3.5 Let C ∈ {L,NL,P} or C ∈ {ACi ,TCi ,NCi+1} for some i ≥ 0 and let
A ⊆ (Σ ∪ {0, 1})∗ be complete for C via format-respecting first-order projections.
Then the problem p-family-union-A is pfo-complete for paraWC.

Proof For membership, on input of a template t and a family (S1, . . . , Sk) of sets of
instantiations of t , a paraWC-machine interprets its nondeterministic bits as k indices,
one for each Si . Let si ∈ Si be the elements selected in this way. We run a simulation of
the C-machine that decides A on the union s of s1, . . . , sk . For logspace machines, we
may not have enough space to write s on a tape, so whenever the machine would like
to know the j th bit of u, we simply (re)compute the bitwise or of the j th positions of
the si . For C-machines, recall that instead of nondeterministic bits, we get a bitstring
with exactly k bits set to 1 alongside the input. We interpret such a string to select a
string si ∈ Si if a 1-bit is exactly at the beginning of si in the input (and we can easily
ensure, even using an AC0-circuit, that only one si is selected for each Si ).

For hardness, consider any problem (Q, κ) ∈ paraWC with Q ⊆ Λ∗. By definition,
this means the following: There are a language X ⊆ Γ ∗ in C and computable functions
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π : N → Π∗ and f : N → N such that for all x ∈ Λ∗ we have x ∈ Q if, and only
if, there is a string b ∈ {0, 1} fx �log2 n� with (x, π(κ(x)), b) ∈ X . (To simplify the
notation, we set n = |x | and fx = f (κ(x)).) Furthermore, since A is complete for C
via format-respecting first-order projections, we can reduce X to A via some p.

For the pfo-reduction of (Q, κ) to p-family-union-A, let an input x ∈ Λ∗ be
given. We wish to determine whether there is a bitstring b ∈ {0, 1} fx �log2 n� with
(x, π(κ(x)), b) ∈ X or, equivalently, with p(x, π(κ(x)), b) ∈ A. Since p is format-
respecting, for all possible b the string p(x, π(κ(x)), b)will have the special 0-symbols
and 1-symbols at the same positions and all other positions, which will be elements
of Σ , will not vary with b. Let t be the single template underlying the different
p(x, π(κ(x)), b).

We now define sets S1, …, S fx , where each Si is a set of instantiations of t . Our
objective is to set up the Si in such a way that (a) when we pick one si from each Si ,
their union is p(x, π(κ(x)), b) for some b, and (b) every p(x, π(κ(x)), b) is the
union of appropriately chosen si ∈ Si . To achieve this, let us think of the strings
b ∈ {0, 1} fx �log2 n� as sequences of fx symbols from the alphabet Δ = {0, 1}�log2 n�,
whose elements we call blocks. For i ∈ {1, . . . , fx } let Si = {mδ

i | δ ∈ Δ} where the
mδ

i are the following instantiations of t (we only need to explain how the ?-symbols get
replaced): Consider a ?-symbol at position r in t , which we must replace by c ∈ {0, 1}.
The r th position of t will depend on the symbol at (at most) one specific position r ′
in (x, π(κ(x)), b) and this position is independent of b. If r ′ does not lie in the “b-
part,” let c be whatever the reduction outputs based on the symbol at r ′ (this will be
independent of b). Next, if r ′ does lie in one of the blocks of b, but not in the i th block,
let c = 0. Otherwise, let c be whatever symbol (0 or 1) the reduction outputs when
the i th block of b is δ. This concludes the construction.

As an example for the construction, suppose the reduction p simply doubles its
input, but replaces 0’s by 1’s and vice versa in the second copy. Let π just return the
empty string and let Σ = {u, v, w}. Consider, say, x = uvwu and assume fx = 2.
We then have Δ = {00, 01, 10, 11} and a string b = b1b2b3b4 is also a string δ1δ2 of
two blocks δ1, δ2 ∈ Δ. The reduction would produce two sets S1 and S2. For S1, we
have a look at what p does on input of a string like (x, π(κ(x)), b). For simplicity let
us ignore parentheses and commas, so this string would just be uvwub1b2b3b4. The
reduction maps this to uvwub1b2b3b4uvwub̄1b̄2b̄3b̄4 with b̄i = 1 − bi . In this string,
the fifth, sixth, thirteenth, and fourteenth bits actually depend on the first block of
uvwub1b2b3b4, so the reduction would produce the following set S1 and, in a similar
fashion, S2:

S1 = {uvwu0000uvwu1100, uvwu0100uvwu1000,

uvwu1000uvwu0100, uvwu1100uvwu0000},
S2 = {uvwu0000uvwu0011, uvwu0001uvwu0010,

uvwu0010uvwu0001, uvwu0011uvwu0000}.

The crucial observation in this example is that we get every string p(x, π(κ(x)), b)
for the different possible values of b by taking the union of one string from S1 and one
string from S2.
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To see that the reduction is correct in general, consider the union of the elements

of any set {mδ1
1 , . . . ,m

δ fx
fx

} where the mδi
i are chosen from the different Si . By con-

struction, their union will be exactly the image of (x, π(κ(x)), δ1 . . . δ fx ) under p. In
particular, x ∈ Q holds if, and only if, we can choose one instantiation from each Si

such that their union is in A. �
The above lemma is the main reason why we propose to use “W” to denote the quan-

tifier “∃↔
f log”: There is a pattern that completeness of classical problems for L,NL, or P

tends to carry over to completeness of closely related problems for paraWL, paraWNL,
or paraWP—and the lemma provides precise conditions under which this always hap-
pens. We remark, however, that Guillemot, in a paper [15] on parameterized time
complexity, uses “WNL” to denote a class different from our class paraWNL. Guille-
mot chose the name because his definition of the class is derived from one possible
definition of W[1] by replacing a time by a space constraint. Nevertheless, we believe
that our definition of a “W-operator” yields the “right analogue” of W[P]: First, there
is the above lemma and, second, in Sect. 4.2.2 we show that the class WNL defined
and studied by Guillemot is exactly the fpt-reduction closure of the time–space class
N[ f poly, f log].

3.2 Natural Problems Complete for the W-Classes

3.2.1 Parameterized Satisfiability Problems

The circuit value problem cvp is well-known to be complete for P and completeness can
easily by achieved via format-respecting first-order projections. Thus, by Lemma 3.5,
we get that p-family-union-cvp is pfo-complete for paraWP. Since one can reduce
p-family-union-cvp to p-weighted-union-cvp via essentially the same reduction
as that used in the proof of Theorem 3.6 below, we conclude that p-weighted-union-
cvp is also complete for paraWP – meaning that we can reprove the well-known fact
that p-weighted-circuit-sat is complete for W[P]using mostly structural arguments
and using very weak reductions (namely pfo-reductions).

We get an even more interesting result when we apply the lemma to bf, the propo-
sitional formula evaluation problem.

Theorem 3.6 p-weighted-union-bf is pfo-complete for paraWNC1.

Proof The language bf is complete for NC1, see [3,4], and completeness can be
achieved by format-respecting projections: Indeed, for input words of the same length,
the reduction will map them to the same formula, only the assignment to the variables
will differ (the input word is encoded solely in this assignment). Thus, by Lemma 3.5
we get that p-family-union-bf is complete for paraWNC1 under pfo-reductions.

We now show that p-family-union-bf reduces to p-subset-union-bf, which then
in turn reduces to p-weighted-union-bf. For the first reduction, let the sets S1 to Sk

be given as input. All elements si j of the Si represent assignments to the variables of
the same formula φ. Our aim is to construct a set S and a new formula φ′ = φ ∧ ψ ,
where the job of ψ is to ensure that any selection of k elements from S can only lead
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to φ′ being true if the selection corresponds to picking “exactly one element from
each Si .” In detail, for each si j we introduce a new variable vi j . The assignment s′

i j
for φ′ is the same as si j for the “old” variables and is 1 only for vi j among the new
variables (vi j “tags” si j ). As an example, suppose there are three variables x, y, and z
in φ and suppose S1 = {φ000, φ001} (meaning that one assignment sets all variables
to false and the other sets only z to true) and S2 = {φ001}. Then there would be three
additional new variables and S = {φ′000 100, φ′001 010, φ′001 001}. Now, setting
ψ = ∧k

i=1
∨|Ii |

j=1 vi j ensures that ψ will only be true for the union of k assignments
taken from S if exactly one assignment was taken from each Si .

Next, we reduce p-subset-union-bf to p-weighted-union-bf. Towards this end,
let S = {s1, . . . , sn} be given as input and let φ?m be the template underlying the si .
Our new formula φ′ has exactly n variables v1 to vn and is obtained from φ by leaving
the structure of φ intact, but substituting each occurrence of a variable x as follows:
let X ⊆ {1, . . . , n} be the set of indices i such that in si the variable x is set to 1. Then
we substitute x by

∨
i∈X vi , yielding φ′ and output the template φ′?n . As an example,

let φ = x ∧ (y → x)∧ z and let S = {φ000, φ101, φ010, φ011}. Then there would be
four variables v1 to v4 and the formula φ′ would be v2 ∧ ((v3 ∨v4) → v2)∧ (v2 ∨v4).

