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Abstract We investigate whether an n-vertex instance (G, k) of Treewidth, ask-
ing whether the graph G has treewidth at most k, can efficiently be made sparse
without changing its answer. By giving a special form of or-cross-composition, we
prove that this is unlikely: if there is an ε > 0 and a polynomial-time algorithm that
reduces n-vertex Treewidth instances to equivalent instances, of an arbitrary prob-
lem, with O(n2−ε) bits, then NP ⊆ coNP/poly and the polynomial hierarchy collapses
to its third level. Our sparsification lower bound has implications for structural para-
meterizations of Treewidth: parameterizations by measures � that do not exceed
the number of vertices cannot have kernels with O(�2−ε) bits for any ε > 0, unless
NP ⊆ coNP/poly. Motivated by the question of determining the optimal kernel size for
Treewidth parameterized by the size of a vertex cover X , we improve the O(|X |3)-
vertex kernel from Bodlaender et al. (SIDMA 2013) to a kernel with O(|X |2) vertices.
Our improved kernel is based on the novel notion of treewidth-invariant set. We use
the q-expansion lemma of Fomin et al. (STACS 2011) to find such sets efficiently in
graphs whose order is superquadratic in their vertex cover number. We believe that
our new reduction rule will be useful in practice.
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1 Introduction

The task of preprocessing inputs to computational problems to make them less dense,
called sparsification, has been studied intensively due to its theoretical and practi-
cal importance. Sparsification, and more generally, preprocessing, is a vital step in
speeding up resource-demanding computations in practical settings. In the context
of theoretical analysis, the sparsification lemma due to Impagliazzo et al. [28] has
proven to be an important asset for studying subexponential-time algorithms. The
work of Dell and van Melkebeek [17] on sparsification for Satisfiability has led
to important advances in the area of kernelization lower bounds. They proved that
for all ε > 0 and q ≥ 3, assuming NP �⊆ coNP/poly, there is no polynomial-time
algorithm that maps an instance x of q-CNF-SAT on n variables to an equivalent
instance x ′ on O(nq−ε) bits—not even if x ′ is an instance of a different problem.

This paper deals with sparsification for the task of building minimum-width tree
decompositions of graphs, or, in the setting of decision problems, of determining
whether the treewidth of a graph G is bounded by a given integer k. Preprocessing
procedures for Treewidth have been studied in applied [9,10,20] and theoretical
settings [3,7]. A team including the current author obtained [7] a polynomial-time
algorithm that takes an instance (G, k) of Treewidth as input, and produces in poly-
nomial time a graph G ′ such that tw(G) ≤ k if and only if tw(G ′) ≤ k, with the
guarantee that |V (G ′)| ∈ O(vc3) (vc denotes the size of a smallest vertex cover of
the input graph). A similar algorithm was given that reduces the number of vertices
of G ′ to O(fvs4

), where fvs is the size of a smallest feedback vertex set in G. Hence
polynomial-time data reduction can compress Treewidth instances to a number of
vertices polynomial in their vertex cover (respectively feedback vertex) number. On the
other hand, the natural parameterization of Treewidth is trivially and-compositional,
and therefore does not admit a polynomial kernel unless NP ⊆ coNP/poly [3,19].
These results give an indication of how far the order of a Treewidth instance can
efficiently be reduced in terms of various measures of its complexity. However, they
do not tell us anything about the question of sparsification: can we efficiently make a
Treewidth instance less dense, without changing its answer?

1.1 Our Results

Our first goal in this paper is to determine whether nontrivial sparsification is possible
for Treewidth instances. As a simple graph G on n vertices can be encoded in n2

bits through its adjacency matrix, Treewidth instances consisting of a graph G and
integer k in the range [1 . . . n] can be encoded in O(n2) bits. We prove that it is unlikely
that this trivial sparsification scheme for Treewidth can be improved significantly: if
there is a polynomial-time algorithm that reduces Treewidth instances on n vertices
to equivalent instances of an arbitrary problem, with O(n2−ε) bits, for some ε > 0, then
NP ⊆ coNP/poly and the polynomial hierarchy collapses [34]. We prove this result
by giving a particularly efficient form of or-cross-composition [8]. We embed the or
of t distinct n-vertex instances of an NP-complete graph problem into a Treewidth
instance with O(n

√
t) vertices. The construction is a combination of three ingredients.
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We carefully inspect the properties of Arnborg et al.’s [1] NP-completeness proof for
Treewidth to obtain an NP-complete source problem called Cobipartite Graph
Elimination that is amenable to composition. Its instances have a restricted form that
ensures that good solutions to the composed Treewidth instance cannot be obtained
by combining partial solutions to two different inputs. Then, like Dell and Marx [16],
we use the layout of a 2 × √

t table to embed t instances into a graph on O(n
√

t)
vertices. For each way of choosing a cell in the top and bottom row, we embed one
instance into the edge set induced by the vertices representing the two cells. Finally, we
use ideas employed by Bodlaender et al. [6] in the superpolynomial lower bound for
Treewidth parameterized by the vertex-deletion distance to a clique: we compose
the input instances of Cobipartite Graph Elimination into a cobipartite graph
to let the resulting Treewidth instance express a logical or, rather than an and,
allowing us to apply the or-cross-composition framework. Our proof combines these
three ingredients with an intricate analysis of the behavior of elimination orders on the
constructed instance. As the treewidth of the constructed cobipartite graph equals its
pathwidth [31], the obtained sparsification lower bound for Treewidth also applies
to Pathwidth.

Our sparsification lower bound has immediate consequences for parameterizations
of Treewidth by graph parameters � that do not exceed the number of vertices,
such as the vertex cover number or the feedback vertex number. Our result shows the
impossibility of obtaining kernels of bitsize O(�2−ε) for such parameterized problems,
assuming NP �⊆ coNP/poly. The kernel for Treewidth parameterized by vertex cover
(Treewidth [vc]) obtained by Bodlaender et al. [7] contains O(vc3) vertices, and
therefore has bitsize Ω(vc4). Motivated by the impossibility of obtaining kernels
with O(vc2−ε) bits, and with the aim of developing new reduction rules that are useful
in practice, we further investigate kernelization for Treewidth [vc]. We give an
improved kernel based on the new notion of treewidth-invariant sets: independent sets
of vertices whose elimination from the graph has a predictable effect on its treewidth.
While finding such sets seems to be hard in general, we show that the q-expansion
lemma, previously employed by Thomassé [33] and Fomin et al. [24] (cf. [25]), can be
used to find them when the graph is large with respect to its vertex cover number. The
resulting kernel shrinks Treewidth instances to O(vc2) vertices, allowing them to be
encoded in O(vc3) bits. Thus we reduce the gap between the upper and lower bounds
on kernel sizes for Treewidth [vc]. Our new reduction rule for Treewidth [vc]
relates to the old rules like the crown-rule for k-Vertex Cover relates to the high-
degree Buss-rule [11]: by exploiting local optimality considerations, our reduction
rule does not need to know the value of k. The kernel can be obtained by computing
a maximum matching in a bipartite graph in a graph whose order is linear in the size
of the input, and the number of non-edges induced by the vertex cover from which
the process is initiated. Based on the fact that the parameter-independent reduction
algorithm is based on this well-understood matching subroutine, we expect that the
new reduction rule will be useful in practice. Consequently, we pay some attention to
implementation details and running time optimization in the exposition. As a byproduct
of the exploited insights into the structure of treewidth instances, we also obtain a new
bound on the order of minor-minimal treewidth obstructions in terms of their vertex
cover number.
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1.2 Related Work

While there is an abundance of superpolynomial kernel lower bounds, few superlinear
lower bounds are known for problems admitting polynomial kernels. There are results
for hitting set problems [17], packing problems [16,26], and for domination problems
on degenerate graphs [15]. There are a number of experimental results on preprocessing
for Treewidth [9,10,20]. Theoretical guarantees for preprocessing Treewidth [7]
and Pathwidth [6] have also been obtained.

1.3 Organization

In Sect. 2 we give preliminaries on parameterized complexity, kernel lower bounds,
graphs, and treewidth. In Sect. 3 we prove the sparsification lower bound for
Treewidth [n]. The improved kernel for Treewidth [vc] is developed in Sect. 4.

2 Preliminaries

2.1 Parameterized Complexity and Kernels

A parameterized problem Q is a subset of Σ∗ × N, where Σ is a finite alphabet. The
second component of a tuple (x, k) ∈ Σ∗ × N is called the parameter [18,23]. A
parameterized problem Q is (strongly uniformly) fixed-parameter tractable if there is
an algorithm that decides whether (x, k) ∈ Q that runs in time f (k)|x |O(1) for some
computable function f . The set {1, 2, . . . , n} is abbreviated as [n]. For a finite set X
and integer i we use

(X
i

)
to denote the collection of size-i subsets of X . The concept

of kernelization, that can be expressed in the language of parameterized complexity,
will be used to capture various forms of efficient preprocessing.

Definition 1 (Generalized kernelization) Let Q,Q′ ⊆ Σ∗ × N be parameterized
problems and let h : N → N be a computable function. A generalized kernelization
for Q into Q′ of size h(k) is an algorithm that, on input (x, k) ∈ Σ∗ × N, takes time
polynomial in |x | + k and outputs an instance (x ′, k′) such that:

– |x ′| and k′ are bounded by h(k).
– (x ′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernelization, or in short a kernel, for Q if Q′ = Q. It is a polynomial
(generalized) kernelization if h(k) is a polynomial.

2.2 Cross-Composition

To prove our sparsification lower bound, we use a variant of cross-composition tailored
towards lower bounds on the degree of the polynomial in a kernel size bound. It was
introduced in the journal version of the article on cross-composition [8].
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Definition 2 (Polynomial equivalence relation) An equivalence relation R on Σ∗ is
called a polynomial equivalence relation if the following conditions hold:

1. There is an algorithm that, given two strings x, y ∈ Σ∗, decides whether x and y
belong to the same equivalence class in time polynomial in |x | + |y|.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S
into a number of classes that is polynomially bounded in the size of the largest
element of S.

Definition 3 (Cross-composition) Let L ⊆ Σ∗ be a language, let R be a polyno-
mial equivalence relation on Σ∗, let Q ⊆ Σ∗ × N be a parameterized problem, and
let f : N → N be a function. An or-cross-composition of L into Q (with respect
to R) of cost f (t) is an algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L
belonging to the same equivalence class of R, takes time polynomial in

∑t
i=1 |xi | and

outputs an instance (y, k) ∈ Σ∗ × N such that:

– The parameter k is bounded by O( f (t) · (maxi |xi |)c), where c is some
constant independent of t .

– (y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L .

Theorem 1 ([8, Theorem 6]) Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗ × N be a
parameterized problem, and let d, ε be positive reals. If L is NP-hard under Karp
reductions, has an or-cross-composition into Q with cost f (t) = t1/d+o(1), where t
denotes the number of instances, and Q has a polynomial (generalized) kernelization
with size bound O(kd−ε), then NP ⊆ coNP/poly.

