
Algorithmica (2014) 70:2–21
DOI 10.1007/s00453-013-9851-7

A Linear Time Algorithm for Computing Minmax
Regret 1-Median on a Tree Network

Binay Bhattacharya · Tsunehiko Kameda ·
Zhao Song

Received: 3 October 2012 / Accepted: 5 November 2013 / Published online: 16 November 2013
© Springer Science+Business Media New York 2013

Abstract In a model of facility location problem, the uncertainty in the weight of
a vertex is represented by an interval of weights, and the objective is to minimize
the maximum “regret.” The most efficient algorithm previously known for finding
the minmax regret 1-median in a tree network with nonnegative vertex weights takes
O(n logn) time. We improve it to O(n), settling the open problem posed by Brodal
et al. (Oper. Res. Lett. 36:14–18, 2008).

Keywords Facility location · Robust median · Uncertain weights · Minmax regret

1 Introduction

1.1 The Problem

Deciding where to locate facilities to minimize the communication or transportation
costs is known as the facility location problem. For a recent review of this subject, the
reader is referred to [10]. The cost function is formulated as the sum of the distances
from the nearest facility weighted by the weights of the vertices. In the minmax regret
version of this problem, there is uncertainty in the weights of the vertices and/or edge

Zhao Song took part in this work while he was an undergraduate student at SFU.

B. Bhattacharya · T. Kameda (B)
School of Computing Science, Simon Fraser University, Burnaby, Canada
e-mail: tiko@sfu.ca

B. Bhattacharya
e-mail: binay@sfu.ca

Z. Song
Department of Computer Science, The University of Texas at Austin, Austin, TX, USA
e-mail: zhaos@utexas.edu

mailto:tiko@sfu.ca
mailto:binay@sfu.ca
mailto:zhaos@utexas.edu

Algorithmica (2014) 70:2–21 3

lengths, and only their ranges are known [8, 12, 13]. Chen and Lin (Theorem 1 in [8])
proved that in solving this problem, the edge lengths can be set to their maximum val-
ues. Therefore, we assume that the (positive) edge lengths are fixed and uncertainty
is only in the vertex weights. A particular realization (assignment of a weight to each
vertex) is called a scenario. Intuitively, the minmax regret 1-median problem can be
understood as a 2-person game as follows. The first player picks a location x to place
a facility. The opponent’s move is to pick a scenario s. The payoff to the second
player is the cost of x minus the cost of the median, both under s, and he wants to
pick the scenario s that maximizes his payoff. Our objective (as the first player) is to
select x that minimizes this payoff in the worst case, i.e., over all scenarios.

1.2 Previous Work

The problem of finding the minmax regret 1-median on a network, and a tree network
in particular, has been attracting great research interest in recent years, and many
researchers have worked on this problem. Kouvelis et al. formulated the problem
of finding the minmax regret 1-median on a tree and proposed an O(n4) solution,
where n is the number of vertices [13]. Chen and Lin improved it to O(n3) [8].
Averbakh and Berman then found a simple O(n2) algorithm [1] and improved it
later to O(n log2 n) [2]. Yu et al. [16] proposed an O(n logn) implementation of the
algorithm in [2]. More recently, Brodal et al. also came up with a simpler O(n logn)

algorithm [5]. When the vertices can have negative weights, Burkard and Dollani
gave an O(n2) algorithm [6]. Recently, we improved it to O(n log2 n) [4]. This paper
is a full version of our extended abstract presented at COCOON 2012 [3].

In this paper, we present an O(n) time algorithm for trees when the edge lengths
are fixed, and each vertex has a weight from an interval of nonnegative values. This
settles the open problem posed in [5]. In their O(n logn)-time algorithms, Yu et
al. [16] and Brodal et al. [5] successively reduce the size of the part of the tree in
which the optimal location lies. Even though these algorithms reduce this size geo-
metrically, they need to spend O(n) time in each round. The main contribution of this
paper is to reduce this time to the order of the size of the remaining part of the tree in
each round, which reduces the overall time requirement to O(n). To achieve this, we
resort to a few somewhat elaborate algorithms. Our pruning algorithm was inspired
by a method used by Megiddo [14].

1.3 Paper Organization

The rest of this paper is organized as follows. In the next section, we first review
definitions and some known facts, and then prove a lemma (Lemma 4), which restricts
the set of scenarios we need to consider. Section 3 describes methods for computing
the medians for the scenarios of interest, and for computing their costs. Section 4
is devoted to the detailed discussion of our main algorithm and its time complexity
analysis. Finally, Section 5 concludes the paper.

4 Algorithmica (2014) 70:2–21

2 Preliminaries

2.1 Definitions

Let T = (V ,E) be a tree network (or simply a tree) with n vertices. We also use T to
denote the set of all points (vertices and points on edges) on T . Each vertex v ∈ V is
associated with an interval of nonnegative integer weights W(v) = [wv,wv], where
0 ≤ wv ≤ wv , and each edge e ∈ E is associated with a positive length (or distance).
In order to exclude a trivial case, we assume wv > 0 for at least one vertex. For any
two points a, b ∈ T , d(a, b) denotes the shortest distance between a and b on T . If
a and/or b is on an edge, then the distance is a prorated fraction of its length. Let S
denote the Cartesian product of all W(v), v ∈ V :

S �
∏

v∈V

[wv,wv].

Under a scenario s ∈ S , we define the cost of a point x ∈ T by

F s(x) �
∑

v∈V

d(v, x)ws
v, (1)

where ws
v denotes the weight of v under s. A location x that minimizes (1) is a

1-median under s. Throughout this paper we use 1-median and median synony-
mously. We call

Rs(x) � F s(x) − F s
(
m(s)

)
(2)

the regret [13] of point x under s, where m(s) denotes a median under s. A scenario
s is said to dominate another scenario s′ at x if Rs(x) ≥ Rs′

(x) holds. We finally
define the maximum regret, R∗(x), of x as the regret of the scenario that dominates
all others at x.

R∗(x) � max
s∈S

Rs(x). (3)

Note that R∗(x) is the maximum payoff with respect to x that we mentioned in the In-
troduction. We seek location x∗ ∈ T , called the minmax regret median, that minimizes
R∗(x). We sometimes refer to x∗ as the optimal location. Let s = ŝ(x) maximize (2)
for a given x ∈ T . We call ŝ(x) and m(ŝ(x)) a worst case scenario and a worst case
alternative for x, respectively [1].

2.2 Properties of Median and Minmax Regret Median in a Tree

Let v ∈ V be a vertex with degree d connected to vertices v1, v2, . . . , vd . If we remove
v and all edges incident to it from T , then d subtrees, T (v1), T (v2), . . . , T (vd) result.
Let W(T (vi)) denote the total weight of the vertices in T (vi). Vertex v is said to be
a weight centroid or w-centroid [11] if

W
(
T (vi)

) ≤ W(T)/2, (4)

holds for all i = 1,2, . . . , d , where W(T) denotes the total weight of the vertices
in T .

