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Abstract An undirected graph is said to be split if its vertex set can be partitioned
into two sets such that the subgraph induced on one of them is a complete graph
and the subgraph induced on the other is an independent set. We initiate a systematic
study of parameterized complexity of the problem of deleting the minimum number
of vertices or edges from a given input graph so that the resulting graph is split.
We give efficient fixed-parameter algorithms and polynomial sized kernels for the
problem. More precisely,

1. for SPLIT VERTEX DELETION, the problem of determining whether there are k

vertices whose deletion results in a split graph, we give an O∗(2k) algorithm (O∗()
notation hides factors that are polynomial in the input size) improving on the pre-
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vious best bound of O∗(2.32k). We also give an O(k3)-sized kernel for the prob-
lem.

2. For SPLIT EDGE DELETION, the problem of determining whether there are k

edges whose deletion results in a split graph, we give an O∗(2O(
√

k log k)) algo-
rithm. We also prove the existence of an O(k2) kernel.

In addition, we note that our algorithm for SPLIT EDGE DELETION adds to the small
number of subexponential parameterized algorithms not obtained through bidimen-
sionality (Demaine et al. in J. ACM 52(6): 866–893, 2005), and on general graphs.

Keywords Parameterized complexity · Deletion problems · Split graphs ·
Subexponential algorithm

1 Introduction

A graph property Π is a collection of graphs. A graph property Π is non-trivial if it
has infinitely many graphs in it, and also avoids infinitely many graphs. A non-trivial
graph property is said to be hereditary if a graph G is in property Π implies that
every induced subgraph of G is also in Π . The problem of editing (adding/deleting
vertices/edges) to ensure that a graph has some property is a well studied problem
in theory and applications of graph algorithms. When we want the resulting graph to
be in a non-trivial hereditary graph class Π , the optimization versions of the corre-
sponding vertex deletion problems are known to be NP-hard by a classical result of
Lewis and Yannakakis [18]. Many edge deletion problems (including deletion to split
graphs) are known to be NP-hard by results of Natanzon et al. [23]. This problem has
also been studied in generality under paradigms like approximation [12, 20] and pa-
rameterized complexity [3, 14]. When Π is a specific hereditary class like chordal or
planar graphs, extensive work has been done to explore tight bounds [11, 17, 21, 22].
In this paper, we initiate a study of these problems from the point of view of parame-
terized complexity when Π is the class of all split graphs, which is also a non-trivial
hereditary graph class.

An undirected graph G = (V ,E) is said to be split if its vertex set V can be par-
titioned into two sets such that the induced subgraph on one of them is a complete
graph and the induced subgraph on the other is an independent set. Split graphs were
first studied by Földes and Hammer [9], and independently introduced by Tyshkevich
and Chernyak [24]. In [9], the authors provided the following finite forbidden sub-
graph characterization of split graphs which gives an easy polynomial time algorithm
for recognizing split graphs.

Lemma 1 ([9]) A graph is a split graph if and only if it contains no induced subgraph
isomorphic to 2K2, C4, or C5. Here, K2 is the complete graph on two vertices, Ci is
a cycle on i vertices.
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In this paper, we study the following two problems.

SPLIT VERTEX DELETION (SVD)
Input: Graph G = (V ,E), integer k

Parameter: k

Question: Does there exist a set of vertices of size at most k whose deletion
from G results in a split graph?

SPLIT EDGE DELETION (SED)
Input: Graph G = (V ,E), integer k

Parameter: k

Question: Does there exist a set of edges of size at most k whose deletion from
G results in a split graph?

As the size of the forbidden set is finite, these problems become fixed-parameter
tractable (see Sect. 2) due to a general result of Cai [3], when parameterized by k.
One can also observe from Lemma 1, a fairly straightforward branching algorithm
for both SVD and SED with running time O∗(5k).

Recently, in [19], the authors obtained an O∗(2.32)k algorithm for SVD by re-
ducing the problem to the ABOVE GUARANTEE VERTEX COVER problem and using
the fixed-parameter algorithm for it. In this paper, we obtain an O∗(2k) algorithm by
the combination of a bound on the number of split partitions of a split graph, and
the well known technique of iterative compression. We also obtain an O(k3) vertex
kernel for the problem. Note that, this kernel is smaller than the kernel with O(k4)

vertices, which can be obtained by an approach similar to d-HITTING SET [1]. We
also prove that under certain complexity theoretic assumptions, we cannot obtain a
subexponential algorithm for this problem.

For SED, we design a subexponential algorithm running in time O∗(2O(
√

k log k))

by combining the color and conquer approach [2], with the bound on the number
of partitions of a split graph. This is one of the very few problems (see [10, 11]
for other problems) for which we know a subexponential parameterized algorithm
on general graphs which does not use bidimensionality theory. We also revisit the
kernelization algorithm for this problem given by Guo [14], and by using only a
subset of the rules presented there, we prove a bound of O(k2) vertices improving
on Guo’s bound of O(k4). Furthermore, the SPLIT COMPLETION problem of adding
at most k edges to a given graph to make it split, is equivalent to deleting at most
k edges from the complement of the graph to make it split. Hence, the bound on
the kernel and the subexponential algorithm which we prove for SED also holds for
SPLIT COMPLETION.

