
Algorithmica (2014) 70:76–91
DOI 10.1007/s00453-013-9822-z

Online Unweighted Knapsack Problem with Removal
Cost

Xin Han · Yasushi Kawase · Kazuhisa Makino

Received: 7 October 2012 / Accepted: 5 August 2013 / Published online: 27 August 2013
© Springer Science+Business Media New York 2013

Abstract In this paper, we study the online unweighted knapsack problem with re-
moval cost. The input is a sequence of items u1, u2, . . . , un, each of which has a size
and a value, where the value of each item is assumed to be equal to the size. Given the
ith item ui , we either put ui into the knapsack or reject it with no cost. When ui is put
into the knapsack, some items in the knapsack are removed with removal cost if the
sum of the size of ui and the total size in the current knapsack exceeds the capacity of
the knapsack. Here the removal cost means a cancellation charge or disposal fee. Our
goal is to maximize the profit, i.e., the sum of the values of items in the last knapsack
minus the total removal cost occurred.

In this paper, we consider two kinds of removal cost: unit and proportional cost.
For both models, we provide their competitive ratios. Namely, we construct optimal
online algorithms and prove that they are best possible.

Keywords Knapsack problem · Online algorithms · Competitive ratio

X. Han partially supported by NSFC(11101065) and “the Fundamental Research Funds for the
Central Universities”.

Y. Kawase partially supported by the Global COE “The Research and Training Center for New
Development in Mathematics.”

K. Makino partially supported by Grant-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology of Japan.

X. Han (B)
Software School, Dalian University of Technology, Dalian, China
e-mail: hanxin@dlut.edu.cn

Y. Kawase
University of Tokyo, Tokyo, Japan
e-mail: yasushi_kawase@mist.i.u-tokyo.ac.jp

K. Makino
Kyoto University, Kyoto, Japan
e-mail: makino@kurims.kyoto-u.ac.jp

mailto:hanxin@dlut.edu.cn
mailto:yasushi_kawase@mist.i.u-tokyo.ac.jp
mailto:makino@kurims.kyoto-u.ac.jp

Algorithmica (2014) 70:76–91 77

1 Introduction

The knapsack problem is one of the most classical problems in combinatorial opti-
mization and has a lot of applications in the real world [11]. The knapsack problem
is that: given a set of items with values and sizes, we are asked to maximize the total
value of selected items in the knapsack satisfying the capacity constraint.

In this paper, we study the online version of the unweighted knapsack problem
with removal cost. Here, “online” means (i) the information of the input (i.e., the
items) is given gradually, i.e., after a decision is made on the current item, the next
item is given; (ii) the decisions we have made are irrevocable, i.e., once a decision has
been made, it cannot be changed. Given the ith item ui , we either accept ui (i.e., put
ui into the knapsack) or reject it with no cost. When ui is put into the knapsack, some
items in the knapsack are removed with removal cost if the sum of the size of ui and
the total size in the current knapsack exceeds 1, i.e., the capacity of the knapsack.
Here the removal cost means a cancellation charge or disposal fee. Our goal is to
maximize the profit, i.e., the sum of the values of items in the last knapsack minus
the total removal cost occurred.

1.1 Related Works

The online knapsack problem (under no removal condition) was first studied on aver-
age case analysis by Marchetti-Spaccamela and Vercellis [13]. They proposed a linear
time approximation algorithm such that the expected difference between the optimal
profit and the one obtained by the algorithm is O(log3/2 n) under the condition that
the capacity of the knapsack grows proportionally to the number of items n. Lueker
[12] improved the expected difference to O(logn) under a fairly general condition
on the distribution.

Iwama and Taketomi [9] studied the online knapsack problem on worst case anal-

ysis. They obtained a 1+√
5

2 ≈ 1.618-competitive algorithm for the online knapsack
when (a) the removable condition (without removal cost) is allowed and (b) the value
of each item is equal to the size (unweighted), and showed that this is best possible
by providing a lower bound 1.618 for the case. We remark that the problem has un-
bounded competitive ratio, if at least one of the conditions (a) and (b) is not satisfied
[9, 10]. For other models such as minimum knapsack problem and knapsack problem
with limited cuts, refer to papers in [7, 8, 14].

The concept of removal costs was introduced in the buyback problem [1–6]. In
the problem, we observe a sequence of bids and decide whether to accept each bid
at the moment it arrives, subject to constraints on accepted bids such as single item
and matroid constraints. Decisions to reject bids are irrevocable, whereas decisions
to accept bids may be canceled at a cost which is a fixed fraction of the bid value.
Babaioff et al. [3] showed that the buyback problem with matroid constraint has
(1 + 2f + 2

√
f (1 + f))-competitive ratio, where f > 0 is a buyback factor. Ash-

winkumar [1] extended their results and show that the buyback problem with the

constraint of k matroid intersections has k(1+f)(1+
√

1 − 1
k(1+f)

)2-competitive ra-

tio. Babaioff et al. [3, 4] also studied the buyback problem with (weighted) knapsack
constraints. They show that if the largest item is of size at most γ , where 0 < γ < 1/2,
then the competitive ratio is (1 + 2f + 2

√
f (1 + f))/(1 − 2γ).