To see that this reduction is correct, assume that (φ?m, S, k) ∈ p-subset-union-bf
via a selection {s1, . . . , sk} ⊆ S. Then also (φ′?n, k) ∈ p-weighted-union-bf via the
instantiation where exactly the variables corresponding to s1 to sk are set to true: in φ′
the expression

∨
i∈X vi that was substituted for a variable x will be true exactly if one

of the si has set x to 1. Thus, φ′ will evaluate to 1 for the assignment in which exactly
the selected vi are true if, and only if, φ evaluates to true for the “bitwise or” of the
assignments s1, . . . , sk—which it does by assumption. For the other direction, assume
that (φ′?n, k) ∈ p-weighted-union-bf. Then, by essentially the same argument, we
obtain a subset of S whose union is an instance of bf. �

By definition, W[sat] is the fpt-reduction closure of p-weighted-sat, which is
the same as p-weighted-union-bf. Thus, by the theorem, W[sat] is also the fpt-
reduction closure of paraWNC1 – a result that may be of independent interest. In
particular, we get the following corollaries:

Corollary 3.7 NC1 = P implies W[sat] = W[P].
Corollary 3.8 paraWNC1 ⊆ para-P if, and only if, W[sat] = para-P.

Note that we do not claim W[sat] = paraWNC1 since paraWNC1 is presumably
not closed under fpt-reductions.

3.2.2 Graph Problems

In order to apply Lemma 3.5 to graph problems like reach (the directed reachability
problem) or cycle (the question whether a directed graph contains a cycle), we encode
graphs using adjacency matrices consisting of 0- and 1-symbols. Then a template is
always a string of n2 many ?-symbols for n vertex graphs. A problem like p-subset-
union-tree now asks whether we can pick exactly k graphs from a set of graphs such
that their union is a tree (like cycles, we regard trees and forests as directed graphs
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with edges pointing away from the roots; but one gets the same complexity results
for undirected trees and forests). Note that any reduction to a union problem for this
encoding is automatically format-respecting as long as the number of vertices in the
reduction’s output depends only on the length of its input.

Applying Lemma 3.5 to standard L- or NL-complete problems yields that their fam-
ily union versions are complete for paraWL and paraWNL, respectively. By reducing
the family versions further to the subset union version, we get the following:

Theorem 3.9 1. For each A ∈ {reach,dag-reach, cycle}. Then the problem-p-
subset-union-A is pfo-complete for the class paraWNL.

2. For each B ∈ {undirected-reach, tree, forest,undirected-cycle}. Then the
problem-p-subset-union-B is pfo-complete for the class paraWL.

Proof For each of the problems, we reduce its family union version to it. This suffices:
By Lemma 3.5 and the fact that the underlying problems like reach are complete for
NL and L under format-respecting first-order projections, the family versions are
complete for the respective classes.

Recall that the difference between the problems p-family-union-A and p-subset-
union-A is that in the first we are given k sets Si from each of which we must choose
one element, while for the latter we can pick k elements from a single set S arbitrarily.
We cannot just set S to the (somehow disjoint) union of the Si since many choices of
k sets from S will correspond to taking multiple elements from a single Si . In such
cases, their union should not be an element of A.

To achieve the effect that the union of a subset of S with multiple elements from the
same Si is not in A, we use the same construction for all A, except for A = forest. The
construction works as follows: Since the Si are format-respecting, they are defined over
the same set V of vertices. Each s ∈ Si encodes an edge set Es ⊆ V 2. We construct
a new vertex set V ′ ⊇ V as follows: For each pair (a, b) ∈ V 2 we introduce k new
vertices v1

ab, …, vk
ab and add them to V ′. For each s ∈ Si we define a new edge set

E ′
s ⊆ V ′ × V ′ as follows: First, for each (a, b) ∈ V 2 let (vi−1

ab , vi
ab) ∈ E ′

s , where
v0

ab = a. Second, for each (a, b) ∈ Es , let (vk
ab, b) ∈ E ′

s . Let s′ be the bitstring
encoding the adjacency matrix of E ′

s . We set S = { s′ | s ∈ Si for some i}. An
example of how this reduction works is depicted in Fig. 2.

In order to argue that the reduction works for all problems, we make two observa-
tions. Given any subset {s′

1, . . . , s′
k} ⊆ S, for each s′

i there is a unique corresponding si ,
lying in (some) S j . Let G ′ = (V ′, E ′) denote the graph whose adjacency matrix is
the union of {s′

1, . . . , s′
k}; and let G = (V, E) correspond to the union of the si . Now,

first assume that, indeed, we have si ∈ Si for all i ∈ {1, . . . , k}. Then for every pair
(a, b) ∈ V the new vertices v1

ab to vk
ab will form a path in G ′ attached to a. Further-

more, for every edge (a, b) ∈ E there is a path from a to b in E ′. On the other hand, for
(a, b) /∈ E , we cannot get from a to b in G ′ using only new vertices: the edge (vk

ab, b)
will be missing. This proves our first observation: for vertices a, b ∈ V there is a path
from a to b in G ′ if, and only if, there is such a path in G. Our second observation
concerns the case that there are two strings s′

i and s′
j such that si and s j lie in the same

set Sx . In this case, for every two vertices a, b ∈ V at least one edge is missing along
the path v0

ab to vk
ab. Thus, we observe that there is no path from any a ∈ V to any other

b ∈ V in G ′.

123



Algorithmica (2015) 71:661–701 679

Fig. 2 An example of the reduction from a family union graph problem to a subset union graph prob-
lem. In the example, V = {x, y, z}. The si are indicated as edge sets even though, in reality, they
are bitstrings encoding adjacency matrices. The small vertices are the v1

ab and v2
ab , but only those for

(a, b) ∈ {(x, y), (y, z), (z, x)} are shown

Let us now argue that the reduction is correct: For reach, by the first observa-
tion reachability is correctly transferred from G to G ′ and by the second obser-
vation no “wrong” choice of s′

i will induce reachability. The exact same argument
holds for undirected-reach and dag-reach. For the problems tree, cycle, and
undirected−cycle the argument also works since trees and cycles remain trees and
cycles for “correct” choices of the s′

i and they get destroyed for any “wrong” choice.
For forest, the reduction described above does not work since in case several s′

i
are picked such that their si stem from the same S j , the graph G ′ becomes a collection
of small trees: a forest—and this is exactly what should not happen. Here we use a
different reduction: For every pair si , s j ∈ Sx for x ∈ {1, . . . , k} we add three new
vertices to the graph: a, b, and c. In s′

i we add the edges (a, b) and (b, c), in s′
j we

add the edge (c, a). Now, clearly, whenever s′
i and s′

j are picked stemming from the
same Sx , a cycle will ensue; and if only one si is picked from each Si , paths of length
1 or 2 will result in the new vertices that do not influence whether the graph is a forest
or not. �

Readers may wonder whether a problem like “p-subset-union-reach” is really
all that “natural.” However, we point out that one can also view this problem in a
slightly different light, making it more “accessible” and easier to remember:

Problem 3.10 (p-edge-colored-reach)

Instance: A directed graph G = (V, E) in which each edge has a (typically not
unique) color, two vertices s, t ∈ V , and a number k.

Parameter: k.
Question: Is there a path from s to t using at most k colors?

Corollary 3.11 p-edge-colored-reach is pfo-complete for paraWNL.

Proof Clearly, p-edge-colored-reach is almost the same as p-subset-union-
reach if we interpret each set of edges having a certain color as an element of a
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set S. The “almost” refers to the fact that an edge can have only a single color, while
an edge can be present in multiple elements of S. This is, however, easy to fix by
replacing each edge by a path of length 2 via a fresh vertex. �

Instead of colored edges, one can also consider p-colored-reach, where the
vertices are colored. A simple reduction (just place a vertex “on each edge” having
the edge’s color) shows that this problem is also paraWNL-complete.

To conclude this section on union graph problems, we would like to point out that
one can also ask which problems are complete for the “co-W-classes” paraW∀NL
and paraW∀L. It is straightforward to see that an analogue of Lemma 3.5 holds if
we define problems p-family-union∀-A as a “universal version” of the family union
problem (we ask whether for all choices of si their union is in A). For instance, the
universal cycle problem p-family-union∀-cycle is complete for paraW∀NL. It is
also relatively easy to employ the same ideas as those from the proof of Theorem 3.9
to show that the universal union versions of all problems mentioned in Theorem 3.9
are complete for paraW∀NL and paraW∀L except for p-subset-union∀-tree, whose
complexity remains open.

3.2.3 Associative Generability

The last union problem we study is based on the generators problem, which contains
tuples (U, ◦, x,G) where U is a set, ◦: U 2 → U is (the table of) a binary operation,
x ∈ U , and G ⊆ U is a set. The question is whether the closure of G under ◦
(the smallest superset of G closed under ◦) contains x . A restriction of this problem
is associative-generators, where ◦ must be associative. By two classical results,
generators is P-complete [19] and associative-generators is NL-complete [20].

In order to apply the union operation to generator problems, we encode (U, ◦, x,G)
as follows: U, ◦, and x are encoded in some sensible way using the alphabet Σ . To
encode G, we add a 1 after the elements of U that are in G and we add a 0 after some
elements of U that are not in G. This means that in the underlying templates we get
the freedom to specify that only some elements of U may be chosen for G. Now,
p-weighted-union-generators equals the problem known as p-generators in
the literature: Given ◦, a subset C ⊆ U of generator candidates, a parameter k, and
a target element x , the question is whether there exists a set G ⊆ C of size |G| = k
such that the closure of G under ◦ contains x . Flum and Grohe [14] have shown that
p-generators is complete for W[P] = paraWP (using a slightly different problem
definition that has the same complexity, however). Similarly, p-weighted-union-
associative-generators is also known as p-agen. We show:

Theorem 3.12 p-agen is pfo-complete for paraWNL.