Related Work We also note that though computing a minimum split completion set
is NP-complete, there is a linear time algorithm to compute a minimal split com-
pletion set [16]. Another interesting fact is that even though SED is NP-complete
the SPLIT EDGE MODIFICATION problem (where we are allowed to add or delete k

edges to get a split graph) is polynomial time solvable [15].
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After the conference version of this paper was published, our algorithm for SVD
was improved by Cygan and Pilipczuk [5] using a different method. Their algorithm
runs in time O∗(1.2738kkO(log k)).

Organization of the Paper In Sect. 3, we first present and analyze our algorithm for
SPLIT VERTEX DELETION. Following that, we design a set of reduction rules for the
problem which allow us to reduce the number of vertices in the graph to O(k3). In
Sect. 4, we present the subexponential algorithm for SPLIT EDGE DELETION, which
is followed by an improved bound on a kernel for the same problem.

2 Preliminaries

For a graph G = (V ,E), and a set A ⊆ E of edges, we denote by V (A) the set of
endpoints of the edges in A. For a set S ⊆ V , the subgraph of G induced by S is
denoted by G[S] and it is defined as the subgraph of G with vertex set S and edge
set {(u, v) ∈ E : u,v ∈ S} and the subgraph obtained after deleting S is denoted as
G \ S. Similarly, the subgraph of G induced by an edge set A ⊆ E is defined as
the subgraph of G with edge set A and vertex set V (A) and is denoted by G[A]. All
vertices adjacent to a vertex v are called neighbors of v and the set of all such vertices
is called the neighborhood of v. Similarly, a non-adjacent vertex of v is called a non-
neighbor and the set of all non-neighbors of v is called the non-neighborhood of v.
The neighborhood of v is denoted by N(v). We say that v is global to a set Z if v is
adjacent to all vertices of Z and we say that v is non-adjacent (or non-neighbor) to
a set Z if v is not adjacent to any vertex of Z. For two sets X and Y , we say that X

is global to Y if every vertex in X is global to Y and that X is non-adjacent to Y if
every vertex in X is non-adjacent to Y .

Given a function col : V → C from the vertices of the graph G to a set of colors,
C, we say that an edge (u, v) ∈ E is monochromatic if col(u) = col(v) and non-
monochromatic otherwise.

A graph G is called a split graph if the vertex set V can be partitioned into two
sets V1 and V2 such that G[V1] is a complete graph and G[V2] is an independent set.
We call a set S ⊆ V a split vertex deletion (svd) set if the graph G[V \ S] is a split
graph and a set A ⊆ E is called a split edge deletion (sed) set if the graph G[E \ A]
is a split graph.

Definition 1 Given a split graph G = (V ,E), a partition (C � I ) of the vertex set
into sets C and I is called a split partition of this split graph if G[C] is a clique and
G[I ] is an independent set.

Given a split partition (C0 � I0) of a subgraph G′ of a split graph G, we say that
a split partition (C � I ) of G is consistent with the partition (C0 � I0) if C0 ⊆ C and
I0 ⊆ I .

We refer to an induced subgraph isomorphic to 2K2, or C4 or C5 as a forbidden
structure.
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Parameterized Complexity For decision problems with input size n, and a parameter
k, the goal in parameterized complexity is to design an algorithm with running time
f (k)nO(1) where f is a function of k alone, as contrasted with an nk+O(1) algorithm.
Problems which admit such algorithms are said to be fixed parameter tractable (FPT).
We also call an algorithm with a running time of f (k)nO(1), an FPT algorithm, and
such a running time, an FPT running time. The theory of parameterized complexity
was developed by Downey and Fellows [7]. For recent developments, see the book
by Flum and Grohe [8].

Kernelization A kernelization algorithm for a parameterized language L is a poly-
nomial time procedure which takes as input an instance (x, k), where k is the param-
eter and returns an instance (x1, k1) such that (x, k) ∈ L if and only if (x1, k1) ∈ L

and |x1| ≤ h(k) and k1 ≤ g(k), for some computable functions h,g. The returned
instance is said to be the kernel for L.

3 SPLIT VERTEX DELETION

In this section, we first present an O∗(2k) parameterized algorithm for SVD by com-
bining the technique of iterative compression along with a linear bound on the num-
ber of split partitions of split graphs. This bound has been improved by Cygan and
Pilipczuk [5], but we give this algorithm for completeness. Later, we give a cubic
kernel for SVD.

3.1 An O∗(2k) Algorithm for SPLIT VERTEX DELETION

We start by stating a lemma, that is implied by Theorem 6.2, [13].

Lemma 2 (Theorem 6.2, [13]) A split graph on n vertices can have at most n + 1
split partitions.

We will now describe the application of the iterative compression technique to the
SVD problem.

Iterative Compression for SPLIT VERTEX DELETION Given an instance (G =
(V ,E), k) of SVD, we let V = {v1, . . . , vn} and define vertex sets Vi = {v1, . . . , vi},
and let the graph Gi = G[Vi]. We iterate through the instances (Gi, k) starting from
i = k + 3. For the ith instance, we try to find a solution Ŝi of size at most k, with the
help of a known solution Si of size at most k + 1. Formally, the compression problem
we address is the following.

