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Abstract In a proportional contact representation of a planar graph, each vertex is
represented by a simple polygon with area proportional to a given weight, and edges
are represented by adjacencies between the corresponding pairs of polygons. In this
paper we first study proportional contact representations that use rectilinear polygons
without wasted areas (white space). In this setting, the best known algorithm for pro-
portional contact representation of a maximal planar graph uses 12-sided rectilinear
polygons and takes O(n logn) time. We describe a new algorithm that guarantees
10-sided rectilinear polygons and runs in O(n) time. We also describe a linear-time
algorithm for proportional contact representation of planar 3-trees with 8-sided rec-
tilinear polygons and show that this is optimal, as there exist planar 3-trees that re-
quire 8-sided polygons. We then show that a maximal outer-planar graph admits a
proportional contact representation using rectilinear polygons with 6 sides when the
outer-boundary is a rectangle and with 4 sides otherwise. Finally we study maximal
series-parallel graphs. Here we show that O(1)-sided rectilinear polygons are not
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possible unless we allow holes, but 6-sided polygons can be achieved with arbitrarily
small holes.

Keywords Graph drawing · Contact representation · Cartogram · Planar graph ·
Polygon

1 Introduction

Representing planar graphs as contact graphs has been a subject of study for many
decades. In such a representation, vertices correspond to geometrical objects, such as
line-segments or polygons, while edges correspond to two objects touching in some
pre-specified fashion. In this paper, we consider side-contact representations of pla-
nar graphs, where vertices are simple interior-disjoint polygons, and adjacencies are
non-trivial side-contacts between the corresponding polygons. In the weighted ver-
sion of the problem, the goal is to find a contact representation of G where the area
of the polygon for each vertex is proportional to the weight of the vertex, which is
given in advance. We call such a representation a proportional contact representation
of G. Such representations often lead to a more compelling visualization of a pla-
nar graph than usual node-link representations [6] and have practical applications in
cartography, VLSI Layout, and floor-planning. Rectilinear polygons with small num-
ber of sides (or corners) are often desirable due to aesthetic, practical, and cognitive
requirements. In architectural floor-planning and VLSI design, it is also desirable to
minimize the unused area or ‘hole’ in the representation. Therefore we address the
problem of constructing a proportional contact representation of a planar graph using
rectilinear polygons with few sides, so that the representation contains very little or
no unused area. In terms of notation, we say that a contact representation uses k-sided
polygons if all polygons used have at most k sides, and that it is hole-free if it contains
no unused area.

1.1 Related Work

Contact representations of planar graphs can be dated back to 1936 when Koebe
showed that any planar graph has a representation by touching circles [15]. While
touching circles or touching triangles [9] provide point-contact representations, side-
contact representations have also been considered. For example, Gansner et al. [7]
show that 6-sided polygons are sometimes necessary and always sufficient for side-
contact representation of any planar graph with convex polygons.

Applications in VLSI or architectural layout design encourage the use of rectilin-
ear polygons in a contact representation that fills a rectangle. In this setting it is known
that 8 sides are sometimes necessary and always sufficient [10, 18, 28]. A character-
ization of the graphs admitting a more restricted rectangle-representation is given by
Koźmiński and Kinnen [16] and in the dual setting by Ungar [26]. A similar charac-
terization of graphs having representations with 6-sided rectilinear polygons is given
by Sun and Sarrafzadeh [24]. Buchsbaum et al. [6] give an overview on the state of
the art concerning rectangle contact graphs.
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In the results summarized above, the vertex weights and polygonal areas are not
considered. The weighted version of the problem, that of proportional contact repre-
sentations has applications in cartograms, or value-by-area maps. Here, the goal is to
redraw an existing geographic map so that a given weight function (e.g., population)
is represented by the area of each country. Algorithms by van Kreveld and Speck-
mann [17] and Heilmann et al. [11] yield representations with rectangular polygons,
but the adjacencies may be disturbed. De Berg et al. describe an adjacency-preserving
algorithm for proportional contact representation with at most 40 sides for an inter-
nally triangulated plane graph G [3]. This was later improved to 34 sides [14].