Proof The language agen is complete for NL, see [20], and completeness can
be achieved by format-respecting first-order projections. This implies p-agen ∈
paraWNL since all union problems of problems in NL lie in paraWNL. To prove
hardness, we first have, by Lemma 3.5, that p-family-union-agen is pfo-complete
for paraWNL. We show that this problem reduces to p-subset-union-agen, which
in turn reduces to p-weighted-union-agen = p-agen.
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For the first reduction let sets S1, . . . , Sk be given as input. Their template encodes
a universe U , a set of generator candidates C ⊆ U , a target element x ∈ U , and an
operation ◦: U 2 → U . The instantiations encode subsets of the generator candidates.
Our aim is to construct a new instance of p-subset-union-agen, i. e., a single set S′
encoding a universe U ′, a set of generator candidates C ′ ⊆ U ′, a target element x ′,
and an operation ◦′ such that there are k elements of S′ that induce a generating set
for x ′ if, and only if, there are k elements si , one from every Si , such that they induce
a generating set of x . To achieve this, we first set U ′ = U ∪ {e1, . . . , ek} for new
elements ei , one for each Si , and also add them to the new set of generator candidates
C ′ = C ∪ {e1, . . . , ek}. We now wish to augment the operation ◦ to ◦′ with respect
to the new elements, so that no ei can be generated by any combination of two other
elements from the universe and no ei can be used to generate elements from the
universe other than itself (we achieve this by actually using whole string as elements
of our universe, as will be discussed later in this proof). Furthermore, we insert a new
target element x ′ into the universe. Our aim is to enforce that x ′ can only be generated
via the expression x ◦′ e1 ◦′ e2 ◦′ · · · ◦′ ek . Finally, we add an error element error
to the universe that we will use to create dead ends in the evaluation of expressions:
Any expression that does not make sense or contains the error element is evaluated to
error.

The set S′ contains a string s′
i j for every si j ∈ Si that is essentially si j adjusted to

U ′,C ′, x ′, and ◦′, where we require that the binary string that selects a set of generators
from C ′ also selects ei and no other of the introduced elements e j . From this we have
that there is a selection of k elements of S′ that induces a set of generators whose
closure contains x, e1, . . . , ek and therefore also x ′ if, and only if, there is a set of
k strings si ∈ Si describing a set of generators whose closure contains x .

Unfortunately, our operator ◦′ is binary and, therefore, we cannot evaluate expres-
sions like x ◦′ e1 ◦′ e2 ◦′ · · · ◦′ ek in a single step. Moreover, because of the required
associativity of ◦′, it has to be possible to completely evaluate any subexpression of a
larger expression. To achieve this, we actually use strings as elements of our universe,
instead of single symbols, that are evaluated “as far as possible.” For instance, the
expression a ◦′ b ◦′ c ◦′ e1 ◦′ e2 evaluates to d ◦′ e1 ◦′ e2 if the expression a ◦′ b ◦′ c
evaluates to d. Since d ◦′ e1 ◦′ e2 cannot be evaluated further, we want the string de1e2
to be part of our universe.

To formalize the idea of “strings evaluated as far as possible,” we need some def-
initions. Given an alphabet Γ , let us call a set R of rules of the form w → w′ with
w,w′ ∈ Γ ∗ a replacement system. An application of a rulew → w′ takes a word uwv
and yields the word uw′v; we write uwv ⇒R uw′v in this case. A word is irreducible
if no rule can be applied to it. Let ≡R be the reflexive, symmetric, transitive closure of
⇒R . Given a word u, let [u]R = { v | u ≡R v} be the equivalence class of u. We use
Γ ∗/≡R = { [v]R | v ∈ Γ ∗} to denote the set of all equivalence classes of Γ ∗. Observe
that we can define a natural concatenation operation ◦R on the elements of Γ ∗/≡R :
Let [u]R ◦R [v]R = [u ◦ v]R . Clearly, this operation is well-defined and associative.
An irreducible representative system of R is a set of irreducible words that contains
exactly one word from each equivalence class in Γ ∗/≡R .

In the context of our reduction, Γ will be U ′ and R contains the following rules:
First, for elements a, b, c ∈ U of the original universe U with a ◦ b = c, we have
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the rule ab → c. Second, we have the rule xe1 . . . ek → x ′. Third, we have the rules
erroru → error and uerror → error for all u ∈ U ′. Fourth, we have the
rules ei u → error for all u ∈ U ′ \ {ei+1} and x ′u → error for all u ∈ U ′.

We can now, finally, describe the sets to which the reduction actually maps an input
(U, ◦, x,C): The universe U ′′ is an appropriately chosen irreducible representative
system of R, the operation ◦′′ maps a pair (u, v) to the representative of [u ◦ v]R , the
target element x ′′ is the representative of [x ′]R , and C ′′ contains all representatives of
[c]R for c ∈ C ′.

Our first observation is that (U ′)∗/≡R (and hence also U ′′) has polynomial size:
Consider any [w]R and let w be irreducible. If w does not happen to be the error
symbol itself, it cannot contain the error symbol (by the third rule). Furthermore, inw
there cannot be any element from U to the right of any ei or of x ′ (by the fourth rule).
Thus, it must be of the form w1w2 with w1 ∈ U∗ and w2 ∈ {e1, . . . , ek, x ′}∗. Then
w1 must actually be a single letter (by the first rule) and w2 must be x ′ or a sequence
ei ei+1 . . . e j for some i ≤ j (by the fourth rule). This shows that the total number of
different equivalence classes is at most 1 + |U ′|(k2 + 1).

The second observation concerns the equivalence class of [x ′]R , which contains
the string xe1 . . . ek . We can only generate this class from elements [c]R with c ∈ C ′
if these elements include all [ei ]R and also the equivalence classes [c]R of elements
c ∈ C that suffice to generate x . This shows the correctness of the reduction.

We continue our chain of reductions by reducing to p-weighted-union-agen.
Given a format-respecting set S = {s1, . . . , sk} whose strings encode a universe U ,
a set of generator candidates C ⊆ U , an associative operation ◦: U 2 → U , and a
target element x ∈ U , together with a selection of generator candidates, we have to
construct an instance S′ such that every string only selects a single generator candidate.
To achieve this, we construct a new universe U ′ that contains the elements of the old
universe U with new elements described below. As in the previous reduction, we define
reduction rules alongside these new elements and then use an appropriately chosen
irreducible representative system of the rules as our universe.

1. We have an error element error with similar rules as above.
2. We have an end element �. No rule generates � on its right-hand side if it was

not already present on the left-hand side and, thus, � has to be an element of any
generating set G. We require this element for technical reasons that we will discuss
later. There are rules �u → error for all u ∈ U ′.

3. We have a counter element |. Like the end symbol, this symbol cannot be newly
generated by expressions and has to be an element of any generating set.

4. We have elements σi for each si ∈ S, which we call selector elements. The idea
behind these elements is that we will use them together with the counter element
to enumerate all the elements u1, . . . , ul of the generator candidates selected by
a string si ∈ S. The objective is that strings like σi |||| can be replaced by u4. We
will give rules for this in a moment.

In our new template, the candidates are (the representatives of the equivalence
classes of) the σi as well as �, |, and error. Now, there is a selection of k + 3
elements of S′ that forms a generating set for the target element if, and only if, there
is a selection of k elements of S that forms a generating set.
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It remains to explain how rules can be set up such that for instance σi |||| gets
replaced by u4. Consider the expression σ1||σ3|||σ2||. Here, σ1|| can be replaced by
some u and σ3||| by some u′, but σ2|| cannot yet be replaced since it is not clear what
element will be appended to the expression (if there is another element). To fix this,
we use the end symbol � that has to be appended to every expression. It marks the
right end of the expression and enforces the unambiguous evaluation of the very last
subexpression and, therefore, the whole expression. Translated into rules, this means
that if, for instance, σi |||| should select u4, then we have rules like σi ||||u → u4u if
u �= |, but do not have the rule σi |||| → u4, so σi |||| is an irreducible string. (In order
to ensure that we do not get overly long sequences of counter symbols, we have the
rule |n → error where n is the size of the universe.)

The target is the irreducible string x�.
It is now easy to see that, once more, the number of equivalence classes is polyno-

mially in the size of the universe: Basically, irreducible strings start with a sequence
of counter elements of length at most n and end with another such sequence, again of
length at most n and, in the middle, there is single element of the original universe
possibly followed by a selector. This means that the representative system also has
polynomial size. We mentioned earlier that the system should be “appropriately cho-
sen,” by which we mean that it must be chosen in such a way that our pfo-reduction
can compute the resulting concatenation table using its very limited resources. While
this is not overly difficult to achieve, we skip the technical details of how, exactly, this
is done. �

3.3 Natural Problems Complete for the β-Class

We conclude our exploration of classes of bounded nondeterminism with a deceptively
simple problem, namely the distance problem with the distance as the parameter: (We
could also have started with this problem, but we will not use Lemma 3.5 in the proofs
here and we preferred to keep the lemma together with its applications.)

Problem 3.13 (p-distance)

Instance: A directed graph G, two vertices s and t of G, and a natural number k.
Parameter: k.
Question: Is there a path from s to t in G of length at most k?

Theorem 3.14 p-distance is complete for paraβL with respect to pl-reductions.

Proof Clearly, p-distance ∈ paraβL since we can just “guess” a path of length k
from s to t and for this we need to guess O(k log n) bits, where n is the number of
vertices, and we need O(log k + log n) bits to keep track of the number of steps we
have guessed and the current position.