SPLIT VERTEX DELETION COMPRESSION (SVD COMPRESSION)
Input: Graph G = (V ,E), an svd set S ⊆ V of size at most k + 1, integer k

Parameter: k

Question: Does there exist an svd set of size at most k?
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We reduce the SVD problem to n − k − 2 instances of the SVD COMPRESSION

problem as follows. Let Ii = (Gi, Si, k) be the ith instance. Clearly, the set Vk+1 is a
solution of size at most k + 1 for the instance Ik+3. It is also easy to see that if Ŝi−1
is a solution of size at most k for instance Ii−1, then the set Ŝi−1 ∪ {vi} is a solution
of size at most k + 1 for the instance Ii . We use these two observations to start off the
iteration with the instance (Gk+3, Sk+3 = Vk+1, k) and look for a solution of size at
most k for this instance. If there is such a solution Ŝk+3, we set Sk+4 = Ŝk+3 ∪{vk+4}
and ask for a solution of size at most k for the instance Ik+4 and so on. If, during any
iteration, the corresponding instance does not have a solution of the required size, it
implies that the original instance is also a NO instance. This follows from the fact that
if a graph G has a split vertex deletion set of size k, then any vertex induced subgraph
of G also has a split vertex deletion set of size k. Finally, the solution for the original
input instance will be Ŝn. Since there can be at most n iterations, the total time taken
to solve the original instance is bounded by n times the time required to solve the
SVD COMPRESSION problem.

Our algorithm for SVD COMPRESSION is as follows. Let the input instance be
I = (G = (V ,E),S, k). We guess a subset Y ⊆ S with the intention of picking these
vertices in our hypothetical solution for this instance and ignoring the rest of the
vertices in S. We delete the set Y from the graph and decrease k appropriately. We
then check if the graph G[S \ Y ] is a split graph and if it is not, then reject this guess
of Y as a spurious guess. Suppose that G[S \Y ] is indeed a split graph. We now guess
and fix a split partition (C0 � I0) for this graph. By Lemma 2, we know that there are
at most k + 2 such split partitions. The split partition we fix corresponds to the split
partition induced by the hypothetical solution on the graph G[S \ Y ]. Hence, it now
remains to check if there is an SVD set of the appropriate size which is disjoint from
S \Y , and results in a split graph with a split partition consistent with (C0 � I0). More
formally, we have an instance of the following problem.

SPLIT VERTEX DELETION COMPRESSION* (SVD COMPRESSION*)
Input: Graph G = (V ,E), an svd set S ⊂ V such that G[S] is a split graph,

a split partition (C0 � I0) for the graph G[S], integer k
Parameter: k

Question: Does there exist an svd set X of size at most k, disjoint from S such
that G \ X has a split partition consistent with (C0 � I0)?

The following lemma gives a polynomial time algorithm for the above problem.

Lemma 3 SPLIT VERTEX DELETION COMPRESSION* can be solved in O(n3) time.

Proof Let S′ be a potential solution, and let (C′ � I ′) be a fixed split partition for
the graph G \ S′ consistent with the split partition (C0 � I0). Let (C1 � I1) be a split
partition of the graph G \ S.

Since we cannot delete edges, at most one vertex of C1 can lie in I ′ and at most
one vertex of I1 can lie in C′. Hence, we initially guess these two vertices (either
guess could be empty) vc and vi where vc = C1 ∩ I ′ and vi = I1 ∩ C′. We move vc

to I1 and vi to C1. For the sake of convenience we refer to the modified sets C1 and
I1 also as C1 and I1. Now, let Î = I0 ∪ I1 and Ĉ = C0 ∪C1. It is clear that any vertex
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in Î which is neighbor to a vertex in I0 ∪ {vc} needs to be deleted and any vertex
in Ĉ which is not global to C0 ∪ {vi} needs to be deleted. Let X be the set of these
vertices, that need to be deleted. Now, if X is not disjoint from S, we return NO. On
the other hand, we observe that if X is disjoint from S, then deleting X gives us the
required kind of split graph. To show that, we look at the partition (Ĉ \ X) � (Î \ X)

of G \X. The set Ĉ \X is a clique because C0 ∪ {vi} is a clique (otherwise we would
have returned NO earlier), C1 \X is a clique, and all the edges between C0 ∪{vi} and
C1 \ X are present. Similarly, the set Î \ X is an independent set because I0 ∪ {vc}
is an independent set (otherwise we would have returned NO earlier), I1 \ X is an
independent set, and no edges between I0 ∪ {vc} and I1 \ X are present. Hence, if
|X| ≤ k, then we return that it is indeed a YES instance and return NO otherwise.
Guessing the vertices takes O(n2) time and in each iteration we spend at most linear
time, hence the algorithm takes O(n3) time. �

Given Lemma 3, our algorithm for SVD COMPRESSION has a running time of
O(

∑k
i=0(

k+1
i

) · k · nO(1)) = O∗(2k), where the factor of k is due to the number of

split partitions of G[S \ Y ] and nO(1) is due to the time required to execute our
algorithm for SVD COMPRESSION*.

Finally, since we solve at most n instances of SVD COMPRESSION, our algorithm
for SVD runs in time O∗(2k), giving us the following theorem.

Theorem 1 SPLIT VERTEX DELETION can be solved in O∗(2k) time.

We now show that with respect to the asymptotic dependence on k, the above
algorithm for SPLIT VERTEX DELETION is essentially the best we can hope for.

Theorem 2 SPLIT VERTEX DELETION cannot be solved in time O∗(2o(k)) time un-
less ETH fails.

Proof It is known that VERTEX COVER does not admit a subexponential algorithm
unless the Exponential Time Hypothesis (ETH) fails [4]. We prove the analogous
statement for SPLIT VERTEX DELETION by a reduction from VERTEX COVER.