2.3 Graphs

All graphs we consider are finite, simple, and undirected. An undirected graph G
consists of a vertex set V (G) and an edge set E(G) ⊆ (V (G)

2

)
. The open neighborhood

of a vertex v in graph G is denoted NG(v), while its closed neighborhood is NG [v].
The open neighborhood of a set S ⊆ V (G) is NG(S) := ⋃

v∈S NG(v) \ S, while
the closed neighborhood is NG[S] := NG(S) ∪ S. The degree of a vertex v in G is
denoted by degG(v). If S ⊆ V (G) then G[S] denotes the subgraph of G induced by S.
We use G − S to denote the graph G[V (G) \ S] that results after deleting all vertices
of S and their incident edges from G. For a graph G, we denote its edge-complement
by G: this is the graph with vertex set V (G) and edge set

(V (G)
2

) \ E(G). A graph is
cobipartite if its edge-complement is bipartite. Equivalently, a graph G is cobipartite if
its vertex set can be partitioned into two sets X and Y , such that both G[X ] and G[Y ] are
cliques. A matching M in a graph G is a set of edges whose endpoints are all distinct.
The endpoints of the edges in M are saturated by the matching. For disjoint vertex
subsets A and B of a graph G, we say that A has a perfect matching into B if there is
a matching that saturates A ∪ B such that each edge in the matching has exactly one
endpoint in each set. If {u, v} is an edge in graph G, then contracting {u, v} into u is the
operation of adding edges between u and NG(v)\{u} while removing v. A graph H is
a minor of a graph G, if H can be obtained from a subgraph of G by edge contractions.
If, additionally, H is not isomorphic to G, then H is a proper minor of G. We say
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that an unordered pair {p, q} ∈ (V (G)
2

)
is a non-edge in graph G if {p, q} �∈ E(G).

A graph is subcubic if the degree of any of its vertices is at most three. The cutwidth
of an n-vertex graph G with respect to a permutation π : V (G) → [n] of its vertices
is defined as cutw(G, π) := maxi∈[n] |{{u, v} ∈ E(G) | π(u) ≤ i < π(v)}|. The
cutwidth of a graph is the minimum of cutw(G, π) over all permutations π of its
vertex set. It is easy to see that the cutwidth of a disconnected graph is the maximum
cutwidth of any of its connected components. The cutwidth of a graph does not exceed
the number of edges.

When analyzing the running time of algorithms on graphs, we assume that the input
graph is given by an adjacency-list representation. During the exposition we assume
familiarity with basic algorithmic procedures such as radix sort and merge sort. The
textbook by Cormen et al. [14] contains all the relevant background information.

2.4 Treewidth and Elimination Orders

While treewidth [2] is commonly defined in terms of tree decompositions, for our
purposes it is more convenient to work with an alternative characterization in terms of
elimination orders. Eliminating a vertex v in a graph G is the operation of removing v

while completing its open neighborhood into a clique, i.e., adding all missing edges
between neighbors of v. An elimination order of an n-vertex graph G is a permuta-
tion π : V (G) → [n] of its vertices. Given an elimination order π of G, we obtain a
series of graphs by consecutively eliminating π−1(1), . . . , π−1(n) from G. The cost
of eliminating a vertex v according to the order π , is the size of the closed neigh-
borhood of v at the moment it is eliminated. The cost of π on G, denoted cG(π), is
defined as the maximum cost over all vertices of G.

Theorem 2 ([2, Theorem 36]) The treewidth of a graph G is exactly one less than the
minimum cost of an elimination order for G.

Lemma 1 ([4, Lemma 4], cf. [29, Lemma 6.13]) Let G be a graph containing a
clique B ⊆ V (G), and let A := V (G) \ B. There is a minimum-cost elimination
order π∗ of G that eliminates all vertices of A before eliminating any vertex of B.

Following the notation employed by Arnborg et al. [1] in their NP-completeness proof,
we say that a block in a graph G is a maximal set of vertices with the same closed
neighborhood. An elimination order π for G is block-contiguous if for each block S ⊆
V (G), it eliminates the vertices of S contiguously. The following observation implies
that every graph has a block-contiguous minimum-cost elimination order.

Observation 1 Let G be a graph containing two adjacent vertices u, v such that
NG [u] ⊆ NG [v]. Let π be an elimination order of G that eliminates v before u, and
let the order π ′ be obtained by updating π such that it eliminates u just before v. Then
the cost of π ′ is not higher than the cost of π .
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3 Sparsification Lower Bound for Treewidth

In this section we give the sparsification lower bound for Treewidth. We phrase it
in terms of a kernelization lower bound for the parameterization by the number of
vertices, formally defined as follows.

Treewidth [n]
Input: An integer n, an n-vertex graph G, and an integer k.
Parameter: The number of vertices n.
Question: Is the treewidth of G at most k?

The remainder of this section is devoted to the proof of the following theorem.

Theorem 3 If Treewidth [n] admits a (generalized) kernel of size O(n2−ε), for
some ε > 0, then NP ⊆ coNP/poly.

We prove the theorem by giving a cross-composition of cost O(
√

t) of t instances
of an NP-hard problem into Treewidth [n]. We therefore first define a suitable
source problem for the composition in Sect. 3.1, give the construction of the com-
posed instance in Sect. 3.2, analyze its properties in Sect. 3.3, and finally put it all
together in Sect. 3.4.

3.1 The Source Problem

The sparsification lower bound for Treewidth will be established by cross-composing
the following problem into it.

Cobipartite Graph Elimination
Input: A cobipartite graph G with partite sets A and B, and a positive integer k,
such that the following holds: |A| = |B|, |A| is even, k <

|A|
2 , and A has a

perfect matching into B.
Question: Is there an elimination order for G of cost at most |A| + k?

The NP-completeness proof extends the completeness proof for Treewidth [1].

Lemma 2 Cobipartite Graph Elimination is NP-complete.

Proof Membership in NP is trivial. To establish completeness, we use the connec-
tion between treewidth and elimination orders. The instances created by the NP-
completeness proof for Treewidth due to Arnborg et al. [1] are close to satisfy-
ing the desired conditions. In Sect. 3 of their paper, Arnborg et al. [1] reduce the
Cutwidth problem to Treewidth. They show how to transform an n-vertex graph G
with maximum degree Δ into a cobipartite graph G ′ with partite sets A and B of
size (Δ + 1)n each, such that G has cutwidth at most k if and only if G ′ has treewidth
at most (Δ + 1)(n + 1) + k − 1 = |A| + Δ + k. By Theorem 2 the latter happens if
and only if G ′ has an elimination order of cost at most |A| + Δ + k + 1.

We briefly describe their construction to show that it results in a graph with a per-
fect matching between the sets A and B. Given a graph G of maximum degree Δ,
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the cobipartite graph G ′ is constructed as follows. Each vertex x ∈ V (G) is repre-
sented by Δ + 1 vertices in A, and Δ − degG(x) + 1 vertices in B. Let Ax (resp. Bx )
denote the set of vertices in A (resp. B) that represents x . Each edge e ∈ E(G)

is represented by two vertices in B; this set of vertices is denoted Be. All vertices
in Ax are adjacent to all vertices in Bx . All vertices in A are adjacent to both ver-
tices in Be if x is an endpoint of edge e. The set A is turned into a clique, as is the
set B. A perfect matching between the sets A and B may be obtained as follows.
For each x ∈ V (G), for each edge e incident on x in G, match one vertex in Ax

to a vertex in Be. Match the remaining (Δ + 1) − degG(x) = |Bx | vertices in Ax

to Bx .
Using this information we prove the NP-completeness of Cobipartite Graph

Elimination. We reduce from Cutwidth3 (cf. [6, §5]), the cutwidth problem on
subcubic graphs, which is known to be NP-complete [32, Corollary 2.10]. Given an
instance (G, k) of Cutwidth3, which asks whether the subcubic graph G has cutwidth
at most k, let n be the number of vertices in G. As the cutwidth of a graph does not
exceed its edge count, and a subcubic n-vertex graph has at most 3n edges, we may
output a constant-size yes-instance if k ≥ 3n. In the remainder we therefore have k <

3n. Form a new graph G∗ as the disjoint union of sufficiently many, say 20, copies
of G. The resulting graph G∗ has 20n vertices, and its maximum degree is Δ ≤ 3.
As the cutwidth of a graph is the maximum cutwidth of its connected components,
graph G∗ has cutwidth at most k if and only if (G, k) is a yes-instance. Now apply
the transformation by Arnborg et al. to the instance (G∗, k). It results in a cobipartite
graph G ′ with partite sets A′ and B ′ of size (Δ+1)20n, such that G ′ has an elimination
order of cost |A′|+Δ+ k +1 if and only if (G, k) is a yes-instance. The construction
ensures that G ′ has a perfect matching between A′ and B ′. Now put k′ := Δ+k +1 <

4 + 3n ≤ |A′|
2 . It is easy to see that |A′| is even. The resulting instance (G ′, A′, B ′, k′)

of Cobipartite Graph Elimination therefore satisfies all constraints. As G ′ has
an elimination order of cost at most |A′|+ k′ if and only if (G, k) has cutwidth at most
three, this completes the proof. �


3.2 The Construction

We start by defining an appropriate polynomial equivalence relation R as in Defi-
nition 2. Let all strings that do not encode valid instances of Cobipartite Graph
Elimination be equivalent under R. Let two valid instances of the problem be equiv-
alent if they agree on the sizes of the partite sets and on the value of k. This is easily
verified to be a polynomial equivalence relation.

Now we define an algorithm that combines a sequence of equivalent inputs into a
small output instance. As a constant-size no-instance is a valid output when the input
consists of solely malformed instances, in the remainder we assume that the inputs
are well-formed. If the number of input instances t is not a square (i.e.,

√
t is not

an integer) then we may duplicate some input instances to increase their number to
the nearest even power of two. This does not affect the value of the or of the inputs,
and increases the number of inputs by at most a factor four. If the cost of the cross-
composition is O(

√
t) with respect to the increased value of t , it will therefore also

be O(
√

t) with respect to the original value of t .
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We may therefore assume that the number of input instances t is a square, i.e., t = r2

for some integer r . An input instance can therefore be indexed by two integers in the
range [r ]. Accordingly, let the input consist of instances (Gi, j , Ai, j , Bi, j , ki, j ) of
Cobipartite Graph Elimination for i, j ∈ [r ], that are equivalent under R. Thus
the number of vertices is the same over all partite sets; let this be n = |Ai, j | = |Bi, j |
for all i, j ∈ [r ]. Similarly, let k be the common target value for all inputs. For each
partite set Ai, j and Bi, j in the input, label the vertices arbitrarily as a1

i, j , . . . , an
i, j

(respectively b1
i, j , . . . , bn

i, j ). We construct a cobipartite graph G ′ that expresses the or
of all the inputs, as follows.

1. For i ∈ [r ] make a vertex set A′
i containing n vertices â1

i , . . . , ân
i .

2. For i ∈ [r ] make a vertex set B ′
i containing n vertices b̂1

i , . . . , b̂n
i .

3. Turn
⋃

i∈[r ] A′
i into a clique. Turn

⋃
i∈[r ] B ′

i into a clique.
4. For each pair i, j with i, j ∈ [r ], we embed the adjacency of Gi, j into G ′ as

follows: for p, q ∈ [n] make an edge {â p
i , b̂q

j } if {a p
i, j , bq

i, j } ∈ E(Gi, j ).

It is easy to see that at this point in the construction, graph G ′ is cobipartite. For
any i, j ∈ [r ] the induced subgraph G ′[A′

i ∪ B ′
j ] is isomorphic to Gi, j by mapping â�

i

to a�
i, j and b̂�

j to b�
i, j . As Gi, j has a perfect matching between Ai, j and Bi, j by the

definition of Cobipartite Graph Elimination, this implies that G ′ has a perfect
matching between A′

i and B ′
j for all i, j ∈ [r ]. These properties will be maintained

during the remainder of the construction.

5. For each i ∈ [r ], add the following vertices to G ′:
– n checking vertices C ′

i = {c1
i , . . . , cn

i }, all adjacent to B ′
i .

– n dummy vertices D′
i = {d1

i , . . . , dn
i }, all adjacent to

⋃
j∈[r ] A′

j and to C ′
i .

– n
2 blanker vertices X ′

i = {x1
i , . . . , xn/2

i }, all adjacent to A′
i .

6. Turn
⋃

i∈[r ] A′
i ∪ C ′

i into a clique A′. Turn
⋃

i∈[r ] B ′
i ∪ D′

i ∪ X ′
i into a clique B ′.

