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Abstract We study the following optimization problem. The input is a number k and
a directed graph with a specified “start” vertex, each of whose vertices may have one
“memory bank requirement”, an integer. There are k “registers”, labeled 1, . . . , k. A
valid solution associates to the vertices with no bank requirement one or more “load
instructions” L[b, j], for bank b and register j , such that every directed trail from
the start vertex to some vertex with bank requirement c contains a vertex u that has
been associated L[c, i] (for some register i ≤ k) and no vertex following u in the
trail has been associated an L[b, i], for any other bank b. The objective is to minimize
the total number of associated load instructions. We give a k(k + 1)-approximation
algorithm based on linear programming rounding, with (k+1) being the best possible
unless Vertex Cover has approximation 2− ε for ε > 0. We also present a O(k log n)

approximation, with n being the number of vertices in the input directed graph. Based
on the same linear program, another rounding method outputs a valid solution with
objective at most 2k times the optimum for k registers, using 2k − 1 registers.
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1 Introduction

Partitioned memory architecture is common in 8-bit microcontrollers. For example,
Freescale [12] 68HC11 8-bit microcontrollers allowmultiple 64 KBmemory banks to
be accessed by their 16-bit address registers with only one bank being active at a time.
Zilog [31] Z80 also addresses a maximum of 64 KBmemory using 16-bit address reg-
isters. Other examples include Intel 8051 processor family andMOS technology 6502
seriesmicrocontrollers. For embedded systems using these 8-bitmicrocontrollers, how
to insert bank selection instructions (or load instructions) to minimize the code size is
an important research topic. Given a Control Flow Graph, where each node represents
some code block, we can insert bank selection instructions (loading a bank index to a
register) either immediately before the block or immediately after the block to activate
some memory bank. We want to use the minimum number of bank selection instruc-
tions to guarantee that no matter from which path the program enters the current code
block, the memory bank which contains this block is active at this moment. Formal
definitions are in the next subsection.

Note that we are not optimizing the run-time of the program (in which case the
problem would resemble caching [25]) nor the number of registers needed for a pro-
gram (as in Thorup [27], Kannan and Proebsting [18], and Jansen and Reiter [16]).
An early related work is [15]. More recent work appears in [24], while [6,19–21,26]
and many other papers deal with practical issues of NP-hard variants of register allo-
cation. Also, as opposed to most theoretical work, we do not assume any structure
(such as low treewidth) for the input graph. Most related to our model are the “spill
heuristics” discussed in [3–5,9,11,28], but as the name suggests we do not know of
any previous approximation algorithms. Here “spill” means putting some variables in
the RAM instead of registers and the aim of those heuristics is to minimize the number
of variables “spilled”.

So, while our problem resembles register allocation, it differs in the followingways.
We do not force a bank with a “live-range” to stay in the same register but allow the
register to change content over time. We also have the restriction that a bank variable
cannot be stored in RAM when it is to be visited (it must come back to a register in
time, which is different from the Register Allocation problem where a variable can
be spilled). In the new setting, our goal is to minimize the total number of content
switching instructions for registers inserted into the program.

We organize the remaining of the paper as follows. Section 1.1 gives the original
problem formulation k-OBSIM together with the more pure version k-BSIM. Section
1.2 describes previous and new results and further discussion. In Sect. 2, we show
a reduction to prove the hardness of k-OBSIM and also show that the k-OBSIM
problem can be transformed to the k-BSIM problem and hence we will focus on
solving k-BSIM. Section 3 presents our integer linear program for 1-BSIM and the
rounding procedure giving the 2-approximation. We also discuss derandomization in
Sect. 3.2, using linear programming duality to reduce the running time of the rounding
procedure. Section 4 presents the generalization of the approximation results from
1-BSIM to k-BSIM, as well as the two other approximation results mentioned in the
abstract. We conclude in Sect. 5.
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1.1 Problem Formulation

Starting directly from embedded systems, we obtain the Original k-Bank Selection
Instruction Minimization problem (k-OBSIM), defined as follows: the input is a num-
ber k and a directed graph, called the control flow graph (CFG), with a specified “start”
vertex, and for each vertex we have at most one “memory bank requirement”, an inte-
ger. The vertices of the CFG correspond to blocks of code in an embedded system,
and arcs represent possible jumps in the code. Many embedded systems use parti-
tioned memory architecture, and program variables are stored in “banks” that must be
activated by storing its index in registers before use. For illustration convenience, we
simply say a bank is stored in a register when the bank is activated. A vertex with no
bank requirement is called a transparent vertex, and a vertex with one bank require-
ment is called a required vertex. There are k registers, labeled 1, . . . , k. Let B be the
set of possible banks.

Each vertex of the CFG may “load” a bank (use a bank load instruction), either at
the “entrance” or at the “exit” of the vertex (or both). We write Lu

in[b, j] for loading
bank b in register j at the entrance of vertex u, and Lu

out [b, j] for loading at the exit.
Although loading is also allowed on the arcs of the CFG, we prefer to subdivide such
arcs with transparent vertices to keep the problem description simpler. Also, when
k = 1, a small proof shows that any load on an arc can be done instead at the entry of
the head of the arc, resulting in another feasible solution not worse in the number of
load instructions.

For a trail (directed path, not necessarily simple) P , let ̂P denote the set of interior
vertices of P , obtained as follows: from the sequence of vertices of P , remove the
first and last vertex, and then eliminate duplicates. Note that the start or end of P may
appear in ̂P . If for trail P we have vertex w ∈ ̂P , let P[w] be the subtrail of P from
the last occurrence of w in P to the end vertex of P . Let s be the start vertex of the
CFG. In a feasible solution, bank load instructions must be associated to CFG vertices
such that, for any trail P from s to some node v that has a bank requirement b, P has
a vertex w (which may be v) and a register j for some j ≤ k such that one of the
following holds:

1. w = v, and we have Lw
in[b, j] but no Lw

in[c, j] for any c ∈ B with c �= b
2. w has Lw

out [b, j], and for no c ∈ B with c �= b there is Lv
in[c, j] or Lw

out [c, j] or
a vertex u of ̂P[w] with either Lu

out [c, j] or Lu
in[c, j]

3. w has Lw
in[b, j], and for no c ∈ B with c �= b there is Lv

in[c, j] or Lw
in[c, j] or

Lw
out [c, j] or a vertex u of ̂P[w] with either Lu

out [c, j] or Lu
in[c, j].