For hardness, let (Q, κ) be a parameterized problem that is contained in paraβL
via a machine M . Using standard techniques, we may assume that M has exactly one
accepting and one rejecting configuration, respectively. Furthermore, we can assume
that the configuration graph is a directed acyclic graph. The configuration graph of M
on an input x has the maximum size exp( f (κ(x))+ O(log n)) = f ′(κ(x)) · nc for
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some function f ′ and some constant c. In order to transform the configuration graph
into an instance for p-distance, we must tackle the problem that the length of the
path from the initial configuration to the accepting configuration is at most the size
of the configuration graph and, therefore, not exclusively bounded by the parameter,
but also by the length of the input x . However, the number of nondeterministic steps
of M is bounded by f (κ(x)) · O(log n) for every path from the initial configuration,
so there are at most this many nodes with out-degree greater than 1. Let us call the
nodes with out-degree greater than 1, as well as the nodes corresponding to the initial
and the accepting configuration, the red nodes and the other nodes the black nodes of
the graph.

In a first processing step, we iterate over the nodes of the configuration graph and
replace every outgoing edge of every red node ur that points to a black node ub by a
new edge from ur to the first red node vr that is reachable from ub. Now we drop the
black nodes. In the resulting graph, every path from the initial to the final configuration
has length at most f (κ(x)) · O(log n)—which is still not bounded exclusively by the
parameter. In a second step, we shorten the paths in the resulting graph by augmenting
the graph with edges from node u to a node v if there is a path from u to v of length
at most O(log n). Since the out-degree of the nodes is bounded by some constant that
only depends on M (namely on the maximum number of different states that can be
reached in one nondeterministic step), every path of length O(log n) can be described
by O(log n) bits. The augmentation can then be done by an iteration over all the
nodes v of the graph and enumerating all paths of length O(log n) starting from v. In
the resulting graph, there is a path of length f (κ(x)) from the initial configuration to
the accepting configuration if, and only if, there is a path from the initial configuration
to the accepting configuration in the original configuration graph. Hence, we obtain
the desired parametric logspace reduction, as the processing steps can be done by
para-L Turing machines. �

The above theorem has an interesting corollary: The distance problem for undirected
graphs is also complete for paraβL. This is in analogy to the fact that the distance
problem is NL-complete both for directed and for undirected graphs.

Corollary 3.15 p-undirected-distance is complete for paraβL with respect to pl-
reductions.

Proof We reduce p-distance to p-undirected-distance using a layering trick: For
a given directed graph G = (V, E) and a given number k, we output k + 1 copies
V0, . . . , Vk of the vertex set V with Vi = { (v, i) | v ∈ V }. In the edge set we output,
there is an (undirected) edge from (u, i − 1) to (v, i) if, and only if, (u, v) ∈ E or if
u = v. Now, since a path in the new graph that “goes back a layer” is longer by at
least 2 than a path that does not, there is a path of length k from (s, 0) to (t, k) in the
new graph if, and only if, there is a path of length k from s to t in G. �

The class paraβL has been studied independently by Chen and Müller [7] in the
context of homomorphism and embedding problems together with “jump machines”.
Their results can be rephrased in our terminology as follows:

123



Algorithmica (2015) 71:661–701 685

Fact 3.16 ([7]) Both the homomorphism problem and the embedding problem of a
structure A into a structure B where A is a directed path, a directed cycle, or an
undirected cycle, parameterized via the size of A, are complete for paraβL under
pl-reductions.

Another interesting observation made by Chen and Müller is that the exact distance
problem (where we ask whether the distance from s to t in a graph is exactly k for
a parameter k and not “at most k”) also lies in paraβL. (Note that just “guessing” a
path from s to t of length k does not suffice.) Since it is easily seen that the hardness
argument in the proof of Theorem 3.14 also works for the exact distance problem, we
get the following:

Fact 3.17 ([7]) p-exact-distance is complete for paraβL with respect to pl-reduc-
tions.

4 Problems Complete for Time–Space Classes

In classical complexity theory, the major complexity classes are either defined in terms
of time complexity (P,NP,EXP) or in terms of space complexity (L,NL,PSPACE),
but not both at the same time: by the well-known inclusion chain L ⊆ NL ⊆ P ⊆
NP ⊆ PSPACE = NPSPACE ⊆ EXP, space and time are intertwined in such a way
that bounding either automatically bounds the other in a specific way (at least for the
major complexity classes).

In parameterized complexity theory, the classes para-P and XL appear to be incom-
parable: Machines for the first class may use f (κ(x)) · |x |O(1) time and as much space
as they want (which will be at most f (κ(x)) · |x |O(1)), while machines for the second
class may use f (κ(x)) · O(log |x |) space and as much time as they want (which will be
at most |x | f (κ(x))). A natural question arises: Which problems are in the intersection
para-P ∩ XL or – even better—in the class D[ f poly, f log], defined rigorously in a
moment, of problems for which there is a single machine using only fixed-parameter
time and slice-wise logarithmic space simultaneously?

As in the previous section, our exposition starts with definitions of the classes. It
is easy to find artificial problems that are complete for them and we present some of
them. We then move on to automata problems, but still some ad hoc restrictions are
needed to make the problems complete for time–space classes. The real challenge lies
in finding problems together with natural parameterizations that are complete. We
present one such problem: the longest common subsequence problem parameterized
by the number of strings. We show that lcs parameterized by the number of input
strings is complete for N[ f poly, f log], the nondeterministic version of the class
D[ f poly, f log].

Finally, we also show that the feedback vertex set problem lies in D[ f poly, f log],
while the directed feedback vertex set does not, unless L = NL.
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4.1 Classes and Structural Results

Definition 4.1 For a space bound s and a time bound t , both of which may depend on
a parameter k and the input length n, let D[t, s] denote the class of all parameterized
problems that can be accepted by a deterministic Turing machine in time t (κ(x), |x |)
and space s(κ(x), |x |). Let N[t, s] denote the corresponding nondeterministic class.

Four cases are of interest: First, D[ f poly, f log], meaning that t (k, n) = f (k) ·
nO(1) and s(k, n) = f (k) · O(log n), contains all problems that are “fixed-parameter
tractable via a machine needing only slice-wise logarithmic space,” and, second, the
nondeterministic counterpart N[ f poly, f log]. The other cases are D[n f , f poly] and
N[n f , f poly], which contain problems that are in “slice-wise polynomial time via
machines that need only fixed-parameter polynomial space.” See Fig. 1 for the inclu-
sions between the classes.

Our only structural result on the above classes is that they do, indeed, have complete
problems. To find such problems, a good starting point is typically some variant of
Turing machine acceptance (or halting):

Problem 4.2 (deterministic-space-bounded-computation (dsc))

Instance: (The code of) a single-tape machine M and a number s in unary.
Question: Does M accept on an initially empty tape using at most s tape cells?

Problem 4.3 (timed-dsc)

Instance: (The code of) a single-tape machine M , two numbers s and t in unary.
Question: Does M accept on an initially empty tape using at most s tape cells and

making at most t steps?

Naturally, there are also nondeterministic variants nsc and timed-nsc.
Cai et al. [6] have observed that the fpt-reduction closure of pt -timed-nsc (that is,

the problem parameterized by t) is exactly W[1]. In analogy, Guillemot [15] proposed
the name “WNL” for the fpt-reduction closure of ps-timed-nsc (now parameterized
by s rather than t). As pointed out in Sect. 3, we believe that this name should be
reserved for the class resulting from applying the operator ∃↔

f log to the class NL.
Furthermore, the following theorem shows that ps-timed-nsc is better understood in
terms of time–space classes:

Theorem 4.4 1. ps-dsc is pfo-complete for D[∞, f log] = XL.
2. ps-nsc is pfo-complete for N[∞, f log] = XNL.
3. ps-timed-dsc is pfo-complete for D[ f poly, f log].
4. ps-timed-nsc is pfo-complete for N[ f poly, f log].

Proof For membership, for the first item, on input of a machine M and a space bound
s in unary, an XL-machine can simulate M , making sure that no more than s tape
cells are used. Clearly, the space needed to store the s tape cells is O(s log n) since
O(log n) bits suffice to store the contents of a tape cell (the amount needed is not O(1)
since the tape alphabet is part of the input). For the third item, we have an additional
time bound in the input and we only simulate the machine for t steps. Clearly, this
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simulation only takes polynomial time. The nondeterministic cases work in the same
way.

For hardness of the first item, first consider a problem (Q, κ) ∈ XL via some
machine M . Let sM (k, n) be the space bound of M . The reduction must now map
inputs x to a pair (M ′, 1s). The reduction faces two problems: First, while M has an
input tape and a work tape, M ′ has no input tape and starts with the empty string.
Second, s cannot be set to sM (κ(x), |x |) since this only lies in O

(
f (κ(x)) · log |x |)

for some function f —while in a parameterized reduction the new parameter may
only depend on the old one (κ(x)) and not on the input length. The first problem
can be overcome using a standard trick: M ′ simulates M and uses its tape to store
the contents of the work tape of M . Concerning the input tape (which M ′ does not
have), when M accesses an input symbol, M ′ has this symbol “stored in its state,”
which means that there are |x | many copies of M’s state set inside M ′, one for each
possible position of the head on the input tape. A movement of the head corresponds
to switching between these copies. In each copy, the behaviour of the machine M for
the specific input symbol represented by this copy is hard-wired. The second problem
can also be tackled using standard tricks. Instead of mapping to M ′, we actually map
to a new machine M ′′ that implements a space compression trick: For each �log2 |x |�
many tape cells of M ′, the machine M ′′ uses only one tape cell that also stores the
position of the head. This can be achieved by enlarging the tape alphabet of M ′: If
the old alphabet was Γ , we now use Γ �log2 |x |� × {1, 2, 3, . . . , �log2 |x |�}, which is
still polynomial in |x |. Naturally, we now have to adjust the transitions and states of
M ′ so that a step of M ′ for its old tape is now appropriately simulated by one step
of M ′′ for its compressed tape. Taking it all together, we map x to (M ′′, s) where
s = sM (κ(x), x)/�log2 |x |�, which is bounded by a function depending only on κ(x).
Clearly, the reduction is correct.

