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Abstract In this paper we investigate the colorful components framework, motivated
by applications emerging from comparative genomics. The general goal is to remove a
collection of edges fromanundirected vertex-colored graphG such that in the resulting
graph G ′ all the connected components are colorful (i.e., any two vertices of the same
color belong to different connected components). We wantG ′ to optimize an objective
function, the selection of this function being specific to each problem in the framework.
We analyze three objective functions, and thus, three different problems, which are
believed to be relevant for the biological applications: minimizing the number of
singleton vertices, maximizing the number of edges in the transitive closure, and
minimizing the number of connected components. Our main result is a polynomial-
time algorithm for the first problem. This result disproves the conjecture of Zheng et
al. that the problem is N P-hard (assuming P �= N P). Then, we show that the second
problem is APX -hard, thus proving and strengthening the conjecture of Zheng et al.
that the problem is N P-hard. Finally, we show that the third problem does not admit
polynomial-time approximation within a factor of |V |1/14−ε for any ε > 0, assuming
P �= N P (or within a factor of |V |1/2−ε , assuming Z PP �= N P).
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1 Introduction

In this paper we consider the following framework.
Colorful components framework: Given a simple, undirected graph G =

(V, E) and a coloring σ : V → C of the vertices with colors from a given set
C , remove a collection of edges E ′ ⊆ E from the graph such that each connected
component in G ′ = (V, E\E ′) is a colorful component (i.e., it does not contain two
identically colored vertices). We want the resulting graph G ′ to be optimal according
to some fixed optimization measure.

We consider three optimization measures and, respectively, three different prob-
lems: Minimum Singleton Vertices (MSV), Maximum Edges in Transitive Closure
(MEC), andMinimum Colorful Components (MCC). We now introduce the optimiza-
tion measures for all these problems.

Problem 1 (Minimum singleton vertices) The goal is to minimize the number of
connected components of G ′ that consist of one vertex.

Problem 2 (Maximumedges in transitive closure) The goal is tomaximize the number
of edges in the transitive closure of G ′.

If a graph consists of k connected components, each containing, respectively
a1, a2, . . . , ak vertices, the number of edges in the transitive closure equals

k∑

i=1

ai · (ai − 1)

2
.

Problem 3 (Minimum colorful components) The goal is to minimize the number of
connected components in G ′.

The first two problems have been introduced in [12], while the third one is newly
introduced in this paper.

Motivation The colorful components framework is motivated by applications origi-
nating from comparative genomics [10,12], which is a fundamental branch of bioin-
formatics that studies the relationship of the genome structure between different bio-
logical species. Research performed in this field can help scientists to improve the
understanding of the structure and the functions of human genes and, consequently,
find treatments for many diseases [8].

As pointed out in [10,12], one of the key problems in this area, the multiple align-
ment of gene orders, can be captured as a graph theoretical problem, using the colorful
components framework. We refer the reader to [12] for an overview of the connection
between the multiple alignment of gene orders and the graph theoretic framework
considered, and for a discussion about the biological motivation of two particular
problems we consider, MSV and MEC.

Related work We now discuss the collection of known problems which fit into the
colorful components framework.
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We start with a problem named either Colorful Components [4,5] or Minimum
Orthogonal Partition [7,12], since this problem has received the most attention so far.
In this problem the objective function is to minimize the number of edges removed
from G to obtain the graph G ′ in which all the components are colorful. Bruckner et
al. show [5] that the problem is N P-hard for three or more colors and they study fixed-
parameter algorithms for the problem. Their N P-hardness reduction can be modified
slightly (starting the reduction from a version of 3SAT when each variable occurs
only O(1) times, instead of from the general 3SAT) to show the APX-hardness of the
problem. Zheng et al. [12] and Bruckner et al. [4] study heuristic approaches for the
problem, and He et al. [7] present an approximation algorithm for some special case of
the problem. As the general problem is a special case of the minimummulti-multiway
cut, it admits a O(log |C |) approximation algorithm [2].

Other objective functions have been proposed, with the hope that some of them are
both tractable and biologically meaningful. The MSV and the MEC problems have
been introduced by Zheng et al. [12], who presented heuristic algorithms for the prob-
lems, without giving any worst-case approximation guarantee. They also conjectured
both problems to be NP-hard.

Tremblay-Savard and Swenson [11] consider a Maximum Orthogonal Edge Cover
Problem (MAX-OREC), which is a dual problem to MSV. There, the goal is to cover
a maximum number of vertices of a graph using vertex-disjoint, non-singleton con-
nected colorful subgraphs. In [11], a 2/3-approximation algorithm for MAX-OREC
is presented. Although an approximation algorithm forMAX-OREC does not yield an
approximation algorithm for MSV, an optimal solution for MSV gives also an optimal
solution for MAX-OREC.

We are not aware of any other results concerning the MSV and MEC problems, or
of any previous research on the MCC problem.

Our results Our main result is a polynomial-time exact algorithm for the MSV prob-
lem, presented in Sect. 2. This disproves the conjecture of Zheng et al. [12] that the
problem is N P-hard (assuming P �= N P). Our algorithm maintains a feasible solu-
tion G ′ = (V, E ′) for the MSV problem, starting with an edgeless graph G ′ = (V,∅).
Then, in each step G ′ is modified by applying to it a carefully chosen alternating path
p, starting at a singleton vertex. The alternating path consists of the edges of G, and
its every second edge is in G ′. Applying p to G ′ means that the edges from p which
are not in G ′ are added to G ′, and at the same time the edges of p which are in G ′ are
removed from G ′. The algorithm ensures that at each step G ′ is a feasible solution to
the problem, and satisfies an invariant that all connected components in G ′ are either
singletons, edges or stars. In the analysis we show that when the algorithm does not
find any new alternating path, the number of singleton components in G ′ matches the
lower bound presented in Sect. 2.1.