We call such a trail fulfilled. See Figs. 1, 2, and 3 for examples of feasible solutions.
In other words, in a trail from the start vertex to some vertex v requiring bank b, bank
b is always loaded in some register and there are no other bank loads over b further
on the trail. The objective is to minimize the total number of bank load instructions
(as to keep the embedded code as short as possible). See the right example in Fig. 1
for a scenario where simple paths can be fulfilled but there exists an unfulfilled trail.

We prefer to work with a slightly more pure problem, called k-BSIM. The input is
a number k and a directed graph with a specified “start” vertex, each of whose vertices
may have one “memory bank requirement”, an integer. There are k “registers”, labeled
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Fig. 1 On the left: An example input with a feasible solution when k = 1. Circles represent nodes and the
number in the circle means the bank required by this node (empty circles are transparent nodes). The start
vertex is not represented, or it could be the top (transparent) vertex. With only one register, and the position
w.r.t. a vertex clear from the picture, we write L(a) to mean “load bank a”. On the right: another example
(also k = 1) with an unfeasible solution. There is a non-simple path going to the lower vertex with bank
requirement a that loads a, then b, and does not load a again

Fig. 2 On the left, an instance with directed cycles, for k = 1. Nodes 1a and 2a require bank a, nodes 1b
and 2b require bank b, nodes 1c and 2c require bank c, while the start s and node u are transparent. On the
right, a feasible solution. We abbreviate Lout [b, j] or Lin [b, j] to L(b) since the figure shows the position
of the load instructions, and there is exactly one register

1, . . . , k. A valid solution associates to the vertices with no bank requirement one or
more “load instructions” L[b, j], for bank b and register j , such that every directed
trail from the start vertex to some vertex with bank requirement c contains a vertex
u that has been associated L[c, i] (for some register i ≤ k) and no vertex following
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Fig. 3 An example input with a
feasible solution when k = 3.
For the bottom node which
accesses bank 1, there are three
paths entering it, where two of
them have bank 1 loaded in
register 1 and one of them has
bank 1 loaded in register 3. We
abbreviate Lout [b, j] or
Lin(b, j) to L(b, j) since the
figure shows the position of the
load instructions. The start
vertex is not represented and has
only one arc, to the top-most
vertex

u in the trail has been associated an L[b, i], for any other bank b. The objective is to
minimize the total number of associated load instructions.

The difference between k-OBSIM and k-BSIM is that in k-BSIM, “load instruc-
tions” can only be added inside nodes with no bank requirement (transparent nodes)
while in k-OBSIM, “load instructions” can be added before and after any node.

1.2 Results and Discussion

The paper [22] studies 1-OBSIM without transparent nodes, showing NP-hardness
and a 2-approximation algorithm. We generalize this result, by giving a k(k + 1)-
approximation algorithm for k-OBSIM (transparent nodes also allowed) based on
linear programming rounding. In a personal communication, Yuan Zhou [30] claimed
that 1-OBSIM without transparent nodes does not have a 2 − ε approximation algo-
rithm unless vertex cover has a 2 − ε approximation algorithm (and it is believed
that such an algorithm does not exist). We also present such a reduction, and gen-
eralize it to show that k-OBSIM without transparent nodes does not have a α − ε

approximation algorithm unless (k + 1)-uniform Hypergraph Vertex Cover has such
an algorithm. It is known that it is NP-hard to approximate Hypergraph Vertex Cover
in a r -uniform-hypergraph to within a factor of (r − 1− ε) [10], and it is believed that
an approximation ratio of r is the best a polynomial-time algorithm can do. Thus it is
NP-hard to approximate k-OBSIM (k > 2) within a factor of k − ε.

The results in [22] only work for acyclic CFGs with no transparent nodes, while all
our approximation algorithms work for arbitrary CFGs (with cycles and transparent
nodes) by adding an essential new constraint and also using a more sophisticated
rounding analysis, which is akin to how node-multiway-cut [13] generalizes Vertex
Cover. For k = 1, the existence of transparent nodes poses a serious challenge, since
given a transparent node v, solutions without a “load instruction” at v may exist, and
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for such a solution, different program flows (trails) going through v can have different
banks being active when leaving v. However, for a node with a bank requirement, no
matter which flow the program goes through, the active bank will be the same after
going through this node. For k > 1, there are similar issues.

Based on the same linear program, we also present a O(k log n)-approximation,
with n being the number of vertices in the input directed graph, for k-BSIM. Another
rounding method outputs a valid solution with objective at most 2k times the optimum
for k registers, however using 2k−1 registers instead of k registers. The linear program
contains one “clever” constraintwhichmakes it similar, for k = 1, to the linear program
used by Garg et al. [13] to obtain a 2-approximation for NodeWeightedMultiway Cut.
We discussed earlier the hardness of k-BSIM, obtained from the hardness of k-uniform
Hypergraph Vertex Cover. Informally, k-BSIM also inherits some hardness from k-
Coloring (as in the register allocation papers [27] and [18], with the latter using, as one
of our algorithms above, 2k instead of k registers) and we see intuitive connections to
Directed Steiner Tree [7,29,32] and Multicut in directed graphs [2,8,14].

2 Reductions

A reduction fromVertex Cover to 1-OBSIMwithout transparent nodes was announced
by Yuan Zhou [30]. We show directly how (k + 1)-uniform Hypergraph Vertex Cover
reduces to k-OBSIM without transparent nodes.

r -uniform Hypergraph Vertex Cover is the following problem: The input H =
(V, E) is a r -uniform hypergraph; that is each hyperedge e ∈ E is a subset of V of
size r . A set C of vertices is said to cover a hyperedge e if e ∩ C �= ∅, and is said to
be a vertex cover if it covers all hyperedges. The objective is to find a minimum size
vertex cover. Vertex cover is 2-uniform Hypergraph Vertex Cover.

Please refer to Fig. 4 for an illustration. Given a (k + 1)-uniform Hypergraph
Vertex Cover instance G = (V, E) (with |V | = n and |E | = m), construct the CFG
as follows: add to its vertices many (say, km2) copies of each vertex of v ∈ V , all
with required bank v, creating groupswith vertices in different groups having different
requirements. For each hyperedge e ∈ E , add to the CFG a vertex with bank 0 �∈ V ,
and put an arc from this vertex to all the copies of the vertices of V included in e. Add
to the CFG the start vertex s and put arcs from it to all the CFG-vertices obtained from
hyperedges of E . Call this k-OBSIM instance I .