Consider an instane (G, k) of VERTEX COVER and let G′ be the graph constructed
from G by adding a disjoint clique of size k + 2. Now, G has a vertex cover of size at
most k if and only if G′ has a svd set of size at most k. This concludes the proof. �

3.2 A Cubic Kernel for SPLIT VERTEX DELETION

In this subsection, we use the structural claim made in the algorithm for SVD to
design a vertex kernel of size O(k3) for SVD. We design the kernel by introducing
reduction rules which can be applied in polynomial time to reduce the instance. The
reduction rules we present here are applied exhaustively and in the order in which
they are presented.

We say that a reduction rule that is applied on an instance (G, k) to produce an
instance (G′, k′) is correct if (G, k) is a YES instance if and only if (G′, k′) is a YES
instance.
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Reduction Rule 3.1 Compute an inclusion wise maximal set of vertex disjoint for-
bidden structures greedily, and let the set of vertices involved in this set of forbidden
structures be D. If |D| exceeds 5k, then return a trivial NO instance.

Moving forward, we assume that |D| ≤ 5k. Note that G \ D is a split graph, and
let (C∗ � I ∗) be a split partition of this graph. Before we present the next reduction
rule, we need the following definition.

Definition 2 We say that a vertex v of G has a high clique non-neighborhood if
|C∗ \N(v)| ≥ k + 2. Similarly, v is said to have a high independent set neighborhood
if |I ∗ ∩ N(v)| ≥ k + 2.

Let Hi = {x ∈ V : |C∗ \ N(v)| ≥ k + 2}, and let Hc = {x ∈ V : |I ∗ ∩ N(v)| ≥
k + 2}.
Lemma 4 The vertices in Hi will either end up in the independent partition of the
resulting split graph, or will get deleted and hence will be in the solution. Similarly
for vertices in Hc , will either end up in the clique partition of the resulting split graph,
or will get deleted and hence will be in the solution.

Proof The vertices in Hi have at least k +2 non-neighbors in the clique partition. So,
if a vertex of Hi is moved to clique partition, out of k + 2 non-neighbors, at most k

can be deleted, and at most one could be moved to the independent partition, which
leads to a contradiction to the fact that there exists a set S of size k, such that G \ S

is a split graph. Similarly, the vertices in Hc will either end up in the clique partition
of the remaining split graph or will get deleted and hence will be in the solution. �

The previous lemma justifies the correctness of the next reduction rule.

Reduction Rule 3.2 If there is a vertex v ∈ Hi ∩ Hc, then delete v and decrease k

by 1.

Lemma 5 Reduction Rule 3.2 is correct.

Proof Let Z1 be a clique non-adjacent to v and Z2 be an independent set adjacent to
v, such that |Z1| ≥ (k + 2) and |Z2| ≥ (k + 2). It is sufficient to show that v is part
of every solution of size at most k. Suppose that v is not in some solution S of size
at most k. Let (C � I ) be a split partition of G \ S. We first consider the case when
v ∈ C. Then, the set Z1 \ S, which contains at least two elements, lies in I , which is
not possible. Now, consider the case when v ∈ I . In this case, the set Z2 \ S, which
contains at least two elements, lies in C, which is also a contradiction. �

We now partition the vertex set of the resulting graph G as follows (see Fig. 1 for
a schematic diagram).

– Let C1 = Hc ∩ C∗ be the set of vertices of C∗ which have high independent set
neighborhood, and let I1 = Hi ∩ I ∗, is the set of vertices of I ∗ which have high
clique non-neighborhood.
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Fig. 1 Partitions of G

– Similarly Co = Hc ∩D, is the set of vertices of D which have high independent set
neighborhood, and Io = Hi ∩ D, is the set of vertices of D which have high clique
non-neighborhood.

– Let C∗
1 = C∗ \ C1, and I ∗

1 = I ∗ \ I1.
– Let Y1 ⊆ C∗

1 and Y2 ⊆ C1 be sets of vertices which have a non-neighbor in (D \
Io) ∪ I ∗

1 . Let Cr
1 = C∗

1 \ Y1 and Cr
2 = C1 \ Y2 (i.e. Cr

1 and Cr
2 are global to (D \

Io) ∪ I ∗
1 ).

– Let X1 ⊆ I ∗
1 and X2 ⊆ I1 be sets of vertices which have a neighbor in (D \ Co) ∪

C∗
1 . Let I r

1 = I ∗
1 \ X1 and I r

2 = I1 \ X2 (i.e. I r
1 and I r

2 do not have any edges to
(D \ Co) ∪ C∗

1 ).

Before giving further reduction rules, we prove the following lemmas.

Lemma 6 Let X ⊆ C∗, such that |X| > k + 2 be global to I ∗
1 ∪ (D \ Io). Let G′ be

the graph obtained by deleting all but k + 2 vertices of X and deleting all the edges
between X and I1 ∪ Io. Then, (G, k) is a YES instance of SVD if and only if (G′, k)

is a YES instance of SVD.