78 Algorithmica (2014) 70:76–91

1.2 Our Results

In this paper, we study the worst case analysis of the online unweighted knapsack
problem with removal cost. We consider two kinds of models of removal cost:the
proportional and the unit cost models. In the proportional cost model, the removal
cost of each item ui is proportional to its value (and hence size), i.e., it is f · s(ui),
where s(ui) denotes the size of ui and f > 0 is a fixed constant, called buyback
factor. Therefore, we can view this model as the buyback problem with knapsack
constraints. In the unit cost model, the removal cost of each item is a fixed constant
c > 0, where we assume that every item has value at least c, since in many appli-
cations, the removal cost (i.e., cancellation charge) is not higher than its value. We
remark that the problem has unbounded competitive ratio if no such assumption is
satisfied (see Sect. 3).

We show that the proportional and unit cost models have competitive ratios λ(f)

and μ(c) in (1) and (2), respectively, where λ(f) and μ(c) are given in Figs. 1 and
2. Namely, we construct λ(f)- and μ(c)-competitive algorithms for the models and
prove that they are best possible.

λ(f) =
{

2 (1/2 ≥ f > 0),

1+f +
√

f 2+2f +5
2 (f > 1/2),

(1)

μ(c) =

⎧
⎪⎪⎨
⎪⎪⎩

max{η(k), ξ(k + 1)} (1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k

k+1 , k = 1,2, . . .),

ξ(1) (1 − 1√
2

≤ c ≤ 1/2),

1/c (c ≥ 1/2),

(2)

where

η(k) = k(c + 1) + √
k2(1 − c)2 + 4k

2k(1 − kc)
and ξ(k) = 1

2
+ 1

2

√
1 + 4

kc
. (3)

The main ideas of our algorithms for both models are:

– We may reject items (with no cost) many times, but in at most one round, we
remove items which from the knapsack.

– Some items are removed from the knapsack, only when the total value in the re-
sulting knapsack gets high enough to guarantee the optimal competitive ratio.

The rest of the paper is organized as follows. In the next section, we consider the
proportional cost model, and in Sect. 3, we consider the unit cost model.

2 Proportional Cost Model

In this section, we consider the proportional cost model, where each item ui has
removal cost f ·s(ui) for some positive constant f . We first show that λ(f) is a lower
bound of the competitive ratio of the problem, and then propose a λ(f)-competitive
algorithm, where λ(f) is given in (1).

Algorithmica (2014) 70:76–91 79

Fig. 1 The competitive ratio
λ(f) for the proportional cost
model

Fig. 2 The competitive ratio
μ(c) for the unit cost model

2.1 Lower Bound

In this subsection, we show a lower bound of the competitive ratio λ(f) for the prob-
lem.

Theorem 1 There is no online algorithm with competitive ratio less than λ(f) for
the online unweighted knapsack problem with proportional removal cost.

Proof According to the value of f , we separately consider the following two cases.
Case 1: 1/2 ≥ f > 0. Let A denote an online algorithm chosen arbitrarily. For a
sufficiently small ε(> 0), our adversary (see Fig. 3) requests the sequence of items
whose sizes are

1

2
+ ε,

1

2
+ ε

2
, . . . ,

1

2
+ ε

�1/f � + 1
, (4)

80 Algorithmica (2014) 70:76–91

Fig. 3 The adversary for the case 1/2 ≥ f > 0

until A rejects some item in (4). If A rejects the item with size 1
2 + ε, then the adver-

sary stops the input sequence. On the other hand, if it rejects the item with size 1
2 + ε

k

for some k > 1, then the adversary requests an item with size 1
2 − ε

k
and stops the

input sequence.
We first note that algorithm A must take the first item, since otherwise the com-

petitive ratio of A becomes infinite. After the first round, A always keeps exactly one
item in the knapsack, since all the items in (4) have size larger than 1

2 (i.e., a half of
the knapsack capacity) and for any j < k we have (1

2 + ε
j
) + (1

2 − ε
k
) is larger than

1. This implies that A removes the old item from the knapsack to accept a new item.
If A rejects 1

2 + ε
k

for some k > 1, the competitive ratio is at least 1/(1
2 + ε

k
), which

approaches 2(= λ(f)) as ε → 0. Finally, if A rejects no item in (4), then its profit is

1

2
+ ε

�1/f � + 1
− f

�1/f �∑
k=1

(
1

2
+ ε

k

)
≤ 1

2
− f

�1/f �∑
i=1

1

2
≤ 0 (5)

while the optimal profit for the offline problem is 1
2 + ε, which completes the proof

for 1/2 ≥ f > 0.
Case 2: f > 1/2. Let A denote an online algorithm chosen arbitrarily, and let x =
3+f −

√
f 2+2f +5

2(1+f)
. For a sufficiently small ε(> 0), our adversary requests the following

sequence of items

x,1 − x + ε,1 − x, (6)

until A rejects some item in (6), and if A rejects the item then the adversary immedi-
ately stops the input sequence. We remark that x < 1/3 for f > 1/2, and the second
and third items do not fit in the knapsack together.