We claim that if G has a vertex cover C of size q, we can find a feasible solution
for I that uses at most 1 + km + qkm2 bank load instructions: (Fig. 5) all the qkm2

copies of all the vertices in C will load their respective requirement at the entry, all
the vertices of I obtained from some e ∈ E will load, at the exit, the requirement of
the vertices in e \ C (there are at most k such vertices since e has cardinality (k + 1)
and at least one vertex of C is contained in the set e). s loads bank 0 at the exit.

Moreover, if I has a solution with less than qkm2 bank load instructions, then G
has a vertex cover Q of size less than q: put in Q a vertex v if all the km2 copies of v

load their requirement. Then |Q| < q and it remains to prove that all the hyperedges
of G are covered by Q. Indeed, if hyperedge e ∈ E is not covered by Q, then for every
u ∈ e, there is a copy of u with no bank load instruction; however then no matter what

123



Algorithmica (2015) 72:1011–1032 1017

Fig. 4 An example of reducing vertex cover (instance on the left) to 1-OBSIM (instance on the right; each
oval contains many vertices with the same bank requirement)

u x y zv

0 0 0 0 0 0

s

L(z)

L(y)L(y)L(u) L(u) L(y)

L(w)
L(v)

L(0)

Fig. 5 A feasible solution for the vertex cover instance of Fig. 4 appears on the left. The corresponding
1-OBSIM feasible solution appears on the right; as each oval contains many vertices with the same bank
requirement, there will be many L(v), L(w), and L(y) instructions

k load instructions we associate with the vertex of I corresponding to e or with the
start vertex, we do not obtain a feasible solution for I : since |e| > k there will be a
vertexw ∈ e such that bankw is not loaded after leaving the vertex of I corresponding
to e, and since also one of w’s copy (call it w′) in I does not have an associated load
instruction at its entry, the trail (here, a simple path) s, e, w′ is not fulfilled.

In conclusion, if G has optimum vertex cover of size q, I has optimum between
qkm2 and qkm2 + km + 1, and thus k-OBSIM cannot be approximated with ratio
k − ε unless P = N P (using [10]) and 1-OBSIM cannot be approximated with ratio
2 − ε unless Vertex Cover can be approximated with ratio 2 − ε.
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We continue by showing how k-OBSIM reduces to k-BSIM (with transparent
nodes), a problem easier to describe. Given an instance of k-OBSIM, for every node
v in CFG with bank requirement b, add a transparent node vtin which takes in all the
incoming arcs of v and has one arc to v, thus v has exactly one incoming arc. Also add
a transparent node vtout which sends out all the outgoing arcs of v, and has one arc from
v, thus v has exactly one outgoing arc. If for the k-OBSIM instance, there is a load
operation at the entrance of some vertex v with bank requirement b, then in the trans-
formed k-BSIM instance, we do the same load to node vtin ; if there is a load operation
at the exit of some vertex v with bank requirement b, then in the transformed k-BSIM
instance, we do the same load to node vtout . Thus, with the above correspondence, a
feasible solution for the k-OBSIM instance can be changed to a feasible solution for
the transformed k-BSIM instance. Also, it is easy to see that a feasible solution for the
transformed k-BSIM instance can be changed to a feasible solution for the original
k-OBSIM instance, without an increase in the objective function.

3 1-BSIM

Remove nodes from the CFG such that every node is reachable from the start vertex
s. We again do a similar transformation for the given OBSIM instance. The linear
program obtained later after this transformation is more intuitive (but this reduction
only works for k = 1).

Create a new transparent start vertex, s′, with exactly one arc, outgoing to the
original s. For every node v in CFG with bank requirement b, split v in two nodes,
vin with all the incoming arcs of v, and vout with all the outgoing arcs of v; both have
requirement b. This operation is illustrated in Fig. 6. Note that we do not have an

(a) (b)

Fig. 6 Splitting a node as described in the reduction from 1-OBSIM to BSIM. From node v with bank
requirement 8 (a), four nodes are created (b). vin is the transparent node taking in all the incoming arcs of
vin , and vout is the transparent node sending out all the incoming arcs of vout
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Fig. 7 On the left, the instance from Fig. 2. Nodes 1a and 2a require bank a, nodes 1b and 2b require bank
b, nodes 1c and 2c require bank c, while the start s and node u are transparent. On the right, the BSIM
instance created (not represented are three weakly connected components with 2aout , 1bout , and 1cout ).
Note also that weakly connected component of 2bout plays no role in finding optimal solutions

arc from vin to vout . Moreover, for vin , add a transparent node which takes in all the
incoming arcs of vin and has one arc to vin , thus vin has exactly one incoming arc.
Also, for vout , add a transparent node which sends out all the outgoing arcs of vout ,
and has one arc from vout , thus vout has exactly one outgoing arc. We now insist that
all load instructions are done at transparent nodes. Figure 7 gives an example.

Call the resulting directed graph G = (V, E). Let RI ⊂ V (lowest level in Fig. 7)
contain all the required nodes with one incoming arc each (that is, the vin nodes), let
RO ⊂ V (highest level in Fig. 7) contain s′ and the required nodes with one outgoing
arc each (that is, the vout nodes), and let F be the set of transparent nodes other than
s′ (in Fig. 7, these nodes are not on the highest or lowest levels). For a ∈ B, let RI

a be
the subset of RI with requirement a, and RO

a be the subset of RO with requirement a.
In G, we insist that for every bank a ∈ B and every vertex v ∈ RI

a , every trail ending
in v and starting at a vertex of RO \ RO

a contains a vertex u ∈ F loading bank a,
and no load instructions after u. Call BSIM this new problem. One can check that a
1-OBSIM feasible solution for the original instance corresponds to a BSIM feasible
solution to the constructed instance, with the same number of load instructions.