Algorithmica (2014) 70:2–21 5

Lemma 1 [9] If the vertex weights are non-negative, a vertex is a median if and only
if it is a w-centroid, and there is always a vertex that is a median.

By Lemma 1 we shall assume that a median is always at a vertex. However, the
minmax regret median may not be at a vertex [13]. If there exists a vertex u that is a
median under all the scenarios, then clearly u is the minmax regret location. In such
a case, the problem instance is said to be degenerate.

Lemma 2 In a general graph, we have R∗(x∗) = 0 if and only if the problem instance
is degenerate.

Proof The if part is obvious. So suppose that R∗(x∗) = 0. This implies that under
any scenario s we have Rs(x∗) = F s(x∗) − F s(m(s)) = 0, and thus x∗ is a median
under s, i.e., the problem instance is degenerate. �

In the rest of the paper, we shall assume that a given problem instance is not
degenerate.

Lemma 3 [8, Theorem 1(a)] Given any point x ∈ T , there exists a worst-case sce-
nario ŝ(x) such that w

ŝ(x)
v = wv for any vertex v satisfying d(x, v) < d(m(ŝ(x)), v),

and w
ŝ(x)
v = wv for any vertex v satisfying d(x, v) > d(m(ŝ(x)), v). If d(x, v) =

d(m(ŝ(x)), v), then w
ŝ(x)
v may take any value in [wv,wv].

Let e = (v, v′) ∈ E, and let T (v) (resp. T (v′)) denote the maximal subtree of T

that does not contain e but contains v (resp. v′). Let s ∈ S be such that ws
u = wu for

each vertex u ∈ T (v), and ws
u = wu for each u ∈ T (v′). Such a scenario s is called a

bipartite scenario, and v is the front of s, denoted by f (s). Let S∗ ⊂ S be the set of
all bipartite scenarios. Under a scenario s ∈ S∗, we call the component, each vertex
of which has the max (resp. min) weight, the max-weighted component (resp. min-
weighted component) and denote it by max(s) (resp. min(s)). By definition, under
any scenario s ∈ S∗ both max(s) and min(s) are nonempty. Clearly, each vertex v

is the front of d(v) scenarios in S∗, where d(v) denotes the degree of v. Note that
scenario ŝ(x) in Lemma 3 can be made bipartite. Therefore, we have [1]

∀x ∈ T : R∗(x) = max
s∈S∗ Rs(x). (5)

Averbakh et al. [1] remark that (5) holds for any network (tree or not).
Let S̃ ⊂ S∗ be the set of scenarios under which a median is in the max-weighted

component. The following lemma follows directly from Lemma 3.

Lemma 4

(a)

∀x ∈ T : R∗(x) = max
s∈S̃

Rs(x). (6)

6 Algorithmica (2014) 70:2–21

(b) For any point x ∈ T , there is a worst case scenario ŝ(x) ∈ S̃ such that x is not in
its max-weighted component.

By Lemma 4(a), we only consider the scenarios in S̃ in the rest of this paper.
Lemma 4(b) will be utilized in our pruning algorithm in Sect. 4.3. A major obstacle,
however, is the fact that computing {m(s) | s ∈ S̃} takes Ω(n logn) time (Theorem 6.1
in [7]). Much effort will be made to overcome this problem by computing only the
medians of relevant scenarios.

3 Medians and Their Costs

Equation (6) implies that, in order to find the optimal location, we need to compare
the regrets under the scenarios in S̃ . Since regret is defined by (2), our first task is
to compute the medians of different scenarios in S̃ , especially the dominating ones.
Given a tree T , we pick an arbitrary vertex r0 as its root. Let T (v) denote the subtree
of T rooted at v. The subtree of T defined by the vertices that do not belong to T (v)

is called the complement of T (v) and is denoted by T c(v). For a non-root vertex v,
we use p(v) to denote the parent of v.

3.1 Computing Median m(s) for all s ∈ S̃ with max(s) = T (v)

Goldman computes a median of a tree under a scenario in linear time [9]. Here, for all
v ∈ V , we compute the medians under every scenario s ∈ S̃ such that max(s) = T (v)

in linear time. For convenience, we define two arrays for subtree weights, Wt [·] and
Wt [·], and two arrays for complement weights, Wc[·] and Wc[·], as follows.

Wt [v] =
∑

u∈T (v)∩V

wu, Wt [v] =
∑

u∈T (v)∩V

wu,

Wc[v] =
∑

u∈T c(v)∩V

wu, Wc[v] =
∑

u∈T c(v)∩V

wu.

We can easily compute Wt [·] and Wt [·] in O(n) time. Once they have been com-
puted, to compute Wc[v], for example, we can use the relation Wc[v] = Wt [r0] −
Wt [v]. For two points a, b ∈ T , let π(a, b) denote the shortest path between a and b.
Let m(s) denote the median vertex under scenario s that is the farthest from the root
of T . The following lemma is implied by a result in [9].

Lemma 5 Given a scenario s ∈ S̃ , let vertex v be defined by T (v) = max(s). For
each vertex u on π(m(s), v), Wt [u] is at least half the total vertex weight under s.

Proof Clearly, it suffices to prove the assertion for the case u = m(s). Since m(s) is
a median under s, by Lemma 1 we have

Wt [v] + Wc[v] − Wt

[
m(s)

] ≤ (
Wt [v] + Wc[v])/2,

Algorithmica (2014) 70:2–21 7

Fig. 1 max(s) = T (v) for
scenario s

where Wt [v] + Wc[v] is the total weight under s, and the left hand side is the weight
of T c(m(s)) under s. From the above inequality, it follows that

Wt

[
m(s)

] ≥ (
Wt [v] + Wc[v])/2. �

Let us now address the issue of computing {m(s) | s ∈ S̃ and r0 /∈ max(s)} effi-
ciently. We perform a post-order depth first traversal, carrying out the w-centroid test
(4) on each vertex visited. When we visit vertex v during the traversal, we compute
m(s) for scenario s with max(s) = T (v), if m(s) ∈ T (v) (i.e., s ∈ S̃). See Fig. 1,
where v1, v2, . . . , vk are the child vertices of v. If Wc[v] > Wt [v] then m(s) /∈ T (v)

(i.e., s /∈ S̃) by Lemma 1. So assume Wc[v] ≤ Wt [v]. For j = 1,2, . . . , k let sj be the
scenario such that max(sj) = T (vj), and assume also that m(sj), such that m(sj) ∈
T (vj) (i.e., sj ∈ S̃), has already been computed. If m(sj) /∈ T (vj) (i.e., sj /∈ S̃) for
all j , then we have m(s) = v, because m(sj) /∈ T (vj) implies m(s) /∈ T (vj). Let us
now assume that there is an index j with m(sj) ∈ T (vj) (i.e., sj ∈ S̃). Lemma 5
implies that m(s) lies either in subtree T (vj) with the largest Wt [vj] or at v.