Note that A must accept the first item x, since otherwise the competitive ratio
becomes infinite. If A rejects the second item, then the competitive ratio is at least

1 − x + ε

x
≥ 1 − x

x
= λ(f). (7)

If A takes the second item 1 − x + ε (and removes the first item), the competitive
ratio is at least 1

1−x+ε−f ·x since the second and third items do not in the knapsack

together, which approaches to λ(f)(= 1
1−x−f ·x) as ε → 0, which completes the proof

for f > 1/2. �

Algorithmica (2014) 70:76–91 81

Algorithm 1 An online algorithm for proportional cost model
1: B0 = ∅
2: for all items ui , in order of arrival, do
3: if s(Bi−1) + s(ui) ≤ 1 then
4: Bi ← Bi−1 ∪ {ui}
5: if s(Bi) ≥ 1/λ(f) then STOP
6: else if ∃B ′

i−1 ⊆ Bi−1 s.t. 1
λ(f)

+f ·(s(Bi−1)−s(B ′
i−1)) < s(B ′

i−1)+s(ui) ≤
1

then Bi ← B ′
i−1 ∪ {ui} and STOP

7: else Bi ← Bi−1
8: end for

Here STOP denotes that the algorithm rejects the items after this round.

2.2 Upper Bound

In this subsection, we show Algorithm 1 is λ(f)-competitive for the problem. Note
that the total profit becomes small (even negative), if we remove many items from the
knapsack. Intuitively, our algorithm accepts the new item if the knapsack has room to
put it. If we can make the profit sufficiently high by accepting the item and removing
some items from the current knapsack, then our algorithm follows this, and after this
iteration, it rejects all the items. Otherwise, the algorithm simply rejects the item.

Let ui be the item given in the ith round. Define by Bi−1 the set of items in the
knapsack at the beginning of ith round, and by s(Bi−1) the total size in Bi−1.

Lemma 2 If s(Bi−1) + s(ui) > 1 and some B ′
i−1 ⊆ Bi−1 satisfies λ(f) · s(Bi−1) <

s(B ′
i−1) + s(ui) ≤ 1, then the sixth line of Algorithm 1 is executed in the i th round.

Proof Since s(Bi−1) + s(ui) > 1 and λ(f) · s(Bi−1) < s(B ′
i−1) + s(ui), we obtain

1

λ(f)
+ f · (s(Bi−1) − s

(
B ′

i−1

))

<
s(Bi−1) + s(ui)

λ(f)
+ f · (s(Bi−1) − s

(
B ′

i−1

))

<
1 + f λ(f) − f λ2(f)

λ2(f)
s
(
B ′

i−1

) + 1 + f λ(f) + λ(f)

λ2(f)
s(ui). (8)

As λ2(f) ≥ 1 + f λ(f) + λ(f) by the definition of λ(f), we have

1 + f λ(f) − f λ2(f)

λ2(f)
≤ 1 + f λ(f) − f λ2(f)

1 + f λ(f) + λ(f)
< 1 and

1 + f λ(f) + λ(f)

λ2(f)
≤ 1. �

Let OPT denote an optimal solution for the offline problem whose input sequence
is u1, . . . , ui .

82 Algorithmica (2014) 70:76–91

Lemma 3 If s(Bi) < 1/λ(f) then we have |OPT \ Bi | ≤ 1.

Proof Bi contains all the items smaller than 1/2 seen so far, since s(Bi) < 1/λ(f) ≤
1/2. Any item u ∈ OPT \ Bi has size greater than 1 − 1/λ(f) ≥ 1/2. Therefore,
|OPT \ Bi | ≤ 1 holds by s(OPT) ≤ 1. �

Theorem 4 The online Algorithm 1 is λ(f)-competitive.

Proof Suppose that the sixth line is executed in round k. Then it holds that 1
λ(f)

+f ·
(s(Bk−1) − s(B ′

k−1)) < s(B ′
k−1) + s(uk) = s(Bk). Since s(Bi) = s(Bk) holds for all

i ≥ k, we have

s(OPT)

s(Bi) − f · (s(Bk−1) − s(B ′
k−1))

≤ 1

s(Bk) − f · (s(Bk−1) − s(B ′
k−1))

< λ(f).

We next assume that the sixth line has never been executed. If s(Bi) ≥ 1/λ(f), we
have the competitive ratio s(OPT)/s(Bi) ≤ 1/s(Bi) ≤ λ(f). On the other hand, if
s(Bi) < 1/λ(f), |OPT \ Bi | = 0 or 1 holds by Lemma 3. If |OPT \ Bi | = 0, we
obtain the competitive ratio 1. Otherwise (i.e., OPT \ Bi = {ul} for some l), Lemma
2 implies that λ(f) · s(Bl−1) ≥ s(B ′

l−1) + s(ul) for B ′
l−1 = OPT ∩ Bl−1. Therefore

we obtain

s(OPT)

s(Bi)
≤ s(B ′

l−1) + s(ul) + s(Bi \ Bl−1)

s(Bl−1) + s(Bi \ Bl−1)

≤ max

{
s(B ′

l−1) + s(ul)

s(Bl−1)
,
s(Bi \ Bl−1)

s(Bi \ Bl−1)

}
≤ λ(f). �

Before concluding this section, we remark that the condition in the sixth line can
be checked efficiently.