For the hardness of the third item, where a time bound is given, we modify the
above argument only very slightly: Now, we have (Q, κ) ∈ D[ f poly, f log] via some
machine M , a time bound tM (k, n) and a space bound sM (k, n). The reduction can now
map inputs x to triples (M ′′, 1t , 1s) in exactly the same way as before, only we now
also set a time bound t to tM (k, n). Note that the new time bound is not a parameter
and, therefore, may depend on the input length.

The hardness for the nondeterministic cases works in the same way. �

4.2 Natural Problems Complete for Parameterized Time–Space Classes

Our main objective for the present section is to show that the longest common
subsequence problem parameterized by the number of strings is complete for
N[ f poly, f log]. For the rather complex proof we first need to establish the com-
pleteness of other problems such as the acceptance problem for cellular automata
parameterized in the number of cells.

4.2.1 Automata

A classical result of Hartmanis [16] states that L contains exactly the languages
accepted by finite multihead two-way automata. A natural question to ask in light
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of this result is how, exactly, the number of heads of an automaton influences its
power. Phrased in terms of parameterized complexity theory, we are interested in the
complexity of the following problem:

Problem 4.5 (p-multihead-dfa-acceptance (p-mdfa))

Instance: (The code of) a deterministic multihead two-way automaton M and a
word x .

Parameter: The number h of heads of M .
Question: Does M accept x?

To prepare the field for arguments in later proofs, we also have a look at the “timed”
variant p-timed-mdfa, where a time bound 1t is given as part of the input and the
question is whether M accepts x making at most t steps. Also, we can consider the
nondeterministic variants p-mnfa and p-timed-mnfa.

Theorem 4.6 1. p-mdfa is pfo-complete for D[∞, f log] = XL.
2. p-mnfa is pfo-complete for N[∞, f log] = XNL.
3. p-timed-mdfa is pfo-complete for D[ f poly, f log].
4. p-timed-mnfa is pfo-complete for N[ f poly, f log].

Proof We only consider the deterministic cases since the proofs for the nondetermin-
istic versions work in the same way.

Let us first quickly review how Hartmanis in [16] showed that A ∈ L holds if, and
only if, there is a deterministic multihead automaton that decides A. The basic idea is
that the position of an automaton’s head on the input tape can be used to store a number
between 0 and n, where n is the input tape length, and, thus, the position of a head
can store up to �log2 n� bits of information. A fixed number of heads hence suffice
to store the information of the work tape of a machine M using c · �log2 n� space.
Modifications of this work tape correspond to an elaborate “dance” of auxiliary heads
to compute the right number of steps to be made by one of the c heads. For instance,
changing the i th bit of a block of �log2 n� bits from 0 to 1 involves advancing the head
corresponding to this block by 2i many symbols. The exact details of the construction
will not be important for proving the theorem; it suffices to note that for each step
of the logspace Turing machine M the automaton will make a polynomial number of
steps.

Now, to prove membership of the first item, just observe that p-mdfa can clearly
be decided in space O(h log n), where h is the number of heads, by just simulating
the input automaton. Similarly, for the third item, p-timed-mdfa can be decided in
the same space and in time polynomial in the input since we only need to simulate the
automaton for t steps and t is given in unary.

To prove hardness for the first claim, let (Q, κ) ∈ XL via a machine needing space
f (κ(x)) · O(log |x |). Hartmanis’s argument now shows that there is a multihead two-
way automaton deciding Q whose number of heads depends only on f (κ(x)). Thus, a
pfo-reduction can simply map the input x to this automaton together with x . To prove
hardness for the third claim, let (Q, κ) ∈ D[ f poly, f log] via some M . We construct
the same automaton as before; only this time we also impose a time constraint on it.
Since, as we pointed out earlier, each step of the machine M results in a polynomial
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number of steps of the automaton and since, with some extra effort, we can ensure that
it is always the same number of steps, we can compute the exact number t of steps
that the automaton may make in order to simulate tM (h, n) steps of the machine M . �

Another, rather natural kind of automata are cellular automata, where there is one
instance of the automaton (called a cell) for each input symbol. The cells perform
individual synchronous computations, but “see” the states of the two neighbouring
cells (we only consider one-dimensional automata, but the results hold for any fixed
number of dimensions). Formally, the transition function of such an automaton is a
function δ : Q3 → Q (for the cells at the left and right end this has to be modified
appropriately). The “input” is just a string q1 . . . qk ∈ Q∗ of states and the question
is whether k cells started in the states q1 to qk will arrive at a situation where one of
them is in an accepting state (one can also require all to be in an accepting state, this
makes no difference).

Let dca be the language
{
(C, q1 . . . qk) | C is a deterministic cellular automaton

that accepts q1 . . . qk
}
. Let nca denote the nondeterministic version and let timed-dca

and timed-nca be the versions where a time bound is given as part of the input. The
following theorem states the complexity of the resulting problems when we parame-
terize by the number of cells:

Theorem 4.7 1. pcells-dca is pfo-complete for D[∞, f log] = XL.
2. pcells-nca is pfo-complete for N[∞, f log] = XNL.
3. pcells-timed-dca is pfo-complete for D[ f poly, f log].
4. pcells-timed-nca is pfo-complete for N[ f poly, f log].

Proof We start with membership. Clearly, pcells-dca lies in XL since we can keep
track of the k states of the k cells in space O(k log n) and just as clearly pcells-timed-
dca ∈ D[ f poly, f log] since we only need to simulate the given number of steps.
The arguments for the nondeterministic versions are the same.

For hardness in the first case, we reduce ps-dsc to pcells-dca, which proves the
first claim by Theorem 4.4. The input for the reduction is a pair (M, 1s). We must
map this to some cellular automaton C and an initial string of states. The obvious idea
is to have one automaton cell for each tape cell that can be used by M . In detail, let
Q be the set of states of M and let Γ be the tape alphabet of M . The state set of C
will be R = (Q ∪ {⊥})× Γ , where ⊥ is used to indicate that the head is elsewhere.
Clearly, a state string from Rs allows us to encode a configuration of M . Furthermore,
we can now set up the transition relation of C in such a way that one parallel step
of the s automata cells corresponds exactly to one computational step of M : as an
example, suppose in state q for the symbol a the machine M will not move its head,
write b, and switch to state q ′. Then in C for every x, y ∈ {⊥} × Γ there would be a
transition mapping (x, (q, a), y) to (q ′, b) and also transitions mapping ((q, a), x, y)
to x and (x, y, (q, a)) to y. For triples corresponding to situations that “cannot arise”
like the head being in two places at the same time, the transition function can be
set up arbitrarily. The initial string of states for the cellular automaton is of course
(q0,�)(⊥,�) . . . (⊥,�), where � is the blank symbol and q0 is the initial state of M .
Now, with this setup the strings of states of the cellular automaton are in one-to-one
correspondence with the configurations of M . In particular, we will reach a state string
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containing an accepting state if, and only if, M accepts when started with an empty
tape. Clearly, the reduction is a pfo-reduction.

One might expect that one can use the exact same argument for nondeterministic
automata and simply use the same reduction, but starting from ps-nsc. However, there
is a complication: The cells work independently of one another. In particular, there
is no guarantee that a nondeterministic decision taken by one cell is also taken by a
neighboring cell. To illustrate this point, consider the situation where the machine M
can nondeterministically step “left or right” in some state q. Now assume that some
cell c is in state (q, x) and consider the left and right neighboring cells cleft and cright,
respectively. For both of them, there would now be a transition allowing them to “take
over the head” and both could nondeterministically decide to do so—which is wrong,
of course; only one of them may receive the head.

To solve this problem, we must ensure that a nondeterministic decision is taken
“by only one cell.” Towards this aim, we first modify M , if necessary, so that every
nondeterministic decision is a binary decision. Next, we change the state set of C :
Instead of (Q ∪ {⊥}) × Γ we use (Q × {0, 1} ∪ Q ∪ {⊥}) × Γ . In other words, in
addition to the normal states from Q we add two copies of the state set, one tagged
with 0 and one tagged with 1. The idea is that when a cell is in state (q, x) ∈ Q × Γ ,
it can nondeterministically reach ((q, 0), x) or ((q, 1), x) if the transition function of
M admits a nondeterministic choice in state q reading symbol x . However, from those
states, we can deterministically make the next step: if the state is tagged by 0, both
the cell and the neighboring cells continue according to what happens for the first of
the two possible nondeterministic choices, if the state is tagged by 1, the other choice
is used. Note that as long as the state is not yet tagged, the neighboring cells do not
change their state. With these modifications, we arrive at a new cellular automaton
with the property that after every two computational steps of the automaton its string
of states encodes one of the two possible next computational steps of the machine M .
This shows that the reduction is correct.

It remains to consider the timed automata. Here, the reduction is now from the
timed versions ps-timed-dsc and ps-timed-nsc. In the first case, we can simply
copy the time bound and in the second case we double it (since we doubled the state
set). Otherwise, the reductions are the same. �

In a moment, we will connect cellular automata and the above theorem with the
longest common subsequence problem. Another application that we would first like to
mention is Fact 4.8 below on pebble games since its proof is also based on a reduction
from the different versions of cellular automata acceptance. Pebble games are played
on graphs on whose vertices we place pebbles (a pebbling is thus a subset of the
set of vertices) and, over time, we (re)move and add pebbles according to different
rules. Depending on the rules and the kind of graphs, the resulting computational
problems are complete for different complexity classes, which is why pebble games
have received a lot of attention in the literature.