In Sect. 3 we study the MEC problem and we show that the problem is N P-hard
and APX -hard when the number of colors in the graph is at least 4. This proves the
conjecture of Zheng et al. [12]. We show the result via a reduction from the version of
the MAX-3SAT problem where each variable appears at most some constant number
of times in the formula (see [1], Section 8.4).
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Finally, in Sect. 4 we consider the MCC problem, which is introduced for the first
time in this paper. We prove that MCC does not admit polynomial-time approximation
within a factor of |V |1/14−ε , for any ε > 0, unless P = N P (or within a factor of
|V |1/2−ε , unless Z PP = N P), even if each vertex color appears at most two times.
We show the inapproximability result via a reduction fromMinimum Clique Partition
which is equivalent to Minimum Graph Coloring [9].

2 A Polynomial-Time Exact Algorithm for MSV

In this section we present a polynomial-time algorithm MSVexact which finds an
optimal solution for the MSV problem. First, in Sect. 2.1 we show a lower bound on
the number of singleton vertices in any feasible solution for the problem. Then, in
Sect. 2.2 we describe the algorithm, with its key procedure presented in Sect. 2.3. The
analysis of the algorithm is made in Sect. 2.4.

2.1 Lower Bound

Let a graph G = (V, E), together with a coloring σ : V → C , be an instance of the
MSV problem. For any color c ∈ C let Vc ⊆ V denote the set of vertices of color c.
For any set of vertices V ′ ⊆ V we denote by N (V ′) the set of neighbors of V ′ in G,
i.e. N (V ′) = {v ∈ V \ V ′ : ∃v′ ∈ V ′s.t. (v′, v) ∈ E}. For any set of colors C ′ ⊆ C
and set of vertices V ′ ⊆ V we denote by NC ′(V ′) the set of neighbors of V ′ in G
which have colors in C ′, i.e. NC ′(V ′) = {v ∈ N (V ′) : σ(v) ∈ C ′}.
Lemma 1 For any color c ∈ C let

sc = max
V ′⊆Vc

(|V ′| − |NC\{c}(V ′)|) .

Then in any feasible solution for MSV there are at least sc singletons of color c.

Proof Let G ′ = (V, E ′), where E ′ ⊆ E , be a feasible solution for G. Fix a color c
for which sc > 0 and let V ′ ⊆ Vc be the subset maximizing the value of sc. (Notice
that sc depends only on the graph G, and not on G ′.) For each vertex v′ ∈ V ′ which
is not a singleton in G ′ we pick an arbitrary neighbor n(v′) in G ′. We have n(v′) ∈
NC\{c}(V ′). As any two vertices from V ′ belong to different connected components
in G ′, the vertices n(v′) are pairwise different. The number of vertices of V ′ which
are not singletons in G ′ is therefore at most |NC\{c}(V ′)|. The number of singletons
amongst vertices from V ′, and also the number of singletons of color c, is at least
|V ′| − |NC\{c}(V ′)| = sc. 	

Corollary 1 Any feasible solution for MSV has at least

∑
c∈C sc singletons.

2.2 Idea of the Algorithm

We now present an algorithm MSVexact which finds an optimal solution for MSV.
The input consists of a simple, undirected graph G = (V, E), together with a coloring
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Input: A simple, undirected graph G = (V, E), a coloring σ : V → C
Output: A subgraph of G minimizing the number of singleton vertices, and in which each

connected component is colorful
1 G′ := (V, ∅)

2 foreach c ∈ C do
3 while p=Alternating_Path(G, σ,G′, c) is a path do
4 apply p to G′
5 end
6 end

Algorithm 1: MSVexact(G, σ )

σ : V → C . The algorithm maintains a feasible solution G ′ = (V, E ′) (i.e., G ′ is
a subgraph of the input graph G, and every connected component of G ′ is a colorful
component), starting with an edgeless graph G ′ = (V,∅). In each step the graph G ′
is modified by applying to it a carefully chosen alternating path p. The alternating
path consists of the edges of G, and its every second edge is in G ′. Applying p to G ′
means that the edges from p which are not in G ′ are added to G ′, and at the same time
the edges of p which are in G ′ are removed from G ′. See Algorithm 1 for the formal
description of the algorithm.

The path p is chosen in such a way, that applying it to G ′ decreases the number of
singleton vertices of color c, without increasing the number of singleton vertices of
other colors. Additionally, at each step of the algorithm G ′ satisfies the invariant that
each connected component of G ′ is a singleton, an edge, or a star (where a star is a
tree of diameter 2, in particular it has at least 3 vertices).

Wewill show thatwhen the algorithmstops, i.e.,when it does not find any alternating
path p which can be applied to G ′ to decrease the number of singletons of any color,
the number of singleton vertices in G ′ matches the lower bound from Corollary 1.

2.3 Finding an Alternating Path

LetG ′ = (V, E ′) be a feasible solution for an instance (G = (V, E), σ ) ofMSV, such
that each connected component ofG ′ is a singleton vertex, an edge, or a star. Let c ∈ C
be an arbitrary color, and let Sc ⊆ V be the set of all singletons of color c in G ′. We
describe a procedure Alternating_Path(G, σ,G ′, c) which outputs an alternating
path p for G ′ in G. In the following section we prove that p satisfies all properties
outlined in Sect. 2.2, and that when no path is found, the number of singletons of color
c in G ′ matches the lower bound from Lemma 1.