Lemma 6 Let s be a scenario such that max(s) = T (v) for a vertex v that has vj as
a child vertex. If there is a median under s that lies in subtree T (vj), then there is a
median under s that lies on π(m(sj), vj).

Proof Suppose that there is a median under s that lies in subtree T (vj). Then, by
Lemma 5 we have

Wt [vj] ≥ {
Wt [v] + Wc[v]}/2. (7)

Since the weight of any vertex in T (v) under s is not smaller than that under sj ,
m(sj) must also lie in T (vj). However, m(s) cannot lie in T (m(sj)), except possibly
at m(sj). We clearly have

∀u ∈ π
(
m(sj), vj

) : Wt [u] ≥ {
Wt [vj] + Wc[vj]

}
/2. (8)

From (7) and (8), it follows that

∃u ∈ π
(
m(sj), vj

) : Wt [u] ≥ {
Wt [v] + Wc[v]}/2, (9)

and we have m(s) = u, where u (∈ π(m(sj), vj)) is the vertex closest to m(vj) satis-
fying (9). �

8 Algorithmica (2014) 70:2–21

Fig. 2 Positions of vg = mz+1,
vh, and m(sc(v′

h
))

Theorem 1 For all v ∈ V , the medians {m(s) | s ∈ S̃ ∧ max(s) = T (v)} can be com-
puted in O(n) time.

Proof By Lemma 5, m(sj) lies in subtree T (vj) with the largest Wt [vj] if sj ∈ S̃ , and
by Lemma 6, m(s) lies on π(m(sj), v) if s ∈ S̃ . To identify the vertex m(s), starting
from m(sj), we test each vertex on π(m(sj), v) until the condition of Lemma 1 is
satisfied. We perform a post-order traversal of T with some additional steps. When v

is visited in the post-order traversal, we compute the maximum weight of its subtrees.
A vertex u may be visited for the second time if it is on π(m(sj), v), where vj is a
child of v, when v is visited. We charge this time to v, unless the median under s with
f (s) = v moves up from m(sj), in which case we charge it to m(sj). Thus the total
time required is O(n). �

3.2 Computing Median m(s) for Some s ∈ S̃ with min(s) = T (v)

Let sc(v) denote the scenario such that min(sc(v)) = T (v). As commented earlier,
computing {m(s) | s ∈ S̃} takes Ω(n logn) time [7]. Fortunately, as we will show,
we will need m(sc(v)) for only some vertices v. For simplicity, we assume that T is
a binary tree. If not, we can easily convert it into one by introducing O(n) dummy
vertices of weight 0 [15]. Let va (resp. vb) denote the left (resp. right) child of root r0
of T . It is easy to prove

Lemma 7 Assume that sc(va) ∈ S̃ . For any vertex v ∈ T (va), if m(sc(v)) /∈ T (va),
then m(sc(v)) ∈ π(m(sc(va)), r0).

Let sT denote the scenario such that max(sT) = T . Without loss of generality we
assume that m(sT) ∈ T (va). Under sT , we define the spine of T as a path 〈r0, v1 =
va, v2, . . . , vz〉, where vz is a leaf vertex, through T (va) ∪ {r0} as follows. For i =
1, . . . , z − 1, let v′

i be the child vertex of vi that is not on the spine. See Fig. 2.
Under sT , the weight of T (vi+1) is not smaller than that of T (v′

i).

Lemma 8 Let 〈r0, v1, v2, . . . , vz〉 be the spine of T . The medians {mi | i = 1, . . . ,

z + 1} can be computed in O(n) time, where mi = m(sc(vi)) for i = 1, . . . , z and
mz+1 = m(sT).

Proof Under one specific scenario such as sc(va), we can find m(sc(va)) = m1 in
O(n) time. Assume that m1 ∈ T (vb) ∪ {r0} and let k be the largest index such that
mk lies on π(m1, r0). (Lemma 7.) Based on Lemma 6, we can find all the medians

Algorithmica (2014) 70:2–21 9

m2, . . . ,mk that lie on π(m1, r0) in O(n) time, performing the w-centroid test (4) on
the vertices on π(m1, r0) under sc(vi) for i = 1, . . . , k. If k < z, then mk+1, . . . ,mz

lie in T (va). Let us now find them as well as mz+1. From the definition of the spine
π(r0, vz), it is easy to see that mz+1 lies on π(r0, vz). If we collapse T (vb) into a
“super-vertex” with the weight equal to the total weight of the vertices in it, and
consider vz as the root of the new tree, we have a situation as in Theorem 1, except that
only the medians under the scenarios s such that f (s) ∈ π(mk+1, vz) and r0 ∈ max(s)

need be computed. Therefore, it can easily be done in O(n) time. �

Suppose we have computed {mi | i = 1, . . . , z + 1} by Lemma 8, and let
mz+1 = vg . See Fig. 2. For subtrees T (v′

g), T (v′
g+1), . . . , T (v′

z−1), compare the dif-

ferences Wt [v′
i] − Wt [v′

i] (g ≤ i ≤ z − 1), and let T (v′
h) have the largest difference

Wt [v′
h]−Wt [v′

h]. Restarting at r0, and following the subtrees with the largest weights
under sc(v′

h), we can find m(sc(v′
h)) in O(n) time. In Fig. 2, it is shown to lie in

T (v′
j).

Lemma 9

(a) For any v ∈ T (v′
i), where 1 ≤ i < g, m(sc(v)) lies on π(mz+1, vz) (see the

dashed path in Fig. 2).
(b) For any v ∈ T (v′

i), where g ≤ i ≤ z, m(sc(v)) lies on π(m(sc(v′
h)),mz+1) (see

the chained path in Fig. 2).