Proposition 5 We can check the condition in the sixth line in O(|Bi−1| + 2λ2(f))

time.

Proof Let x = 1
1+f

(1
λ(f)

+f s(Bi−1)−s(ui)) and y = 1−s(ui). Our goal is to decide

whether there exists B ′
i−1 ⊆ Bi−1 such that x < s(B ′

i−1) ≤ y in O(|Bi−1| + 2λ2(f))

time. As s(Bi−1) < 1/λ(f), s(ui) ≤ 1, and λ2(f) ≥ (1+f)λ(f)+1 by the definition
of λ(f), we get

y − x = 1 − 1

λ(f)(1 + f)
− f

1 + f

(
s(ui) + s(Bi−1)

)

> 1 − 1

λ(f)(1 + f)
− f

1 + f

(
1 + 1

λ(f)

)

= λ(f) − 1 − f

λ(f)(1 + f)
≥ λ(f)

λ2(f) − 1
− 1

λ(f)
= 1

λ3(f) − λ(f)
≥ 1

λ3(f)
. (9)

Algorithmica (2014) 70:76–91 83

Fig. 4 An input sequence to
prove the competitive ratio is
unbounded if the input contains
items with size smaller than c

Let Bi−1 = {b1, b2, . . . , bm} satisfy s(b1) ≥ · · · ≥ s(bk) ≥ y − x > s(bk+1) ≥
· · · ≥ s(bm). Then we claim the existence of B ′

i−1 is equivalent to the existence of
A ⊆ {b1, b2, . . . , bk} such that x − ∑m

i=k+1 s(bi) < s(A) ≤ y. If such an A exists,
then B ′

i−1 = A ∪ {bk+1, . . . , bl} satisfies the conditions, where l = min{l ≥ k + 1 |
s(A) + ∑l

i=k+1 s(bi) > x}. If there exists B ′
i−1 such that x < s(B ′

i−1) ≤ y, then
A = B ′

i−1 \ {bk+1, . . . , bm} satisfies x − ∑m
i=k+1 s(bi) < s(A) ≤ y.

Therefore we need to check the condition x − ∑m
i=k+1 s(bi) < s(A) ≤ y for at

most 2k < 2λ2(f) subsets, since k ≤ s(Bi−1)/(y − x) < λ2(f) holds by s(Bi−1) <

1/λ(f) and y − x > 1/λ3(f). Thus we can check the condition in the sixth line in
O(|Bi−1| + 2λ2(f)). �

3 Unit Cost Model

In this section, we consider the unit cost model, where it costs us a fixed constant
c > 0 to remove each item from the knapsack. Recall that every item has size at least
c. In this section, we show that the online unweighted knapsack problem with unit
cost is μ(c)-competitive, where μ(c) is defined in (2). We note that μ(c) attains the
maximum 1 + √

2 when c = 1 − 1/
√

2.
We remark that the problem becomes unbounded competitive ratio if items are

allowed to have size arbitrarily smaller than c.

Lemma 6 For any positive number r , there is no online algorithm with competitive
ratio less than r for the knapsack problem with unit removal cost without the size
assumption.

Proof Let ε denote a positive number such that ε < 1/(�1/c� · r). For an online algo-
rithm A chosen arbitrarily, our adversary (see Fig. 4) keeps requesting the items with
size ε, until A accepts �1/c� items or rejects r · �1/c� items. If A rejects r · �1/c�
items (before accepting �1/c� items), the adversary stops the input sequence; other-
wise, it requests an item with size 1 and stops the input sequence. In the former case,
the competitive ratio is at least r�1/c�ε

�1/c�ε = r . In the latter case, the competitive ratio

becomes 1
�1/c�·ε > r if A rejects the last item (with size 1). Otherwise, A removes the

�1/c� items to take the last item. This implies that the profit is 1 − �1/c� · c ≤ 0. �

3.1 The Case c ≥ 1/2

We first consider the case where c ≥ 1/2. In this case, it is not difficult to see that the
problem is 1/c(= μ(c))-competitive.

84 Algorithmica (2014) 70:76–91

Theorem 7 If the unit removal cost c is at least 1/2, then there is no online algorithm
with competitive ratio less than 1/c for the online unweighted knapsack problem.

Proof For an online algorithm A chosen arbitrarily, our adversary first requests an
item with size c. If A does not accept it, the adversary stops the input sequence.
Otherwise, it next requests an item with size 1 and stops the input sequence. It is clear
that A must take the first item, since otherwise the competitive ratio becomes infinite.
If A rejects the second item, then we have the competitive ratio 1/c. Otherwise (i.e.,
A accepts the second item by removing the first item), the competitive ratio is 1/(1 −
c) ≥ 1/c, since c ≥ 1/2. �

Theorem 8 There is a 1/c-competitive algorithm for the online unweighted knapsack
problem with unit removal cost.

Proof Consider an online algorithm which takes the first item u1 and rejects the
remaining items. Since s(u1) ≥ c and the optimal value of the offline problem is at
most 1, the competitive ratio is at most 1/c. �

3.2 The Case c < 1/2

In this section we consider the case in which c < 1/2.

3.2.1 Lower Bound

For 0 < c < 1/2, we show that μ(c) is a lower bound of the competitive ratio for the
problem by starting with several propositions needed later.