The problem has also been studied in the dual settings, where there are weights
at the internal faces of a plane graph (instead of the vertices), and the area of faces
should be proportional. All planar cubic graphs admit such a drawing [25] as do all
planar partial 3-trees [5], but not all planar graphs [21]. Proportional rectilinear draw-
ings with 8-sided polygons can be found for special classes of planar graphs [20], but
this approach does not extend to general planar graphs. In a recent paper, Biedl and
Velázquez [4] describe the best general result, with an O(n logn) algorithm for pro-
portional rectilinear drawings of cubic triconnected graphs with 12-sided rectilinear
polygons. Translating this back to the primal setting, they show that every maximal
planar graph has a proportional contact representation with 12-sided rectilinear poly-
gons.

1.2 Our Contribution

Our main contribution is an improvement from the O(n logn) algorithm for 12-sided
rectilinear polygons [4], with a new algorithm based on Schnyder realizers that runs
in O(n) time and provides a proportional contact representation of a maximal planar
graph with 10-sided polygons.

We also describe a linear-time algorithm for rectilinear proportional contact rep-
resentations of planar 3-trees with 8-sided rectilinear polygons and show that this
is optimal, as there exist planar 3-trees that require 8-sided polygons. Furthermore,
both these constructions yield representation with rectangular outer-boundary. We
then show that a maximal outer-planar graph admits a proportional contact represen-
tation using rectilinear polygons with 6 sides when the outer-boundary is a rectangle
and with 4 sides otherwise. All these representations are hole-free. Finally, we study
maximal series-parallel graphs. We show that here hole-free representations are not
possible with polygons with O(1) sides. Then we offer two algorithms: One uses
6 sides but contains unused area (which can be made arbitrarily small), while the
other one has no holes, but uses polygons with O(�) sides, where � is the maxi-
mum degree.

The rest of the paper is organized as follows. We describe our linear-time algo-
rithm for proportional contact representations of maximal planar graphs in Sect. 2.
Section 3 contains a description of our algorithm for planar 3-trees. The results
for maximal outerplanar graphs and maximal series parallel graphs are covered in
Sects. 4 and 5, respectively. Finally Sect. 6 concludes the paper. In our results, all
contact representations use rectilinear polygons, and hence we omit the term “recti-
linear” occasionally. A preliminary version of this paper was published in [1].
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2 Representations for Maximal Planar Graphs

Here we describe the algorithm for proportional contact representations using
10-sided rectilinear polygons. In this and later constructions, we let P(v) denote
the polygon representing a vertex v.

We construct the proportional contact representation of a maximal planar graph
using Schnyder realizers [23], which we review briefly. A Schnyder realizer of a
maximal plane graph G is a partition of the interior edges of G into three sets T1, T2
and T3 of edges that can be directed so that for each interior vertex v,

(1) v has out-degree exactly one in each of T1, T2 and T3, and
(2) the counterclockwise order of the edges incident to v is: entering T1, leaving T2,

entering T3, leaving T1, entering T2, leaving T3.

These two conditions imply that Ti , i = 1,2,3 define spanning trees of all the
interior vertices and rooted at exactly one exterior vertex such that the edges are
directed towards the roots. Schnyder proved that any triangulated planar graph has
such a realizer and this can be computed in O(n) time [23].

Theorem 1 Let G = (V ,E) be a maximal planar graph and let w : V → R
+ be a

weight function. Then a hole-free proportional contact representation Γ with respect
to w can be constructed in linear time where each vertex of G is represented by a
10-sided rectilinear polygon in Γ , and there is no wasted area.

We prove Theorem 1 by giving a linear-time algorithm to construct such a repre-
sentation Γ of G, where the polygon P(v) for each vertex v of G has a fixed shape;
see Fig. 1. (Some sides of the polygon may be degenerate.) This polygon can be de-
composed into four rectangles called foot, leg, bridge and body of the polygon. The
region bound by the parallel horizontal lines containing the top and the bottom of the
bridge is the bridge-strip, and the foot-strip is defined analogously.

Fig. 1 A 10-sided rectilinear polygon with decomposition into foot, leg, bridge and body
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Fig. 2 Illustration of the algorithm for proportional contact representation of maximal planar graphs:
(a) A maximal planar graph G, (b)–(k) illustration of different steps of the algorithm, and (l) a proportional
contact representation of G. Only vertex 8 has 10 sides, since this only happens if a vertex has children
in all of T1, T2 and T3. The numbering of the vertices denotes the left-first-search traversal order of the
vertices

Let G = (V ,E) be a maximal plane graph with the three outer vertices v1, v2 and
v3 in counterclockwise order, and let w : V → R

+ be a weight function. We first find
a Schnyder realizer of G that partitions the interior edges into three trees T1, T2 and
T3 rooted at v1, v2 and v3, and with all their edges oriented towards the roots of the
trees. We add the external edges (v2, v1), (v3, v1) to T1 and (v3, v2) to T2, so that all
the edges of G are partitioned into the three trees. For each vertex v of G, let fi(v),
i = 1,2,3 be the out-neighbor of v in Ti .