The resulting graph G ′ is cobipartite with partite sets A′ and B ′. Define k′ := 3rn +
n
2 + k. Observe that |A′| = 2rn and that |B ′| = 2rn + rn

2 . Graph G ′ can easily be
constructed in time polynomial in the total size of the input instances. Refer to Fig. 1
for an example.

3.2.1 Intuition

Let us discuss the intuition behind the construction before proceeding to its formal
analysis. To create a composition, we have to relate elimination orders in G ′ to those for
input graphs Gi, j . All adjacency information of the input graphs Gi, j is present in G ′,
as G ′[A′

i ∪ B ′
j ] is isomorphic to Gi, j for i, j ∈ [r ]. As A′ is a clique in G ′, by Lemma 1

there is a minimum-cost elimination order for G ′ that starts by eliminating all of B ′.
But when eliminating vertices of some B ′

j∗ from G ′, they interact simultaneously with
all sets A′

i (i ∈ [r ]), so the cost of those eliminations is not directly related to the cost
of elimination orders of a particular instance Gi∗, j∗ . We therefore want to ensure that
low-cost elimination orders for G ′ first “blank out” the adjacency of B ′ to all but one
set A′

i∗ , so that the cost of afterward eliminating B ′
j∗ tells us something about the cost
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Fig. 1 Illustration of the construction for a composition of t = r2 = 42 input instances whose partite sets
all have n = 6 vertices each, into the structure of a 2 × 4 table. Vertices that are drawn within the same box
form a clique. When two boxes are joined by a thick line, the graph contains all possible edges between the
two groups of vertices. The vertices in the gray boxes form the clique A′ in the cobipartite graph G′. The
vertices in white boxes form the clique B′. Adjacencies between sets D′· and

⋃
i∈[r ] A′

i are only visualized
for D′

4. For all i, j ∈ [r ] the set A′
i has a perfect matching into B′

j . Matching edges are drawn with dashed

lines. Each vertex in a set A′· or B′· has many neighbors in the opposite clique. The corresponding edges are
only drawn for vertex b̂2

3 in the set B′
3. For each i, j ∈ [r ] the subgraph induced by A′

i ∪ B′
j is isomorphic

to the input graph Gi, j

of eliminating G ′
i∗, j∗ . We can effectively blank out the adjacency between B ′ and A′

i
by establishing complete adjacency between the two sets, which has the effect that the
resulting graph forgets the original adjacency. We therefore need earlier eliminations to
make B ′ adjacent to all vertices of

⋃
i∈[r ]\{i∗} A′

i . These adjacencies will be created by
eliminating the blanker vertices. For an index i ∈ [r ], vertices in X ′

i are adjacent to A′
i

and all of B ′. Hence eliminating a vertex in X ′
i causes all possible edges to be added

between A′
i and B ′, thereby blanking out the adjacency of B ′ to A′

i . The weights of the
various groups (simulated by duplicating vertices with identical closed neighborhoods)
have been chosen such that low-cost elimination orders of G ′ that start with B ′ have to
eliminate r − 1 blocks of blankers X ′

i1
, . . . , X ′

ir−1
before eliminating any other vertex

of B ′. This creates the desired blanking-out effect. The checking vertices C ′
i (i ∈ [r ])

enforce that after eliminating r − 1 blocks of blankers, an elimination order cannot
benefit by mixing vertices from two or more sets B ′

i , B ′
i ′ : each set B ′

i from which
a vertex is eliminated, introduces new adjacencies between B ′ and C ′

i . Finally, the
dummy vertices are used to ensure that after one set B ′

i ∪ D′
i is completely eliminated,

the cost of eliminating the remainder is small because |B ′| has decreased sufficiently.

3.3 Properties of the Constructed Instance

Observe that in the constructed graph G ′, all vertices in a set X ′
i (i ∈ [r ]) have exactly

the same closed neighborhood. The same is true for vertices in sets C ′
i or D′

i . By
Observation 1 we may therefore assume that an optimal elimination order eliminates
all vertices in one such group consecutively. This motivates our interest in the behavior
of elimination orders with respect to blocks of blanker vertices, checker vertices, or
dummy vertices. The following type of elimination orders of G ′ will be crucial in the
proof.
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Definition 4 Let i∗, j∗ ∈ [r ]. An elimination order π ′ of G ′ is (i∗, j∗)-canonical
if π ′ eliminates V (G ′) in the following order:

1. first all blocks of blanker vertices X ′
i for i ∈ [r ] \ {i∗}, one block at a time,

2. then the vertices of B ′
j∗ , followed by dummies D′

j∗ , followed by blankers X ′
i∗ ,

3. alternatingly a block B ′
i followed by the corresponding dummies D′

i , until all
remaining vertices of

⋃
i∈[r ] B ′

i ∪ D′
i have been eliminated,

4. and finishes with the vertices
⋃

i∈[r ] A′
i ∪ C ′

i in arbitrary order.

We call an elimination order canonical if it is (i∗, j∗)-canonical for some choice of i∗
and j∗. Lemma 3 shows that the crucial part of a canonical elimination order is its
behavior on B ′

j∗ .

Lemma 3 Let π ′ be an (i∗, j∗)-canonical elimination order for G ′.

1. No vertex that is eliminated before the first vertex of B′
j∗ costs more than 3rn.

2. When a vertex of D′
j∗ ∪ X ′

i∗ is eliminated, its cost does not exceed 3rn + n
2 .

3. No vertex that is eliminated after X ′
i∗ costs more than 3rn.

Proof (1) By Definition 4, all vertices eliminated before B ′
j∗ are blanker vertices. The

elimination of a vertex v in a block X ′
i turns N (v) into a clique and removes v. As A′

and B ′ are cliques from the start, no extra edges can be introduced between members
of A′ or between members of B ′. When considering the effects of eliminating vertices
from B ′, we therefore only have to consider which vertices of B ′ become adjacent to
vertices in A′. As blanker vertices are not adjacent to checking vertices, no elimination
of a blanker vertex introduces adjacencies to sets C ′

j for any j ∈ [r ]. Eliminating X ′
i

effectively makes all remaining vertices in B ′ adjacent to A′
i , as X ′

i and A′
i are adjacent

by construction. With these insights we prove the first item of the lemma.
Consider the situation when 0 ≤ � < r − 1 blocks of blankers X ′

i1
, . . . , X ′

i�
have

already been eliminated, and we are about to eliminate a blanker vertex vB in the next
block X ′

i�+1
. Then N [vB] ∩ B ′ contains all remaining vertices in B ′, of which there

are |B ′| − � · n
2 = 2rn + (r−�)n

2 . Now consider the neighborhood of vB in A′. As
observed above, N [vB] ∩ A′ does not contain checking vertices. When it comes to
adjacencies into

⋃
i∈[r ] A′

i , vertex vB in block X ′
i�+1

is adjacent to A′
i�+1

, and to the
blocks A′

i1
, . . . , A′

i�
for the blankers X ′

i1
, . . . , X ′

i�
that have previously been eliminated.

Hence vB has (� + 1)n neighbors in A′. Summing up the contributions from the two
partite sets, we find |N [vB]| = 2rn + (r−�)n

2 + (� + 1)n = 3rn + (�−r)n
2 + n. The

largest value is attained when the last block of blankers unequal to X ′
i∗ is about to be

eliminated; at that point � = r − 2 blocks have been eliminated already, which results
in a cost of 3rn for the first vertex of the last block X ′

ir−1
that is eliminated. Having

argued that the cost of the first vertex of a block to be eliminated never exceeds 3rn,
we show that this also holds for the other vertices in the same block. After the first
vertex of a block of blankers X ′

i�+1
has been eliminated, the other vertices of X ′

i�+1
are eliminated immediately after v, by Definition 4. Hence their closed neighborhood
at time of elimination is smaller than that of v: elimination of v does not introduce
any new adjacencies for vertices with the same closed neighborhood as v. Hence the
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remaining vertices of X ′
i�+1

cost less than v. Thus the cost of eliminating the vertices
before B ′

j∗ does not exceed 3rn.
(2) Let G ′

B be the graph that is obtained from G ′ by eliminating according to π ′ until
just after the last vertex of B ′

j∗ . Then G ′
B contains exactly one block of blankers X ′

i∗ , as
all other sets have been eliminated before B ′

j∗ . It does not contain B ′
j∗ as that was just

eliminated. The elimination of B ′
j∗ has made the remainder of B ′ adjacent to

⋃
i∈[r ] A′

i ,
as B ′

j∗ has a perfect matching into A′
i for all i ∈ [r ]. According to Definition 4,

elimination order π ′ eliminates D′
j∗ just after B ′

j∗ . At that point, the neighborhood
of the dummy vertices D′

j∗ into
⋃

j∈[r ] C ′
j is exactly C ′

j∗ : the set D′
j∗ was initially

adjacent to C ′
j∗ , the eliminated blanker vertices were not adjacent to any checking

vertices and therefore did not introduce new adjacencies to checking vertices, and
the eliminated vertices from B ′

j∗ see only the checking vertices C ′
j∗ , by construction.

Hence the cost of eliminating the first dummy vertex in D′
j∗ is | ⋃ j∈[r ]\{ j∗} B ′

j∗∪D′
j∗ |+

|D′
j∗ |+ |X ′

i∗ |+ |⋃i∈[r ] A′
i |+ |C ′

j∗ |, which is 2(r − 1)n + n + n
2 + rn + n = 3rn + n

2 .
As the other dummy vertices in D′

j∗ have exactly the same closed neighborhood, their
elimination is not more expensive.

By Definition 4, order π ′ follows the elimination of D′
j∗ by eliminating X ′

i∗ . At the
time of elimination, N [X ′

i∗ ]∩B ′ has size | ⋃ j∈[r ]\{ j∗} B ′
j ∪D′

j |+|X ′
i∗ | = 2(r−1)n+ n

2 .
Vertices in X ′

i∗ are adjacent to
⋃

i∈[r ] A′
i , and to exactly one set of checking vertices,

namely C ′
j∗ ; the elimination of B ′

j∗ has introduced these adjacencies. Hence the cost
of eliminating the first vertex of X ′

i∗ is 2(r − 1)n + n
2 + rn + n = 3rn − n

2 . As the
other vertices in X ′

i∗ have the same neighborhood, they are not more expensive. In
summary, no vertex of D′

j∗ ∪ X ′
i∗ costs more than 3rn + n

2 when eliminated.
(3) Let G ′

X be the graph that is obtained from G ′ by eliminating according to π ′
until just after the last vertex of X ′

i∗ . Then G ′
X does not contain any blanker vertices,

as all such sets have been eliminated. Similarly, it does not contain B ′
j∗ or D′

j∗ . The
eliminations up until X ′

i∗ have made all of B ′ adjacent to
⋃

i∈[r ] A′
i . Vertices in a

set B ′
j ∪ D′

j for j �= j∗ are adjacent to the checking vertices C ′
j (by construction)

and C ′
j∗ (because the elimination of B ′

j∗ introduced these adjacencies), but to no other
checking vertices. Now consider the first vertex v that is eliminated after X ′

i∗ ; by
Definition 4 it is contained in some set B ′

j with j �= j∗. As no blanker vertex remains,
and B ′

j∗ ∪ D′
j∗ have been eliminated, there are exactly 2rn − 2n vertices left in B ′.