Proof Let v be any vertex in T (v′
i). See Fig. 2. The only difference between sT and

sc(v) is the weight of T (v). Clearly, T (v) is not heavier under sc(v) than under sT .
(a) [1 ≤ i < g] As v moves towards the spine, T (v) grows, T under sc(v) becomes

lighter, and m(sc(v)) may shift from mz+1, but will stay on the spine.
(b) [g ≤ i ≤ z] As v moves from v′

i towards a leaf of T (v′
i), the weight of T c(v)

increases. Thus the median will move towards mz+1. To show that the median moves
along π(m(sc(v′

h)),mz+1), let us compare the processes of finding m(sc(v′
h)) and

m(sc(v)), starting at r0. (We don’t actually need to do this to find m(sc(v)). There
is a more efficient way.) Up to vertex vj , we follow the same path under sc(v′

h)

and sc(v). At vj , T (vj+1) may be heavier than T (v′
j) under sc(v), in which case

m(sc(v)) ∈ π(vj ,mz+1). So assume that T (v′
j) is heavier than T (vj+1) under sc(v)

as well. In this case, we enter T (v′
j) under both scenarios. Whenever we visit the

next vertex u in T (v′
j), the only difference between sc(v) and sc(v′

h) is the weight of
T c(u), and the weights of the subtrees of u are the same. Thus the same path is taken
under the two scenarios. The only difference is that m(sc(v)) may be found before
m(sc(v′

h)). �

Let us now actually find m(sc(v)) in Case (a) of Lemma 9. Recall that mz+1 =
m(sT). Under scenario sc(v), all the vertices in T (v) take their minimum weights,
making T (v) lighter than under sT . This may put m(sc(v)) away from mz+1 = vg

towards vz. Starting from vg along π(vg, vz), we can test each vertex against the
condition in (4) to find m(sc(v)).

What we actually need later is to find m(s) for all s ∈ S̃ with min(s) = T (u) for
some vertex u. In other words, we want to compute m(sc(v)) for each v such that

10 Algorithmica (2014) 70:2–21

Fig. 3 Computing m(sc(v)) for v ∈ T (v′
i
): (a) 1 ≤ i < g; (b) g ≤ i ≤ z

T (u) is a subtree of T (v). If u is on the spine, Lemma 8 provides the solution. So,
let u ∈ T (v′

i) as in Fig. 3(a). Imagine that v moves from u towards v′
i along π(u, v′

i).
As we observed in the previous paragraph, m(sc(v)) may move from mz+1 = vg

towards vz.
To find m(sc(v)) for v ∈ π(u, v′

i) systematically in an efficient way, we construct
an array D[0 : t], where t = z− g, as follows. For j = 0,1, . . . , z− g, we set D[j] to
the minimum amount of weight reduction from sT in T c(vg) that causes the median to
move to vg+j . Note that as v moves towards v′

i along π(u, v′
i), the weight of T c(vg)

gets reduced. Clearly, the elements of D[·] are in the increasing order. It is easy to
prove

Lemma 10 Let D[0 : t] be as defined above. For a vertex v ∈ π(u, v′
i), let d be the

index satisfying

D[d] ≤ Wt [v] − Wt [v] < D[d + 1].
Then m(sc(v)) is the d th vertex from vg on π(vg, vz).

In Case (b) of Lemma 9, we can find m(sc(v)) by a similar method, re-
ferring to Fig. 3(b). In this case array D[·] is constructed for the vertices on
π(m(sc(v′

h)),mz+1). Before ending this subsection, we state a simple fact as a
lemma.

Lemma 11 Let tree T be rooted at vertex r0. For any vertex u ∈ T , each scenario in
{s ∈ S̃ | u ∈ min(s)} is either of the following two kinds.

(a) max(s) = T (v) for some vertex v /∈ π(u, r0).
(b) s = sc(v), where v ∈ π(u, r0).

Note that the medians under all the scenarios of the kind (a) are covered by Theo-
rem 1, while the medians under some of the scenarios of the kind (b) are covered by
Lemma 8. We will compute the medians of some of the remaining scenarios later, as
we need them.

Algorithmica (2014) 70:2–21 11

Fig. 4 Illustration for the proof of Lemma 12: (a) Case (a); (b) Case (b)

3.3 Computing Costs of Medians

We first define the subtree costs (with subscript t) and complement costs (with sub-
script c) relative to the root r as follows:

Ct [v] =
∑

u∈T (v)

d(u, v)wu, Ct [v] =
∑

u∈T (v)

d(u, v)wu,

Cc[v] =
∑

u∈T c(v)

d(u, v)wu, Cc[v] =
∑

u∈T c(v)

d(u, v)wu.

Arrays Ct [·], Ct [·], Cc[·], and Cc[·] can be computed in O(n) time. (See Sect. 2.3 of
[6].)

Lemma 12 Given the median m(s) under a scenario s ∈ S̃ , we can compute its cost
F s(m(s)) in constant time.

Proof Case (a) (m(s) and f (s) belong to the same subtree under the root r0, as in
Fig. 4(a)): We can compute m(s) for all such s ∈ S̃ in O(n) time by Theorem 1. We
now compute their costs F s(m(s)) in two possible cases. In Fig. 4, vertex v with
weight wv (resp. wv) is indicated by a + (resp. −). Let us consider cost contributions
to F s(m(s)) from different parts of tree T .

1. From T (m(s)): Ct [m(s)].
2. From T (f (s)) \ T (m(s)): Cc[m(s)] − {Cc[f (s)] + d(f (s),m(s))Wc[f (s)]}.
3. From T c(f (s)): Cc[f (s)] + d(f (s),m(s))Wc[f (s)].
It is clear that, using arrays C∗[·], C∗[·], Wc[·], and Wc[·], where ∗ ∈ {t, c}, we can
compute the above three in constant time.

Case (b) (m(s) and f (s) do not belong to the same subtree under the root r0, as in
Fig. 4(b)): We can similarly compute F s(m(s)) in constant time. �

12 Algorithmica (2014) 70:2–21

4 Optimal Facility Location

Now that we have efficient methods to compute medians and their costs, we shall
address the main problem of finding the optimal facility location. We first describe
our general approach, then present our algorithm, and finally analyze its complexity.

4.1 Prune and Search

Scenario s is said to be dominated in a subtree, if for every point x in the subtree,
there is a scenario that dominates s at x. Given a tree T , as in [5, 16], we succes-
sively identify smaller and smaller part of T , named T ∗, that contains the optimal
location x∗. In addition, we maintain a shrinking set S, initialized to S̃ , of scenarios
that may not be dominated in T ∗, while those in S̃ \ S are known to be dominated.
The main issue is that the fronts of the scenarios in S and their medians may belong
to T \ T ∗. To keep track of all the scenarios in S, we maintain a tree T ′ = (N,E′),
called the auxiliary tree, which contains T ∗ in it. See Fig. 5.

The node set1 N of T ′ consists mainly of the front vertices of the scenarios in S.
We define the scenario-weight of a node u ∈ T ′ to be the number of scenarios in S that
have u as their fronts. A node with scenario-weight 0 is called a dummy node, and it
does not represent the front node of any scenario in S. Each node in T ′ \T ∗ will have
a scenario-weight of no more than one, after every scenario s such that max(s) ⊃ T ∗
has been discarded. (Note that they are dominated in T ∗ by Lemma 3.) After that, if
a scenario whose front u is in T ′ \ T ∗ is discarded, then u becomes a dummy node.
If this is a leaf node, we simply remove it from T ′, together with the incident edge. If
a node u with degree 2 becomes dummy, we remove u and connect its neighbors u′
and u′′ with an edge of length d(u,u′)+d(u,u′′). As a result, every leaf node is non-
dummy, and there is no dummy node with degree 2. For example, see Fig. 5, where
the hollow circles indicate the dummy nodes. Therefore, the number of dummy nodes
cannot be more than the number of leaves. This implies that the number of nodes in
T ′ is O(|S|).