The idea behind the path construction is as follows. We want to find a path starting
in some singleton vertex of color c, connecting each vertex of color c with a vertex of
color different than c using an edge e ∈ E \ E ′; and each vertex of color different than
c with a vertex of color c using an edge e ∈ E ′ (see Fig. 1). We end the construction
of the path when the current endpoint v /∈ Vc of the path belongs to a connected
component of G ′ to which we can attach an additional vertex of color c (possibly
while splitting the component into two parts). Such a case occurs when v is a leaf of a
star (which will result in removing v from the star-component and connecting it with
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(a) (b) (c)

Fig. 1 a A subgraph G′ (solid edges) of G (dashed and solid edges) in which every connected component
is colorful and it is a singleton, an edge or a star. The vertices are colored with white, gray and black. b An
alternating path in G′ starting in a singleton vertex of color gray. The path ends after reaching a connected
component of G′ which does not contain a gray vertex. c The graph after applying the alternating path.
Each colorful component satisfies the conditions stated in a, and the number of singletons of color gray
decreased

the vertex of color c), or when the connected component of v does not contain color
c. Then applying the alternating path to the graph G ′ results in “switching” vertices of
color c between different connected components of G ′, and removing one singleton
of color c, as the start point of the path will not be a singleton in the new graph.
The algorithm performs a BFS for the path satisfying the required conditions, starting
with the collection of all singleton vertices of color c. See Procedure 2 for a formal
description.

Procedure Alternating_Path constructs the path p as follows. It keeps a set
of vertices V ′ of color c, initially setting V ′ := Sc (line 1). The set V ′ will grow
over time. Each loop of the algorithm (lines 4 – 18) considers the set N ′ of new
neighbors in G of the vertices from V ′ (i.e., the neighbors of V ′ which have not been

Input: A simple, undirected graph G = (V, E), a coloring σ : V → C , a feasible subgraph
G′ = (V, E ′) of G, and a color c ∈ C

Output: A path p or no_path_found
1 V ′ := Sc
2 N ′ := NC\{c}(V ′) // Neighbors in G
3 ∀v ∈ N ′pred(v) := anyv′ ∈ Scs.t.(v, v′) ∈ E
4 while |N ′| > 0 do
5 if ∃v ∈ N ′ : v is a leaf of a star in G′ then
6 p :=Path_From(v)
7 return p ∪ {(v, v′)} s.t. (v, v′) ∈ E ′
8 end
9 if ∃v ∈ N ′ : the connected component of v in G′ has no color c then

10 p :=Path_From(v)
11 return p
12 end
13 V ′′ := {v′′ ∈ Vc \ V ′ : ∃v ∈ N ′ s.t. (v, v′′) ∈ E ′}
14 ∀v′′ ∈ V ′′ pred(v′′) := anyv ∈ N ′s.t.(v, v′′) ∈ E ′
15 V ′ := V ′ ∪ V ′′
16 N ′ := NC\{c}(V ′) \ NC\{c}(V ′ \ V ′′)
17 ∀v ∈ N ′pred(v) := anyv′ ∈ V ′′s.t.(v, v′) ∈ E
18 end
19 return no_path_found

Procedure 2: Alternating_Path(G, σ,G ′, c)
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Input: A vertex v ∈ V
Output: An alternating path starting in Sc and ending in v

1 if pred(v) ∈ Sc then
2 return (pred(v),v)
3 end
4 return Path_From(pred(v)) ∪ {(pred(v),v)}

Procedure 3: Path_From(v)

considered in the previous loops), see lines 2 and 16, in search for vertices which can
yield an end of the path (see lines 5, 9). If no such vertex is found, the set V ′ will be
further increased to include the neighbors of N ′ in G ′ of color c (line 13, 15). The
process continues until an appropriate vertex v is found in N ′ (lines 5, 9), and then the
algorithm returns the alternating path from a singleton of color c to v (see Procedure
Path_From(v) invoked in lines 6, 10), or the set N ′ becomes empty, in which case
the answer no_path_found is returned (line 19).

2.4 Analysis

Lemma 2 When the procedureAlternating_Path(G, σ,G ′, c) invoked for a graph
G ′ which is a feasible solution for MSV, and s.t. each connected component of G ′ is a
singleton, an edge or a star returns no_path_found, then |Sc| = sc.

Proof If the procedureAlternating_Path returns no_path_found, then it returns
in line 19, i.e., after checking the condition “|N ′| > 0” (line 4) failed. We show that
just before the procedure ends, the following inequality holds:

|V ′| − |NC\{c}(V ′)| ≥ |Sc| .

If the loop in line 4 has never been entered,we have V ′ = Sc, NC\{c}(V ′) = N ′ = ∅,
and therefore |V ′| − |NC\{c}(V ′)| = |Sc|.

Each vertex v ∈ NC\{c}(V ′) has been inserted into N ′ at some step of the procedure
(line 2 or 16), and subsequently processed in line 5 and 9. As that did not cause the
algorithm to return in line 7 or 11, we must have:

– v is not a leaf of a star in G ′, and
– the connected component containing v contains a vertex colored with c.

As each connected component in G ′ is a singleton, an edge or a star, and the color of
v is different from c, we have two possibilities:

– the connected component of G ′ containing v is an edge, and the other endpoint of
the edge has color c, or

– the connected component of G ′ containing v is a star containing a vertex of color
c, and v is the center of the star.