For v ∈ V and a ∈ B, let T v
a be the (possibly infinite) set of trails of G from v

to some node of RI
a , and let Pv

a be the set of simple paths of G from v to some node
of RI

a . Write the following integer linear program (IP1), with variables xv
b for every

node v ∈ F and bank requirement b ∈ B (xv
b in the IP would be 1 if node v ∈ F

loads bank b), and variables dv
b for every node v ∈ (

F ∪ RO
)

and bank requirement
b ∈ B (dv

b in the IP would be 1 if either Pv
b = ∅ or, for any simple path P ∈ Pv

b , ̂P
contains at least one node that loads bank b). Note that Pv

b = ∅ iff T v
b = ∅, and that

if any simple path P ∈ Pv
b , ̂P contains at least one node that loads bank b, then for

any trail T ∈ T v
b , ̂T contains at least one node that loads bank b. Also note that if, for

some v ∈ (

F ∪ RO
)

, we have that for any simple path P ∈ Pv
b , ̂P contains at least

one node that loads bank b, it does not necessarily follow that bank b “arrives loaded
at the destination” on such a path since it is not mentioned that another bank is not
loaded “over b” later on the path.
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Fig. 8 A feasible solution to the integer program instance from the BSIM instance from Fig. 7. Nodes 1a
and 2a require bank a, nodes 1b and 2b require bank b, nodes 1c and 2c require bank c, while the original
start s and node u are transparent. To fit the notations in the figure, 1aout is replaced by 1a, 1aout is 1a
with an arrow on top, and 1ain is replaced by 1a

min
∑

v∈F,b∈B
xv
b

subject to
∑

b∈B
xv
b ≤ 1 ∀v ∈ F (1)

dua ≥ 1 ∀a ∈ B ∧ ∀u ∈
(

RO \ RO
a

)

(2)

dv
a ≥ xv

b ∀a �= b ∈ B ∧ ∀v ∈ F (3)

dua ≤ dv
a +xv

a ∀a ∈ B ∧ ∀u ∈
(

F ∪ RO
)

∧ ∀v ∈ F such that uv ∈ E

(4)

dua = 0 ∀a ∈ B ∧ ∀u ∈ F such that ∃v ∈ RI
a such that uv ∈ E (5)

dua + dub ≥ 1 ∀a �= b ∈ B ∧ ∀u ∈ F (6)

xv
a ≥ 0 ∀v ∈ F ∧ ∀a ∈ B (7)

dv
a ≥ 0 ∀v ∈

(

F ∪ RO
)

∧ ∀a ∈ B (8)

xv
a , dv

a ∈ Z ∀v ∈ V ∧ ∀a ∈ B (9)

See an example in Fig. 8. We argue the fact that any IP solution obtained from a
BSIM solution satisfies all these constraints, and that we can construct a valid BSIM
solution from any IP solution. It is rather obvious the objective function matches.
Constraint (1) enforces only one load per vertex of F . Constraint (2) enforces the
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condition that for every bank a ∈ B and every vertex v ∈ RI
a , every simple path (and

also every trail) ending in v and starting at a vertex of RO \ RO
a contains a transparent

vertex loading bank a; it does not guarantee however no load instructions after u.
This is done by Constraint (3), which enforces the following observation: if bank b is
loaded in vertex v, then for any simple path (and also every trail) from v to a vertex
requiring bank a, there must be at least one load of bank a.

Constraint (4) enforces the following: if for bank a and vertices u, v with uv ∈ E ,
we have Pv

a �= ∅ and there exists a simple path P ∈ Pv
a such that ̂P contains no node

that loads bank a, and v also does not load a, then Pu
a �= ∅ and there exists a path

P ′ ∈ Pu
a (namely, shortcut if needed the trail starting with arc uv followed by P) such

that ̂P ′ contains no node that loads bank a. Constraint (5) means that if v ∈ RI
a and

uv ∈ E , then Pu
a �= ∅ and there exists a trail P ′ ∈ Pu

a (namely, arc uv) such that ̂P ′
contains no node that loads bank a.

The trickier to verify constraint is (6), which indeed holds for integer solutions as,
if for vertex v and banks a �= b, Pv

a and Pv
b are both non-empty, then no matter if or

what bank is loaded in v or in any other free vertex, either we must have that every
simple path P ∈ Pv

a satisfies that ̂P contains at least one node that loads bank a, or we
must have that every simple path P ∈ Pv

b satisfies that ̂P contains at least one node
that loads bank b. Indeed, if there is a simple path P ∈ Pv

a with ̂P not loading a, then
we must have that either v loads a, or all the simple paths from RO to v load a or are
coming from RO

a (and a trail from RO to v must exist since we assumed every vertex
of the CFG is reachable from s). Thus if such a P exists, we must have that every
simple path P ′ ∈ Pv

b satisfies that ̂P ′ contains at least one node that loads bank b. It
is the crucial (and clever) Constraint (6) that allows good approximation algorithms.

Now, given an IP1 feasible solution, it remains to argue that loading bank b at vertex
u whenever xub = 1 gives a feasible BSIM solution. Indeed, let a ∈ B, v ∈ RI

a and P
be a trail from some w ∈ (

RO \ RO
a

)

to v. Constraints (2),(4), and (5) ensure that at
least one vertex u of ̂P has xub = 1. Pick z to be the last such vertex of ̂P . If any vertex
y following z on ̂P has x ya = 1 then Constraint (3) ensures dy

b = 1 and therefore
another vertex v of ̂P , following y, has xv

b = 1, contradicting the selection of z.

3.1 LP Rounding

Let LP1 be the linear programming relaxation of IP1, which can be solved in polyno-
mial time. See Fig. 9 for an example of a fractional solution. Let x̄v

a , d̄v
a be an optimum

LP1 solution. Pick uniformly at random a real number δ ∈ (0, 1/2). Set (for all possi-
ble v, a) xv

a = 1 iff d̄v
a < δ ≤ d̄v

a + x̄v
a . Set (for all possible v, a) dv

a = 1 iff Pv
a = ∅ or

any path P in Pv
a has some u ∈ ̂P with xua = 1 (this can be achieved by Breadth First

Search). It is immediate that Pr [xv
a = 1] ≤ 2x̄v

a , and thus we have a 2-approximation,
provided we prove that for any such δ, we get a valid I P solution.