Let R be a rectangle with area equal to
∑

v∈V w(v). We construct a proportional
contact representation Γ of G inside R. Figure 2 gives an example of the construc-
tion.
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The idea is to draw the polygons such that for each vertex v of G, the edges
(v, fi(v)) are realized as follows: the top of the bridge of the polygon P(v) of v is ad-
jacent to the bridge of P(f1(v)), the left of the foot of P(v) is adjacent to the body of
P(f2(v)) and the bottom of the body of P(v) is adjacent to the foot of P(f3(v)); see
also Fig. 1. If we ensure those adjacencies, then there cannot be any other adjacencies
since graph G is maximal planar. Hence we indeed produce a contact representation
of the input graph.

We use a parameter λ which will uniformly be the height of the foot and the bridge
and the width of the leg for all polygons P(v). There are two conditions on λ:

(1) |V |λ < H , i.e., horizontal strips of height λ cannot cover all of R.
(2) If the height of foot and bridge and the width of leg and body of P(v) all are

exactly equal to λ, then the total area of P(v) should be less than the prescribed
area w(v).

Since both conditions yield upper bounds we can choose a small enough λ that com-
plies with them (e.g., λ = minv∈V w(v)/(2H + W) will do.)

The algorithm traverses the plane rooted tree T1 in a left-first-search and
while traversing the tree it constructs the representation from left to right. In
this modified depth-first-search we associate two timestamps with each vertex v:
the discovery-time d(v) and the completion-time c(v). In the case of a leaf
vertex of T1 we artificially separate d(v) and c(v) to get the strict inequal-
ity d(v) < c(v). The sequence of timstamps in the example of Fig. 2 is thus
d(2), c(2), d(6), d(3), c(3), d(5), d(4), . . . , c(7), c(8), d(9), c(9). The algorithm
makes use of the following inequalities:

Claim Let v be an interior vertex. Then:

1. d(w) < d(v) < c(v) < c(w) for a vertex w if and only if w is an ancestor of v

in T1.
2. c(f2(u)) < d(v), i.e., any edge in T2 goes from right to left with respect to the

order within tree T1.
3. c(v) < d(f3(v)), i.e., any edge in T3 goes from left to right with respect to the

order within tree T1.

Proof The first claim holds because we perform a depth-first search in T1. The second
and third claims follow from the property of Schnyder realizers and can be proved
using techniques similar to those in [8]. We briefly sketch the proof of (2) here. Con-
sider the directed path P1 from v to v1 in T1 and the directed path P2 from v to v2

in T2 (which begins with edge (v, f2(v))). These two paths together with the edge
(v1, v2) form a cycle C. Any vertex inside C is to the left of v in tree T1. Due to the
property of Schnyder realizers, vertex f1(f2(v)) is inside C or an ancestor of v in T1;
either way f2(v) is left of v with respect to T1. �

The construction of the cartogram is done with a sweep from left to right in the
rectangle R. With each time event d(v) and c(v) for v ∈ V we associate a construc-
tion step that moves the sweep line to the right.
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Critical for the construction of a polygon P(v) are three time events.

– At time c(f2(v)) the foot of P(v) is initialized by fixing its left side and defining
the foot strip.

– At time d(v) the foot is closed, the leg is introduced and the bridge is initialized
by fixing its left side and defining the bridge strip.

– At time c(v) the area used for foot, leg and bridge is computed and the body using
the rest of w(v) is constructed.

At any time t , we have a number of foot strips, not yet completed into feet, that are
adjacent to each other, hence forming a pile of foot strips at the bottom of rectangle R.
Likewise, there is a pile of bridge strips near the top of the rectangle. We maintain
the following invariant for these piles:

I1 The pile of foot strips at time t contains all vertices u with c(f2(u)) < t < d(u)

(or u = v2) and is sorted top-to-bottom by d(u).
I2 The pile of bridge strips at time t contains all vertices u with d(u) < t < c(u) and

is sorted bottom-to-top by c(u).

To initialize the sweep we first definine the polygon P(v1) as a strip of height
w(v1)/W at the top edge of R. We consider this strip to be the bridge strip of v1.
We also initialize a foot strip for v2 at the bottom of R. It is easy to verify that the
invariants are satisfied.