For our purposes, the following single player pebble game is of interest: A threshold
pebble game (tpg) consists of a directed graph G = (V, E) together with a threshold
function t : V → N. Given a pebbling X ⊆ V , a vertex v can be pebbled after X if
the number of v’s pebbled predecessors is at least v’s threshold, that is,

∣∣{ p | (p, v) ∈
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E} ∩ X
∣
∣ ≥ t (v). Given a pebbling X , a next pebbling is any set Y of vertices that

can be pebbled after X . The maximum next pebbling is the inclusion-maximal such Y .
The language tpg contains all threshold pebble games together with two pebblings S
and T such that we can reach T when we start with S and apply the next pebbling
operation repeatedly (always replacing the current pebbling X completely by Y ). For
the tpg-max problem, Y is always chosen as the maximum next pebbling (which
makes the game deterministic). For acyclic-tpg and acyclic-tpg-max, the graph
must be acyclic. We parameterize by the maximum number of pebbles that may be
present in any step.

Fact 4.8 ([22,23])

1. ppebbles-tpg-max is pfo-complete for D[∞, f log] = XL.
2. ppebbles-tpg is pfo-complete for N[∞, f log] = XNL.
3. ppebbles-acyclic-tpg-max is pfo-complete for D[ f poly, f log].
4. ppebbles-acyclic-tpg is pfo-complete for N[ f poly, f log].

4.2.2 Longest Common Subsequence

The input for the lcs problem is a set S of strings over some alphabetΣ together with
a number l. The question is whether there is a string c ∈ Σ l that is a subsequence of
all strings in S, meaning that for all s ∈ S just by removing symbols from s we arrive
at c.

There are several natural parameterization of lcs: We can parameterize by the
number of strings, by the size of the alphabet, by the length of the sought common
subsequence, or any combination thereof. Guillemot has shown [15] that p|S|,llcs is
fpt-complete for W[1], while p|S|-lcs is fpt-equivalent to ps-timed-nsc. Hence, by
Theorem 4.4, both problems are complete under fpt-reductions for the fpt-reduction
closure of N[ f poly, f log]. We tighten this in Theorem 4.11 below using pfo-
reductions. (Using weaker reductions is more than a technicality: N[ f poly, f log]
is presumably not even closed under fpt-reduction, while it is closed under pfo-
reductions). We remark that Guillemot’s fpt-reductions appear to be “upgradeable”
to pfo-reductions, but one would have to walk through the proof in detail to verify
this—and his arguments deviate quite a bit from ours. Nevertheless, we believe that
Guillemot’s chain of reductions can be used to give a different proof of Theorem 4.11.

As a preparation for the proof of Theorem 4.11, we first present a simpler-to-prove
result. Let lcs-injective denote the restriction of lcs where all input words must be
p-sequences [12], which are words containing any kind of symbol at most once (the
function mapping word indices to word symbols is injective). We give the following
proof to illustrate an idea used in the proof of Theorem 4.11.

Theorem 4.9 lcs-injective is NL-complete and this holds already under the restric-
tion |S| ≤ 4.

Proof The problem lcs-injective lies in NL via the following algorithm: We guess
the common subsequence c nondeterministically and use a counter to ensure that c has
length at least l. The problem is that we cannot remember more than a fixed number
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of letters of c without running out of space. Fortunately, we do not need to: We always
only keep track of the last two guessed symbols. For each such pair (a, b), we check
whether a appears before b in all strings in S. If so, we move on to the next pair,
and so on. Clearly, this algorithm needs only logarithmic space and correctly decides
lcs-injective.

To prove hardness for |S| = 4, we reduce from the NL-complete language lay-
ered-reach, where the input is a layered graph G (each vertex is assigned a layer
number and all edges only go from one layer to the next), the source vertex s is the
(only) vertex on layer 1, and the target t is the (only) vertex on the last layer m. The
question is whether there is a path from s to t .

For the reduction to lcs-injective we introduce a symbol for each edge of G. The
common subsequence will then be exactly the sequence of edges along a path from
s to t . We consider the layers L1, L2, …, Lm in order and, for each of them, append
edge symbols to the four strings as described in the following.

Consider a layer Li , containing vertices {v1, . . . , vn}. Assume i is odd. We go over
the vertices v1 to vn in that order. For v1, first consider all edges that end at v1. They
must come from layer i − 1. We add these edges in some order to the first string (for
instance, in the order of the index of the start vertex of these edges). Still considering
v1, we then consider all outgoing edges and append them in some fixed order. Then we
move on to v2 and add edge symbols in the same way for it, and so on. If i is even rather
than odd, we add the same edge symbols to the third rather than to the first string.

For the second (or, for even i , the fourth string), we go over the vertices in decreas-
ing order. We start with vn . We consider the incoming edges for vn and add them to the
second string, but in reverse order compared to the order we used for the first string.
Next, we append the outgoing edges, again in reverse order. Then we consider vn−1
and proceed in the same way.

As an example, consider the following layered graph:

This would result in the following strings, where spaces have been added for clarity
and also the symbols vi , which are not part of the strings (so the second string is
actually edcbajhig f ):

v1a v2bcd v3e f v7 giv8 hjv9

v3e v2dcb v1a jhv9 igv8 f v7
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abv4 f g cv5h dev6i j

edv6 j i cv5h bav4g f

We make two crucial observations. First, if an edge is included in the common
subsequence, no other edge starting at the same layer can be included also: The edge
symbols of one layer come in one order in the first (or third) string and in the reverse
order in the second (or fourth) string. Thus, there cannot be two of them in the common
subsequence. For the same reason, there can only be one edge arriving at a layer in the
common subsequence. The second crucial observation is that if the sequence contains
an edge e arriving at a vertex v, it can only contain edges leaving from vertex v, if it
contains any edge leaving from v’s layer: Only the edges leaving v will come after e
in both the first and second (or third and fourth) string.

Putting it all together, we get the following: There is a path from s to t in G if, and
only if, there is a common subsequence of length m − 1 in the constructed strings: If
there is a path, the sequence of the edges on it form a subsequence; and if there is such
a subsequence, because of its length, it must contain exactly one edge leaving from
each layer except the last—and these edges must form a path as we just argued. �
Corollary 4.10 p|S|-lcs-injective is pfo-complete for para-NL = N[ f poly, f +
log].
Proof The problem lies in para-NL since by Theorem 4.9 we can solve any instance
in NL without even using the parameter. On the other hand, the theorem also shows
that a slice of the parameterized problem (namely for 4 strings) is already hard for
NL. It is a well-known fact that in this case the parameterized problem is hard for the
corresponding para-class, which happens to be para-NL. �
Theorem 4.11 p|S|-lcs is pfo-complete for N[ f poly, f log].
Proof Clearly, p|S|-lcs ∈ N[ f poly, f log] since a nondeterministic machine can
guess the common subsequence on the fly and only needs to keep track of k pointers
into the strings, which can be done in space O(|S| log n). To prove hardness, we reduce
from the N[ f poly, f log]-complete problem pcells-timed-nca, the acceptance prob-
lem for timed nondeterministic cellular automata, which we treated in Theorem 4.7.

Our first step is to tackle the problem that in an lcs instance we choose “one
symbol after the other” whereas in a cellular automaton all cells make one step in
parallel. To address this, we introduce a new intermediate problem pcells-timed-nca-
sequential where the model of computation of the cellular automaton is modified
as follows: Instead of all k cells making one parallel step, initially only the first cell
makes a transition, then the second cell makes a transition (seeing already the new
state reached at the first cell, but still the initial state of the third cell), then the third
cell (seeing the new state of cell two and the old of cell four), and so on up to the kth
cell. Then, we begin again with the first cell, followed by the second cell, and so on.

Claim pcells-timed-nca pfo-reduces to pcells-timed-nca-sequential.

Proof (of the claim) The trick is to have cells “remember” the states they were in: On
input of (C, q1 . . . qk), we construct a “sequential” cellular automaton C ′ as follows.
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If Q is the state set of C , the state set of C ′ is Q × Q. Each state q ∈ Q′ is now
a pair (qprevious, qcurrent). The transition relation is adjusted as follows: If there used
to be a transition (qleft, qold, qright, qnew) ∈ Q4, meaning that a cell of the parallel
automaton C can switch to state qnew if it is in state qold, its left neighbor is in state qleft,
and its right neighbor is in state qright, the we now have the following transitions in C ′:
((qleft, x), (y, qold), (z, qright), (qold, qnew)) where x, y, z ∈ Q are arbitrary. Indeed,
this transition will switch a cell’s state based on the previous state of the cell before it
and on the current state of the cell following it and will store that previous state. For
the first and last cells, this construction is adapted in the obvious manner. Clearly, the
resulting sequential automaton will arrive in a sequence (x1, q1) . . . (xk, qk) of states
for some xi ∈ Q after t · k steps if, and only if, the original automaton arrives in states
q1 . . . qk after t steps. This proves the reduction. �

We now show how pcells-timed-nca-sequential can be reduced to p|S|-lcs.
Before we plunge into the details, let us first outline the basic idea: Each cell of a
cellular automaton “behaves somewhat like a layered reachability problem” in the
sense that if we create t many copies of the state set, we must now find out whether
the automaton will arrive in the accepting state starting from the initial state. Thus, as
in the proof of Theorem 4.9, we use four strings to represent a cell of the automaton,
giving a total of 4k strings, where k is the number of cells. However, the cells do not act
independently; rather each step of a cell depends on the states of the two neighboring
cells. Fortunately, this “control” effect can be modelled by adding an “edge’s” symbol
(actually, a transition’s symbol) not only to the four strings of the cell, but also to the
four strings of predecessor and successor cells at the right position (namely “before the
required state symbol”). In the following, we explain the idea just outlined in detail.