As any connected component ofG ′ has at most one vertex v satisfying one of the above
conditions, any two elements of NC\{c}(V ′) are in different connected components of
G ′. From the conditions abovewe also know that each vertex v ∈ NC\{c}(V ′) has some
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neighbor n(v) of color c in G ′. Each vertex n(v) has been added to the set V ′ when
the element v has been processed by the procedure (line 13, 15). As any two elements
v1, v2 ∈ NC\{c}(V ′) are in different connected components of G ′, any two vertices
n(v1), n(v2) are different. As the elements from Sc are singletons in G ′, and therefore
cannot be equal to any n(v), and as Sc ⊆ V ′, we get |V ′| ≥ |Sc| + |NC\{c}(V ′)|. We
obtain the desired inequality.

We have shown that for the set of vertices V ′ we have |V ′| − |NC\{c}(V ′)| ≥ |Sc|.
As V ′ ⊆ Vc, we get |Sc| ≤ maxV ′′⊆Vc (|V ′′| − |NC\{c}(V ′′)|) = sc. As sc is a lower
bound on |Sc| (see Lemma 1), we get |Sc| = sc. 	

Lemma 3 Let G ′ = (V, E ′) be a feasible solution for MSV s.t. each connected
component of G ′ is a singleton, an edge or a star. Let p be a path returned by
Alternating_Path(G, σ,G ′, c), and let G ′′ be the result of applying p on G ′. Then:
(a) p is an alternating path for G ′ in G,
(b) the number of singleton vertices of color c in G ′′ is smaller than in G ′; the number

of singleton vertices of any other color does not increase,
(c) each connected component of G ′′ is a colorful component, and it is a singleton,

an edge or a star.

Proof a) First let us show that the procedure Path_From(v) always returns a finite
path, and such that the first vertex of p is in Sc. Any vertex which is assigned to the set
N ′ in line 2 is assigned a predecessor from the set Sc (line 3). Any vertex v assigned
to N ′ later, i.e., in some i th iteration of the loop (line 16), is assigned a predecessor
pred(v) ∈ V ′, and such that pred(v) entered V ′ in the same i th iteration of the loop.
Any vertex v ∈ V ′ \ Sc enters the set V ′ in some i th iteration of the loop (line 13, 15),
and then is assigned a predecessor pred(v) ∈ N ′, such that pred(v) has been assigned
to N ′ in the previous iteration of the loop (or in line 2, in case i = 1). This shows that
the procedure Path_From(v) does not loop, and it will eventually (i.e., after at most
|V | steps) find a beginning of a path, which is a vertex from the set Sc.

We will now show that every odd vertex of the path p is in Vc (except possibly of
the last vertex of p, if it is the vertex v′ appended to the path directly by the procedure
in line 7), and every even vertex is in V \ Vc. We already know that the first vertex of
the path is in Sc ⊆ Vc. As all vertices from the set V ′ have color c, and all vertices
from the set N ′ have color different from c, a predecessor of a vertex from V ′ is in N ′
(line 14) and a predecessor of a vertex from N ′ is in V ′ (line 17), the claim follows.
Notice that if the procedure reaches line 7, then there are no color requirements for
the last vertex v′ appended at the end of the path directly, and not using the procedure
path_from (line 7).

We will now show that every even edge of the path p is in E ′, and every odd edge
of p is in E \ E ′, which will prove that p is an alternating path. Let us consider even
edges first. An even edge is an edge between some odd vertex v and a preceding vertex
w. There can be two cases, and for both of them we obtain that the edge is in E ′:
– v is a vertex appended to the path directly by the procedure in line 7. Then the
edge connecting v with the preceding vertex w is in E ′ (see line 7).

– v has been appended to the path by the procedure path_from. Then w =pred(v)
and, from the paragraph above, v ∈ Vc. A vertex from Vc is connected with its
predecessor via an edge in E ′ (see line 14).
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Now let us consider odd edges. As the path p starts in a singleton vertex of G ′,
the first (odd) edge of the path is not in E ′. Let (v′, v) be any other odd edge of p.
We have v′ = pred(v), v′ ∈ Vc. Let w = pred(v′). From the reasoning above we
have (w, v′) ∈ E ′, as an even edge of p. As w has been processed by the procedure
in an earlier loop than v (see the first paragraph of the proof), and processing w did
not cause the procedure to return in line 7 or 11, one of the following holds (as each
connected component of G ′ is a singleton, an edge or a star):

– the connected component of G ′ containing w is an edge, i.e., it is exactly the edge
(w, v′), or

– the connected component of G ′ containingw is a star with centerw, in which case
v′ is a leaf of this star.

In both cases v′ has degree one is G ′, either as an endpoint of an edge (w, v′), or as a
leaf of a star with center w, and so (v′, v) /∈ E ′.

Notice that from the reasoning above we obtain that for every even edge (w, v′)
of the path (i.e., for an edge of p which is in E ′) which is not the last edge of p, the
connected component of G ′ containing (w, v′) is either an edge or a star with center
w (where w =pred(v′)). We will use that later in the proof of c).

See Fig. 2 for an example of an alternating path p for G ′ in G, and the result of
applying this path.

b) From a) we know that the path p applied to G ′ to construct G ′′ is an alternating
path, i.e., after applying it the degree of each vertex other than the endpoints of the
path does not change. Therefore the only vertices of the graph which could become
or stop being singletons are the endpoints of p.