Lemma 1 For any δ ∈ (0, 1/2), and for any v ∈ (F ∪ RO) and b ∈ B, if d̄v
b ≥ 1/2

and Pv
b �= ∅, then any simple path P ∈ Pv

b has a vertex z �= v with xzb = 1 (in other
words, bank load b at CFG vertex z).
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Fig. 9 A feasible solution to the linear program instance from the BSIM instance from Fig. 7. Nodes 1a
and 2a require bank a, nodes 1b and 2b require bank b, nodes 1c and 2c require bank c, while the original
start s and node u are transparent. To fit the notations in the figure, 1aout is replaced by 1a, 1aout is 1a
with an arrow on top, and 1ain is replaced by 1a

Proof Let P be such a simple path from v to some w ∈ RI
b . Note that the vertex y

before w in P has d̄ y
b = 0. Therefore P must have consecutive vertices u and u′ such

that d̄u
′

b < δ and d̄ub ≥ δ; here u may be v. Note that u′ ∈ F . Constraint (4) also gives

d̄u
′

b + x̄u
′

b ≥ d̄ub ≥ δ, and therefore xu
′

b is set to 1 by the algorithm. The lemma holds
with z = u′. ��

Now we check the feasibility of all constraints. For Constraint (1), note that for
a �= b ∈ B and v ∈ F , in order to have both xv

a and xv
b be made 1, we must have

d̄v
a < 1/2 and d̄v

b < 1/2, leading to d̄ violating Constraint (6).
Constraint (2), for a ∈ B and u ∈ RO \ RO

a follows from d̄ua ≥ 1 and the lemma
above (if Pu

a �= ∅), or the way we set all dv
a = 1 above if Pv

a = ∅.
Constraint (3), for a �= b ∈ B and v ∈ F follows from the following argument:

if xv
b = 1, then d̄v

b < 1/2, and therefore by d̄ satisfying Constraint (6), d̄v
a ≥ 1/2.

Therefore, by the lemma above applied to v and a, we set dv
a = 1 whether Pv

a = ∅ or
not.

Constraint (4), for a ∈ B and uv ∈ E , follows from the way d was constructed:
if both dv

a = 0 and xv
a = 0, then Pu

a �= ∅ since Pv
a �= ∅, and there is a simple path

P ∈ Pu
a such that, for all z ∈ ̂P , xza = 0: shortcut, if needed, the trail that starts with

arc uv and then the simple path P ′ ∈ Pv
a with, for all z ∈ ̂P ′, xza = 0; the existence of

P implies dua = 0. If dv
a �= 0 and xv

a �= 0, then dv
a = 1 or xv

a = 1, so Constraint (4) is
satisfied.
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Constraint (5), for a ∈ B and u ∈ F such that there exists uv ∈ E with v ∈ RI
a is

also satisfied since Pu
a �= ∅ and the simple path with its only arc uv has no interior.

Constraint (6), for a �= b ∈ B and u ∈ F follows as follows: either d̄ua ≥ 1/2
or d̄ub ≥ 1/2, and the lemma above ensures that the one at least 1/2 becomes 1.
Constraints (7), (8), and (9) are immediate.

3.2 Derandomization

Note that only a polynomial number of values of δ must be tried, so derandomization
is immediate. We go further, and write a relaxation of LP1, and its dual and use
complementary slackness to show that every value of δ gives a 2-approximation, as it
also happens for the linear program of Garg, Vazirani, and Yannakakis [13]. Let LP1’
be the variant ofLP1without constraints (1) and (3);LP1’ is a relaxation of BSIM and
thus anyBSIM feasible solutionwithin 2 of the optimumofLP1’ is a 2-approximation.
Note that we do not claim that the integral version of LP1’ is equivalent to the original
BSIM instance.

The following linear program with exponentially many constraints (as we only
consider simple paths) can be seen to be equivalent to (and solved by) LP1’.

min
∑

v∈F,b∈B
xv
b

subject to
∑

v∈̂P

xv
a ≥ 1 ∀a ∈ B ∧ ∀u ∈

(

RO \ RO
a

)

∧ ∀P ∈ Pu
a (10)

∑

v∈̂P1

xv
a +

∑

v∈̂P2

xv
b ≥ 1 ∀a < b ∈ B ∧ ∀u ∈ F ∧ ∀P1 ∈ Pu

a ∧ ∀P2 ∈ Pu
b (11)

xv
a ≥ 0 ∀v ∈ F ∧ a ∈ B (12)

To see the equivalence, use the same values xv
a , and set in LP1’: dua =

minP∈Pu
a

∑

v∈̂P xv
a .

The program above is in fact a covering linear program and combinatorial 1 + ε

approximations also exist [17,23]; however the method below requires an optimum,
and one would need to try all δ if only an approximate linear programming optimum
is given.

The dual of the above program, given below, has variables αP for all a ∈ B and for
all u ∈ (

RO \ RO
a

)

and for all P ∈ Pu
a , and variables βP1,P2 (the order of the paths

matter) for all a < b ∈ B, all u ∈ F , all P1 ∈ Pu
a and all P2 ∈ Pu

b .

max
∑

a∈B

∑

u∈(RO\RO
a )

∑

P∈Pu
a

αP +
∑

a∈B

∑

b �=a∈B

∑

u∈F

∑

P1∈Pu
a

∑

P2∈Pu
b

βP1,P2

subject to
∑

u∈(RO\RO
a )

∑

P∈Pu
a | v∈̂P

αP +
∑

b<a∈B

∑

u∈F

∑

P2∈Pu
a

∑

P1∈Pu
b | v∈̂P1

βP1,P2 (13)
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+
∑

b>a∈B

∑

u∈F

∑

P1∈Pu
a

∑

P2∈Pu
b | v∈̂P2

βP1,P2 ≤ 1 ∀v ∈ F ∧ ∀a ∈ B (14)

αP ≥ 0 (15)

βP1,P2 ≥ 0 (16)

Let x̄v
a , d̄v

a be an optimum solution to the primal. Pick any real number δ ∈ (0, 1/2).
Set x̂v

a = 1 iff d̄v
a < δ ≤ d̄v

a + x̄v
a .

Claim x̂ gives a valid BSIM solution.

Proof Assume x̂v
a = 1. This implies d̄v

a < 1/2, and Constraint (11) gives that for all
b �= a ∈ B, d̄v

b > 1/2, and thus x̂v
b = 0.

Note also that Lemma 1 holds as well (same proof). Let P be an arbitrary trail
from a vertex of RO \ RO

b to a vertex of RI
b . Let P

′ be the simple path obtained by
short-cutting P . Then Constraint (10) ensures the existence of a vertex u in ̂P ′ with
x̂ub = 1. Then such a vertex also exists on P , and choose w to be the last vertex on P
with x̂w

b = 1. Thus on trail P , w loads bank b.
Suppose for a contradiction that some vertex v that follows or equals w on P loads

bank a �= b. This means that d̄v
a < 1/2 and Constraint (11) ensures that d̄v

b ≥ 1/2.
Let P ′′ be the simple path from v to the endpoint of P obtained by short-cutting P .
Lemma 1 gives a vertex z �= v on ̂P with x̂ zb = 1; note that ̂P is a subtrail of P that
strictly follows w, contradicting the choice of w. Thus no vertex v that follows or
equals w on P loads bank a �= b, which means that P is fulfilled. As P was arbitrary,
the claim follows. ��

As for the approximation ratio of 2, write the complementary slackness conditions
(below, in the summation

∑

v∈̂P xv
a , the bank a is such that path P ends at a vertex of

RI
a ) :

αP > 0 �⇒
∑

v∈̂P

xv
a = 1 (17)

βP1,P2 > 0 �⇒
∑

v∈̂P1

xv
a +

∑

v∈̂P2

xv
b = 1 (18)

xv
a > 0 �⇒

∑

...