If we remove a point y ∈ T and the edges incident to it from T , a number of
“subtrees” result. Any such “subtree” with point y and the edge to it restored is called
a y-branch [2] of T . We use BT (y, x) to denote the y-branch of T that contains point
x (�= y). We now cite a useful lemma.

Fig. 5 Auxiliary tree T ′
containing T ∗. The hollow
circles represent dummy nodes

1We use the term ‘node’ to avoid confusion with a vertex of T .

Algorithmica (2014) 70:2–21 13

Lemma 13 [2, Lemma 1] For any point x ∈ T , the optimal location x∗ is in the
x-branch in which the worst case alternative m(ŝ(x)) for x lies, where s = ŝ(x)

maximizes Rs(x).

To localize x∗ eventually to a point, we want to make the sizes of T ∗ and S smaller
and smaller. To this end, we pick the pivot vertex r ∈ T ∗, determine the r-branch of
T ∗ that contains the optimal location x∗, and update T ∗ to this r-branch. We want to
choose r judiciously, so that the sizes of new T ∗ and S will be no more than a constant
fraction of their current sizes. With these considerations, we use a w-centroid of T ′
(based on the scenario-weights) as r , which can be found in time linear in the size
of T ∗ [9]. By definition of the w-centroid, none of the r-branches minus r , T ∗ \ {r}
in particular, contains more than |S|/2 fronts, and therefore, T ′ \ T ∗ ∪ {r} contains at
least |S|/2 fronts. This fact will be used in deriving (18) later.

After picking pivot vertex r , theoretically, we can determine BT ′(r, x∗) of T ′,
based on Lemma 13. The practical difficulty is that we need some medians that are
not covered by Theorem 1 or Lemma 8. For those other medians, we need to resort
to Lemma 10, but we cannot afford to spend more than O(|S|) time in total, which is
a challenge that we will overcome later.

4.2 Preparation

Let us define Smin(r) by

Smin(r) = {
s ∈ S | min(s) ⊇ BT ′

(
r, x∗) \ {r}}. (10)

Lemma 14 [16] Let s ∈ Smin(r). Then the cost function F s(x) over x ∈ T ∗ ∩
BT ′(r, x∗) has the following properties:

(a) It is a non-decreasing linear function of point x on each edge, as x moves away
from r .

(b) It is continuous at the vertices.

Lemma 15 Let s, s′ ∈ Smin(r). Unless Rs(x) = Rs′
(x) for all x ∈ T ∗, Rs(x) =

Rs′
(x) holds for at most one point x ∈ π(r,u) for each leaf u of T ∗.

Proof Let e = (v, v′) be an edge of T ∗ such that v′ is closer to r than v is. The rates
of change of F s(x) and F s′

(x) (hence of Rs(x) and Rs′
(x)) with respect to x ∈ e, as

x moves towards v′ are (Ws −Ws(v))−Ws(v) = Ws −2Ws(v) and Ws′ −2Ws′
(v),

respectively, where Ws(v) is the total weight under s of the subtree T (v), and Ws is
the total weight under s of all the vertices of T . Their difference is thus

{
Ws − Ws′} + 2

{
Ws′

(v) − Ws(v)
}
. (11)

The term {Ws −Ws′ } clearly does not depend on the edge e on which x lies. Clearly,
{Ws′

(v) − Ws(v)} = 0 holds, because s, s′ ∈ Smin(r). Therefore, Rs(x) = Rs′
(x)

holds for at most one point x ∈ π(r,u), unless Rs(x) = Rs′
(x) for all x ∈ T ∗. �

14 Algorithmica (2014) 70:2–21

Lemma 16 Assume that W ∗[·], W ∗[·], C∗[·], and C∗[·] are known, where ∗ ∈ {t, c}.
Given a set S ⊂ S̃ of scenarios and a point x such that (i) ∀s ∈ S : x ∈ min(s), and
(ii) {m(s) | s ∈ S} are known, we can determine in O(|S|) time the scenario ŝ(x) ∈ S

that dominates all others in S at x, and the x-branch that contains m(ŝ(x)), i.e.,
BT ∗(x,m(ŝ(x))).

Proof We need to compute Rs(x) = F s(x) − F s(m(s)) for each s ∈ S. We can com-
pute F s(m(s)) in O(1) time by Lemma 12. To evaluate F s(x), we interchange the
max-weighted vertices and min-weighted vertices (f (s) moves as a result) in Fig. 4,
and replace m(s) by x, except that x can be any point, not necessarily a vertex. Fol-
lowing the method in the proof Lemma 12, it is clear that F s(x), hence Rs(x), can
be computed for all s ∈ S in O(|S|) time. Then ŝ(x) is given by the scenario s that
maximizes Rs(x). It is easy to find BT ∗(x,m(ŝ(x))). �

Regarding Condition (i) in Lemma 16, if x /∈ min(s) for s ∈ S then s is dominated
by some other scenario at x, and can be ignored. Condition (ii) assumes the medians
{m(s) | s ∈ S} are available, but computing them is still a pending issue to be settled
in the next section.

4.3 Algorithm

We first introduce a procedure that performs the task of Lemma 16, which runs in
O(|S|) time.

Procedure OptBranch(S, x): [{m(s) | s ∈ S ∧ x ∈ min(s)} are known]
Find the x-branch that contains the optimal location.

We start with S = S̃ and the initial pivot r set to the w-centroid of T ′, and keep
track of the shrinking scenario set S and T ∗ that is an r-branch containing the optimal
location x∗. To find this r-branch, we need to know the medians of the scenarios in
{s ∈ S | r ∈ min(s)}. Then we can remove from S the scenarios that are dominated
in T ∗. The scenarios in {s ∈ S | max(s) ⊇ T ∗} are obviously dominated in T ∗ and
can be discarded. Among the remaining scenarios in S, we pay special attention to
those in {s ∈ S | min(s) ⊇ T ∗}.

We use the w-centroid of T as r0. Assume that the medians of the scenarios cov-
ered by Theorem 1 have been computed, so that the medians of the scenarios in {s ∈
S̃ | r0 ∈ min(s)} are known. We also assume that the medians {mi | i = 1, . . . , z + 1}
have been computed by Lemma 8. Here is an outline of our algorithm, where κ is a
constant.

Algorithm Prune

1. Set T ∗ = T and S = S̃ .
2. For j = 1,2, . . . , carry out Steps 3 to 7.
3. Pick a pivot vertex r . If r is not on the spine, compute the medians of the scenarios

{sc(v) ∈ S | v ∈ π(r, v′
i)}, where r ∈ T (v′

i) in Fig. 2.