Action at Time t = d(v):
Known properties: By Claim (2) we have c(f2(v)) < d(v), so by Invariant (I1)

vertex v has a foot strip and it is at the top of the foot-strip pile. By Invariant (I2) and
Claim (1) vertex f1(v) has a bridge-strip, and it is the lowest bridge-strip.

Construction: Insert the leg of v between the lower edge of the foot strip of v and
the lower edge of the bridge strip of f1(v). Remove the foot strip of v and add a new
bridge strip for v below the bridge strip of f1(v). Advance the sweep to the right side
of the leg of v.

Verification of Invariant: (I1) holds because it held before and we removed the
top foot-strip, which was for the one vertex that was discovered. Invariant (I2) holds
because we added a bridge-strip for v below that of f1(v) and c(v) < c(f1(v)).

Example: Figure 2(i) shows a typical action of this type. At time d(8) the leg is
inserted between the existing foot strip and the new bridge strip of 8. Figure 2(c)
and (e) show the status after d(6) and d(5). In Fig. 2(f) and (j) the discovery and
completion for vertices 4 and 7 are combined in the illustration.

Action at Time c(v):
Known properties: By Invariant (I2) v has a bridge strip and it is the lowest in the

pile of bridge strips. We also claim that vertex f3(v) has a foot strip. Observe that
both v and f2(f3(v)) are left of f3(v) in T1 by Claim (2) and (3). Since (v, f3(v))

comes after (f2(f3(v), f3(v))) in the clockwise order around f3(v), we have that v

cannot be left of f2(f3(v)). In other words c(f2(f3(v))) < c(v), so f3(v) has a foot
strip by Invariant (I1). Also the foot strip of f3(v) is the topmost on the foot strip pile:
Any other vertex w with c(v) < d(w) < d(f3(v)) (and only those could be higher on
the foot strip pile by Invariant (I1)) must be between v and f3(v) in T1. But then
f2(w) cannot be completed yet, else edge (f2(w),w) would cross edge (v, f3(v)).
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Construction: Complete the bridge of v by filling the bridge strip up to the current
position of the sweep line. Let a(v) be the area used for foot, leg and bridge of v. Let
h(v) be the distance between the top edge of the bridge strip of v and the top edge of
the foot strip of f3(v). Insert the body of v as a rectangle of height h(v) and width
w(v)−a(v)

h(v)
. Advance the sweep to the right side of the body of v. Assign the foot strips

to the children of v in T2. The strips are piled on top of the foot strip of f3(v) such
that the counterclockwise order at v corresponds to the bottom to top order of the
strips.

Verification of Invariant: Invariant (I2) holds because it held before and we re-
moved the bottom bridge-strip, which was for the one vertex v that was completed.
Invariant (I1) holds because we added a bridge-strip for all children of v in T2. To
show that the order of bridge-strips is correct, observe that the discovery times of
children of v in T2 is increasing in clockwise order. For any two consecutive children
c1, c2 in T2 are connected by an edge since G is maximal planar, and the edge is ei-
ther directed c1 ← c2 and in T1 or it is directed c1 → c2 and in T3 by the property of
Schnyder realizers. Therefore either c1 = f1(c2) or c2 = f3(c1); either way we know
that d(c1) < d(c2) by Claim (2) and (3).

Example: Figure 2(b) shows the situation after c(2). The polygon P(v2) is com-
pleted and foot strips for the children of v2 in T2 have been assigned. Figure 2(d), (f),
(g), (j), (k), and (l) show the status after c(3), c(4), c(5), c(6), c(7), c(8), and c(9)

respectively.

Recall that the choice of the λ value implies |V |λ < H . Since at any time any ver-
tex has at most one strip reserved for it, it follows that the lowest bridge remains above
the highest foot. So there is always vertical space for legs and bodies. To see that there
is horizontal space note that at time c(v) the free space to the right of the body of v be-
tween all the bridge strips and foot strips has area at least

∑
u:c(v)<d(u) w(u). Together

with the invariants for the action steps, this implies that the algorithm runs correctly
and that polygons of different vertices only intersect along boundaries. Since the area
of R equals w(V ) the layout covers all of R so that there is no white-space.