Proof Let X̄ be the truncated clique. Suppose that (G, k) is a YES instance and let
S be a solution to this instance. We claim that there is a solution S1 for the instance
(G, k), disjoint from X. If S itself is disjoint from X, then we are done. Suppose that
S contained some vertex v of X. We simply remove this vertex from S and add it
to the clique of the split partition of G \ S. Since the only vertices v is non-adjacent
to, are the vertices of I1 ∪ Io and these do not lie in the clique partition of G \ S

anyway (by Lemma 4), the resulting partition is also a split partition. Hence, we may
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assume that the solution S is disjoint from X. Now, we know that at most one vertex
of X can lie in the independent partition of G \S. Since this vertex does not have any
non-neighbor in the clique partition of G \ S, we may move this vertex to the clique
partition as well. Now, we claim that S is also a solution for the reduced instance
(G′, k). We have proved that there exists a split partition of G \ S such that all the
vertices of X lie in the clique. Also, since S is disjoint from X, after truncating X,
the clique partition of G \ S remains clique (we delete edges only to I1 ∪ Io, which
can not be in the clique side), while the independent set side is unaffected. Hence, S

is also a solution for (G′, k).
For the converse direction, suppose (G′, k) has a solution S′. Since the vertices

of I1 ∪ Io have high clique non-neighborhood in G′, they are either in S′, or in the
final independent partition (by Lemma 4). Analogous to the argument in the above
paragraph, we can argue that X̄ is disjoint from S′ and lies in the clique partition.
Now, observe that replacing X̄ with X results in a split partition of the graph G \ S′,
implying that (G, k) is a YES instance. This concludes the proof of correctness of
this reduction rule. �

The above lemma has an analogous counterpart in the case when X ⊆ I ∗, |X| >

k + 2 and X does not have any edges to C∗
1 ∪ (D \ Co). The proof is identical, except

we now consider independent sets where we considered cliques and we consider
neighbors where we considered non-neighbors. We simply state the lemma without
proof.

Lemma 7 Let X ⊆ I ∗ be such that |X| > k + 2 and X does not have any edges to
C∗

1 ∪ (D \ Co). Let G′ be the graph obtained by deleting all but k + 2 vertices of X

and adding all the edges between X and C1 ∪ Co. Then, (G, k) is a YES instance of
SVD if and only if (G′, k) is a YES instance of SVD.

Now,we are ready to give the reduction rules, which will help us bound the size of
C∗ and I ∗.

Reduction Rule 3.3 If |Cr
1 | > k + 2, then delete all edges between Cr

1 and I1 ∪ Io

and delete all but k + 2 vertices of Cr
1 .

Reduction Rule 3.4 If |Cr
2 | > k + 2, then delete all edges between Cr

2 and I1 ∪ Io

and delete all but k + 2 vertices of Cr
2 .

Since Cr
1 and Cr

2 are global to (D \ Io) ∪ I ∗
1 ), the correctness of these reduction

rules follows immediately from Lemma 6. Analogous to Reduction Rules 3.3 and
3.4, we get the following rules for the independent set side.

Reduction Rule 3.5 If |I r
1 | > k + 2, then add all edges between I r

1 and C1 ∪ Co and
delete all but k + 2 vertices of I r

1 .

Reduction Rule 3.6 If |I r
2 | > k + 2, then add all edges between I r

2 to C1 ∪ Co and
delete all but k + 2 vertices of I r

2 .
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The correctness of these reduction rules follows from Lemma 7. Now, towards
bounding the size of the sets, we first show that the size of at least one of the sets, C∗

1
and I ∗

1 is bounded by a linear function of k.

Lemma 8 When none of the reduction rules apply, |C∗
1 | ≤ 2k + 2 or |I ∗

1 | ≤ 2k + 2.

Proof As no vertex in C∗
1 has high independent set neighborhood, the number of

edges between the sets I ∗
1 and C∗

1 is at most |C∗
1 |(k + 1). Also, since no vertex in

I ∗
1 has high clique non-neighborhood, the number of edges between the sets I ∗

1 and
C∗

1 is at least |I ∗
1 |(|C∗

1 | − (k + 1)). This implies that (|C∗
1 | + |I ∗

1 |)(k + 1) ≥ |C∗
1 | ·

|I ∗
1 |. Substituting |C∗

1 | = 2k + c1 and |I ∗
1 | = 2k + c2, where c1, c2 > 2, we get the

following.

(2k + c1 + 2k + c2)(k + 1) ≥ (2k + c1)(2k + c2)

⇒ 4k2 + 4k + (c1 + c2)k + c1 + c2 ≥ 4k2 + 2k(c1 + c2) + c1c2

⇒ (c1 + c2 − c1c2) + (4k − (c1 + c2)k) ≥ 0

which can not be true, since for c1, c2 > 2, (c1 + c2) < c1c2 and 4k < (c1 + c2)k and
hence we get a contradiction. �

Lemma 9 When none of the reduction rules apply, the number of vertices in C∗
1 ∪ I ∗

1
is O(k2).

Proof Case 1: When |I∗
1| ≤ 2k + 2. We observe that the size of Cr

1 is already
bounded by Reduction Rule 3.3, so to bound the size of C∗

1 ∪ I ∗
1 , we only need

to bound the size of Y1. All the vertices in Y1 have at least one non-neighbor in
(D \ Io) ∪ I ∗

1 . Also, we know that (D \ Io) ∪ I ∗
1 has O(k) vertices and each such

vertex has at most O(k) non-neighbors in C∗. Hence, the number of vertices in Y1 is
O(k2). This gives a total bound of O(k2) on size of C∗

1 ∪ I ∗
1 .