Algorithmica (2014) 70:2–21 15

Fig. 6 Points y1, y2, . . . , y5 are
at distance dm from r

4. Invoke Procedure OptBranch(S, r) to determine the r-branch that contains the
optimal location x∗. Update T ∗ to this r-branch.

5. Discard from S the scenarios in {s ∈ S | max(s) ⊇ T ∗}.
6. Let Smin(r) (⊆ S) be the set of scenarios defined by (10). Pair up scenarios in

Smin(r), and let p be the number of pairs.2

7. Determine and discard at least �p/4� dominated scenarios from S. If |S| ≤ κ , then
locate x∗ by an exhaustive means or by applying any of the algorithms currently
available (e.g., that in [2]) and stop.

The first thing we do in a round is to pick pivot r in Step 3. As we discuss later, in
general, we set the pivot r to the w-centroid of T ∗. Thus in Step 3 of the first round,
we have r = r0. To determine the r-branch of T ∗ that contains the optimal location
x∗, BT ∗(r, x∗) in Step 4, we may need some preparation in Step 3, by computing the
needed medians {m(s) | s ∈ S ∧ r ∈ min(s)}. See Lemmas 10 and 11. But in the first
round they are already known.

Since Step 5 is straightforward, let us now discuss Steps 6 and 7, which form
the core of Algorithm Prune. Since {m(s) | s ∈ S ∧ r ∈ min(s)} are available after
Step 3, then obviously {m(s) | s ∈ Smin(r)}, which is needed in Step 6, are also avail-
able, except possibly for one scenario.3 Step 7 requires, among others, computing
the cross-over point of the regret functions Rs(x) and Rs′

(x) of each pair (s, s′) of
scenarios constructed in Step 6. Note that m(s) and m(s′) were either precomputed
or computed in Step 3. The most favorable cases are where either Rs(x) = Rs′

(x) for
all x ∈ T ∗ or Rs(x) and Rs′

(x) don’t cross each other in T ∗. In these cases, one of
s and s′ is dominated by the other in T ∗ and can be thrown away, achieving a 2-to-1
reduction. However, in the worst case, there may be no such pair.

Let us assume the least favorable case, where Rs(x) = Rs′
(x) has a (non-zero)

finite number of solution points in T ∗. See Lemma 15. All solution points to Rs(x) =
Rs′

(x) lie at the same distance from r . Suppose that d1, d2, . . . , dp are the distances
from r of the solution points for the p pairs of scenarios. Let dm be the �p/2�th
smallest among them, and let d∗ denote the distance from r of the optimal location x∗,
which is not known yet. If d∗ ≥ dm (resp. d∗ < dm), then from each scenario pair
with solution point distance di ≤ dm (resp di ≥ dm), one of them can be thrown away,
because the other dominates it at any point x that is not nearer (resp. nearer) than dm

from r .

2If |Smin(r)| is odd, one scenario is left unpaired.
3In the first round, where r = r0, for example, this scenario may be sc(va) or sc(vb). In general such a
scenario belongs to Smin(r) and its front is r . It is easy to compute its median.

16 Algorithmica (2014) 70:2–21

We now show how to determine if d∗ ≥ dm for a given value dm (> 0) without
knowing the exact value of d∗. Let y1, y2, . . . , yc be the points in T ∗ at distance dm

from r . For example, see y1, . . . , y5 in Fig. 6. Let T (yi) be the yi -branch that is
“below” (farther away from r) yi . Thus T (yi) = T (yi) holds if yi is a vertex. Let
Si(⊂ S) denote the set of scenarios such that for any s ∈ Si we have max(s) ∩ T ∗ ⊆
T (yi). Thus their min-weighted components contain r . Define

R(yi) = max
s∈Si

{
F s(yi) − F s

(
m(s)

)}
, (12)

and let si ∈ Si realize R(yi). Note that we already know {m(s) | s ∈ Si} as a result of
Step 3. So we can determine si in O(|Si |) time by Lemma 16. Among them let R(yk)

(realized by sk ∈ Sk) be as large as any other. We now compute R∗(yk) and ŝ(yk)

based on the scenarios in S (⊂ S̃), which is the set of all scenarios in S̃ that have not
been thrown away so far. This can be done in O(|S|) time by Lemma 16, provided the
relevant medians are known. The relevant medians that we don’t know yet are those
under the scenarios whose min-weighted (resp. max-weighted) components contain
yk (resp. r). If such a median is not known yet, we can resort to Lemma 10 with
u = yk .

Lemma 17 For a given value dm of x, define {yi | i = 1,2, . . . , c} and yk as above.

(a) If ŝ(yk) ∈ Sk then the optimal location x∗ lies in T (yk).
(b) If ŝ(yk) /∈ Sk then the optimal location x∗ cannot lie in T (yi) for any i.

Proof (a) Follows from Lemma 13, since ŝ(yk) ∈ S̃, hence m(ŝ(yk)) ∈ T (yk).
(b) The assertion is trivially true for i = k. Assume that the optimal location

(over S) was in T (yj) (j �= k). Then by Lemmas 4 and 13, the scenario that real-
izes R∗(yj) must be in Sj , and hence R∗(yj) = R(yj). By the definition of k, we
have

R∗(yj) = R(yj) ≤ R(yk). (13)

On the other hand, we have

R(yk) < Rsk (yj), (14)

by Lemma 14. We have strict inequality here, because yj is farther away from median
m(sk) than yk . By definition, we also have

Rsk (yj) ≤ R∗(yj). (15)

Equations (13), (14) and (15) yield R∗(yj) < R∗(yj), a contradiction. �

Procedure OptBranch(S, yk) can determine whether we have Case (a) or (b)
of Lemma 17. In Case (a), we can eliminate one scenario from each pair of scenar-
ios, s and s′, whose crossover point (where Rs(x) and Rs′

(x) intersect) is at most
distance dm away from r . In Case (b), we can eliminate one scenario from each
pair of scenarios whose crossover point is at least distance dm away from r . Note
that to execute Procedure OptBranch(S, yk), we need the medians of the scenarios

Algorithmica (2014) 70:2–21 17

{sc(v) ∈ S | v ∈ π(vk, v
′
i)}, which can be computed by Lemma 10. However, comput-

ing them individually takes too much time. In the next subsection, we present a way
to batch them to save time.