αP +
∑

...

βP1,P2 = 1 (19)

which hold for x̄ and an optimum dual solution (Condition (19) says Constraint (14)
is tight; we did not give all the details above). With respect to the same dual solution,
it is immediate that x̂v

a > 0 only if x̄v
a > 0 and therefore Condition (19) holds. Any

path P ∈ Pu
a with αP > 0 must have that going through the vertices v ∈ ̂P , we see

non-increasing d̄v
a -values (we know P is a shortest path w.r.t x̄a , from Condition (17)),

and thus only one such vertex v can have x̂v
a = 1, and thus Condition (17) is respected

by x̂ as well. Any two paths P1, P2 with βP1,P2 > 0 must be such that P1 and P2 are
each a shortest path, and thus as argued above, ̂P1 has at most one v with x̂v

a = 1 and
̂P2 has at most one w with x̂w

b = 1. For x̂ , Condition (18) holds approximately - with

123



Algorithmica (2015) 72:1011–1032 1025

a factor of 2, and as in the primal-dual method, we obtain that x̂ is a 2-approximation
of x̄ .

We do not see half-integrality as in [13], and we do not see a direct primal-dual
algorithm.

4 k-BSIM

Without loss of generality, assume that every node is reachable from the start vertex
s. For technical reasons, add a new transparent start vertex, s′, with exactly one arc,
outgoing to the original s (do this regardless if s is transparent or not). Let F be the
set of transparent nodes other than s′, R be the set of required vertices, and, for a ∈ B,
let Ra be the subset of R with requirement a. As before, for v ∈ V and a ∈ B, T v

a
denotes the (possibly infinite) set of trails of G from v to some node of RI

a , and Pv
a

denotes the set of simple paths of G from v to some node of RI
a .

Write the following integer linear program (IP2), with variables xv
b for every node

v ∈ F and bank requirement b ∈ B (xv
b in the IP would be 1 if transparent node v loads

bank b, in any of its registers), and variables dv
b for every node v ∈ ((F ∪ R) \ Rb)

and bank requirement b ∈ B (dv
b in the IP would be 1 if either Pv

b = ∅ or, for any
P ∈ Pv

b , ̂P contains at least one node that loads bank b, in any register).

min
∑

v∈F,b∈B
xv
b

subject to
∑

b∈B
xv
b ≤ k ∀v ∈ F (20)

dua ≥ 1 ∀a ∈ B ∧ ∀u ∈ ({s′} ∪ R \ Ra
)

(21)
∑

a∈B
dua ≥ |B| − k ∀u ∈ F (22)

dua ≤ dv
a + xv

a ∀a ∈ B ∧ ∀u ∈ (F ∪ R \ Ra) ∧ ∀v ∈ F

such that uv ∈ E (23)

dua = 0 ∀a ∈ B ∧ ∀u ∈ F

such that ∃v ∈ Ra such that uv ∈ E

(24)

1 ≥ xv
a ≥ 0 ∀v ∈ F ∧ ∀a ∈ B (25)

1 ≥ dv
a ≥ 0 ∀a ∈ B ∧ ∀v ∈ (F ∪ R \ Ra) (26)

xv
a , dv

a ∈ Z ∀v ∈ F ∧ ∀a ∈ B (27)

Constraints (22) are the generalization of the “clever” constraints (6); in fact they
could (and should, if one uses an IP solver) be used together with Constraints (26)
to replace Constraints (6) in LP1. Indeed, Constraints (22) hold for integer solutions
since, if for vertex v there are k + 1 banks b with variable dv

b = 0, then for any of
these banks b, Pv

b �= ∅ and there is at least one path P ∈ Pv
b such that no node in ̂P

loads bank b in any of its registers. Then no matter what banks arrive or are loaded at
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v, we do not get a valid k-BSIM solution. Note that constraints

∑

a∈Q
dua ≥ |Q| − k ∀Q ⊆ B ∧ ∀u ∈ F (28)

are implied by (26) and (22).
IP2 above is not equivalent to k-BSIM, as it does not specify in which register a

bank is loaded. Nevertheless, from a k-BSIM solution, we can get an IP2 solution of
the same value (but not vice versa; that will be a coloring problem), by setting xv

b to
be 1 iff transparent node v loads bank b and dv

b to be 1 iff either Pv
b = ∅ or, for any

P ∈ Pv
b , ̂P contains at least one node that loads bank b. We relax IP2 to the linear

program LP2, and solve it in polynomial time.
Let x̄v

a , d̄v
a be an optimum LP2 solution. Pick uniformly at random a real number

δ ∈ (0, 1/(k + 1)). Set xv
a = 1 iff d̄v

a < δ ≤ d̄v
a + x̄v

a .
It is immediate that Pr [xv

a = 1] ≤ (k + 1)x̄v
a . We load at v all the q banks a with

d̄ua < 1/(k + 1) if at least one of them has xv
a = 1, using registers 1, 2, . . . , q. We

have q ≤ k, since Constraint (28) implies that, for any vertex u, at most k banks a can
have d̄ua < 1/(k + 1). Thus the expected number of loads is at most k(k + 1) times
the LP cost.

One needs to check that indeed this is a valid solution of k-BSIM: pick an arbitrary
a ∈ B, an arbitrary u ∈ Ra , and an arbitrary trail P from s′ to u. Let u′ be the next-
to-last vertex of P . From Constraints (24) we get d̄u

′
a = 0. From Constraints (21) we

get d̄s
′

a ≥ 1/k. Let v be, as we go on P , the last vertex (last occurrence also) such that
d̄v
a ≥ δ; such a v exists since d̄s

′
a ≥ δ and d̄u

′
a = 0. Let v′ be the vertex following the

last occurrence of v on P . Note that d̄v′
a < δ, and Constraints (23) give d̄v

a ≤ d̄v′
a + x̄v′

a .
Thus d̄v′

a < δ ≤ d̄v
a ≤ d̄v′

a + x̄v′
a . Now, let y be, as we go on P , the last vertex (last

occurrence also) such that there exists b ∈ B with d̄ y
b < δ ≤ d̄ y

b + x̄ yb ; such a vertex
y exists since v′ is a candidate. Note that also d̄ y

a < δ since otherwise we could go
on P from y to u and find v′ after y as explained above. Then also d̄ y

a < 1/(k + 1)
and therefore bank a is loaded in some register at y. As we go on P from y to u,
no load instructions are selected by the algorithm after y (as we cannot have vertices
w ∈ ̂P[y] and banks b with xw

b = 1, since this contradicts the choice of y), and thus
P is fulfilled.