Case 2: When |C∗
1| ≤ 2k + 2. We observe that the size of I r

1 is already bounded by
Reduction Rule 3.5, so to bound the size of C∗

1 ∪ I ∗
1 , we only need to bound the size

of X1. All the vertices in X1 have at least one neighbor in (D \ Co) ∪ C∗
1 . Also, we

know that (D \ Co) ∪ C∗
1 has O(k) vertices and each such vertex has at most O(k)

neighbors in I ∗. Hence, the number of vertices in X1 is O(k2). This gives a total
bound of O(k2) on size of C∗

1 ∪ I ∗
1 . �

We observe that the only unbounded sets at this point in C∗ and I ∗ are X2 and Y2

respectively. All the other sets are bounded by O(k2). In the next lemma, we bound
the sizes of C∗ and I ∗.

Lemma 10 When none of the reduction rules apply, the sets C∗ and I ∗ contain
O(k3) vertices.
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Proof As stated earlier, bounding the size of X2 and Y2 by O(k3) will give us the
desired result, as all the other sets in C∗ and I ∗ are already bounded by O(k2). Notice
that all the vertices in Y2 have a non-neighbor in (D \ Io) ∪ I ∗

1 , which has O(k2)

vertices. Also, any vertex in (D\Io)∪I ∗
1 has O(k) non-neighbors in C∗ and Y2 ⊆ C∗.

This gives a bound of O(k3) on size of Y2.
Similarly, all the vertices in X2 have a neighbor in (D \Co)∪C∗

1 , which has O(k2)

vertices. Also, any vertex in (D \ Co) ∪ C∗
1 has O(k) neighbors in I ∗ and X2 ⊆ I ∗.

This gives a bound of O(k3) on size of X2. �

Summing up the bounds we have obtained, leads to the following theorem.

Theorem 3 There is a vertex kernel for SVD with O(k3) vertices.

4 SPLIT EDGE DELETION

In this section, we present a subexponential algorithm for SED using the Color and
Conquer approach introduced by Alon, Lokshtanov and Saurabh [2]. We first de-
sign a randomized subexponential algorithm for this problem which succeeds with
high probability. We then describe a way of derandomizing this algorithm to obtain a
deterministic algorithm.

4.1 A Randomized Subexponential Algorithm for SED

This algorithm consists of three steps. In the first step, we reduce the instance (G, k)

to an equivalent instance (G′, k′) with O(k2) vertices. In the second step, we color
the vertices of the graph uniformly at random and we prove that with a sufficiently
high probability, all the edges of some k-sized solution (if one exists) are non-
monochromatic. Finally, we give an algorithm to check if a colored instance of SED
has a non-monochromatic split edge deletion set of size at most k.

Kernelization We first apply the kernelization algorithm (see Sect. 4.3) which, given
an instance (G, k) of SED, in polynomial time, returns an equivalent instance (G′, k′)
of SED such that the number of vertices in G′ is O(k2) and k′ ≤ k. In the rest of this
section, we will assume that the given instance is an instance of this kind.

Probability of a Good Coloring We now color the vertices of G independently and
uniformly at random with

√
8k colors and let Ac be the set of non-monochromatic

edges. Suppose that (G = (V ,E), k) is a YES instance and let S ⊆ E be a solution to
this instance. We now show that the probability of S being contained in Ac is at least
2−O(

√
k). We begin by estimating the probability of obtaining a proper coloring (mak-

ing all the edges non-monochromatic) when applying the above random experiment
on a graph with k edges.

Lemma 11 ([2]) If the vertices of a graph on q edges are colored independently and
uniformly at random with

√
8q colors then the probability that G is properly colored

is at least (2e)−
√

q/8.
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Now, since we colored each vertex of the graph G independently, the graph in-
duced on the set S, of size at most k, will be properly colored with probability at least
2−O(

√
k), which gives us the following lemma.

Lemma 12 Let (G = (V ,E), k) be a YES instance of SED which is colored by the
random process described above, and let S ⊂ E be a solution for this instance. The
probability that no edge in S is monochromatic is at least 2−O(

√
k).

Solving a Colored Instance. We now present an algorithm to test if there is a color-
ful (all edges non-monochromatic) split edge deletion set in a given colored instance
of SED. In the colored instance, every vertex is colored with one of

√
8k colors. We

start with the following simple observation.

Observation 1 Let G = (V1 ∪ V2 ∪ · · · ∪ Vt ,E) be a t-colored graph with color
classes V1, . . . , Vt . If there exists a colorful split edge deletion set S in G, then G[Vi]
is a split graph for every Vi .

We now proceed to the description of the algorithm. Suppose the given instance
had a colorful split edge deletion set S. Observation 1 implies that G[Vi] is a split
graph and it remains a split graph in G \ S. Hence, we use Lemma 2 to enumerate
the split partitions of G[Vi] for each i. Fixing a split partition for each G[Vi] results
in a combined split partition for the vertices in V . There are O(k2) split partitions
for each Vi and O(

√
k) such sets. Hence, there are kO(

√
k) combined split partitions.

Now, it simply remains to check if there is a combined split partition (C � I ) such
that the number of edges in the graph G[I ] is at most k and return YES if and only if
there is such a combined split partition. Hence, we have the following lemma.

Lemma 13 Given a colored instance (G, k) of SED of size O(k2), we can test if
there is a colorful SED set of size at most k in time 2O(

√
k log k).

Combining Lemmas 12 and 13, we get the following theorem.

Theorem 4 There is a randomized FPT algorithm for SED running in time
2O(

√
k log k) + nO(1) with a success probability of at least 2−O(

√
k).

4.2 Derandomization with Universal Coloring Families

For integers m, k and r , a family F of functions from [m] to [r] is called a universal
(m, k, r)-coloring family if, for any graph G on the set of vertices [m] with at most
k edges, there exists a function f ∈ F which gives a proper vertex coloring of G.
Suppose the kernel we obtain has size bounded by ck2, then an explicit construction
of a (ck2, k,

√
8k)-coloring family is known to exist.