The path starts with a vertex v ∈ Sc (see a)), which is a singleton in G ′, and
therefore the first edge of p is not in E ′. The first edge of p is added to the graph and

(a)

(b)

Fig. 2 a An alternating path p (gray edges) for a subgraph G′ = (V, E ′) (solid edges) of G = (V, E)

(dashed and solid edges). The white vertices denote the vertices of the currently considered color c. The
path starts with an edge of E \ E ′, and alternates between the edges of E and E \ E ′. Every second vertex
of the path, except of the last vertex, is white. b Graph G′′ (solid edges) obtained from G′ by applying the
alternating path p. All connected components of G′′ are colorful, and are singletons, edges or stars
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v stops being a singleton vertex. That decreases the number of singleton vertices of
color c by one.

We now have to consider the last vertex of the path. Again, if the last edge is not
in E ′ then the endpoint of the path gets one additional edge incident with it, and so
it cannot become a singleton. The only possibility when the last edge of p is in E ′ is
when the path has an even number of edges (as it is an alternating path starting with an
edge in E \ E ′), i.e., it ends with an odd vertex. The procedure path_from is always
invoked for a vertex v ∈ N ′ (line 6,10) and the path returned by it has an odd number
of edges (see point a), where we show that such path alternates between vertices from
V ′ and N ′). The only possibility that the path has an even number of edges is when
it is generated in line 7, when an additional edge (v, v′) is appended at the end of the
path. Then the edge (v, v′) is removed from G ′′ and the degree of v′ drops by one.
However, from line 5 we get that then v is a leaf of a star, and as (v, v′) ∈ E ′ we have
that v′ is a center of a star. The degree of v′ in G ′ is at least 2, so v′ does not become
a singleton after applying the path p to G ′.

c) Every connected component of G ′ is colorful and is either a singleton, an edge
or a path. Removing edges does not destroy these properties, therefore it is enough to
consider components of G ′′ which contain some newly added edge. Let (u, v) ∈ E
be an edge added to G ′′, i.e., an edge of p which is in E \ E ′. From the discussion
in a) we know that (u, v) is then an odd edge of the path, and it connects an even
vertex v ∈ V \ Vc with its predecessor u =pred(v)∈ Vc. It is enough to show that the
connected component of G ′′ containing the edge (u, v) is either an edge or a star with
center v, and that it is colorful.

First, we will show that the degree of u in G ′′ is one. If u is the start of the path,
it has degree 0 in G ′ and therefore degree 1 in G ′′. Otherwise, from the reasoning in
a) we know that the connected component of G ′ which contains u is either an edge
(pred(u), u) or a star with a center pred(u). In both cases the edge (pred(u), u) ∈ p
and it will be removed by applying p. The vertex u will have degree 1 in G ′′.

We will now consider the following cases. If the construction of the path p finished
after processing the vertex v in line 5 (see Fig. 2a when (u, v) is the last dashed line
of the path), then v is a leaf of a star in G ′, and the edge (v,w) connecting v with the
center of the star w is in p. Then the edge (v,w) will be removed and the connected
component of G ′′ containing the edge (u, v) will consist only of the edge (u, v). The
component is colorful.

If the construction of the path p finished after processing the vertex v in line 9, then
the connected component of G ′ containing v does not contain color c and it is either a
singleton, an edge or a star with center v. The path p ends at v. In all the cases, after
adding the edge (u, v) the component containing v will remain colorful and it will be
an edge or a star.

If the construction of the path p continued after processing the vertex v (see Fig. 2a
when (u, v) is the first or the second dashed line of the path), the connected component
of G ′ containing v is an edge or a star with center v, and the component contains a
vertexw ∈ Vc. Thenw is the successor of v on p, and the edge (v,w)will be removed
from the graphwhen applying p. The connected component containing the edge (u, v)

will be an edge or a star with center v, and it will remain colorful. 	
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Using Lemmas 2 and 3 we can show the main result of this section.

Theorem 1 The algorithm MSVexact(G, σ ) finds an optimal solution for the MSV
problem in time O(|V | · |E |).
Proof The algorithm MSVexact(G, σ ) starts by choosing a feasible solution G ′ =
(V,∅) for the problem, in which every connected component is a singleton. Lemma 3
implies that after each step of executing the procedureAlternating_Path(G, σ,G ′,
c), the new graphG ′′ obtained is a feasible solution which is a collection of singletons,
edges and stars (Lemma 3c). As in each step where finding an alternating path has
been successful the number of singleton vertices of the currently processed color
c ∈ C decreases, and for other colors it does not increase (Lemma 3b), after O(|V |)
steps the algorithm does not find any more alternating paths. Thus, as each color
c ∈ C has been processed by the algorithm, from Lemma 2 for each color c ∈ C
the number of singleton vertices of color c equals sc and the resulting graph G ′ is
an optimal solution to the MSV problem (see Corollary 1). As each execution of the
procedure Alternating_Path takes O(|E |) time, the running time of the algorithm
MSVexact(G, σ ) is O(|V | · |E |). 	


3 Hardness of MEC

In this sectionwe prove the N P-hardness and the APX -hardness of theMECproblem,
for |C | ≥ 4. We show our result via a reduction fromMAX-3SAT(β), a version of the
MAX-3SAT problem where each variable appears at most β times in the formula. For
β = 3 the problem is APX -hard (see [1], Section 8.4).

3.1 Reduction from MAX-3SAT (β)

Given an instance of the MAX-3SAT(β) problem, i.e., a 3-CNF formula φ with m
clauses and n variables, where each variable appears at most β times, we construct an
instance of the MEC problem. Our instance is a vertex colored graph G = (V, E),
where the vertices are colored with colors from a four-element set {a, b, c, v}. An
example of the reduction is illustrated in Fig. 3.
First we describe the set of vertices V .