For the derandomization,we can try polynomiallymanyvalues of δ ∈ (0, 1/(k+1)),
or prove as in Sect. 3.2 that any such value will do. The following comprises this
discussion (as well as that of Sect. 3):

Theorem 1 There is a k(k + 1)-approximation algorithm for k-BSIM.

Theorem 2 There is a polynomial-time algorithm whose output uses at most 2k − 1
registers and a number of load instructions at most 2k times the optimum solution with
k registers.

Proof For this bicriteria result, we choose independently and uniformly at random real
numbers δb ∈ (0, 1/2). Then, for every v ∈ F , if there is an a with d̄v

a < δa ≤ d̄v
a + x̄v

a ,
we set xv

a = 1. If xv
a = 1, we load at node v (in some of the available 2k − 1 registers)
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all the banks b with d̄v
b < δb; we write this as x̂v

b = 1. Indeed, there can be at most
2k − 1 banks b with d̄v

b < 1/2, from Constraint (28).
We next argue that the necessary trails are fulfilled. Pick an arbitrary a ∈ B, an

arbitrary u ∈ Ra , and an arbitrary trail P from s′ to u. Let u′ be the next-to-last vertex
of P . From Constraints (24) we get d̄u

′
a = 0. From Constraints (21) we get d̄s

′
a ≥ 1/2.

Let v be, as we go on P , the last vertex (last occurrence also) such that d̄v
a ≥ δa ;

such a v exists since d̄s
′

a ≥ δa and d̄u
′

a = 0. Let v′ be the vertex following the last
occurrence of v on P . Note that d̄v′

a < δa , and Constraints (23) give d̄v
a ≤ d̄v′

a + x̄v′
a .

Thus d̄v′
a < δa ≤ d̄v

a ≤ d̄v′
a + x̄v′

a .
Now, let y be, as we go on P , the last vertex (last occurrence also) such that there

exists b ∈ B with d̄ y
b < δb ≤ d̄ y

b + x̄ yb ; such a vertex y exists since v′ is a candidate.
Note that also d̄ y

a < δa since otherwise we could go on P from y to u and find v′ after
y as explained above. Therefore also bank a is loaded in some register at y. As we
go on P from y to u, no load instructions are selected by the algorithm after y (as we
cannot have vertices w ∈ ̂P[y] and banks b with xw

b = 1, since this contradicts the
choice of y), and thus P is fulfilled.

Moreover, for any u ∈ V , requiring a ∈ B, any path P from s to u has vertex v′
with d̄v′

a < δa ≤ d̄v′
a + x̄v′

a . Let v be the last vertex on ̂P with d̄v
b < δb ≤ d̄v

b + x̄v
b , for

some b ∈ B. Then also d̄v
a < δa (as otherwise there is a further, on ̂P , vertex v′′ with

d̄v′′
a < δa ≤ d̄v′′

a + x̄v′′
a ). and therefore bank a is loaded in some register at y. As we

go on ̂P from v to u, no further load instructions are selected by the algorithm, and
thus at vertex u bank a is loaded.

Let Qv be the set of banks a with d̄v
a < 1/2. The probability that bank b is loaded

at vertex v ∈ Qv is (using the independence of the choices of δa):

Pr [x̂v
b = 1] ≤ Pr [xv

b = 1] +
∑

a∈Qv\{b}
Pr [xv

a = 1] · Pr [d̄v
b < δb] ≤ 2x̄v

b

+
∑

a∈Qv\{b}
2x̄v

a · Pr [d̄v
b < δb] (29)

and thus the expected number of loads at node v is at most

∑

b∈Qv

⎛

⎝2x̄v
b +

∑

a∈Qv\{b}
2x̄v

a · Pr [d̄v
b < δb]

⎞

⎠=
∑

b∈Qv

x̄v
b

⎛

⎝2 + 2
∑

a∈Qv\{b}
Pr [d̄v

a < δa]
⎞

⎠

If |Qv| ≤ k, then

⎛

⎝2 + 2
∑

a∈Qv\{b}
Pr [d̄v

a < δa]
⎞

⎠ ≤ 2 + 2 (|Qv| − 1) ≤ 2k

and thus the expected number of loads at node v is at most 2k
∑

b∈B x̄v
b .
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Otherwise, |Qv| ≥ k + 1, and Constraint (28) together with d̄v
b < 1/2 gives:

∑

a∈Qv\{b}
d̄v
a ≥ |Qv| − k − 1/2. (30)

We have

2 + 2
∑

a∈Qv\{b}
Pr [d̄v

a < δa] = 2 + 2
∑

a∈Qv\{b}
(1 − 2d̄v

a )

= 2 + 2(|Qv| − 1) − 4
∑

a∈Qv\{b}
d̄v
a

≤ 2|Qv| − 4(|Qv| − k − 1/2)

= 4k + 2 − 2|Qv|
≤ 4k + 2 − 2(k + 1)

= 2k

where we used Inequality (30) for the first inequality and |Qv| ≥ k + 1 for the last.
Thus in all cases, the expected number of bank loads is at most 2k times the LP solution
value. ��

Assuming ln n << k, the following result is an improvement:

Theorem 3 There is a O(k ln n) randomized approximation algorithm for k-BSIM.

Proof Use the rounding method of the previous theorem, with the interval
(0, 1/(8 ln n)) for each δa . Let Qv be the set of banks a with d̄v

a < 1/(8 ln n); as
above |Qv| ≤ 2k. Let Q′

v be the (random) set of banks loaded by the algorithm at v.