Theorem 5 ([2]) There exists an explicit universal (ck2, k,
√

8k)-coloring family F

of size at most 2O(
√

k log k).
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Instead of the randomized coloring step of our algorithm, we can try each function
in the universal coloring family given by Theorem 5. Hence, we have the following
theorem.

Theorem 6 There is an algorithm which solves SED in time 2O(
√

k log k) + nO(1).

4.3 Improved Kernel for SED

In this subsection, we use a subset of the reduction rules for SED given in [14] to
show the existence of a kernel with a quadratic number of vertices. The following are
the reduction rules which we will apply on the given instance.

Reduction Rule 4.1 ([14]) Delete vertices from G which are not part of an induced
subgraph isomorphic to 2K2, C4 or C5.

From this point on, we refer to an induced subgraph isomorphic to 2K2, C4 or
C5, as an induced 2K2, C4 or C5 respectively. When Reduction Rule 4.1 no longer
applies, every vertex in G is part of some induced 2K2, C4 or C5.

Reduction Rule 4.2 ([14]) If two adjacent edges (u, v) and (u,w) occur together in
more than k induced C4s, then delete (u, v) and (u,w) from G and add two edges
(a, v) and (b,w), where a and b are two new vertices of degree 1.

Reduction Rule 4.3 ([14]) If an edge e occurs in more than k induced 2K2’s, then
delete e from G and reduce k by one.

We refer to [14] for the correctness of these reduction rules. We apply the above
reduction rules exhaustively, in the order in which they are presented, and obtain
a reduced instance (G′, k′). For the sake of notational convenience, we denote the
reduced instance by (G, k). In the rest of this discussion, we will assume that the
reduced instance is a YES instance and prove a bound on the size of the instance with
this assumption. Let S be a minimal solution with at most k edges and let (C � I ) be
a split partition of the graph G \ S. We call a vertex of G affected if some edge in S

is incident on it, and unaffected otherwise. Observe that there are at most 2k affected
vertices in G. We now make the following important observation.

Observation 2 All the affected vertices lie in the independent set I .

Proof Suppose there was an affected vertex in the clique partition C. Then, adding
back the edges in S which are incident on this affected vertex in the clique partition
also results in a split partition, which contradicts the minimality of S. �

Lemma 14 Every induced C4 in G intersects S in exactly one edge, or in exactly two
adjacent edges of C4 or in all the four edges.

Proof We prove the lemma by considering an induced C4, {v1, v2, v3, v4} and the set
of affected vertices of this C4. Since at least one edge of the C4 has to be deleted, at
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least 2 vertices are affected. If exactly 2 vertices are affected, then it must be the case
that exactly one edge of the C4 is present in S. If exactly 3 vertices, say v1, v2 and v3
are affected, then by Observation 2, these vertices lie in the independent partition and
hence the edges (v1, v2) and (v2, v3) are contained in S. Since v4 is unaffected, no
other edge of this C4 is in S. Finally, in the case when all four vertices are affected,
since they all must lie in the independent partition, S contains all 4 edges of this C4.
This completes the proof of the lemma. �

Lemma 15 Every induced C5 in G intersects S in exactly two adjacent edges of C5
or in exactly three adjacent edges of C5 or in all the five edges.

Proof We fix a C5, say {v1, v2, v3, v4, v5}, and prove this lemma in the same way
as the previous one. If only one edge, say (v1, v2) of the C5 is in the solution, then
the edges (v2, v3) and (v5, v1) form an induced 2K2, disjoint from S, which is not
possible. Hence, at least two edges of the C5 are in the solution, and at least three
vertices are affected. If exactly three vertices are affected, then exactly two adjacent
edges of the C5 are in S, because we have to delete two edges from the cycle affecting
only these three vertices, and this is the only possible way. Suppose exactly 4 vertices
are affected. Then, by Observation 2, the edges between these vertices must lie in S

and hence exactly 3 adjacent edges are in S. Finally, when all the vertices are affected
then all the edges of the C5 lie in S. �

We now give a bound on the number of vertices in the set I , using the following
lemmas.

Lemma 16 There are O(k2) vertices which are part of an induced 2K2 in G.

Proof Every edge in the graph is contained in at most k induced 2K2’s in G (other-
wise Reduction Rule 4.3 will be applicable). Since there is a solution of size at most
k, these edges can together be contained in at most O(k2) many 2K2’s and hence
the number of vertices of G involved in an induced 2K2 is bounded by O(k2). This
completes the proof of the lemma. �

Lemma 17 If v ∈ I is an unaffected vertex, then v is not part of an induced C4 or
C5 in G.

Proof Suppose that v is unaffected and v is part of a C4. Since at least two vertices
of the C4 are affected, at least one neighbor of v on the C4 is affected. Since this
neighbor also lies in I (see Observation 2), the edge between these two vertices is
contained in S, contradicting that v was unaffected.

Now, suppose that v is unaffected and v is part of a C5. By Lemma 15, we know
that at least two edges of the C5 lie in the solution, which means at least three vertices
are affected. Hence, some neighbor of v is affected, implying that v is affected as
well. This completes the proof of the lemma. �

Since we have bounded the number of both affected and unaffected vertices in I ,
we have the following lemma.
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Lemma 18 There are O(k2) vertices in the independent set I .