1. We add to V a set of vertices c1, . . . , cm , each colored with color c, where vertex
ci corresponds to the i th clause of the formula.

2. For a variable x , let nx be the number of occurrences of the literals x and ¬x
in φ. For each variable x , we add to V : nx vertices of color a (denoted by
ax1 , ax2 , . . . , axnx ), nx vertices of color b (denoted by bx1 , b

x
2 , . . . , b

x
nx ), and 2nx

vertices of color v (denoted by vx1 , vx2 , . . . , vxnx and wx
1 , w

x
2 , . . . , w

x
nx ). Intuitively,

the vertices vxi and wx
i are associated with x and ¬x , respectively.

We now show how to construct the set of edges E .

1. For each variable x , we construct a cycle of length 4nx by adding to E the collection
of edges (axi , vxi ), (vxi , bxi ), (b

x
i , w

x
i ) and (wx

i , a
x
(i mod nx )+1) for i = 1, . . . , nx .
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vx1 wx
1 vx2 wx

2

ax1 bx1 ax2 bx2

vz1

wz
1

az1

bz1 vw1

ww
1

aw1

bw1

vy1 wy
1 vy2 wy

2

ay1 by1 ay2 by2

c1 c2

Fig. 3 An instanceG of theMEC problem corresponding to the 3SAT formula (x∨ y∨ z)∧(¬x∨ y∨¬w)

(both black and gray edges). The subgraph G′′ consisting of all vertices and only black edges represents a
solution forG corresponding to the following assignment: f (x) = f (y) = f (w) = TRUE, f (z) = FALSE

2. For each clause we add to E three edges, where each edge connects the vertex ci
representing the clause with a vertex representing one literal of ci . More formally,
if a literal x (¬x) occurs in the i th clause, we add to E an edge connecting ci with
some vertex vxj (w

x
j , respectively). We do this operation in such a way, that each

vertex vxj and wx
j representing a literal is incident with at most one clause-vertex

ci . Notice that since we have more vertices vxj and wx
j than actual literals, some

of the vertices vxj and wx
j will not be connected with any clause-vertex ci .

3.2 Analysis of the Reduction

Let φ be a MAX-3SAT(β) formula on m clauses, and G = (V, E) a vertex-colored
graph obtained from φ by our reduction. Let G ′ = (V, E ′) be a subgraph of G which
is an optimal solution for the MEC problem on G.

Lemma 4 If the formula φ is satisfiable, then the transitive closure of G ′ has at least
12m edges.1

Proof We construct a graph G ′′ = (V, E ′′) which is a subgraph of G in the following
way (see Fig. 3). Fix a satisfying assignment f for φ. For each clause, represented by
a vertex ci , we choose arbitrarily a literal x (¬x) which is satisfied by the assignment
f . Let vxj (w

x
j , respectively) be the vertex corresponding to the chosen literal which

is incident with ci in G. We add the edge (ci , vxj ) ((ci , wx
j ), respectively) to G ′′.

1 It can be proven that in this case the transitive closure of G′ has exactly 12m edges, but that is not needed
in the later part of the reasoning.
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Additionally, each vertex vxj andwx
j associatedwith a literal satisfied by f is connected

in G ′′ with the neighboring vertices of color a and b.
It is straightforward to check that G ′′ is a feasible solution for the MEC problem

(i.e., each connected component of G ′′ is colorful), and that G ′′ has m connected
components containing 4 vertices, 2m connected components containing 3 vertices,
and 3m singletons. The transitive closure of G ′′ has 6 · m + 3 · 2m = 12m edges. As
G ′ is an optimal solution for the MEC problem in G, the transitive closure of G ′ has
at least as many edges as the transitive closure of G ′′. 	

Lemma 5 If any assignment can satisfy at most a (1 − ε) fraction of the m clauses
of the formula φ, then the transitive closure of G ′ has at most 12m − Θ(ε)m edges.

Proof To prove the lemma it is enough to show that if the transitive closure of G ′ has
more than 12m − εm edges, we can extract from G ′ an assignment f for φ which
satisfies at least a 1 − O(ε) fraction of clauses. For the rest of the proof we assume
that the transitive closure of G ′ has more than 12m − εm edges.

First, observe that each connected component of G ′ has size at most 4, since there
are only 4 colors of the vertices in the graph. Also, notice that there are in total m
vertices of color c, 6m vertices of color v (as the total number of literals in the formula
φ equals 3m), 3m vertices of color a, and 3m vertices of color b.

We now show that G ′ has at least (1 − ε)m connected components consisting of
4 vertices. Let α1, α2, α3 and α4 denote the number of connected components of G ′
of size 1, 2, 3 and 4, respectively. The number of edges in the transitive closure of G ′
equals OPT = 6α4 + 3α3 + α2. As G ′ has 7m vertices of color other than v, exactly
3 such vertices are in each component of size 4, at least two such vertices are in each
component of size 3, and at least one such vertex is in each component of size 2, we
get: α3 ≤ (7m − 3α4)/2 and α2 ≤ (7m − 3α4 − 2α3). We get

OPT = 6α4 + 3α3 + α2 ≤ 7m + 3α4 + α3 ≤ 10.5m + 1.5α4 .