Claim Pr [|Q′
v| > k] ≤ 1

n2

Proof We are setting up a Chernoff bound. We define da = d̄v
a , Q = Qv , q = |Q|,

and σ = ∑

a∈Q da . We may assume q > k or else the claim is trivially true. For bank
a ∈ Q, define the random variables:

Za =
{

1 if da > δa
0 otherwise

Define the random variable Z = ∑

a∈Q Za . Let pa = 8da ln n and p =
∑

a∈Q pa
q . Let

Xa (a ∈ Q) be the random variables Za − pa . Then Xa are mutually independent with
Pr [Xa = 1 − pa] = pa and Pr [Xa = −pa] = 1 − pa . Define the random variable
X = ∑

a∈Q Xa . Then X satisfies Assumptions A.1.3 of [1] and therefore Theorem
A.1.13 of [1] states that, for any α > 0,

Pr [X < −α] < e−α2/2pq . (31)
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We have that the event |Q′
v| > k is included in the event Z < q − k, which is the

event X < (q − k) − ∑

a∈Q pa . Note that

−(q − k) +
∑

a∈Q
pa = −(q − k) + 8 ln n

∑

a∈Q
da ≥ 7σ ln n,

where we used Constraints (28), which state σ ≥ (q − k). Note also that q − k ≥ 1,
and thus Chernoff’s bound from Eq. (31) gives

Pr [|Q′
v| > k] < e−(7σ ln n)2/(2·8σ ln n) ≤ e−2σ ln n ≤ e−2 ln n,

which is what the claim requires. ��
The expected number of banks loaded at vertex v, computed as in the bicriteria

algorithm, does not exceed (2 + 8k ln n)
∑

b∈Qv
x̄v
b . Thus Markov’s inequality gives

Pr [number of banks loaded > 20k(ln n)Z∗
LP2] ≤ 1/2, where Z∗

LP2 is the objective
value of LP2. From Claim 4, taken as a union over all v, the probability that there is
a vertex loading more than k banks is at most 1/n. So with probability 1/3 no vertex
is overloaded and less than 20k(ln n)Z∗

LP2 banks are loaded in total. This concludes
the proof of Theorem 3. ��

4.1 Integrality Gap

Let opt(I ) be the optimum value for a k-BSIM instance I , Z∗
I P2(I ) be the optimum

value for the constructed IP2 instance, and Z∗
LP2(I ) be the optimum value for theLP2

relaxation.Weare unable tofind theworst case ratio betweenopt(I ) and either Z∗
I P2(I )

or Z∗
LP2(I ). The next theorem relates Z∗

I P2(I ) to Z∗
LP2(I ) and is not surprising in

view of the connection of k-BSIM to (k + 1)-uniform Hypergraph Vertex Cover.

Theorem 4 For any ε > 0, there exists a k-BSIM instance I with Z∗
I P2(I ) > (k +

1 − ε)Z∗
LP2(I ).

Proof We use the first reduction from Sect. 2, starting with a complete (k+1)-uniform
hypergraphGwithn vertices (and thus

( n
k+1

)

hyperedges). The numbernwill be picked
large enough (and depend on ε). We obtain a k-OBSIM instance, which we call J .
In J , we call nodes corresponding to the hyperedges in G hyperedge-nodes and call
nodes corresponding to vertices inG hypervertex-nodes. The hypervertex-nodes come
in n groups, where all the k

( n
k+1

)2 nodes of I coming from the same vertex of G are
in the same group and have the same requirement, and vertices in different groups
have different requirements. To simplify some notation, we change J by making the
hyperedge-nodes transparent. We further transform J into a k-BSIM instance I using
the second reduction of Sect. 2; this adds for every hypervertex-node v a node vin (it
should also add vout , but with no arc leaving vout we ignore it) and then we add s′ and
construct an IP2 instance we call I ′.

Next we describe a fractional (LP2) solution to I ′. For every hypervertex-node
v, in a group with requirement a (where a is a vertex in G), set dvin

a = 0, and for
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all b �= a ∈ B, set dvin
b = 1. Also set xvin

a = 1/(k + 1), and for all b �= a ∈ B,
set xvin

b = 0. For every hyperedge-node w, corresponding to a hyperedge e of G,
set for all a ∈ e, dw

a = 1/(k + 1) and xw
a = k/(k + 1), and for all b �∈ e, set

dw
b = 1 and xw

b = 0. Set for both s and s′ all d-values to be 1 and all x-values to
be 0. One can check that this is indeed a feasible LP2 solution, and its objective is
n · k( n

k+1

)2 · (1/(k + 1)) + ( n
k+1

) · (k + 1) · (k/(k + 1)). Thus:

Z∗
LP2(I ) ≤ nk

k + 1

(

n

k + 1

)2

+ k ·
(

n

k + 1

)

(32)

Now assume for a contradiction that

Z∗
I P2(I ) ≥ (n − k)k

(

n

k + 1

)2

(33)

does not hold. Let d̄ and x̄ be this feasible solution. Then there exist k+1 groups, from
vertices y1, y2, . . . , yk+1 of G, such that each has a node vi , for i = 1, 2, . . . , k + 1

such that x̄
viin
yi = 0.G being complete, there is a hyperedge e = {y1, y2, . . . , yk+1}, and

letw be the hyperedge-node corresponding to hyperedge e. For all i = 1, 2, . . . , k+1,

Constraints (24) for viin and vi give d̄
viin
yi = 0, and Constraints (23) for w and viin give

d̄w
yi = 0, leading to contradicting Constraint (22) for w, a contradiction to d̄ and x̄

being a feasible solution.
Thus Eq. (33) holds, and together with Eq. (32), n ← ∞ and k fixed, we conclude

that indeed for any ε > 0, there exists a k-BSIM instance I with Z∗
I P2(I ) > (k + 1−

ε)Z∗
LP2(I ). ��

5 Conclusion

For k-BSIM we presented approximation algorithms with ratios k(k + 1), and
O(k log n). Another algorithm outputs a valid solution with objective at most 2k times
the optimum for k registers, using 2k registers. These results hold in arbitrary input
CFGs. Our algorithms can easily be extended to the case when required nodes each
has a set of banks A ⊂ B with |A| ≤ k, and all banks of A must be loaded.

Our hardness results, that hold for acyclic CFGs as well, are that for any ε > 0, an
approximation ratio of k − ε is NP-hard, and an approximation ratio of k + 1 − ε is
unlikely, as it would imply that Vertex Cover has approximation 2 − ε.

We leave open the existence of a O(k)-approximation. It is not immediate to apply
our methods to the following variant of the problem: For every CFG node v that
requires bank b, we must select a register i ∈ {1, 2, . . . , k} and ensure every directed
path from s to v loads bank b in register i , and no further loads in register i are
allowed. Notice, as for example in Fig. 3, that k-OBSIM does not require such an i to
be selected.
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