Proposition 9 For any positive integer k, we have

1

2k + 4
< 1 −

√
k + 1

k + 2
and 1 −

√
k

k + 1
<

1

2k + 1
. (10)

Proof Note that

1 −
√

k + 1

k + 2
=

√
k + 2 − √

k + 1√
k + 2

= 1√
k + 2(

√
k + 2 + √

k + 1)

>
1√

k + 2(
√

k + 2 + √
k + 2)

= 1

2k + 4
,(11)

and

1 −
√

k

k + 1
=

√
k + 1 − √

k√
k + 1

= 1√
k + 1(

√
k + 1 + √

k)

= 1

k + 1 + √
k(k + 1)

<
1

2k + 1
. (12)

�

Algorithmica (2014) 70:76–91 85

Fig. 5 The adversary for Lemma 12

Definition 10 We define xk and yk as follows:

xk = k + 2 − kc − √
k2(1 − c)2 + 4k

2
and yk = kc + √

k2c2 + 4kc

2
. (13)

Proposition 11 η(k) and ξ(k) in (3) satisfy the following equalities.

η(k) = 1

1 − xk − kc
= 1 − xk

kxk

= k(c + 1) + √
k2(1 − c)2 + 4k

2k(1 − kc)
, (14)

ξ(k) = 1

yk − kc
= yk

kc
= 1

2
+ 1

2

√
1 + 4

kc
. (15)

We provide two kinds of adversaries.

Theorem 12 Assume that removal cost c satisfies 1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k

k+1 for a

positive integer k. Then there is no online algorithm with competitive ratio less than
η(k) for the online unweighted knapsack problem with unit removal cost.

Proof Let xk = k+2−kc−
√

k2(1−c)2+4k

2 . For an online algorithm A chosen arbitrarily,
our adversary (see Fig. 5) keeps requesting the items with size xk until A accepts k

items or rejects �1/xk� items. If A rejects �1/xk� items before accepting k items, the
adversary stops the input sequence (a). Otherwise (i.e., A accepts k items), the adver-
sary next requests an item with size 1 − xk + ε where ε is a sufficiently small positive
number; if A rejects it, the adversary stops the input sequence (b), and otherwise, the
adversary next requests an item with size 1 − xk and stops the input sequence (c).

Note that all the items have size at least c, since 1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k

k+1 implies
xk ≥ c and 1 − xk ≥ c.

In the case of (a), we have the competitive ratio at least 1−xk

(k−1)xk
>

1−xk

kxk
= η(k),

where the last equality follows from Proposition 11. In the case of (b), the competitive
ratio is at least 1−xk+ε

kxk
>

1−xk

kxk
= η(k) by Proposition 11. Finally, in the case of (c),

the competitive ratio is at least 1
1−xk+ε−kc

. Proposition 11 implies that this approaches

η(k)(= 1
1−xk−kc

) as (ε → 0). �

Theorem 13 Assume that removal cost c satisfies 1 −
√

k
k+1 ≤ c < 1

2k
for a positive

integer k. Then there is no online algorithm with competitive ratio less than ξ(k) for
the online unweighted knapsack problem with unit removal cost.

86 Algorithmica (2014) 70:76–91

Fig. 6 The adversary for Lemma 13

Proof Let A denote an online algorithm chosen arbitrarily. Then our adversary (see
Fig. 6) keeps requesting items with size c until A accepts k items or rejects �1/c�
items. If A rejects �1/c� items before accepting k items, the adversary stops the input
sequence (a). Otherwise (i.e., A accepts k items), the adversary requests an item with

size yk = kc+
√

k2c2+4kc
2 which is at least 1 − c > c, since 1 −

√
k

k+1 ≤ c < 1
2k

; if A

rejects it, the adversary stops the input sequence (b), and otherwise, the adversary
requests an item with size 1 − c and stops the input sequence (c).

In the case of (a), the competitive ratio is at least 1−c
(k−1)c

≥ 1
kc

≥ yk

kc
= ξ(k), where

the last equality follows from Proposition 11. In the case of (b), the competitive ratio
is yk

kc
= ξ(k) by Proposition 11. Finally, in the case of (c), the competitive ratio is at

least 1
yk−kc

= ξ(k), which again follows from Proposition 11. �

By Theorems 12 and 13, it holds that μ(c) is a lower bound of the competitive
ratio for 0 < c < 1/2.

3.2.2 Upper Bound

In this subsection, we show that μ(c) is also an upper bound for the competitive ratio
of the problem when 0 < c < 1/2. We start with several propositions needed later.

Proposition 14 For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k

k+1 .
Then we have

η(k) ≥ 2 ⇐⇒ c ≥ 2k − 1

2k(2k + 1)
, (16)

ξ(k + 1) ≥ 2 ⇐⇒ c ≤ 1

2(k + 1)
. (17)

Proof We can get the results by simple calculations. �

Proposition 15 For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k

k+1 .
Then we have

μ(c) = max
{
η(k), ξ(k + 1)

} ≥ 2. (18)

Proof If 2k−1
2k(2k+1)

≤ c ≤ 1 −
√

k
k+1 then by (16), the claim is correct. Otherwise (i.e.,

c < 2k−1
2k(2k+1)

< 1
2(k+1)

), we also have (18) by (17). �

Algorithmica (2014) 70:76–91 87

Proposition 16 For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k

k+1 .
Then we have

max
{

max
α∈{1,2,...,k}

η(α), ξ(k + 1)
}

= max
{
η(k), ξ(k + 1)

} = μ(c). (19)

Proof The second equality holds by the definition of μ(c). Thus we only need to
prove the first equality.