Vertex v is adjacent to all rn vertices in
⋃

i∈[r ] A′
i , to C ′

j∗ , and to the checking vertices
corresponding to its own index. Hence the cost of v is 2rn − 2n + rn + n + n = 3rn.
The cost of the succeeding blankers D′

j in the same block is not more than that of v.
When eliminating the next group B ′

j ′ , observe that 2n neighbors have been lost
in B ′ (the set B ′

j ∪ D′
j that was eliminated), whereas only n new neighbors have been

introduced (the set C ′
j ). Hence the cost of later groups of vertices B ′

j ′ does not exceed
the cost of v, and so does not exceed 3rn. Finally, when all of B ′ has been eliminated
then only the vertex set A′ of size 2rn remains. At that point, no vertex can have
cost more than 2rn as there are only 2rn vertices left in the graph. Thus the cost of
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eliminating A′ satisfies the claimed bound, after which the entire graph is eliminated.
�


The next lemma links the cost of eliminating the set B ′
j∗ under a (i∗, j∗)-canonical

elimination order for G ′, to the cost of a related elimination order for Gi∗, j∗ . Some
terminology is needed. Consider an (i∗, j∗)-canonical elimination order π ′ for G ′,
and an elimination order π for Gi∗, j∗ that eliminates all vertices of Bi∗, j∗ before any
vertex of Ai∗, j∗ . By numbering the vertices in Bi∗, j∗ (a partite set of Gi∗, j∗ ) from 1
to n during the construction of G ′ in Sect. 3.2, we created a one-to-one correspondence
between Bi∗, j∗ = {b1

i∗, j∗ , . . . , bn
i∗, j∗} and B ′

j∗ = {b̂1
j∗ , . . . , b̂n

j∗}, the first set of non-
blanker vertices eliminated by π ′. Hence we can compare the relative order in which
vertices of Bi∗, j∗ are eliminated in π and π ′. If both π and π ′ eliminate the vertices
of Bi∗, j∗ in the same relative order, then we say that the elimination orders agree
on Bi∗, j∗ .

Lemma 4 Let π ′ be an (i∗, j∗)-canonical elimination order of G ′. Let π be an elimi-
nation order for Gi∗, j∗ that eliminates all vertices of Bi∗, j∗ before any vertex of Ai∗, j∗ .
If π ′ and π agree on Bi∗, j∗ , then cG ′(π ′) = 3rn + n

2 − n + cGi∗, j∗ (π).

Proof Consider the graph G ′
B obtained from G ′ by performing the eliminations

according to π ′ until we are about to eliminate the first vertex of B ′
j∗ . By Defini-

tion 4 this means that all blocks of blankers X ′
i for i �= i∗ have been eliminated, and

no other vertices. Using the construction of G ′ it is easy to verify that these elimina-
tions have made all remaining vertices of B ′ adjacent to

⋃
i∈[r ]\{i∗} A′

i , and that no
new adjacencies have been introduced to

⋃
i∈[r ] C ′

i or to A′
i∗ . Graph G ′[A′

i∗ ∪ B ′
j∗ ]

was initially isomorphic to Gi∗, j∗ by the obvious isomorphism based on the numbers
assigned to the vertices. As no vertex adjacent to A′

i∗ has been eliminated yet, this also
holds for G ′

B[A′
i∗ ∪ B ′

j∗ ].
Consider what happens when eliminating the first vertex v′ of B ′

j∗ according to π ′.
Let v ∈ Bi∗, j∗ be the corresponding vertex in Gi∗, j∗ . By the assumption that the
elimination orders agree, v is the first vertex of Bi∗, j∗ to be eliminated under π .

The set NG ′
B
[v′] contains C ′

j∗ ,
⋃

j �= j∗ B ′
j ∪ D′

j ,
⋃

i �=i∗ A′
i , X ′

i∗ , D′
j∗ , and the

vertices of G ′[A′
i∗ ∪ B ′

j∗ ] that correspond exactly to NGi∗, j∗ [v] by the isomor-
phism. So the cost of eliminating v′ from G ′ exceeds the cost of eliminating v

from Gi∗, j∗ by exactly |C ′
j∗ | + |⋃ j �= j∗ B ′

j ∪ D′
j | + | ⋃i �=i∗ A′

i | + |X ′
i∗ | + |D′

j∗ | =
n + 2(r − 1)n + (r − 1)n + n

2 + n = 3rn + n
2 − n. Now observe that by the isomor-

phism, eliminating v′ from G ′ has exactly the same effect on the neighborhoods of B ′
j∗

into A′
i∗ , as eliminating v from Gi∗, j∗ has on the neighborhoods of Bi∗, j∗ into Ai∗, j∗ .

Thus after one elimination, the remaining vertices of A′
i∗ ∪ B ′

j∗ and Ai∗, j∗ ∪ Bi∗, j∗

induce subgraphs of G ′ and Gi∗, j∗ that are isomorphic. Hence we may apply the same
argument to the next vertex that is eliminated. Repeating this argument we establish
that for each vertex in B ′

j∗ , its elimination from G ′ costs exactly 3rn + n
2 − n more

than the corresponding elimination in Gi∗, j∗ .
Now consider the cost of π on Gi∗, j∗ : it is at least n + 1, as the first vertex to be

eliminated is adjacent to all of Bi∗, j∗ (the set Bi∗, j∗ is a clique) and to at least one
vertex of Ai∗, j∗ (since the Cobipartite Graph Elimination instance Gi∗, j∗ has a
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perfect matching between its two partite sets). After all vertices of Bi∗, j∗ have been
eliminated from Gi∗, j∗ , the remaining vertices cost at most n; there are at most n
vertices left in the graph at that point. Hence the cost of π on Gi∗, j∗ is determined by
the cost of eliminating Bi∗, j∗ . For each vertex from that set that is eliminated, π ′ incurs
a cost exactly 3rn + n

2 −n higher. Hence cG ′(π ′) is at least (3rn + n
2 −n)+ (n +1) =

3rn + n
2 + 1. By Lemma 3 the cost that π ′ incurs before eliminating the first vertex

of B ′
j∗ is at most 3rn, the cost of eliminating D′

j∗ ∪ X ′
i∗ is at most 3rn + n

2 , and the cost
incurred after eliminating the last vertex of B ′

j∗ is at most 3rn. Hence the maximum
cost of π ′ is attained when eliminating the vertices of B ′

j∗ . As this is exactly 3rn+ n
2 −n

more than the cost of π on Gi∗, j∗ , this proves the lemma. �

The last technical step of the proof is to show that if G ′ has an elimination order of

cost at most k′, then it has such an order that is canonical.

Lemma 5 If G ′ has an elimination order of cost at most k′, then there are indices
i∗, j∗ ∈ [r ] such that G ′ has an (i∗, j∗)-canonical elimination order of cost at most k′.

Proof Let π ′ be an elimination order for G ′ of cost at most k′. As A′ is a clique in G ′,
we may assume by Lemma 1 that π ′ eliminates all vertices of B ′ before any vertex of A′
(Property 1). As each set X ′

i forms a block in G ′, by Observation 1 we can adapt π ′
such that it eliminates the vertices of a set X ′

i contiguously for all i ∈ [r ] (Property
2). Note that for i ∈ [r ] and vertices d ∈ D′

i and u ∈ B ′
i , we have NG [u] ⊆ NG [d] by

construction. Hence by Observation 1 we may assume that when a dummy d ∈ D′
i is

about to be eliminated, all vertices of the corresponding set B ′
i are already eliminated

(Property 3). Using these structural properties we proceed with the proof.
Consider the process of eliminating G ′ by π ′. At some point, π ′ has eliminated

r − 2 distinct blocks of blankers X ′
i1
, . . . , X ′

ir−2
. Consider the first vertex vB of the

blanker X ′
ir−1

that is eliminated after that point, and note that possibly non-blanker ver-
tices are eliminated in between. Let G ′

B be the graph obtained from G ′ by eliminating
all vertices before vB . �

Claim 1 Graph G ′

B still contains the vertices
⋃

i∈[r ] B ′
i ∪ D′

i : no vertex in this set is
eliminated before vB.

Proof Assume for a contradiction that some vertex of
⋃

i∈[r ] B ′
i ∪ D′

i is eliminated
before vB . We first show how to derive a contradiction when there is an index j ∈ [r ]
such that B ′

j is eliminated completely before vB (Case 1). Afterward we show how to
derive a contradiction when at least one vertex of B ′

j remains in G ′
B for all j ∈ [r ]

(Case 2).

Case 1 If there is an index j such that no vertex of B ′
j remains in G ′

B , then let j∗
be the index of the first set B ′

j to be eliminated from G ′ completely. Consider the
moment when the last vertex u of B ′

j∗ is eliminated. By our choice of j∗ and Property
3, we know that no dummy vertex has been eliminated yet. So consider the closed
neighborhood of u at the moment of its elimination. It contains all rn dummy vertices,
as u is contained in the same clique B ′ as them. As at least two blocks of blankers
remain, N [u] contains at least 2n

2 blanker vertices. We claim that u has become adjacent
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to all vertices of
⋃

i∈[r ] A′
i . To see this, recall that u was the last vertex of B ′

j∗ to be
eliminated. As we observed during the construction of G ′, there is a perfect matching
between A′

i and B ′
j∗ for all i ∈ [r ]. Hence for each vertex in

⋃
i∈[r ] A′

i , if u was not
originally adjacent to it, then u has become adjacent to it by eliminating the vertex
of B ′

j∗ that was matched to it. Thus u is indeed adjacent to all of
⋃

i∈[r ] A′
i . For each

vertex in a set B ′
j with j �= j∗ that is eliminated before u, the elimination has made u

adjacent to C ′
j . By our choice of j∗, no such set B ′

j is eliminated completely. Hence
for each set B ′

j with j �= j∗ from which (less than n) vertices were eliminated, u has
picked up n new neighbors in the set C ′

j . Clearly, for each set B ′
j with j �= j∗ from

which no vertices were eliminated, the neighborhood of u contains the n vertices in B ′
j .

So the number of neighbors of u in
⋃

j∈[r ]\{ j∗} B ′
j ∪C ′

j is at least (r −1)n. Adding up
the contribution of the blankers, the dummies, of

⋃
i∈[r ] A′

i , of
⋃

j∈[r ]\{ j∗} B ′
j ∪ C ′

j ,

and of C ′
j∗ , to N [u], we find that |N [u]| ≥ 2n

2 +rn+rn+(r −1)n+n ≥ 3rn+n. This
value exceeds k′, as k < n

2 by the definition of Cobipartite Graph Elimination.
Hence we find a contradiction to the assumption that π ′ has cost at most k′.

Case 2 Assume now that for each j ∈ [r ] at least one vertex of B ′
j remains in G ′

B ,
which implies by Property 3 that all dummies are present in G ′

B . Recall that we
assumed, for a contradiction, that some vertex u of

⋃
j∈[r ] B ′

j ∪ D′
j was eliminated

before vB . As u is no dummy, it is contained in some set B ′
j∗ . By the adjacency of B ′

j∗
to C ′

j∗ , the elimination has made the blanker X ′
ir−1

adjacent to C ′
j∗ . We will show that

this causes the cost of vB to exceed k′.
To see this, consider the neighbors of vB in the various sets. For each set B ′

j
from which vertices were eliminated, we have eliminated less than n vertices (at
least one vertex remains by the precondition to this case). For those sets B ′

j , the
blankers X ′

ir−1
have picked up adjacencies to the corresponding checkers C ′

j . Thus
|N [vB]∩(

⋃
j∈[r ]\{ j∗} B ′

j ∪C ′
j )| ≥ (r −1)n; note carefully that the set B ′

j∗ ∪C ′
j∗ is not

counted here since its index is removed from [r ]. As vB is the first blanker vertex to be
eliminated after r −2 blocks of blankers were already eliminated, there are two blocks
of blankers left, giving 2n

2 vertices in N [vB] ∩ (
⋃

i∈[r ] X ′
i ). The prior eliminations of

blankers X ′
i1
, . . . , X ′

ir−2
made X ′

ir−1
adjacent to the corresponding sets A′

i1
, . . . , A′

ir−2
,

and by construction vB ∈ X ′
ir−1

is adjacent to A′
ir−1

. Now consider the remaining
index ir ∈ [r ] \ {i1, . . . , ir−1}, and let i∗ := ir for convenience.