Let (C, q1 . . . qk) and a time bound be given as input for the reduction. We may
assume that the time bound is of the form t · k (because our reduction in the proof of
the above claim yielded such a bound) and, thus, the steps of C can be grouped into
t many “major steps,” each consisting of k sequential steps (“minor steps”) taken by
cells 1 to k in that order. By modifying C , if necessary, we may assume that C makes
exactly t · k sequential steps when it accepts the input and, otherwise, makes strictly
less steps. We use s to denote a major step number.

Construction of the Strings. We map (C, q1 . . . qk) to 4k strings s1
1 , s1

2 , s1
3 , s1

4 , …,
sk

1 , sk
2 , sk

3 , sk
4 and ask whether they have a common subsequence of length t · k. Each

group of four strings is set up similarly to the four strings from the proof of Theorem 4.9:
si

1 and si
2 model the states (vertices) the i th cell has just before odd major steps s; and

si
3 and si

4 model the states the cell has before even major steps s.
Consider cell i and its four strings si

1 to si
4. Recall that in Theorem 4.9 we con-

ceptually added the vertices of the first layer in opposite orders to si
1 and si

2, although
in reality these vertices were not part of the final strings and were added to make it
easier to explain where the actual symbols (the edges) were placed in the strings. In our
setting, the role of the vertices on the first layer is taken by the states Q = {q1, . . . , qn}
of the automaton C tagged by the major step number 1. Thus, si

1 starts (conceptually)
with (q1, 1) . . . (qn, 1) and si

2 starts with (qn, 1) . . . (q1, 1). Next come tagged versions
of the states just before the third major step, so si

1 continues (q1, 3) . . . (qn, 3) and si
2
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with (qn, 3) . . . (q1, 3). We continue in this way for all odd major steps. For even major
steps, we add analogous strings to si

3 and si
4.

Continuing the idea from Theorem 4.9, we now add “edges” to the strings. However,
instead of an edge from one vertex so another, the transition relation of a cellular
automaton contain 4-tuples f = ( fleft, fold, fright, fnew) ∈ Q4 of states, which allows
a cell to switch to state fnew when it was in state fold and its left neighbor was in state
fleft and the right neighbor was in state fright. Recall that in Theorem 4.9, for each
e from some vertex a on an odd layer to a vertex b, we added the symbol e after a
in the first two strings and before b in the last two strings. In a similar way, for the
cellular automaton for each 4-tuple f we add new “symbols” ( f, s, i) consisting of a
transition, a major step number, and a cell index i to the strings. This symbol is added
at several places to the strings (we assume that s is odd; for even s exchange the roles
of the first two and the last two strings everywhere); sometimes even more than once.
The rules are as follows:

1. Iterate over all ( f, s, i) in some order and insert ( f, s, i) directly after ( fold, s) in
si

1.
2. Next, again iterate over all ( f, s, i), but now in reverse order, and insert ( f, s, i)

after ( fold, s) in si
2.

Note that using the two opposite orderings, as in Theorem 4.9, for each ( fold, s) at
most one ( f, s, i) can be part of a common subsequence.

3. Next, iterate over all ( f, s, i) in some order and insert ( f, s, i) directly before
( fnew, s + 1) in si

3.
4. Next, iterate over all ( f, s, i) in reverse order and insert ( f, s, i) directly before
( fnew, s + 1) in si

4.

The effect of the above is to make the automaton switch to fnew in cell i after major
step s. Now, we still need to ensure that this switch is only possible when the preceding
cell has already switched to state fleft after step s and the next cell is in state fright
before step s.

5. Next, iterate over all ( f, s, i) and insert ( f, s, i) directly after ( fleft, s + 1) in si−1
3

and si−1
4 . For i = 1, no symbols are added.

6. Next, iterate over all ( f, s, i) and insert ( f, s, i) directly after ( fright, s) in si+1
1

and si+1
2 . For i = k, no symbols are added.

Note that since the last two steps are applied later, the added symbols are “nearer” to
the state symbols than the symbols added in the first two steps. In particular, a common
subsequence can contain first a symbol added in step 6 added after some (q, s + 1),
then a symbol added after (q, s) in step 5, and then symbols added before or after
(q, s) in one of the first four steps.

The last rule ensures that when a tuple ( f, s, i) is not mentioned for a string by one
of the first six rules, we can always make it part of a common subsequence:

7. Finally, iterate over the 4k strings. For each such string si
j , consider the set X of

all ( f, s, i) that are not present in si
j . Add all symbols of X in some fixed order tk

times after each letter of si
j .
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As the last step of the construction of the strings, in order to model the initial
configuration q1 . . . qk of the automaton, for each i ∈ {1, . . . , k} in si

1 to si
4 we remove

all symbols before (qi , 1).

Correctness: First Direction. Having finished the description of the reduction, we now
argue that it is correct. For this, first assume that the automaton, does, indeed, accept
the input sequence q1 . . . qk . By assumption, this means that the automaton will make
t · k sequential steps. Assume that in major step s and minor step i the automaton
makes transition f s,i , meaning that the i th cell switches its state from f s,i

old to f s,i
new.

We claim that ( f 1,1, 1, 1)( f 1,2, 1, 2) . . . ( f 1,k, 1, k)( f 2,1, 2, 1) . . . ( f t,k, t, k) is a
common subsequence of all si

j . To see this, consider the first symbol ( f 1,1, 1, 1). It

will be present both in s1
1 and s1

2 since for the first transition the first cell was exactly in

state q1 = f 1,1
old and, thus, this symbol followed (q1, 1) in the construction and was not

removed in the last construction step. The symbol is also present in s1
3 and s1

4 , namely
right before the (“virtual”) pair ( fnew, 2). The symbol will also be present in s2

1 and

s2
2 since q2 = f 1,1

right and we added ( f 1,1, 1, 1) to both s2
1 and s2

2 in step 6. Finally, the
symbol will be present in all other strings near the beginning because of step 7.

Next, consider the second symbol ( f 1,2, 1, 2), which corresponds to the second step
the automaton has taken. Here, the second cell switches from f 1,2

old to f 1,2
new because the

first cell has already switched to f 1,2
left = f 1,1

new during the first transition and the third

cell is still in f 1,2
right = q3. Now, observe that in all strings ( f 1,2, 1, 2) does, indeed,

come after ( f 1,1, 1, 1): For s2
1 to s2

4 this is because of steps 1 to 4. For s1
3 to s1

4 , we
have, indeed, ( f 1,2, 1, 2) following ( f 1,1, 1, 1) by step 5. For s3

1 to s3
2 , the symbol

( f 1,2, 1, 2) is present by step 6. All other strings contain the symbol by step 7 near
the beginning.

Continuing in a similar fashion with the other symbols, we see that the sequence
( f 1,1, 1, 1) . . . ( f t,k, t, k) is a common subsequence of all strings and it clearly has
length t · k.

Correctness: Second Direction. It remains to argue that if there is a common sub-
sequence of the strings of length t · k, then the automaton accepts the input. First
observe that the common subsequence must be of the form ( f 1,1, 1, 1)( f 1,2, 1, 2) . . .
( f 1,k, 1, k) ( f 2,1, 2, 1) . . . ( f t,k, t, k). The reason is that for any two symbols ( f, s, i)
and ( f ′, s′, i ′) if s < s′ then the first of these symbols always comes before the second
in all strings. The same is true if s = s′ and i < i ′. Finally, for s = s′ and i = i ′, the
opposite orderings for the symbols in steps 1 and 2 (and, also, in steps 3 and 4) ensure
that at most one of the two symbols can be present in a common subsequence. Thus,
the indices stored in the symbols of the common subsequence must strictly increase
and, since the length of the sequence is t · k, all possible indices must be present.

We must now argue that the f s,i form a sequence of transitions that make the
automaton accept. For this, we perform an induction on the length of an initial segment
up to some symbol ( f s0,i0 , s0, i0) of the common sequence. For each cell index i , let
f i = ( f s,i , s, i) be the last symbol in the segment whose last component is i . Let
qi = f i

new or, if the segment is so short that there is no f i , let qi be the initial state qi .
The inductive claim is that after (s0 − 1) · k + i0 steps of the automaton, the cells
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will have reached exactly states q1, . . . , qk . Clearly, this is correct at the start. For the
inductive step, the crucial observation is that steps 1 to 6 guarantee that for i0 < k the
only symbol ( f s0,i0+1, s0, i0+1) that can follow ( f s0,i0 , s0, i0) in a common sequence
is one that makes that cell i0 + 1 change its state according to the transition f s0,i0+1.
For i0 = k, we similarly have that only symbols ( f s0+1,1, s0 + 1, 1) can follow that
make cell 1 change its state according to the transition f s0+1,1. �

4.3 The Complexity of the Feedback Vertex Set Problem

We conclude this section on parameterized time–space classes with new insights into
the feedback vertex set problem:

Problem 4.12 (p-fvs and p-dfvs)

Instance: An undirected (p-fvs) or directed (p-dfvs) graph G = (V, E) and a
natural number k.

Parameter: k.
Question: Is there a set F ⊆ V with |F | = k such that G[V − F] is acyclic?

The undirected version was shown to be fixed-parameter tractable (lie in para-P)
in 1993 by Bodlaender [1]. The fixed-parameter tractability of the directed version
remained an open problem until Chen et al. [8] presented a para-P-algorithm in 2008.
So far, these apparently different complexities could only be “felt” by looking at the
complexity of the proofs.

Using the machinery of the present paper, we can actually draw a dividing line
between the two problems. A first, easy observation is that p-fvs ∈ paraWL holds: A
W-machine can guess a feedback set F using O(k log n) bits and then test whether the
remaining graph is acyclic—which is easily decidable in logarithmic space, see [17].
A somewhat deeper result is the below theorem that p-fvs ∈ D[ f poly, f log] holds.
Note that we do not prove completeness of p-fvs for this class; in fact, in view of
p-fvs ∈ paraWL, completeness seems unlikely since it would imply a class collapse.