Note that if v is a leaf in T1, then d(v) and c(v) immediately follow each other. In
this case the right edge of the leg and the left edge of the body coincide so that we
can merge the two and the shape of P(v) simplifies to body plus foot and only has
6 corners. Another case where P(v) has lower complexity is when f2(v) and v are
siblings in T1. In this case d(v) follows immediately after c(f2(v)) and the leg of v is
introduced right after the initialization of the foot. Hence P(v) consists of leg, bridge
and body and has at most 8 corners.

A Schnyder realizer of a triangulation can be computed in linear time. Since the
layout algorithm only performs a constant number of operations per edge of the
graph, the overall running time of the algorithm is linear.

So we have now established that 10 sides are sufficient for proportional contact
representation with rectilinear polygons. Yeap and Sarrafzadeh [28] gave an example
of a maximal planar graph, which is also a planar 3-tree, for which at least 8-sided
polygons are necessary. In very recent work [2] (which appeared after the first appear-
ance of the present paper) we prove that 8-sided polygons are also sufficient. How-
ever, in contrast to the 10-gon construction given above, the proof of this result is not
constructive, and the representation can be found only via numerical approximation.
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That is, while the algorithm for representation with 10-sided polygons described here
can be implemented in linear time and guarantees no cartographic error, realizing
all regions with 8-sided polygons and no cartographic error is computationally very
expensive (the best approaches are exponential in the number of vertices [12, 27]).

3 Representations of Planar 3-trees

Here we describe proportional contact representations of planar 3-trees with fewer
sides (8) in each polygon. A 3-tree is either a 3-cycle or a graph G with a vertex v of
degree three in G such that G − v is a 3-tree and the neighbors of v are adjacent. If
G is planar, then it is called a planar 3-tree. A plane 3-tree is a planar 3-tree along
with a fixed planar embedding of it. It is easy to see that starting with a 3-cycle, any
planar 3-tree can be formed by recursively inserting a vertex inside a face and adding
an edge between the newly added vertex and each of the three vertices on the face
[5, 19].

Using this simple construction, we can create in linear time a representative tree
for G [19], which is a rooted ternary tree TG spanning all the internal vertices of G.
The root of TG is the first vertex we have to insert into the face of the three outer
vertices. Adding a new vertex v in G will introduce three new faces belonging to v.
The first vertex w we add in each of these faces will be a child of v in TG. Note
that for a planar 3-tree, a representative tree is an equivalent structure as the 4-block
tree defined by Kant [13]. For any vertex v of TG, we denote by Uv , the set of the
descendants of v in TG including v. The predecessors of v are the neighbors of v in
G that are not in Uv . Clearly each vertex of TG has exactly three predecessors and up
to three children. For any vertex set V ′, use w(V ′) to denote the sum of weights of
vertices in V ′. Now we have:

Lemma 1 Let G = (V ,E) be a plane 3-tree with outer-face {a, b, c} in counter-
clockwise order, and let w : V → R

+ be a weight function. Let R be any rectangle
of area w(V − {a, b, c}). Then G − {a, b, c} has a hole-free proportional contact
representations with 8-sided rectilinear polygons inside R. Furthermore, in this rep-
resentation a vertex v touches the top/left side of R if and only if v is adjacent to a/b
in G, and it touches the bottom or right side of R if and only it is adjacent to c in G.
This representation can be obtained in linear time.

Proof We proceed by induction on |V |. If G has 3 vertices, then it consists of only
{a, b, c} and the claim is vacuously true since G−{a, b, c} is empty. Now let |V | ≥ 4.
Let v be the unique vertex that is adjacent to {a, b, c} and let uab,ubc and uca be
its children in the representative tree TG (some of them may be empty), where the
subscript denotes the neighbors that the child shares with v. Cut a rectangle Rca

from the right of R of area w(Uuca ). Cut a rectangle Rbc from the bottom left of
R of area w(Uubc

). Cut a rectangle Rab from the top left of R of area w(Uuab
);

see also Fig. 3(a). Since Uuab
,Uubc

,Uubc
partitions the vertices in V − {v, a, b, c},

this can be done so that rectangles are disjoint. Assign the rest of R to be P(v); by
construction it has at most 8 sides. Note that if some of Uuab

,Uubc
,Uuca are empty,
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Fig. 3 Illustration for the proof
of Lemma 1

then the corresponding rectangles are empty and hence P(v) may have fewer than 8
sides.