Recall that B ′
j∗ has a perfect matching into A′

i∗ by the construction of G ′. Hence
for each vertex u that was eliminated from B ′

j∗ , vertex vB has become adjacent
to u’s matching partner in the set A′

i∗ . Hence, letting � denote the number of ver-
tices eliminated from B ′

j∗ , we know that vB is adjacent to at least � vertices in A′
i∗ ,

showing that |N [vB] ∩ (A′
i∗ ∪ B ′

j∗)| ≥ (� + (n − �)) = n. Summing up the con-
tributions of the blankers, the dummies, the set (

⋃
i∈[r ]\{ j∗} B ′

i ∪ C ′
i ), the set C ′

j∗ ,
the set

⋃
i∈[r ]\{i∗} A′

i , and the set A′
i∗ ∪ B ′

j∗ to |N [vB]|, we find that |N [vB]| ≥
2n
2 + rn + (r − 1)n + n + (r − 1)n + n ≥ 3rn + n > k′, which is a contradiction to

the assumption that the cost of π ′ is at most k′.
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As the two cases are exhaustive, we have established that when vB is eliminated,
all vertices of

⋃
i∈[r ] B ′

i ∪ D′
i still remain in the graph G ′

B . �

We need two more claims to complete the proof of Lemma 5. As π ′ is block-

contiguous with respect to the blankers (Property 2), after vB it eliminates the rest
of X ′

ir−1
. Afterward only a single group of blankers remains, say X ′

ir
.

Claim 2 After eliminating X ′
ir−1

, order π ′ eliminates a vertex in
⋃

i∈[r ] B ′
i .

Proof By Property 1, all vertices of B ′ are eliminated before any vertex of A′. Recall
that B ′ consists of blankers

⋃
i∈[r ] X ′

i and the vertices
⋃

i∈[r ] B ′
i ∪ D′

i . As X ′
ir−1

is the
(r−1)-th block of blankers to be eliminated, afterward the only vertices in B ′ remaining
are X ′

ir
and

⋃
i∈[r ] B ′

i ∪ D′
i . By Property 3, π ′ eliminates all vertices of B ′

i before
eliminating a dummy in the corresponding set D′

i . Hence if π ′ does not follow the
elimination of X ′

ir−1
by a vertex of

⋃
i∈[r ] B ′

i , then it eliminates X ′
ir

. If this is the case,
then all blankers have been eliminated before eliminating any vertex of

⋃
i∈[r ] B ′

i ∪ D′
i .

Now consider the first vertex u of
⋃

i∈[r ] B ′
i that is eliminated, and suppose it is

contained in B ′
j∗ . Eliminating all blankers has made B ′

j∗ adjacent to all of
⋃

i∈[r ] A′
i .

By construction B ′
j∗ is adjacent to the n checking vertices C ′

j∗ . By Property 3 it is
adjacent to all dummies. Summing up the contributions of the dummies, of

⋃
i∈[r ] B ′

i ,
of

⋃
i∈[r ] A′

i , and of the single set C ′
j∗ , to N [u], we find that the cost of u is at

least rn + rn + rn + n > k′; a contradiction. �

Before proving the next claim, we make an observation. Let u be the first vertex

of
⋃

i∈[r ] B ′
i that is eliminated by π ′, and suppose that u ∈ B ′

j∗ . The elimination of u
makes the last group of blankers X ′

ir
adjacent to the checking vertices C ′

j∗ , as B ′
j∗

is adjacent to C ′
j∗ . This implies that after the elimination of u ∈ B ′

j∗ , the closed
neighborhood of X ′

i∗ is a superset of the closed neighborhood of any remaining vertex
in B ′

j∗ . To see this, note that at that stage, X ′
i∗ is adjacent to the remainder of B ′,

to
⋃

i∈[r ]\{i∗} A′
i (by eliminating the previous blankers), to A′

i∗ (by construction), and
to C ′

j∗ (by eliminating u). On the other hand, vertices in B ′
j∗ see the remainder of B ′,

they see
⋃

i∈[r ]\{i∗} A′
i , a subset of A′

i∗ that depends on the edges in the graph Gi∗, j∗ ,
and C ′

j∗ . Hence, by the same reasoning as in Observation 1, if a vertex z ∈ X ′
i∗ is

eliminated after the first vertex of B ′
j∗ (i.e., u) but before the last vertex of B ′

j∗ , then
the cost of π ′ does not increase when eliminating all vertices of B ′

j∗ just before z.
Hence we may assume that π ′ eliminates all of B ′

j∗ before any vertex of X ′
i∗ ; we call

this Property 4. We use this in the proof of the following claim.

Claim 3 All vertices of B ′
j∗ are eliminated before any vertex of

⋃
j∈[r ]\{ j∗} B ′

j .

Proof By Property 4, all vertices of B ′
j∗ are eliminated before the last blanker X ′

i∗ .
Now suppose that before eliminating the last vertex of B ′

j∗ , order π ′ eliminates some
vertex v ∈ B ′

j ′ with j ′ �= j∗. Let v be the first vertex with this property. By Property
4, all vertices in X ′

i∗ remain in the graph when v is eliminated. This causes the cost
of v to exceed k′. To see this, observe that at the time of elimination, the closed
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neighborhood of v contains all rn dummy vertices (by Property 3), it contains the n
2

vertices of X ′
i∗ , it contains C ′

j∗ (by elimination of u) and C ′
j ′ (by construction), which

contain n vertices each. Additionally, N [v] contains
⋃

i∈[r ]\{ j∗} B ′
i by our choice of v,

and
⋃

i∈[r ]\{i∗} A′
i by the eliminations of earlier groups of blankers, for a subtotal

of rn + n
2 + 2n + (r − 1)n + (r − 1)n = 3rn + n

2 . If � vertices have been eliminated
from B ′

j∗ prior to elimination of v, then N [v] contains n −� vertices from B ′
j∗ , but has

gained � neighbors in A′
i∗ by the perfect matching between A′

i∗ and B ′
j∗ in G ′. Hence

the remaining vertices in A′
i∗ ∪ B ′

j∗ contribute at least � + (n − �) vertices to the cost
of v. Thus the cost of v is at least 3rn + n

2 + n, which is more than k′; a contradiction.
�


Using Claims 1, 2, and 3, we prove Lemma 5. By Property 1, elimination order π ′
eliminates B ′ before A′. By Claim 1, π ′ did not eliminate any vertex of

⋃
i∈[r ] B ′

i ∪ D′
i

when the first vertex of the (r − 1)-th block of blankers is eliminated. As π ′ is
block-contiguous with respect to the blankers, its initial behavior matches that of
a canonical elimination order (Definition 4): it eliminates r − 1 distinct blocks of
blankers X ′

i1
, . . . , X ′

ir−1
before any vertex of

⋃
j∈[r ] B ′

j ∪ D′
j . By Claim 2 it then

eliminates a vertex of
⋃

j∈[r ] B ′
j , say a vertex in B ′

j∗ . By Claim 3 it completes the
elimination of B ′

j∗ before touching vertices in
⋃

j∈[r ]\{ j∗} B ′
j , by Property 3 it elim-

inates B ′
j∗ before any dummy, and by Property 4 it eliminates B ′

j∗ before the last
blanker X ′

ir
. Hence after the r − 1 blocks of blankers, the vertices of B ′

j∗ are elimi-
nated consecutively.

Once this is done, the closed neighborhoods of D′
j∗ and X ′

i∗ coincide: by the per-
fect matchings between B ′

j∗ and A′
i (for all i ∈ [r ]) in G ′, eliminating all of B ′

j∗
made D′

j∗ and X ′
i∗ adjacent to

⋃
i∈[r ] A′

i . Furthermore, N [D′
j∗ ] ∩ ⋃

i∈[r ] C ′
i =

N [X ′
i∗ ] ∩ ⋃

i∈[r ] C ′
i = C ′

j∗ : the dummies see C ′
j∗ by construction, while X ′

i∗ sees
it because of the elimination of B ′

j∗ . The closed neighborhoods of D′
j∗ and X ′

i∗ are
subsets of the closed neighborhoods of the other vertices that remain in B ′ at that point:
vertices in a set B ′

j ∪ D′
j for j �= j∗ see

⋃
i∈[r ] A′

i together with both A′
j∗ and A′

j ,
while the latter set is not seen by D′

j∗ ∪ X ′
i∗ . Hence by Observation 1 we may assume

that after finishing B ′
j∗ , order π ′ eliminates D′

j∗ followed by X ′
i∗ .

Once that is done, the only vertices remaining in B ′ are
⋃

i∈[r ]\{ j∗} B ′
i ∪ D′

i . It is
easy to see that for any j ∈ [r ] \ { j∗}, all vertices in B ′

j ∪ D′
j have the same closed

neighborhood at that stage, consisting of the remainder of B ′ together with C ′
j ∪ C ′

i∗
and

⋃
i∈[r ] A′

i . By Observation 1 we may assume that π ′ is block-contiguous after
eliminating X ′

i∗ , which means it eliminates the sets B ′
j ∪ D′

j one at a time. As we
may shuffle the order within a set B ′

j ∪ D′
j without changing the cost (all closed

neighborhoods of vertices from such a set are identical), we may assume that the
remaining actions of π ′ on B ′ are alternatingly eliminating a set B ′

j followed by the
corresponding set D′

j , until all of B ′ is eliminated. Then π ′ finishes by eliminating A′
in some order. As this form exactly matches the definition of an (i∗, j∗)-canonical
elimination order, we have proved that whenever an elimination order of G ′ exists that
has cost at most k′, then there is one that is canonical. This proves Lemma 5. �
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3.4 Proof of Theorem 3

Having analyzed the connection between elimination orders for G ′ and for the input
graphs Gi, j (i, j ∈ [r ]), we can complete the proof. By combining the previous
lemmata it is easy to show that G ′ acts as the logical or of the inputs.

Lemma 6 Let (G ′, k′) be the result of applying the construction of Sect. 3.2 to a series
of inputs Gi, j of Cobipartite Graph Elimination for i, j ∈ [r ]. Then G ′ has an
elimination order of cost at most k′ if and only if there are indices i, j ∈ [r ] such
that Gi, j has an elimination order of cost at most n + k.

Proof (⇒) Assume that G ′ has an elimination order π ′ of cost at most k′. By Lemma 5
we may assume that π ′ is (i∗, j∗)-canonical, for appropriate choices of i∗ and j∗.
Take an elimination order π for Gi∗, j∗ that agrees with π ′ on Bi∗, j∗ . By Lemma 4 this
gives cG ′(π ′) = 3rn+ n

2 −n+cGi∗, j∗ (π). Hence cGi∗, j∗ (π) = cG ′(π ′)−3rn− n
2 +n ≤

k′ − 3rn − n
2 + n = n + k. Thus Gi∗, j∗ has an elimination order of cost at most n + k.

(⇐) In the other direction, suppose that Gi∗, j∗ has an elimination order π of cost
at most n + k. As Ai∗, j∗ is a clique in Gi∗, j∗ , by Lemma 1 we may assume that π

eliminates all vertices of Bi∗, j∗ before any vertex of Ai∗, j∗ . Using Definition 4 it is
easy to see that a canonical elimination order π ′ for G ′ exists that agrees with π

on Bi∗, j∗ . By Lemma 4 the cost of π ′ on G ′ exceeds the cost of π on Gi∗, j∗ by
exactly 3rn + n

2 − n. So the cost of π ′ on G ′ is at most 3rn + n
2 − n + (n + k) = k′,

which proves this direction of the claim. �

Lemma 7 There is an or-cross-composition of Cobipartite Graph Elimination
into Treewidth [n] of cost

√
t .