We now proceed to bound the number of vertices inside the clique C. To do so, we
introduce the notion of a sliced vertex. For every edge (p, q) ∈ S, and a vertex v ∈ C,
we say that the edge (p, q) slices v if v is adjacent to p but not to q or vice versa. We
say that a vertex v ∈ C is sliced if some edge in S slices it and unsliced otherwise.
Observe that the sets of sliced and unsliced vertices form a partition of C.

Lemma 19 If v ∈ C is not sliced by any edge in S, then v is not part of an induced
C4 or C5 in G.

Proof Suppose v was part of a C4, {v1, v2, v3, v4} where v = v1. Since v is in the
clique, it is unaffected (by Observation 2) and (v1, v2), (v4, v1) are not in S. Since at
least one edge from C4 has to be in the solution, the edge (v2, v3) or (v3, v4) must be
in S. But now, either of these two edges slices v, a contradiction. Suppose v was part
of a C5, {v1, v2, v3, v4, v5} where v = v1. By Lemma 15, at least 2 edges of the C5
are in S, implying that at least one of them will slice v, a contradiction. �

Since every unsliced vertex must be part of an induced 2K2, by Lemma 16 the
number of unsliced vertices in the set C is bounded by O(k2). To bound the number
of sliced vertices in C, we argue that each edge in S can slice O(k) vertices of C,
resulting in the following lemma.

Lemma 20 There are O(k2) sliced vertices in C.

Proof Let e = (p, q) be an edge in S. By Observation 2, p and q are in the indepen-
dent set I . Let X(e) be the set of vertices in C sliced by e, X(p) = X(e) ∩ N(p) and
X(q) = X(e)∩N(q). Then X(e) = X(p)�X(q). We will count the vertices of X(e)

as follows.
We first consider the following case.

Case 1: The sets X(p) and X(q) are both non-empty. We claim that in this case,
|X(p)|, |X(q)| ≤ k. Fix a vertex w ∈ X(q). Then, for every vertex v ∈ X(p), the
vertices {p,q,w,v} induce a C4 in G. Hence, if there are more than k vertices in
X(p), then there are more than k induced C4’s in G which pairwise have the edges
(p, q) and (q,w) in common. But this implies that Reduction Rule 4.2 applies, con-
tradicting the irreducibility of G. Hence, we conclude that X(p) must have at most k

vertices. Analogously, we can bound the size of the set X(q) by k.

Case 2: One of the two sets, say X(q) is empty and X(p) is non-empty, and suppose
that there is an edge (q, r) ∈ S such that (p, r) /∈ E.

Since r is affected, we know that r ∈ I . Let X1 = X(p) ∩ N(r) and X2 =
X(p) \ X1. Observe that, for any vertex v ∈ X1, the vertices {p,q, r, v} form an in-
duced C4 in G. Hence, if there were more than k vertices in X1, then there would be
more than k induced C4’s in G which pairwise have only the edges (p, q) and (q, r)

in common. But then Reduction Rule 4.2 applies, which contradicts the irreducibility
of the instance. We now move on to bounding the size of the set X2. Let u and v be
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two vertices in X2 (if there are no two vertices in X2, we already have the required
bound). Since u,v /∈ N(q) ∪ N(r) the edges (u, v) and (q, r) form an induced 2K2
in G. Hence, if the number of vertices in X2 exceeds 2

√
k + 1, then there would be

more than k induced 2K2’s in G which have the edge (q, r) in common. But in this
case, Reduction Rule 4.3 applies, a contradiction. Hence, the set X(e) contains at
most 2k vertices.

Now, we first try to associate every sliced vertex of C to some edge satisfying the
premise of Case 1 or 2. We have already argued that there are O(k2) such vertices.

Now we bound the remaining sliced vertices by showing that they cannot be part
of any induced C4 or C5 of G, and hence can only be part of 2K2s, and hence they
add up to O(k2) in number.

Consider a vertex v sliced by an edge (p, q) ∈ S, v ∈ X(p) and has not been
associated with an edge satisfying Case 1 or Case 2. Suppose that v was part of a
C4 {v1, v2, v3, v4} where v = v1. Suppose that the edge (v2, v3) is in S. Now, if the
vertex v4 is in C, then v1 and v4 are sliced by the edge (v2, v3), and hence we will
be in the case (Case 1) when X(p) and X(q) are non-empty where (p, q) = (v2, v3).
Similarly, if v4 is in I , then we will be in the case (Case 2) when even if X(p) or
X(q) is empty, there is an edge (q, r) = (v3, v4) in G, such that there is no edge
(p, r) = (v2, v4).

Similarly, we can show that v cannot be part of an induced C5. Hence, it must be
the case that v is part of an induced 2K2. Recall that we have already bounded the
number of such vertices by O(k2). �

We have thus bounded the number of vertices in C and I , and hence bounded the
number of vertices of the graph G, leading to the following theorem.

Theorem 7 There is a kernel for SED with O(k2) vertices.

5 Conclusion

In this paper we studied the parameterized complexity of deleting k edges/vertices to
get to the class of split graphs. We obtained faster parameterized algorithms as well as
smaller sized kernels for these problems. Cygan and Pilipczuk [5] have subsequently
improved one of the four results presented in this paper. That is, SVD can be solved
in time O∗(1.2738kkO(logk)). Finally, an interesting project could be to systemati-
cally identify other parameterized problems that admit subexponential parameterized
algorithms on general graphs.
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