Apart from being a “nice” observation that p-fvs lies in a small subclass of para-P,
we crucially also show that p-dfvs does not lie in this class, unless L = NL.

Theorem 4.13 p-fvs ∈ D[ f poly, f log].
Proof We adapt the algorithm of [10] for showing the fixed-parameter tractability of
p-fvs in such a way that it uses little space, while still being “quick enough.” One way
that does not work is to cycle through all possible

(|V |
k

)
possible ways of choosing a

feedback vertex set and then checking whether the remainder of the graph is acyclic.
We have just enough space to store each choice and to perform the test, but would
need Ω(nk) time, which we are not allowed.

Let G = (V, E) be an input graph and let k be the parameter. Let n = |V |. We
first test whether G is acyclic (this can be done in logarithmic space) and accept, if
so. Otherwise, we test whether G has a feedback vertex set of size 1 (again, this can
be done in logarithmic space) and accept if k ≥ 1. In the following, we may assume
that the smallest feedback vertex set has size 2 and k ≥ 2.
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Our objective will be to identify vertices v1, v2, … that we can safely assume to be
present in some minimal feedback vertex set. We will store these vertices in O(k log n)
bits, which is permissible for the kind of machine we are looking for. In the following,
whenever we refer to “G” we actually mean “G with the already chosen vertices
removed.” Note that for a logspace machine, “removing” the vertices actually means
that we just “ignore” them whenever we iterate over the vertices of G during the later
computations.

The first step is to make sure that all vertices of the graph have degree at least 3, so
that we can apply a useful lemma, as we will discuss later. For this, we first need to get
rid of all vertices of degree less than 2 and we need to do this “recursively” without
using extra memory. The trick is to remove all vertices whose connected component
is either a tree or becomes a tree when a single edge is removed somewhere in the
graph. Clearly, this can be tested for all vertices in logarithmic space and we can
(conceptually) remove all these vertices simultaneously, resulting in a graph in which
all vertices have degree at least 2. Next, we (conceptually) “compress” all paths along
vertices of degree 2 into single edges; that is, we remove all vertices of degree 2 from
the graph and connect all vertices by an edge that were connected by such paths. Note
that, as always in the context of logspace computations, we not actually “write down”
the reduced graph, but rather recompute its bits whenever needed.

The result of “contracting” the degree-2-vertex paths of G will be a new graph that
may have self-loops and also multiple edges between vertices. If there is a self-loop
at a vertex v, we know that there is some minimal feedback vertex set containing v.
We add v to the list of already chosen vertices and restart. Similarly, if there are two
edges between two vertices u and v, we know that at least one of them must be in
some minimal feedback vertex set. At this point, the computation branches in two
subcomputations, one in which we choose u and one in which we choose v. This
results in a standard search tree as one often encounters in fixed-parameter algorithms
with a branching width of 2 and a depth of at most k. In particular, these branchings
will multiply the total runtime by at most a factor of 2k .

The tricky case arises when the graph has a minimum degree of 3, but does not
contain self-loops or multi-edges. In this case, we can use the following fact [10]: If
an undirected graph has minimum degree 3 and a feedback vertex set of size k, then
it has girth at most 2k. (The girth of a graph is the length of the smallest cycle.) Now,
suppose we had a way of identifying such a smallest cycle. Then at least one of the 2k
vertices would have to be present in some minimum feedback vertex set. This would
allow us to branch into 2k subcomputations, in each of which we try out one of the
vertices as the next vertex vi that we store in our list, resulting in a search tree of size
(2k)k . This would result in a total runtime of (2k)knO(1) since all other computations
only need polynomial time (and logarithmic space).

In the classical proof that p-fvs ∈ para-P the argument now continues as follows:
In order to find the cycle of length 2k (which we know must exists), we iterate over
all vertices v. Starting form v, we do a breadth-first search for a distance up to k and
mark the reached vertices. We stop the search whenever we rereach an already marked
vertex because, then, we have found two different paths of length at most k from v to
another vertex and, thus, a cycle of length at most 2k. Note that for every vertex v on
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a cycle of length at most 2k this search must succeed, so we will find a near-minimal
cycle.

It remains to argue that the search can be implemented also by our machine, which
may only use space O(k log n). The machine can easily iterate over all vertices v, but
it can not each time mark the visited vertices (since the degree of the vertices is not
bounded, the number of to-be-marked vertices may be arbitrarily large). Instead, we
do the following:

We use two nested depth-first search loops. In the outer loop, for increasing depth
d = 1, 2, . . . , k, we visit all vertices u at distance at most d using a stack of size
O(d log n) to keep track of the path from v to the currently visited vertex. In an inner
loop, which we run for each vertex u at distance d visited by the outer loop, we also
do a depth-first search up to depth d using another stack of size O(d log n). We stop
both loops when the path of inner loop and the path of the outer loop both lead to the
same vertex v, but the paths differ. In this case, we have found a cycle of length at
most 2k. Also note that the algorithm is guaranteed to find such a cycle since when v
lies on a cycle of length at most 2d, the outer loop will, at some point, go to a vertex
u using a different path from the one used in the inner loop.

The algorithm just sketched may look suspiciously like taking time O(nk) because
iterating in a depth-first manner over a graph with n vertices up to a depth k may
normally take time up to O(nk) (just think of a clique). However, in our case the time
bound is actually O(n5): Since we break the loops whenever we have identified a
vertex that can be reached in two different ways, we know that until the loops break,
there is always a unique path from v to all visited vertices u. In particular, before the
break, for each v up to d − 1, the outer loop (and hence also the inner loop) will make
at most n steps and for the last d it will hence make at most n2 steps. Since there
are n possible start vertices and since we have two nested loops, we get a runtime of
O(n · n2 · n2). �

In contrast to the above, we have the following:

Theorem 4.14 1. p-dfvs ∈ D[ f poly, f log] implies L = NL.
2. p-dfvs ∈ paraWL if, and only if, L = NL.

Proof We first show that the parameterized problem p0-unreach, the complement
of the reachability problem where we ask whether there does not exist a path from
a given vertex s to another vertex t in a directed graph parameterized by the trivial
parameterization, reduces to p-dfvs. The reduction works in two steps: The first
step takes the n-vertex input graph and makes it acyclic by producing n copies if it,
conceptually arranging them as n layers from left to right, and drawing edges between
consecutive layers from left to right in the same way as they are present in the original
graph. The second step inserts an edge from t’s copy in the last layer to s’s copy in
the first layer. The resulting directed graph remains acyclic (has a feedback vertex set
of size 0) exactly if there is no path from s to t in the input graph.

Assume that p-dfvs ∈ D[ f poly, f log] holds. Then we also have p0-unreach
∈ D[ f poly, f log]. However, since the latter problem is parameterized in the “trivial
way,” an algorithm needing f (κ(x)) · O(log |x |) space actually needs only O(log |x |)
space, which proves that the NL-complete unreachability problem lies in L.
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Next, assume that p-dfvs ∈ paraWL. Similar to the argument just given, observe
that the f (κ(x))·O(log |x |) bits “guessed” by a W-machine are actually just O(log |x |)
bits and, thus, again, unreachability can be decided in deterministic logarithmic space.
For the other direction, if L = NL, we have p-dfvs ∈ paraWL since a W-machine
can just guess a feedback vertex set of size k and then verify the acyclicity of the
remaining graph in NL = L. �

5 Conclusion

Our purpose in the present paper was to show that the study of parameterized space and
circuit classes helps in better understanding the complexity of natural parameterized
problems. For a number of natural problems, whose exact complexity was previously
unclear, we have presented classes for which they are complete under weak reductions.

Bounded nondeterminism plays a key role in parameterized complexity theory,
lying at the heart of the definition of important classes like W[P], but also of W[1].
In the present paper we introduced a “W-operator” that cannot only be applied to P,
yielding paraWP, but also to classes like NL or NC1. We showed that “union versions”
of problems complete for P,NL, and L tend to be complete for paraWP, paraWNL,
and paraWL. Several important problems studied in parameterized complexity turn
out to be union problems, including p-weighted-circuit-sat and p-weighted-sat,
and we observed that the latter problem is complete for paraWNC1. For the associa-
tive generability problem p-agen, which is also a union problem, we established its
paraWNL-completeness. An interesting open problem is determining the complexity
of the “universal” version of agen, where the question is whether all size-k subsets
of the universe are generators. Possibly, this problem is complete for paraW∀NL.

We presented a number of problems that are complete for the time–space classes
D[ f poly, f log] and N[ f poly, f log], the most prominent being the longest com-
mon subsequence problem. We shied away from presenting complete problems for
the classes D[n f , f poly] and N[n f , f poly]because in their definition we need restric-
tions like “the machine may make at most nk steps where k is the parameter.” Such
artificial parameterizations have been studied, though: In [14, Theorem 2.25] Flum
and Grohe show that “p-exp-dtm-halt” is complete for XP. Adding a unary upper
bound on the number of tape cells that the machine may use to the problem defini-
tion yields a problem easily seen to be complete for D[n f , f poly]. Finding a natural
problem complete for the latter class is, however, an open problem.

We demonstrated how the introduced classes can also shed a light on the complexity
of problems that are not necessarily complete for them. We showed that the feedback
vertex set problem lies both in D[ f poly, f log] and paraWL while the directed version
lies in neither, unless L = NL. It remains an open problem to identify a parameterized
space class for which the feedback vertex set problem is actually complete.
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