Proof In Sect. 3.2 we gave a polynomial-time algorithm that, given instances
(Gi, j , Ai, j , Bi, j , ki, j ) of Cobipartite Graph Elimination that are equivalent
under R for i, j ∈ [r ], constructs a cobipartite graph G ′ with partite sets A′ and B ′,
and an integer k′. By Lemma 6 the resulting graph G ′ has an elimination order of
cost at most k′ if and only if there is a yes-instance among the inputs. By the cor-
respondence between treewidth and bounded-cost elimination orders of Theorem 2,
this shows that G ′ has treewidth at most k′ − 1 if and only if there is a yes-instance
among the inputs. The polynomial equivalence relation ensured that all partite sets of
all inputs have the same number of vertices. For partite sets of size n, the constructed
graph G ′ satisfies |A′| = 2rn and |B ′| = 5rn

2 . The number of vertices in G ′ is n′ = 9rn
2 .

Consider the Treewidth [n] instance (G ′, n′, k′ − 1). It expresses the logical or of
a series of r2 = t Cobipartite Graph Elimination instances using a parameter

value of 9n
√

t
2 ∈ O(n

√
t). Hence the algorithm gives an or-cross-composition of

Cobipartite Graph Elimination into Treewidth [n] of cost
√

t . �

Theorem 3 follows from the combination of Lemmas 7, 2, and Theorem 1. Since the
pathwidth of a cobipartite graph equals its treewidth [31] and the graph formed by the
cross-composition is cobipartite, the same construction gives an or-cross-composition
of bounded cost into Pathwidth [n].
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Corollary 1 If Pathwidth [n] admits a (generalized) kernel of size O(n2−ε), for
some ε > 0, then NP ⊆ coNP/poly.

The obtained quadratic (generalized) kernel lower bounds also apply to parameter-
izations of Treewidth and Pathwidth by measures that do not exceed the number
of vertices: if Treewidth or Pathwidth parameterized by a measure � with � ≤ n
would have a generalized kernel of size O(�2−ε) for some ε > 0, then as � ≤ n
this would immediately give a generalized kernel of size O(n2−ε) for Treewidth
[n] or Pathwidth [n]. The latter implies NP ⊆ coNP/poly through Theorem 3 and
Corollary 1.

4 Quadratic-Vertex Kernel for Treewidth [VC]

In this section we present an improved kernel for Treewidth [vc], which is formally
defined as follows.

Treewidth [vc]
Input: A graph G, a vertex cover X ⊆ V (G), and an integer k.
Parameter: |X |.
Question: Is the treewidth of G at most k?

We remark that the vertex cover X does not have to be optimal, and may for example
be obtained by a simple approximation algorithm. For a full discussion of this matter
we refer the reader to the survey by Fellows et al. [22].

The presentation is organized as follows. In Sect. 4.1 we introduce the notion of
a treewidth-invariant set, and derive some of its properties. In Sect. 4.2 we show
how the q-expansion lemma can be used to obtain a simple kernel with O(|X |2)
vertices. Afterward, in Sect. 4.3, we show how the running time and size bounds of
the kernelization algorithm can be optimized by bypassing the q-expansion lemma and
extracting treewidth-invariant sets directly from a maximum matching in an auxiliary
bipartite graph.

4.1 Treewidth-Invariant Sets

Our kernelization revolves around the new notion of a treewidth-invariant set.

Definition 5 Let G be a graph, let T be an independent set in G, and let ĜT be the
graph obtained from G by eliminating T ; the order is irrelevant as T is independent.
Then T is a treewidth-invariant set if for every v ∈ T , the graph ĜT is a minor
of G − {v}.
Lemma 8 If T �= ∅ is a treewidth-invariant set in G and Δ := maxv∈T degG(v),
then tw(G) = max(Δ, tw(ĜT )).

Proof We prove that tw(G) is at least, and at most, the claimed amount.
(≥). As ĜT is a minor of G, we have tw(G) ≥ tw(ĜT ) (cf. [2, Lemma 16]).

If tw(ĜT ) ≥ Δ then this implies the inequality. So assume that Δ > tw(ĜT ).
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Let v ∈ T have degree Δ. By assumption, ĜT is a minor of G − {v}. It contains all
vertices of NG(v) since T is an independent set. As NG(v) is a clique in ĜT , there
is a series of minor operations in G − {v} that turns NG(v) into a clique. Performing
these operations on G rather than G − {v} results in a clique on vertex set NG [v]
of size degG(v) + 1 = Δ + 1: the set NG(v) is turned into a clique, and v remains
unchanged. Hence G has a clique with Δ + 1 vertices as a minor, which is known to
imply (cf. [2]) that its treewidth is at least Δ.

(≤). Consider an optimal elimination order π̂ for ĜT , which costs tw(ĜT ) + 1
by Theorem 2. Form an elimination order π for G by first eliminating all vertices
in T in arbitrary order, followed by the remaining vertices in the order dictated by π̂ .
Consider what happens when eliminating the graph G in the order given by π . Each
vertex v ∈ T that is eliminated incurs cost degG(v)+1 ≤ Δ+1: as T is an independent
set, eliminations before v do not affect v’s neighborhood. Once all vertices of T have
been eliminated, the resulting graph is identical to ĜT , by definition. As π matches π̂

on the vertices of V (G) \ T , and π̂ has cost tw(ĜT ) + 1, the total cost of elimination
order π on G is max(Δ+1, tw(ĜT )+1). By Theorem 2 this completes this direction
of the proof. �


Lemma 8 shows that when a treewidth-invariant set is eliminated from a graph, its
treewidth changes in a controlled manner. For completeness we remark that we could
also have defined a treewidth-invariant set as an independent set T such that ĜT is a
minor of G − {v∗}, where v∗ is a vertex of maximum degree among T . For such sets,
one can prove an analogue of Lemma 8: tw(G) = max(degG(v∗), tw(ĜT )). As the
current definition is more uniform and sufficient for our purposes, we use that instead.

Based on Lemma 8 we can formulate the following reduction rule for deciding
whether the treewidth of a graph G is at most k. Let T be a treewidth-invariant set
in G. If maxv∈T degG(v) > k, then output no as the treewidth of G exceeds k.
Otherwise, reduce to the graph ĜT . It can be shown that exhaustively eliminating
treewidth-invariant sets reduces the order of a graph to the square of its vertex cover
number. If we were able to identify treewidth-invariant sets efficiently, this would
therefore lead to a quadratic-vertex kernel for Treewidth [vc]. Unfortunately, it
seems difficult to detect such sets in all circumstances. To circumvent this issue, we
show that the q-expansion lemma can be used to find a treewidth-invariant set when the
size of the graph is large compared to its vertex cover number. The following auxiliary
graph, based on the independent set V (G) \ X and the non-edges in the graph G[X ],
is needed for this procedure (see Fig. 2).

Definition 6 Given a graph G with a vertex cover X ⊆ V (G), we define the bipartite
non-edge connection graph HG,X . Its partite sets are V (G) \ X and E(G[X ]), with
an edge between a vertex v ∈ V (G) \ X and a vertex x{p,q} representing {p, q} ∈
E(G[X ]) if v ∈ NG(p) ∩ NG(q).

For disjoint vertex subsets S and T in a graph G, we say that S is saturated by
q-stars into T if we can assign to every v ∈ S a subset f (v) ⊆ NG(v) ∩ T of size q,
such that for any pair of distinct vertices u, v ∈ S we have f (u) ∩ f (v) = ∅. Observe
that an empty set can trivially be saturated by q-stars.
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Lemma 9 Let (G, X, k) be an instance of Treewidth [vc]. If HG,X contains a
set T ⊆ V (G) \ X such that S := NHG,X (T ) can be saturated by 2-stars into T ,
then T is a treewidth-invariant set.

Proof As T is a subset of the independent set V (G)\ X , the set T is independent in G.
It remains to prove that for every v ∈ T , the graph ĜT is a minor of G−{v}. So consider
an arbitrary vertex v∗ ∈ T . We give a series of minor operations that transforms G −
{v∗} into ĜT . The crucial part of the transformation consists of contracting vertices
of T \ {v∗} into vertices of X , to turn NG(v) into a clique for all v ∈ T ; afterward we
can simply delete all remaining vertices of T \ {v∗}. Let f : S → (T

2

)
be a mapping

that assigns to each vertex u ∈ S a set of two vertices in NHG,X (u) ∩ T , such that the
images of f are pairwise disjoint.

Consider a vertex v ∈ T such that NG(v) is not a clique. Let {p, q} be a non-
edge in G[NG(v)]. As v is adjacent to both p and q in G, vertex v is adjacent to the
representative x{p,q} in HG,X , implying that x{p,q} ∈ S. Hence x{p,q} is saturated by
a 2-star into T . Consider the two vertices f (x{p,q}) assigned to x{p,q}; at least one
of them, say u, differs from v∗. As u is adjacent to x{p,q} in HG,X by definition of
2-star saturation, by definition of HG,X this implies that u is adjacent to both p and q.
Hence contracting u into p creates the missing edge {p, q}. Now observe that as the
images of f are pairwise disjoint, for each non-edge {p, q} in the neighborhood of
some vertex in T , there is a distinct vertex unequal to v∗ that can be contracted to
create the non-edge. Contracting all such vertices into appropriate neighbors therefore
turns each set NG(v) for v ∈ T into a clique. Hence we establish that ĜT is indeed a
minor of G − {v∗}, proving that T is treewidth-invariant. �


4.2 A Simple Kernelization Using the q-Expansion Lemma

The q-expansion lemma was formulated by Fomin et al. [24], and can be considered
to be an algorithmic version of combinatorial insights dating back to the middle of the
twentieth century [25]. It concerns sets that are saturated by q-stars in a bipartite graph.
The special case of q = 2 corresponds to a reduction rule employed by Thomassé [33]
in his quadratic kernel for k-Feedback Vertex Set.

q-Expansion Lemma ([24, Lemma 12]) Let q be a positive integer, and let m be
the size of a maximum matching in a bipartite graph H with partite sets A and B.
If |B| > m ·q and there are no isolated vertices in B, then there exist nonempty vertex
sets S ⊆ A and T ⊆ B such that S is saturated by q-stars into T and S = NH (T ).
Furthermore, S and T can be found in time polynomial in the size of H by a reduction
to bipartite matching.

Theorem 4 Treewidth [vc] has a kernel with O(|X |2) vertices that can be encoded
in O(|X |3) bits.

Proof Given an instance (G, X, k) of Treewidth [vc], the algorithm constructs the
non-edge connection graph HG,X with partite sets A = E(G[X ]) and B = V (G)\ X .
We attempt to find a treewidth-invariant set T ⊆ B. If B has an isolated vertex v,
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then by definition of HG,X the set NG(v) is a clique implying that {v} is treewidth-
invariant. If B has no isolated vertices, we apply the q-expansion lemma with q := 2
to attempt to find a set S ⊆ A and T ⊆ B such that S is saturated by 2-stars into T
and S = NHG,X (T ). Hence such a set T is treewidth-invariant by Lemma 9. If we find
a treewidth-invariant set T :

– If maxv∈T degG(v) ≥ k + 1 then we output a constant-size no-instance, as
Lemma 8 then ensures that tw(G) ≥ degG(v) > k.

– Otherwise we reduce to (ĜT , X, k) and restart the algorithm: Lemma 8 guarantees
that tw(G) ≤ k if and only if tw(ĜT ) ≤ k. Observe that X is a vertex cover of ĜT ,
since the only newly introduced edges have both endpoints in X .