4.4 Two-Phase Tree Search

Assume that a target sequence of ordered data points is given as an array, D[0 : t],
where D[0] = 0, and D[i] < D[i + 1] holds for i = 1, . . . , t − 1. There are also q

arrays, Qj [1 : lj] of integers (j = 1, . . . , q), Qj [i] ≤ Qj [i + 1] holds for 1 ≤ i < lj ,
and

∑q

j=1 lj ≤ n. Our objective is to assign Qj [k] to D[h] such that D[h] ≤ Qj [k] <

D[h+ 1] for k = 1,2, . . . , lj . A naïve approach might merge Qj [·] and D[·] into one
ordered sequence for each j , which takes

O

(
q∑

j=1

{lj + t}
)

= O

(
qt +

q∑

j=1

lj

)
= O(qt + n) (16)

time. Lemma 18 will show that with one-time preprocessing, which takes O(t) time,
it can be done in

O

(
q∑

j=1

{
lj log(t/ lj) + lj

}
)

+ O(t) (17)

time. At first glance, (17) may not appear any better than (16), but if li ≤ cnαi , where
c and α are constants satisfying c > 0 and 0 < α < 1, then (17) becomes O(n), as
proved in Theorem 2.

In preprocessing, we construct a balanced binary tree τD on t leaves representing
D[0],D[1], . . . ,D[t], from left to right. Given a query array Qj [·] of ascending
integers, we want to assign Qj [k] to D[h] such that D[h] ≤ Qj [k] < D[h + 1].
During the construction of τD , we label each internal node4 u by d[u], which is the
value of the leftmost leaf of the subtree rooted at u. Tree τD can be constructed in
O(t) time. Let τD(u) denote the subtree of τD rooted at u.

Algorithm 2PTS(D[0 : t],Q[1 : l])
– Phase 1: If �log l� > �log t�,5 then for k = 1,2, . . . , l find hk such that D[hk] ≤

Q[k] < D[hk + 1] by merging two ordered arrays D[·] and Q[·], and stop. Other-
wise, let l′ = 2�log l�. Identify all the nodes, u1, u2, . . . , ul′ , of τD that are at level
(=depth) �log l�. For k = 1,2, . . . , l find i such that d[ui] ≤ Q[k] < d[ui+1], by
merging the sequence 〈d[u1], d[u2], . . . , d[ul′]〉 and the elements in the ordered
array Q[·].

– Phase 2: For each k = 1,2, . . . , l, move down in τD(ui) to reach the leaf node
D[hk] such that D[hk] ≤ Q[k] < D[hk + 1].

4We use the term ‘node’ here to distinguish it from a vertex of tree T .
5Note that all leaves of τD are at level �log t� or higher (closer to the root).

18 Algorithmica (2014) 70:2–21

Lemma 18 Algorithm 2PTS(D[0 : t],Q[1 : l]) runs in O(l log(t/ l) + l) time.

Proof It is clear that 2PTS(D[0 : t],Q[1 : l]) runs in O(l) time if �log l� > �log t�.
So, assume �log l� ≤ �log t�. In Phase 1, we test Q[k] against the value stored at suc-
cessive ui without backtracking. This takes O(l + l′) = O(l) time, and each element
Q[k] has been assigned to a node at level �log l�. In Phase 2, the length of a path
from level �log l� down to a leaf is at most �log t� − �log l� = O(log(t/ l)). For all
the l elements in Q[·], the total time is thus O(l log(t/ l)). �

4.5 Time Complexity Analysis

To make our analysis easier, we start with S∗ instead of S̃ . Let us first consider
Round 1, in which we have just found a w-centroid r0 in the auxiliary tree T ′ = T

and identified T ∗. For each leaf u of T there is just one scenario in S∗, whose max-
weighted component consists of just u. Let γ be the total number of scenarios in
S∗ whose min-weighted components contain T ∗, and let δ be the total number of
scenarios in S∗ whose max-weighted components contain T ∗ (hence r). Note that
for each node v, there are d(v) scenarios in S∗ whose fronts are on v, where d(v)

denotes the degree of v. For node v in T \ T ∗, among those d(v) scenarios, all but
one contain T ∗ (hence r) in their max-weighted components. At any point x ∈ T ∗,
these d(v) − 1 scenarios are dominated by other scenarios by Lemma 3. Since T ∗
keeps shrinking over the successive rounds, this dominance relation does not change
in the future, which implies that we can throw them away for good.

The total number of scenarios in S∗ whose fronts are on the nodes in T \T ∗ ∪ {r0}
is given by

γ + δ + 1 ≥ |S|/2, (18)

where the inequality holds because r0 is a w-centroid. On the left hand side of (18),
“+1” accounts for the scenario s with min(s) = T ∗ \ {r}. Step 4 (resp. Step 7) of
Algorithm Prune throws away δ (resp. γ /8) scenarios from S. We have

δ + γ /8 = (7/8)δ + (γ + δ + 1)/8 − 1/8

= (7δ − 1)/8 + (γ + δ + 1)/8

≥ |S|/16, (19)

since δ > 1. Therefore, Algorithm Prune removes at least |S|/16 scenarios, reducing
the size of S by at least 1/16 in each round. Thus, after round j , the size of S reduces
to less than 2n(15/16)j . Note that |S∗| = 2(n−1), because each edge of T gives rise
to two scenarios in S∗.

Assume that the medians of the scenarios covered by Theorem 1 and the me-
dians {mi | i = 1, . . . , z + 1} have been computed by Lemma 8. To execute Opt-
Branch(S, r) (resp. OptBranch(S, yk)) invoked in Step 4 (resp. Step 7) of Al-
gorithm Prune, we need some other medians. We first discuss the medians needed
to execute OptBranch(S, r). If r lies on the spine, then we already know the me-
dians of all scenarios in {s ∈ S | r ∈ min(s)}. So, let u = r ∈ T (v′

i) in Fig. 3. We

Algorithmica (2014) 70:2–21 19

will only discuss how to find the medians covered by Lemma 9(a), since those cov-
ered by Lemma 9(b) can be computed similarly. For this purpose, we introduced
Algorithm 2PTS(D[0 : t],Q[1 : l]) in Sect. 4.4. To use it, we need the target se-
quence D[0 : t] associated with the vertices on π(mz+1, vz), which we constructed
just before Lemma 10. We then construct a search tree τD , which is introduced in
Sect. 4.4.

As for the query array Q[1 : l], let v be the j th vertex (counting from r) along
π(r, v′

i) in the set {v ∈ π(r, v′
i) | sc(v) ∈ S}. We set Q[j] = Wt [v] − Wt [v]. (See

Lemma 10.) Clearly, the elements of Q[·] are in the non-decreasing order. We can
now execute Algorithm 2PTS(D[0 : t],Q[1 : l]), to locate {m(sc(v)) | v ∈ π(r, v′

i) ∧
sc(v) ∈ S}.

The medians needed for OptBranch(S, yk) can be computed similarly, consid-
ering path π(yk, v

′
i) instead of π(r, v′

i).
6 The S-size of a path π is defined to be the

number of vertices in {v ∈ π | sc(v) ∈ S}. We now prove an important theorem.