For α ≥ 2, it holds that

1 −
√

α + 1

α + 2
<

2α − 1

2α(2α + 1)
(20)

since 1 −
√

α+1
α+2 < 2α−1

2α(2α+1)
⇐⇒ 12α2(α − 2) + 2α(6α − 1) + (α − 2) > 0.

If k > α ≥ 2, then it holds

η(α) = α(c + 1) + √
α2(1 − c)2 + 4α

2α(1 − αc)
< 2 ≤ μ(c) (21)

by c ≤ 1 −
√

k
k+1 ≤ 1 −

√
α+1
α+2 < 2α−1

2α(2α+1)
and Proposition 14.

Moreover when α = 1, we have

η(1) = (c + 1) + √
(1 − c)2 + 4

2(1 − c)
≤ 2 ≤ μ(c) (22)

for 0 < c ≤ 1/6 since (c+1)+
√

(1−c)2+4
2(1−c)

≤ 2 ⇐⇒ (1 − 6c)(1 − c) ≥ 0. As 1 −√
3/4 < 1/6 < 1 − √

2/3, we remain to prove η(1) ≤ η(2) for 1/6 ≤ c < 1 − √
2/3.

By c < 1 − √
2/3 < 1/2,

c + 1 + √
(1 − c)2 + 4

2(1 − c)
≤ 2(c + 1) + √

4(1 − c)2 + 8

4(1 − 2c)

⇐= c + 1 + √
(1 − c)2 + 4

(1 − c)
≤ (c + 1) + √

(1 − 1/2)2 + 2

(1 − 2c)

⇐⇒ (6c − 1)(1 − c)
{
(4c − 5)2 + 63

} ≥ 0. �

Proposition 17 For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k

k+1 .
Then for any positive integer α ≤ k and real x ∈ (0,1 − αc), it holds that

min

{
1

1 − x − αc
,

1 − x

αx

}
≤ η(α) ≤ μ(c). (23)

Proof Since 1
1−x−αc

and 1−x
αx

are respectively monotone increasing and decreasing
in x, the first inequality holds by Proposition 11. The second inequality is obtained
by Proposition 16. �

88 Algorithmica (2014) 70:76–91

Algorithm 2 An online algorithm for unit cost model with c ≥ (1 − 1√
2
)

1: B0 = ∅
2: for all items ui , in order of arrival, do
3: if s(Bi−1) + s(ui) ≤ 1 then Bi ← Bi−1 ∪ {ui}
4: else if |Bi−1| = 1 and s(ui) ≥ c+

√
c2+4c
2 then Bi ← {ui} and STOP

5: else Bi ← Bi−1
6: end for

Here STOP denotes that the algorithm rejects the items after this round.

Proposition 18 For a positive integer k, let c satisfy 1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k

k+1 .
Then for any real y ∈ ((k + 1)c,1], we have

min

{
1

y − (k + 1)c
,

y

(k + 1)c

}
≤ ξ(k + 1) ≤ μ(c). (24)

Proof Since 1
y−(k+1)c

and y
(k+1)c

are respectively monotone decreasing and increas-
ing in y, the first inequality holds by Proposition 11. The second inequality follows
from the definition of μ(c). �

We are now ready to prove that μ(c) is an upper bound for the competitive ratio.
According to the size of c, we make use of Algorithms 2 and 3.

For 1 − 1√
2

≤ c ≤ 1
2 , we use Algorithm 2, where Bi−1 denotes the set of items

in the knapsack at the beginning of the ith round Let ui be the item given in the ith
round. In this case, the profit of any two items is sufficiently high. Intuitively, our
algorithm accepts the item if the knapsack has room to put it. If there is only one item
in the knapsack and the new item has sufficiently high value, the algorithm accepts
the new item and removes the item in the knapsack, and after this iteration, it rejects
all the items. Otherwise, it simply rejects the item.

Theorem 19 If 1 − 1√
2

≤ c ≤ 1
2 , the online Algorithm 2 is μ(c)-competitive for the

online unweighted knapsack problem with unit removal cost.