Each iteration takes polynomial time. As the number of vertices decreases in each
iteration, there are at most n iterations until we fail to find a treewidth-invariant set.
When that happens, we output the resulting instance. The q-expansion lemma ensures
that at that point, |B| ≤ 2m, where m is the size of a maximum matching in HG,X . As m
cannot exceed the size of the partite set A, which is bounded by

(|X |
2

)
as there cannot

be more non-edges in a set of size |X |, we find that |B| ≤ 2
(|X |

2

)
upon termination. As

vertex set B of the graph HG,X directly corresponds to V (G) \ X , this implies that G
has at most |X | + 2

(|X |
2

)
vertices after exhaustive reduction. Thus the instance that we

output has O(|X |2) vertices. We can encode it in O(|X |3) bits: we store an adjacency
matrix for G[X ], and for each of the O(|X |2) vertices v in V (G)\ X we store a vector
of |X | bits, indicating for each x ∈ X whether v is adjacent to it. �


4.3 Refined Analysis

The previous section showed how to obtain a quadratic-vertex kernel for Treewidth
[vc]. In this section we optimize the running time of the kernelization algorithm, and
consider the effect of the reduction rule in more detail. The material in this section is
stated for the optimization version of the problem, rather than the decision version,
since the reduction rule does not depend on a threshold value k for the treewidth.

Lemma 10 Let G be a graph with a vertex cover X ⊆ V (G), and let I := V (G) \ X
be the corresponding independent set. Let mG[X ] := |E(G[X ])| be the number of
non-edges in the graph G[X ]. There is an algorithm that, given G and X, runs in

time O(min{|I |, mG[X ],
√

|I | + mG[X ]} · |I | · mG[X ] + |X |2 + |V (G)| + |E(G)|) and

computes a (possibly empty) treewidth-invariant set T ⊆ I in G, such that |T | ≥
|I | − 2mG[X ].

Proof Given G and X , the goal is compute a set that is saturated by 2-stars in the
graph HG,X , which is treewidth-invariant by Lemma 9. For this purpose, we construct
a bipartite graph H ′

G,X . Intuitively, it is obtained from HG,X by replacing each ver-

tex x{p,q} of HG,X (which corresponds to a non-edge {p, q} ∈ E(G[X ]) in the vertex
cover) by two vertices x ′{p,q}, x ′′{p,q} with identical neighborhoods (see Fig. 2).

123



Algorithmica (2015) 71:605–635 627

(a) Graph G. (b) Ĝ{d,e}. (c) HG,{a,b,c, f }. (d) H ′
G,{a,b,c, f }.

Fig. 2 a A graph G with a treewidth-invariant set {d, e}. b The graph Ĝ{d,e} obtained from G by elim-
inating d and e. c The bipartite non-edge connection graph HG,X with respect to the vertex cover X =
{a, b, c, f } of G, per Definition 6. d The doubled graph H ′

G,X used in the proof of Lemma 10

Formally, one partite set B ′ of H ′
G,X consists of I = V (G)\ X , and the other partite

set A′ consists of:
{

x ′{p,q}, x ′′{p,q}
∣∣∣ {p, q} ∈ E(G[X ])

}
.

There are edges in H ′
G,X between a vertex v ∈ V (G) \ X and the ver-

tices {x ′{p,q}, x ′′{p,q}} if and only if v ∈ NG(p)∩ NG(q). The sizes of the partite sets A′
and B ′ of H ′

G,X are 2mG[X ] and |I |, respectively, giving a trivial bound of 2 ·|I |·mG[X ]
on the number of edges in H ′

G,X . �

Claim 4 H ′

G,X can be constructed in O(|X |2 +|I | · mG[X ] + |V (G)|+ |E(G)|) time.

Proof The construction algorithm proceeds as follows. We start by inserting all the
vertices I into the graph H ′

G,X , storing pointers from their copies in G to their copies

in H ′
G,X . We create an adjacency matrix for G[X ] in O(|X |2 + |V (G)| + |E(G)|)

time by scanning through all edges of G and marking the edges between members
of X in the matrix. Then we number the vertices in G from 1 to |V (G)|. For each
vertex in X we make a copy of its adjacency list containing only its neighbors in the
set I . We sort all these truncated adjacency lists simultaneously by a single radix sort,
in O(|V (G)| + |E(G)|) time.

For each pair {p, q} ∈ (X
2

)
, we test using the adjacency matrix of G[X ] whether

there is an edge between p and q in G. If this is not the case, we add the two ver-
tices {x ′{p,q}, x ′′{p,q}} to H ′

G,X and use the sorted lists of p’s and q’s neighbors in I to
find their common I -neighbors in O(|I |) time, using a linear scan as in merge-sort.
For each common neighbor v ∈ NG(p) ∩ NG(q) ∩ I , we use the pointer in G’s copy
of v to H ′

G,X ’s copy of v to insert the edges from x ′{p,q} and x ′′{p,q} to v in constant time.

After doing this for each pair {p, q} ∈ (X
2

)
we have constructed the graph H ′

G,X . Since
we spend constant time for each edge in G[X ], and O(|I |) time for each non-edge
in G[X ], the overall running time is O(|X |2 + |I | · mG[X ] + |V (G)| + |E(G)|). �


To find the desired treewidth-invariant set in G, we need to compute a maximum
matching in the bipartite graph H ′

G,X . The fastest algorithmic approach for perform-
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ing this step depends on the balance between the sizes of the partite sets of H ′
G,X ,

which causes the complicated running time. The Hopcroft–Karp algorithm [27] runs
in time O(

√
nm) time for an n-vertex graph with m edges. In our setting, this gives a

running time of O(
√

|I | + mG[X ] · |I | · mG[X ]). Alternatively, we may use the Ford–

Fulkerson method of repeatedly finding simple augmenting paths. Finding one aug-
menting path takes O(n+m) time and increases the size of the matching. Since the size
of a matching in H ′

G,X cannot exceed the size min{2mG[X ], |I |} of its smallest partite
set, this number bounds the number of iterations of the Ford–Fulkerson method, giving
a running time guarantee of O(min{mG[X ], |I |} · |I | · mG[X ]). Choosing the algorithm
that gives the best run-time guarantee, we compute a maximum matching M ′ in H ′

G,X

in time O(min{|I |, mG[X ],
√

|I | + mG[X ]} · |I | · mG[X ]).
Let U be the set of vertices in H ′

G,X that are not incident to an edge in M ′, and
let UA′ := U ∩ A′ be the unsaturated vertices in the A′-side of H ′

G,X . Let R(UA′)
be the vertices in H ′

G,X that are reachable from a vertex in UA′ by an alternating
path, i.e., a path that begins with a non-matching edge and alternates between edges
in E(H ′

G,X ) \ M ′ and edges of M ′. By a suitable breadth-first search, the set R(UA′)
can be computed in time linear in the size of H ′

G,X . Finally, put T := I \ R(UA′),
i.e., T consists of the vertices in the B ′-partite set which are not reachable from UA′ by
alternating paths. We will prove that T is the desired treewidth-invariant set in G. Note
that if |I | ≤ 2mG[X ] then T might be empty, which means it is trivially treewidth-
invariant.

Claim 5 |T | ≥ |I | − 2mG[X ].

Proof We first show that all vertices in R(UA′)∩ I are saturated by M ′. Suppose there
is a vertex in R(UA′) ∩ I that is not saturated by M ′. Then there is an alternating path
that starts at an unsaturated vertex in UA′ , and ends at an unsaturated vertex in the
other partite set B ′ = I . Hence the matching can be augmented over this alternating
path, contradicting the fact that M ′ is a maximum matching.

Since all vertices in R(UA′)∩ I are saturated by M ′, and the number of edges in M ′
is at most 2mG[X ] since that is the size of one of the partite sets of H ′

G,X , it follows
that R(UA′) ∩ I ≤ 2mG[X ] and therefore that |T | = |I \ R(UA′)| ≥ |I | − 2mG[X ]. �

Claim 6 For each vertex in T , all its neighbors in H ′

G,X are matched into T by M ′.

Proof Consider a vertex v ∈ T = I \ R(UA′). It is easy to see that all vertices
in NH ′

G,X
(v) are saturated by M ′: if v has an unsaturated neighbor u, then the edge {u, v}

would be an alternating path from an unsaturated vertex in UA′ to v, showing that v ∈
R(UA′) and resulting in a contradiction.

Now suppose that there is a vertex t ∈ T ⊆ B ′ with a neighbor u ∈ NH ′
G,X

(t) ⊆ A′

such that the matching partner u′ ∈ B ′ of u ∈ A′ is not contained in T , and observe
that this means that {t, u} �∈ M ′. By definition of T , there is an alternating path from
an unmatched x ∈ UA′ ⊆ A′ to u′ ∈ B ′. Since the alternating path starts with a
non-matching edge, and the vertices x and u′ are in different partite sets, the last edge
of this path from x to u′ is a non-matching edge. Hence we may add the matching
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edge {u, u′} and the non-matching edge {t, u} to this alternating path, to obtain an
alternating path from x to t . But this shows that t ∈ R(UA′), a contradiction to the
assumption that t ∈ T = I \ R(UA′). �

Claim 7 T is a treewidth-invariant set.

Proof By Lemma 9, it suffices to prove that in the graph HG,X , the set NHG,X (T )

is saturated by 2-stars into T . Define a mapping f : NHG,X (T ) → (T
2

)
as follows.

For each vertex x{p,q} ∈ NHG,X (T ) there are two copies x ′{p,q}, x ′′{p,q} in NH ′
G,X

(T ),

since NHG,X (x{p,q}) = NH ′
G,X

(x ′{p,q}) = NH ′
G,X

(x ′′{p,q}) by construction. The previous
claim shows that for each vertex in NHG,X (T ), the two corresponding copies are both
matched into T by M ′. Now let f (x{p,q}) consist of the two distinct matching partners
of x ′{p,q} and x ′′{p,q}, for all x{p,q} ∈ NHG,X (T ). Since the endpoints of a matching are
all distinct, this gives the desired saturation by 2-stars into T . �


The claims show that T is a treewidth-invariant set of size at least |I | − 2mG[X ].
Since it can be computed within the claimed time bounds, the lemma follows. �


The structure of q-expansions in graphs is related to that of crown decompositions,
which are q-expansions for q = 1. We refer the reader to the paper by Chlebík and
Chlebíková [12] for a detailed treatise on crowns. Using the previous lemma to extract
treewidth-invariant sets from matchings in bipartite graphs, we obtain the following
reduction algorithm.

Theorem 5 Let G be a graph with a vertex cover X ⊆ V (G), and let I := V (G) \ X
be the corresponding independent set. Let mG[X ] := |E(G[X ])| be the number of
non-edges in the graph G[X ]. There is an algorithm that, given G and X, runs in
time O(|V (G)| + |E(G)| + |X |2 + min{√|I |, mG[X ]} · |I | · mG[X ]), and computes an

integer Δ and a minor ĜT of G with the same vertex cover X, such that:

1. tw(G) = max(tw(ĜT ),Δ), and
2. ĜT has at most |X | + 2mG[X ] ≤ |X |2 vertices.

Proof Let the input be (G, X). The main idea is to apply Lemma 10 to find a treewidth-
invariant set T and reduce to the graph ĜT , which is suitably small since T contains
all but 2mG[X ] vertices of I . We do a fine-grained analysis to optimize the overall
running time.

If |I | ≤ 2mG[X ] then the graph already satisfies the claimed size bounds, and we
may simply output (G, X) unchanged and set Δ := 1. In the remainder we therefore
assume that |I | > 2mG[X ], which will be used to simplify the expressions of the
running time.

The algorithm applies Lemma 10 to compute a treewidth-invariant set T ⊆ I with
the guarantee that |T | ≥ |I |−2mG[X ]. Since |I | > 2mG[X ] the set T cannot be empty.
Let Δ := maxv∈T degG(v). Using that |I | > 2mG[X ] we find that

min
{

mG[X ], |I |,
√

mG[X ] + |I |
}

∈ O
(

min{mG[X ],
√|I |}

)
,

so the running time in Lemma 10 becomes O(min{√|I |, mG[X ]} · |I | ·mG[X ] + |X |2 +
|V (G)| + |E(G)|).
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Once the treewidth-invariant set T is found, we compute Δ := maxv∈T degG(v).
The last task is to build ĜT as the output of the procedure. To avoid introducing a
term Θ(|X |2 · |T |) in the running time, we do this carefully. To form ĜT from G, we
need to remove the vertices of T from G and turn NG(v) into a clique for each v ∈ T .
To do the latter, we need to add the edges E∗ := ⋃

v∈T

(NG (v)
2

) \ E(G) to the graph.
Since T ⊆ V (G)\ X , and X is a vertex cover, all new edges in E∗ have both endpoints
in X , implying that |E∗| ≤ mG[X ]. We utilize the graph H ′

G,X that was computed
during the application of Lemma 10 to compute the set E∗. Since NH ′

G,X
(T ) has

exactly two vertices x ′{p,q}, x ′′{p,q} for each pair {p, q} ∈ E∗, we can find the set E∗
in O(mG[X ] · |T |) time by finding the neighbors of T in H ′

G,X .