Theorem 2 Let π1,π2, . . . , πq be disjoint paths in T (va) of S-sizes, l1, l2, . . . , lq ,
respectively, such that for each j , πj is a subpath of a path that starts at r0. Under
the conditions that lj ≤ cnαj for each j , where c and α are constants satisfying c > 0
and 0 < α < 1, and n is the size of tree T , we can find m(sc(v)) for all vertices v ∈ πj

for all j in O(n) time.

Proof In Phase 1 of Algorithm 2PTS(D[0 : t],Q[1 : lj]), we can use level �cnαj�
of τD in Phase 1. Then by Lemma 18, the medians under the scenarios in {sc(v) ∈
S | v ∈ πj } can be computed in O(lj log(t/�cnαj�)) time after some preprocessing
(construction of D[0 : t] and τD) that costs O(t) time. Thus the total time required by
Algorithm 2PTS() to compute m(sc(v)) for all j and for all vertices v ∈ πj is given
by

O

(
q∑

j=1

lj log
(
t/

⌈
cnαj

⌉) + lj

)

≤ O

(
q∑

j=1

(
cαjn

)
log

(
α−j /c

)
)

+ O(n)

= O

(
nc log(1/α)

q∑

j=1

jαj − nc log c

q∑

j=1

αj

)
+ O(n)

= O(n), (20)

since t < n and
∑q

j=1 jαj < α/(1 − α)2 holds independently of q , if 0 < α < 1. �

6If these two paths intersect, then some medians needed for OptBranch(S, yk) may have already been
computed, and they need not be recomputed.

20 Algorithmica (2014) 70:2–21

In applying Theorem 2, we set πj = π(r, v′
i) for the j th round of Algorithm

Prune. Here we define lj as the S-size of πj . The paths, such as π(r, v′
i), satisfy

the condition of Theorem 2 with lj ≤ cn(15/16)j , since lj < |S| ≤ cn(15/16)j .
Let |S| = k and let t (k) be the time needed for the repeated executions of Algo-

rithm Prune to find the optimal location, starting with the scenarios in S. Since the
execution of Algorithm Prune once takes linear time, the recurrence relation on t (k)

is

t (k) ≤ t (15k/16) + O(k). (21)

This recurrence equation has the solution of the form t (k) = O(k). Once k becomes
smaller than some constant, we can solve the problem exhaustively. We thus have the
main result of this paper:

Theorem 3 The minmax regret 1-median of a tree can be found in O(n) time, where
n is the number of vertices in the given tree.

5 Conclusion and Future Work

We have presented an O(n) time algorithm for computing the minmax regret
1-median for trees with nonnegative vertex weights. This improves upon the pre-
viously known best complexity of O(n logn), and is the best possible. Our next goal
is to design an algorithm for a cactus network. A more challenging problem is how to
compute the minmax regret p-median for various families of networks. We believe
that some techniques that we have developed in this paper will be useful in solving
other facility location and minmax problems.

Acknowledgements We greatly appreciate the comments provided by the anonymous referees, who
pointed out some deficiencies in the original manuscript, and who patiently perused the two revisions of
this relatively long paper. This work was supported in part by Discovery Grants of the Natural Sciences
and Engineering Research Council of Canada, held by B. Bhattacharya and T. Kameda, and a MITACS
grant held by B. Bhattacharya.

References

1. Averbakh, I., Berman, O.: Minmax regret median location on a network under uncertainty. INFORMS
J. Comput. 12(2), 104–110 (2000)

2. Averbakh, I., Berman, O.: An improved algorithm for the minmax regret median problem on a tree.
Networks 41, 97–103 (2003)

3. Bhattacharya, B., Kameda, T.: Linear time algorithm for finding minmax regret 1-median on a tree
with positive vertex weights. In: Proc. 18th Annual International Computing and Combinatorics Con-
ference (COCOON). LNCS, vol. 7434, pp. 1–12. Springer, Berlin (2012)

4. Bhattacharya, B., Kameda, T., Song, Z.: Computing minmax regret 1-median on a tree network with
positive/negative vertex weights. In: Proc. 23rd Int’l Symp. on Algorithms and Computation (ISAAC).
LNCS, vol. 7676, pp. 588–597. Springer, Berlin (2012)

5. Brodal, G.S., Georgiadis, L., Katriel, I.: An O(n logn) version of the Averbakh–Berman algorithm
for the robust median of a tree. Oper. Res. Lett. 36, 14–18 (2008)

6. Burkard, R.E., Dollani, H.: Robust location problems with pos/neg weights on a tree. Networks 38(2),
102–113 (2001)

Algorithmica (2014) 70:2–21 21

7. Chan, C.Y., Ku, S.C., Lu, C.J., Wang, B.F.: Efficient algorithms for two generalized 2-median prob-
lems and the group median problem on trees. Theor. Comput. Sci. 410, 867–876 (2009)

8. Chen, B., Lin, C.S.: Minmax-regret robust 1-median location on a tree. Networks 31, 93–103 (1998)
9. Goldman, A.: Optimal center location in simple networks. Transp. Sci. 5, 212–221 (1971)

10. Hale, T.S., Moberg, C.R.: Location science research: a review. Ann. Oper. Res. 123, 21–35 (2003)
11. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems, part 2: The p-median.

SIAM J. Appl. Math. 37, 539–560 (1979)
12. Kouvelis, P., Vairaktarakis, G., Yu, G.: Robust 1-median location on a tree in the presence of demand

and transportation cost uncertainty. Tech. Rep. Working paper 93/94-3-4, Department of Management
Science, The University of Texas, Austin (1993)

13. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic, London
(1997)

14. Megiddo, N.: Linear-time algorithms for linear-programming in R3 and related problems. SIAM J.
Comput. 12, 759–776 (1983)

15. Tamir, A.: An O(pn2) algorithm for the p-median and the related problems in tree graphs. Oper. Res.
Lett. 19, 59–64 (1996)

16. Yu, H.I., Lin, T.C., Wang, B.F.: Improved algorithms for the minmax-regret 1-center and 1-median
problem. ACM Trans. Algorithms 4(3), 1 (2008)

	A Linear Time Algorithm for Computing Minmax Regret 1-Median on a Tree Network
	Abstract
	Introduction
	The Problem
	Previous Work
	Paper Organization

	Preliminaries
	Deﬁnitions
	Properties of Median and Minmax Regret Median in a Tree

	Medians and Their Costs
	Computing Median m(s) for all s inS with max(s)=T(v)
	Computing Median m(s) for Some s inS with min(s)=T(v)
	Computing Costs of Medians

	Optimal Facility Location
	Prune and Search
	Preparation
	Algorithm
	Two-Phase Tree Search
	Time Complexity Analysis

	Conclusion and Future Work
	Acknowledgements
	References