Proof Let OPT denote an optimal solution for the offline problem whose input se-
quence is u1, . . . , ui . If the algorithm stops at the fourth line, the competitive ratio is

at most 1/(
c+

√
c2+4c
2 − c) = c+

√
c2+4c

2c
= μ(c), since s(OPT) ≤ 1. Assume that the

algorithm has never stopped at the fourth line and |Bi | = 1. If s(Bi) ≥ 1/2, then the
competitive ratio is at most 1

1/2 = 2 ≤ μ(c). Otherwise, the item in Bi has size smaller
than 1/2, while the item uj with j < i and uj /∈ Bi has size at least 1/2. This im-
plies that |OPT| = 1 and the competitive ratio is smaller than μ(c), since s(Bi) ≥ c

and s(OPT) <
c+

√
c2+4c
2 . If the algorithm has never stopped at the fourth line and

|Bi | > 1, the competitive ratio is at most 1
2c

< μ(c), since c ≥ 1 − 1/
√

2 > 1/6 im-

plies c + √
c2 + 4c > 1. �

Algorithmica (2014) 70:76–91 89

Algorithm 3 An online algorithm for unit cost model with c < (1 − 1√
2
)

1: B0 = ∅
2: for all items ui , in order of arrival, do
3: if s(Bi−1) + s(ui) ≤ 1 then
4: Bi ← Bi−1 ∪ {ui}
5: else
6: Let Bi−1 = {b1, b2, . . . , bm} s.t. s(b1) ≥ s(b2) ≥ · · · ≥ s(bm).
7: B ′

i−1 ← ∅
8: for j = 1 to m do
9: if s(B ′

i−1) + s(bj) ≤ 1 − s(ui) then B ′
i−1 ← B ′

i−1 ∪ {bj }
10: end for
11: if s(B ′

i−1) + s(ui) − |Bi−1 \ B ′
i−1|c ≥ 1/μ(c) then

12: Bi ← B ′
i−1 ∪ {ui} and STOP

13: else
14: Bi ← Bi−1
15: end if
16: end if
17: end for
Here STOP denotes that the algorithm rejects the items after this round.

For 1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k

k+1 (k = 1,2, . . .), we use Algorithm 3. Intuitively,
our algorithm accepts the new item if the knapsack has room to put it. If we can make
the profit sufficiently high by accepting the item and removing some items from the
current knapsack by greedy manner, then our algorithm follows this, and after this
iteration, it rejects all the items. Otherwise, the algorithm simply rejects the item.

Theorem 20 If 1 −
√

k+1
k+2 ≤ c ≤ 1 −

√
k

k+1 , the online Algorithm 3 is μ(c)-

competitive for the online unweighted knapsack problem with unit removal cost.

Proof Let OPT denote an optimal solution for the offline problem whose input se-
quence is u1, . . . , ui . If the algorithm stops at the eleventh line in round l ≤ i, s(Bi) =
s(Bl) = s(B ′

l−1) + s(ul) and the profit of the algorithm is s(B ′
l−1) + s(ul) − |Bl−1 \

B ′
l−1|c. Therefore, the competitive ratio is at most 1

s(B ′
l−1)+s(ul)−|Bl−1\B ′

l−1|c ≤ μ(c),

since s(OPT) ≤ 1. Otherwise, the algorithm has never removed old items from the
knapsack. If s(Bi) ≥ 1/2, then the competitive ratio is at most 1

1/2 = 2 ≤ μ(c). On the
other hand, if s(Bi) < 1/2, then any item in Bi has size at most 1/2 while any item
in OPT \ Bi has size larger than 1/2. This implies |OPT \ Bi | ≤ 1 by s(OPT) ≤ 1.
If |OPT \ Bi | = 0, then we have OPT = Bi , which implies that the competitive ratio
is 1. Thus we assume that |OPT \ Bi | = 1. Note that |Bi | ≤ k + 1 holds, since any

b ∈ Bi satisfies s(b) ≥ c ≥ 1 −
√

k+1
k+2 ≥ 1

2k+4 , where the last inequality follows from
Proposition 9. Since the algorithm has never removed items, |Bl | ≤ k + 1 also holds

90 Algorithmica (2014) 70:76–91

for each l with l ≤ i. Let

{ul} = OPT \ Bi, α = ∣∣Bl−1 \ B ′
l−1

∣∣, x = 1 − (
s(ul) + s

(
B ′

l−1

))
. (25)

Since Bl−1 \ B ′
l−1 �= ∅, we have

α > 0 and x < 1 − αc. (26)

Since s(Bi) = s(Bl−1)+ s(Bi \Bl−1) and s(OPT) ≤ s(ul)+ s(Bl−1 ∩OPT)+ s(Bi \
Bl−1), the competitive ratio is at most

s(ul) + s(Bl−1 ∩ OPT) + s(Bi \ Bl−1)

s(Bl−1) + s(Bi \ Bl−1)
≤ max

{
s(ul) + s(Bl−1 ∩ OPT)

s(Bl−1)
,1

}
.

We claim that s(ul)+s(Bl−1∩OPT)

s(Bl−1)
≤ μ(c).

Let Bl = {b1, b2, . . . , bm} satisfy s(b1) ≥ s(b2) ≥ · · · ≥ s(bm). To see this claim,
we separately consider the following two cases:

Case 1. Consider the case in which there exists bj ∈ B ′
l−1 such that bh /∈ B ′

l−1 holds
for some h > j . Let us take bj as the largest such item, i.e., bj ∈ B ′

l−1 and bg /∈ B ′
l−1

for all g(< j).
In this case, we obtain the following inequalities:

s(ul) + s(Bl−1 ∩ OPT)

s(Bl−1)
≤ s(bh) + 1 − x

s(bh) + αx
≤ max

{
1,

1 − x

αx

}
. (27)

Here the numerator and denominator in the left hand side of (27) respectively satisfy
s(ul)+ s(Bl−1 ∩OPT) ≤ 1 < s(bh)+ s(ul)+ s(B ′

l−1) = s(bh)+1−x and s(Bl−1) =
s(B ′

l−1) + s(Bl−1 \ B ′
l−1) ≥ s(bh) + αx, since bh /∈ B ′

l−1 and s(b) > x holds for any

b ∈ Bl−1 \ B ′
l−1. Finally, we show 1−x

αx
≤ μ(c), which completes the claim.