Using E∗ we build ĜT as follows. We compute an adjacency matrix for G[X ]
in O(|X |2 + |V (G)| + |E(G)|) time. We make all the pairs in E∗ new edges in
the adjacency matrix, in O(|E∗|) ⊆ O(mG[X ]) time. Then we remove the vertices

in T from G, and compute an adjacency list representation of the resulting graph ĜT .
Overall, the construction of ĜT from T takes O(mG[X ] · |I |+|V (G)|+|E(G)+|X |2)
time (we use that |T | ≤ |I |).

It is easy to verify that X is a vertex cover of the graph ĜT , as all edges that
were introduced have both their endpoints in X . By Lemma 8 we know that tw(G) =
max(tw(ĜT ),Δ). Since |T | ≥ |I |−2mG[X ], at most 2mG[X ] vertices remain in I after

all vertices of T have been removed. Hence the order of ĜT is at most |X |+2mG[X ] ≤
|X | + 2

(X
2

) = |X |2. By the definition of a treewidth-invariant set, the graph ĜT

is a minor of G − {v} for each v ∈ T , and is therefore a minor of G. Hence the
pair (ĜT ,Δ) is a valid output for the procedure. It is easy to see that the running time
of the overall procedure is dominated by the invocation of Lemma 10, giving a bound
of O(min{√|I |, mG[X ]} · |I | · mG[X ] + |X |2 + |V (G)| + |E(G)|). �


Theorem 5 should prove useful for building preprocessing algorithms that simplify
the task of computing good tree decompositions. For that purpose, it is interesting
to note that when a decomposition of the reduced graph is found, it is easy to lift
this back to a decomposition of the original graph. The argument given in Lemma 8
shows that if the graph G is reduced to ĜT by eliminating the treewidth-invariant
set T , then an elimination order π ′ of ĜT can be transformed into an elimination
order of G of cost max(Δ + 1, cĜT

(π ′)) by prepending the vertices of T as a prefix

in the new order. Hence even if a non-optimal elimination order of ĜT is found, no
additional loss is incurred when transforming it back to an elimination order of G.
It is straight-forward to adapt this argument to transform tree decompositions of ĜT

into tree decompositions of G in polynomial time. Phrased in this language, the main
insight is that for every eliminated vertex v ∈ T , any tree decomposition of ĜT has a
bag containing all vertices in NG(v), as NG(v) forms a clique in ĜT [2, Lemma 4].

The vertex cover X ⊆ V (G) needed in the input of the procedure may be obtained
by a simple approximation or heuristic algorithm: the non-optimality of the vertex
cover only affects the amount of data reduction that is achieved, and does not affect
the fact that optimal tree decompositions of the original graph can be obtained from
optimal tree decompositions of the reduced graph. Together with the fact that Vertex
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Cover has a simple 2-approximation algorithm (cf. [14]), the discussion above gives
the following corollary.

Corollary 2 There is a polynomial-time algorithm that, given a graph G, computes
a minor ĜT of G and an integer Δ such that:

1. |V (ĜT )| ≤ 4 · vc(G)2,
2. tw(G) ≥ Δ,
3. a tree decomposition of width k for ĜT can be transformed into a tree decompo-

sition of G of width max(k,Δ) in polynomial time.

Here, vc(G) denotes the size of a minimum vertex cover in G.

4.4 Consequences for Treewidth Obstructions

From the insights used to obtain the kernelization algorithm, we can also derive some
properties of minor-minimal obstructions for treewidth (cf. [13,30]).

Corollary 3 If G is a non-complete graph such that tw(G ′) < tw(G) for all proper
minors G ′ of G, and X is a vertex cover of G, then |V (G)| ≤ |X |+2|E(G[X ])| ≤ |X |2.

Proof If G is not a complete graph (clique) and all proper minors of G have smaller
treewidth than G itself, then G does not have a non-empty treewidth-invariant set. To
see this, suppose that the non-complete graph G has a non-empty treewidth-invariant
set T . By Lemma 8, we have tw(G) = max(tw(ĜT ), maxv∈T degG(v)). If tw(G) =
tw(ĜT ), then the graph ĜT is a minor of G (by Definition 5) with the same treewidth,
and it is a proper minor since it does not contain T . If tw(G) = maxv∈T degG(v), then
let v ∈ T be a vertex with maximum degree. As shown in the proof of Lemma 8 there is
a clique minor of G on vertex set NG [v]. This clique minor has treewidth degG(v) =
tw(G), and is a proper minor since it is a clique, whereas G is not a clique by
assumption. Hence in both cases we find that G has a proper minor with the same
treewidth.

Now consider a non-complete graph G whose proper minors have smaller treewidth
than G, and a vertex cover X ⊆ V (G). Since G does not have a non-empty treewidth-
invariant set by the above argument, by Lemma 10 we have that |I | = |V (G) \ X | ≤
2|E(G[X ])|. Hence the number of vertices in G is bounded by |X | + |I | ≤ |X | +
2|E(G[X ])| ≤ |X | + 2

(X
2

) = |X |2. �


5 Conclusion

In this paper we contributed to the knowledge of sparsification for Treewidth by
establishing lower and upper bounds. As a lower bound, we proved that instances
of Treewidth [n] and Pathwidth [n] cannot be compressed in polynomial time
to O(n2−ε) bits (for ε > 0) unless NP ⊆ coNP/poly. Our upper bound consisted of
a new reduction rule for Treewidth [vc] based on the novel notion of treewidth-
invariant sets, resulting in a kernel with |X |2 vertices when given a vertex cover X of the
graph. Our work raises questions in three different areas: sparsification, kernelization,
and graph minor obstruction sets.
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5.1 Sparsification

We showed that Treewidth and Pathwidth instances on n vertices are unlikely to
be compressible into O(n2−ε) bits. Are there natural problems on general graphs that
do allow (generalized) kernels of size O(n2−ε)? Many problems admit O(k)-vertex
kernels when restricted to planar graphs [5], which can be encoded in O(k) bits
by employing succinct representations of planar graphs. Obtaining subquadratic-size
compressions for NP-hard problems on classes of potentially dense graphs, such as
unit-disk graphs, is an interesting challenge. For example, does Vertex Cover on
unit-disk graphs admit a polynomial-time compression into instances of size O(n2−ε),
for some ε > 0? If so, does the natural parameterization k-Vertex Cover admit a
kernel with O(k2−ε) bits when the problem is restricted to unit-disk graphs? The
results of Dell and van Melkebeek [17] imply that this is not the case on general
graphs, assuming NP �⊆ coNP/poly.

5.2 Kernelization

In Sect. 4 we gave a quadratic-vertex kernel for Treewidth [vc]. We showed that the
kernelization algorithm can be adapted to the optimization setting of computing tree
decompositions, since decompositions of the reduced graph can easily be transformed
back to decompositions of the original graph. Many reduction rules formulated for
decision problems depend on the threshold value k of the question, which makes them
harder to use in optimization settings. Our new reduction rule does not depend on
a threshold value in its input, and can therefore be easily applied for optimization
purposes (cf. [10]).

The key insight for our reduction is the notion of treewidth-invariant sets, together
with the use of the q-expansion lemma to find them when the complement of the
vertex cover has superquadratic size. A challenge for future research is to identify
treewidth-invariant sets that are not found by the q-expansion lemma; this might
decrease the kernel size even further. The treewidth-invariant sets that are identi-
fied by the current algorithm have the following special form. On input (G, X),
they consist of vertices T from the independent set I := V (G) \ X such that
for each non-edge {p, q} that exists in G[NG(v)] for some v ∈ T , there are two
unique vertices in T assigned to the non-edge that can be contracted into p or q
to realize it. Hence these treewidth-invariant sets do not utilize the possibility of
creating many non-edges simultaneously by a single contraction. Furthermore, the
reduction algorithm finds such treewidth-invariant sets with respect to a particular
choice of vertex cover X . It would be interesting to determine whether treewidth-
invariant sets of the described “conservative” form can be found in polynomial time
without specifying a particular choice of vertex cover. We strongly suspect that
testing whether a graph has a non-empty treewidth-invariant set is NP-complete in
general.

The refined analysis in Sect. 4.3 reveals that the number of vertices in the indepen-
dent set V (G) \ X of reduced instances is bounded by twice the number of non-edges
in the graph induced by X . On graphs that have a dense vertex cover, this bound may
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be much better than the naive bound
(|X |

2

)
of the number of pairs in X . This also raises

some interesting algorithm engineering challenges. At first glance, one would expect
that the reduction algorithm performs best when the vertex cover supplied in the input
is as small as possible. However, it might be the case that there is a larger vertex cover
that induces fewer non-edges. In this case, the analysis suggests that the reduction
algorithm is able to reduce the graph better with respect to the larger vertex cover than
the smaller one. It would be interesting to determine if this is the case in practice, and
to develop good (heuristic) algorithms for finding a vertex cover that induces a small
number of non-edges.

As the sparsification lower bound proves that Treewidth [vc] is unlikely to admit
kernels of bitsize O(|X |2−ε), while the current kernel can be encoded in O(|X |3) bits,
an obvious open problem is to close the gap between the upper and the lower bound.
Does Treewidth [vc] have a kernel with O(|X |) vertices? If not, then is there at
least a kernel with O(|X |2) rather than O(|X |3) edges?

For Pathwidth [vc], a kernel with O(|X |3) vertices is known [6]. Can this be
improved to O(|X |2) using an approach similar to the one used here? The obvious
pathwidth-analogue of Lemma 8 fails, as removing a low-degree simplicial vertex
may decrease the pathwidth of a graph. Finally, one may consider whether the ideas
of the present paper can improve the kernel size for Treewidth parameterized by a
feedback vertex set [7].

5.3 Obstruction Sets

As a corollary to our insights on treewidth-invariant sets, we proved a bound on the
sizes of graphs G for which every minor operation decreases their treewidth. The bound
is expressed in terms of the vertex cover number. Such graphs G are easily seen to be
the minor-minimal obstructions to having treewidth tw(G) − 1. Hence Corollary 3
shows that the order of minor-minimal treewidth obstructions is at most quadratic in
their vertex cover number. It would be interesting to determine whether this bound
is tight. We conjecture that it is not. This conjecture is motivated by our inability to
construct quadratic-size treewidth obstructions. The right answer may well be that for
minor-minimal obstructions to treewidth, the number of vertices is linear in the vertex
cover number. If this is indeed the case, then using the approach described by Fellows
and the present author [21] this would imply that Treewidth [vc] has a coNP-kernel
with O(|X |2) bits, and therefore that no lower bound better than O(|X |2−ε) can be
proven using the current frameworks [8,17].1 As insights into obstruction sets and
kernels often come in tandem, such research might also lead to an improved kernel
for Treewidth [vc].

1 A coNP-kernel of size f (k) is a nondeterministic polynomial-time algorithm that, given a yes-
instance (x, k), outputs a yes-instance (x ′, k′) with |x ′|, k′ ≤ f (k) on each computation path. Given a
no-instance, it outputs an instance of size f (k) on each computation path, and at least one of the computa-
tion paths yields a no-instance.
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