As we assumed OPT > 12m − εm, we get that α4 ≥ (1 − ε)m.
Let us now consider a subgraph G ′

x of G ′ corresponding to the variable x . G ′
x

consists of vertices axi , bxi , v
x
i and wx

i for 1 = 1, . . . , nx , and additionally of the
clause-vertices c j which are incident in G ′ with any of the vertices vxi and wx

i . As
each clause-vertex has degree at most 1 in G ′ (as all the neighbors of a clause-vertex
have the same color v), it belongs to at most one subgraphG ′

x . Notice that each edge of
G ′ is contained in some subgraph G ′

x , and therefore the edges of the transitive closure
of G ′ are the union of the edges of the transitive closures of G ′

x .
We say that G ′

x is inconsistent if there are two vertices vxi and wx
j in G ′

x (where
possibly i = j), such that both are incident with some clause-vertices ci ′ and c j ′ in
G ′. We now show that G ′ has at most εm inconsistent subgraphs G ′

x . Let αx ≤ nx
be the number of clause-vertices ci which belong to G ′

x . Apart from these αx vertices
of color c, G ′

x has also nx vertices of colors a and b, and 2nx vertices of color v. It
is straightforward to verify that the transitive closure of G ′

x has at most 3αx + 3nx
edges (see Fig. 4a for an example, where this bound is obtained). Moreover, if G ′

x is
inconsistent, its transitive closure has atmost 3αx+3nx−1 edges (seeFig. 4b). IfG ′ has
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vx1 wx
1 vx2 wx

2 vx3 wx
3

ax1 bx1 ax2 bx2 ax3 bx3

c1 c2

vx1 wx
1 vx2 wx

2 vx3 wx
3

ax1 bx1 ax2 bx2 ax3 bx3

c1 c2

(a)

(b)

Fig. 4 a Graph G′
x maximizing the possible number of edges (3αx + 3nx ) in the transitive closure. b An

inconsistent graph G′
x cannot achieve 3αx + 3nx edges in the transitive closure

more than εm inconsistent subgraphsG ′
x , we have OPT ≤ ∑

x 3α
x +∑

x 3nx −εm =
12m − εm, which contradicts our assumption.

Wenowextract fromG ′ an assignment f forφwhich satisfies at least a (1−ε(β+1))
fraction of clauses. We proceed as follows. From our previous reasoning we know that
G ′ has at least (1 − ε)m connected components consisting of 4 vertices, and that
at most εm subgraphs G ′

x are inconsistent. We fix the assignment f as follows. For
each variable x , if G ′

x is inconsistent or if G
′
x does not contain any vertices ci , we set

f (x) arbitrarily. Otherwise, either all vertices ci from the component G ′
x are incident

with vertices vxj (corresponding to the literal x), or they are all incident with vertices
wx

j (corresponding to the literal ¬x). If the first case holds, we set f (x) to TRUE.
Otherwise, we set f (x) to FALSE.

We now show a lower bound on the number of clauses satisfied by f . At least
(1−ε)m clause-vertices ci are incident with some variable-vertex (as there are at least
(1 − ε)m connected components of size 4). Each variable occurs at most β = O(1)
times in φ, and at most εm subgraphs G ′

x are inconsistent, and therefore at most εβm
clause-vertices are incident with variables from an inconsistent subgraph. Therefore
at least m(1 − ε(β + 1)) clauses are satisfied by the assignment f . 	

Theorem 2 TheMaximumEdges in TransitiveClosure (MEC) problem is APX-hard,
even for graphs with only four colors.

Proof Let φ be a MAX-3SAT(β) formula on m clauses, and G = (V, E) a vertex-
colored graph obtained from φ by our reduction. Let G ′ = (V, E ′) be a subgraph
of G which is an optimal solution for the MEC problem on G. From Lemma 4 we
know, that if the formula φ is satisfiable, then the transitive closure of G ′ has at least
12m edges. From Lemma 5 we know, that if any assignment can satisfy at most a
(1 − ε) fraction of the m clauses of φ, then the transitive closure of G ′ has at most
12m − Θ(ε)m edges.
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As the MAX − 3SAT (β) problem is APX -hard [1], and in particular for some
constant ε > 0 it is NP-hard to distinguish between the instances ofMAX−3SAT (β)

where all clauses are satisfiable, and the instances where at most a (1− ε) fraction of
the clauses can be satisfied, we obtain that MEC is APX -hard. 	


4 Hardness of MCC

In this sectionweprove that theMCCproblemdoes not admit polynomial-time approx-
imation within a factor of |V |1/14−ε , for any ε > 0, unless P = N P , or within a factor
of |V |1/2−ε , unless Z PP = N P . The results hold even if each vertex color appears
at most two times in the input graph. We prove our results via a reduction from the
Minimum Clique Partition problem.
Minimum Clique Partition: Given a simple, undirected graph G = (V, E), find a
partition of V into a minimum number of subsets V1, . . . , Vk such that the subgraph
of G induced by each set of vertices Vi is a complete graph.

The Minimum Clique Partition problem is equivalent to Minimum Graph Color-
ing [9], and therefore it cannot be approximated in polynomial time within a factor
of |V |1/7−ε for any ε > 0 [3], unless P = N P , or within a factor of |V |1−ε , unless
Z PP = N P [6].

4.1 Reduction from Minimum Clique Partition

Let G = (V, E) be an instance of the Minimum Clique Partition problem. We create
an instance of theMCCproblem, i.e., a vertex colored graphG ′ = (V ′, E ′), as follows.
The reduction is illustrated in Fig. 5.