Since the algorithm has not stopped at the eleventh line and 1 − x − αc > 0 by
(26), we have 1

1−x−αc
= 1

s(B ′
l−1)+s(ul)−αc

> μ(c). Note that α ≤ |Bl−1 \ {bh}| ≤ k,

since |Bl−1| ≤ k + 1. Therefore, we obtain 1−x
αx

≤ μ(c) by Proposition 17.
Case 2. We next consider the case in which bj ∈ B ′

l−1 implies bh ∈ B ′
l−1 for all

h(> j), i.e., B ′
l−1 consists of the |B ′

l−1| smallest items of Bl−1. Then we have s(b) >

1 − s(ul) for any b ∈ Bl−1 \ B ′
l−1. This implies Bl−1 ∩ OPT ⊆ B ′

l−1, and s(Bl−1 \
B ′

l−1) > αx holds by (25).
If α ≤ k, thus, the competitive ratio is at most

s(ul) + s(Bl−1 ∩ OPT)

s(Bl−1)
≤ s(ul) + s(B ′

l−1)

s(Bl−1 \ B ′
l−1)

≤ 1 − x

αx
≤ μ(c), (28)

where the last inequality follows from a similar argument to Case 1. On the other
hand, if α = k + 1, let y = s(ul) + s(B ′

l−1). Then we have

s(ul) + s(Bl−1 ∩ OPT)

s(Bl−1)
≤ y

(k + 1)c
, (29)

where the inequality follows from the fact that s(ul) + s(Bl−1 ∩ OPT) ≤ s(ul) +
s(B ′

l−1) = y and s(Bl−1) ≥ s(Bl−1 \ B ′
l−1) ≥ (k + 1)c, since Bl−1 ∩ OPT ⊆ B ′

l−1

Algorithmica (2014) 70:76–91 91

and any item has size at least c. Finally, since y > (k + 1)c and the algorithm has
not stopped at the eleventh line, it holds that 1

y−(k+1)c
= 1

s(B ′
l−1)+s(ul)−(k+1)c

> μ(c).

This together with Proposition 18 implies y
(k+1)c

≤ μ(c). �

References

1. Ashwinkumar, B.V.: Buyback problem - approximate matroid intersection with cancellation costs. In:
Automata, Language and Programming. Lecture Notes in Computer Science, vol. 6755, pp. 379–390.
Springer, Berlin (2011)

2. Ashwinkumar, B.V., Kleinberg, R.: Randomized online algorithms for the buyback problem. In: Inter-
net and Network Economics. Lecture Notes in Computer Science, vol. 5929, pp. 529–536. Springer,
Berlin (2009)

3. Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling banner ads: online algorithms with buyback. In:
Proceedings of the 4th Workshop on Ad Auctions (2008)

4. Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling ad campaigns: online algorithms with cancella-
tions. In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 61–70 (2009)

5. Biyalogorsky, E., Carmon, Z., Fruchter, G.E., Gerstner, E.: Research note: overselling with oppor-
tunistic cancellations. Mark. Sci. 18(4), 605–610 (1999)

6. Constantin, F., Feldman, J., Muthukrishnan, S., Pál, M.: An online mechanism for ad slot reservations
with cancellations. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1265–1274 (2009)

7. Han, X., Makino, K.: Online minimization knapsack problem. In: Approximation and Online Algo-
rithms. Lecture Notes in Computer Science, vol. 5893, pp. 182–193. Springer, Berlin (2010)

8. Han, X., Makino, K.: Online removable knapsack with limited cuts. Theor. Comput. Sci. 411, 3956–
3964 (2010)

9. Iwama, K., Taketomi, S.: Removable online knapsack problems. In: Automata, Languages and Pro-
gramming. Lecture Notes in Computer Science, vol. 2380, pp. 293–305. Springer, Berlin (2002)

10. Iwama, K., Zhang, G.: Optimal resource augmentations for online knapsack. In: Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques. Lecture Notes in Computer
Science, vol. 4627, pp. 180–188. Springer, Berlin (2007)

11. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
12. Lueker, G.S.: Average-case analysis of off-line and on-line knapsack problems. J. Algorithms 29(2),

277–305 (1998)
13. Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems. Math. Program. 68,

73–104 (1995)
14. Noga, J., Sarbua, V.: An online partially fractional knapsack problem. In: Proceedings of 8th Interna-

tional Symposium on Parallel Architectures, Algorithms and Networks, pp. 108–112 (2005)

	Online Unweighted Knapsack Problem with Removal Cost
	Abstract
	Introduction
	Related Works
	Our Results

	Proportional Cost Model
	Lower Bound
	Upper Bound

	Unit Cost Model
	The Case c>=1/2
	The Case c<1/2
	Lower Bound
	Upper Bound

	References