1. The vertex set V ′ = V ′
b ∪ V ′

a consists of two parts. The set V ′
b = V is the set

of all vertices in G, each colored with a distinct color. We term these vertices
base vertices. The set V ′

a has two vertices, uv and vu , for each pair of vertices
u, v ∈ V such that (u, v) /∈ E . Both vertices uv and vu have the same color, which
is different from other colors in the graph. We refer to the vertices from V ′

a as
additional vertices. We emphasize that each color appears at most two times in
G ′.

a

b c
d

e a

b c
d

e

ac ad ae

bd be ca

da

db

ea eb

Fig. 5 Creating an instance of the MCC problem (right) from an instance of the Minimum Clique Partition
(left). Base vertices and edges are drawn in black, and the additional ones in gray. An optimal solution for
both problems is obtained by removing an edge (b, c)
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2. The set of edges E ′ = E ′
b ∪ E ′

a consists of two parts. First, E ′
b = E is the set

of edges in G, which we term base edges. The set E ′
a has two edges, (uv, u) and

(vu, v), for each pair of vertices u, v ∈ V such that (u, v) /∈ E (i.e., each additional
vertex uv is connected with a base vertex u). We refer to the edges from E ′

a as
additional edges.

4.2 Analysis of the Reduction

Let G = (V, E) be an instance of the Minimum Clique Partition problem, and G ′ =
(V ′, E ′) the corresponding instance of MCC, obtained by our reduction. We first
compare the costs of the optimal solution for both problem instances, which leads to
the main theorem of this section.

Lemma 6 If there is a partition of G into k cliques, then the optimal solution for the
MCC problem for G ′ has cost at most k.

Proof Let G be a graph which can be partitioned into k cliques. We have to show that
there is a collection of edges E ′′ ⊆ E ′ in G ′, such that after removing E ′′ from G ′
we obtain a graph consisting of at most k colorful components. The set of edges E ′′ is
exactly the set of base edges that have been removed from G to obtain the collection
of k cliques.

As we do not remove any additional edges of G ′ (i.e., the edges from the set V ′
a),

the resulting graph consists of k connected components. The only pairs of vertices
sharing the same color are pairs uv, vu such that u, v ∈ V and (u, v) /∈ E . Then u
and v must be in different connected components of the clique partition, and so u
and v (and therefore also uv and vu) are in different connected components of the
constructed graph. Each connected component of the constructed graph is colorful. 	

Lemma 7 If the optimal solution for the MCC problem for G ′ has cost k, then there
exists a partition of G into k cliques.

Proof Let G ′ be a graph which can be transformed, by removing a collection of edges
E ′′ ⊆ E ′, into a graph consisting of k connected colorful components. We show that
we can modify E ′′, without increasing the number of connected components in the
resulting graph and while ensuring that each connected component stays colorful,
so that E ′′ does not contain any edge from the set of additional edges E ′

a . Then, by
removing E ′′ from G, we obtain a valid partition of G into at most k cliques: For any
pair of vertices u, v ∈ V such that (u, v) /∈ E , there are two vertices uv and vu in
G ′, sharing the same color and connected with u and v, respectively, via additional
edges. As no additional edges are contained in E ′′ and each connected component
of (V ′, E ′ \ E ′′) is colorful, u and v must be in different connected components of
(V ′, E ′ \ E ′′). In the partition of G the vertices u and v are then also in different
connected components, and so we obtain a partitioning of G into at most k cliques.

We now show how to modify E ′′. For each additional edge e = (u, uv) ∈ E ′
a

which is in E ′′ we perform the following operation. First, we remove e from E ′′.
That decreases the number of connected components by one, but might result in an
infeasible solution. However, the only pair of vertices of the same color which are in
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the same connected component of (V ′, E ′ \ E ′′) can now be uv and vu . Denote by C
the connected component of (V ′, E ′ \ E ′′) containing uv and vu , and therefore also
u and v. We now find a minimum cut separating u from v in C , and add the edges of
the cut to E ′′. That results in splitting C into exactly two connected components, and
each of the two components is colorful.

We perform the above operation for each additional edge e = (u, uv) ∈ E ′′, and at
the end we obtain a set E ′′ satisfying the needed conditions. By removing E ′′ from G
we get a partition of G into at most k cliques. 	

Theorem 3 The minimum colorful components (MCC) problem does not admit
polynomial-time approximation within a factor of n1/14−ε , for any ε > 0, unless
P = N P, or within a factor of n1/2−ε , for any ε > 0, unless Z PP = N P, where n
is the number of vertices in the input graph.

Proof Let G = (V, E) be an instance of the Minimum Clique Partition problem,
and G ′ = (V ′, E ′) the corresponding instance of the MCC problem, obtained by our
reduction. From Lemmas 6 and 7 we obtain that the cost of an optimal solution for the
MCC problem for G ′ is the same as the cost of an optimal solution for the Minimum
Clique Partition problem for G. We know that the Minimum Clique Partition problem
is hard to approximate within a factor of |V |1/7−ε , unless P = N P , or within a factor
of |V |1−ε , unless Z PP = N P , were |V | is the number of vertices in the graph G.
Since G ′ has |V ′| ≤ |V |2 vertices, our theorem follows. 	


5 Open Problems

The APX -hardness result for the MEC problem requires that the input graphs are
colored with at least four colors. A natural question is, thus, to settle the complexity
of the problem for three colors (as for the case of two colors MEC is easily solvable in
polynomial time, using a maximummatching algorithm). Another open question is to
design approximation algorithms for the MEC problem or to strengthen the hardness
of approximation result.

From the biological perspective it is interesting to analyze how our MSV algorithm
behaves on real data. Finally, we mention that an intriguing and challenging task is to
find problems in the colorful components framework that admit practical algorithms
and are also meaningful for the biological applications.
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