The graph Gab inside the triangle {a, b, v} is a plane 3-tree with outer-face
{a, b, v} and inner vertices Uuab

. Since Rab has area w(Uuab
), by induction we can

find a contact representation of Gab −{a, b, v} that fits inside Rab . Moreover, a vertex
is at the top/left side only if it is adjacent to a/b and at the bottom or right side only
if it is adjacent to v. Since Rab is at the top left corner of R, placing the drawing of
Gab − {a, b, v} inside Rab creates the correct adjacencies with v and satisfies the re-
quired conditions for the contact representation of G. Similarly, we have by induction
a contact representations for the graph induced by Uuca that we can place inside Rca .
For ubc , we also use induction, but v takes on the role of c while {b, c} take on the role
of {a, b}, and we rotate the obtained contact representation clockwise by 90◦. Pasting
these three representations of the three smaller graphs into the rectangles reserved for
them then gives the desired contact representation of G.

The inductive argument implies a recursive algorithm to find the drawing. To see
that it can be implemented in linear time, we pre-compute w(Uv) for any vertex
v ∈ TG by traversing TG bottom-up and adding weights. Since the polygon repre-
senting each vertex v of G can be computed in constant time, the time complexity for
constructing the representation of G is linear. �

After applying the lemma to G with an arbitrary rectangle R of appropriate size,
we obtain a representation of the whole graph by adding rectangles of correct area for
a and b to the top/left of R and a 6-sided polygon for c on the right and below; see
Fig. 3(b). Figure 4(b)–(g) illustrates our construction for the planar 3-tree in Fig. 4(a).

The upper bound of 8 sides per polygon is also matched by the corresponding
lower bound with a planar 3-tree for which at least 8-sided polygons are necessary in
a contact representation with rectilinear polygons [28]. We thus have the following
result.

Theorem 2 Polygons with 8 sides are always sufficient and sometimes necessary
for hole-free proportional contact representations of planar 3-trees with rectilinear
polygons.

4 Representations for Maximal Outer-planar Graphs

Here we describe proportional contact representations of maximal outer-planar
graphs with even fewer sides (6 and 4) in each polygon. An outer-planar graph is



Algorithmica (2013) 67:3–22 13

Fig. 4 Illustration of the algorithm for proportional contact representation of planar 3-trees. The number-
ing of the vertices represents the insertion order of the vertices

a graph that has an outer-planar embedding, i.e., a planar embedding with every ver-
tex in the outer face. An outer-planar graph to which no edges can be added without
violating outer-planarity is a maximal outer-planar graph. It is easy to see that each
internal face in an outer-planar embedding of a maximal outer-planar graph is a tri-
angle, and for n ≥ 3 the outer-face is a simple cycle containing all vertices. We will
give a linear-time algorithm to construct a proportional contact representation of a
maximal outer-planar graph with rectangles. Before that, we need the following def-
initions.

Let Γ be a contact representation using rectangles for vertices (but with the outside
not necessarily a rectangle). Let B be the bounding box of Γ . We say that a vertex
v occupies the top of a representation Γ if there exists a horizontal line � such that
the rectangle representing v is exactly the intersection of B with the upper half-space
of �. In other words, the rectangle of v contains all of the top end of the bounding
box of Γ . Similarly we define that a vertex v occupies the right of Γ .

Lemma 2 Let G be a maximal outer-planar graph, and let (s, t) be an edge on the
outer-face, with s before t in clockwise order. Then in linear time we can compute
a hole-free proportional contact representation Γ with rectangles for G such that s

occupies the top of Γ and t occupies the right of Γ − s.

Proof We prove the existence of Γ by induction on the number of vertices of G.
In the base case, G is a single edge (s, t). To construct Γ , we use an arbitrary rect-
angle P(s) of area w(s) for s and a rectangle P(t) for t with area w(t) and width
smaller than P(s). We place P(t) so that its top right corner coincides with the bot-
tom right corner of P(s). It is easy to verify that all conditions hold for the resulting
representation Γ .

For the induction step we assume that G has at least 3 vertices. Let x be the
(unique) third vertex on the inner face that is adjacent to (s, t). Then graph G can be
split into two graphs at vertex x and edge (s, t): G[s, x] consists of the graph induced



14 Algorithmica (2013) 67:3–22

Fig. 5 Combining the drawings of two subgraphs

by all vertices between s and x in counter-clockwise order around the outer-face, and
G[x, t] consists of the graph induced by the vertices between t and x.

By induction G[s, x] has hole-free proportional contact representation with rect-
angles, where s occupies the top and x occupies the right after removing s. Let Γs be
what remains of this representation after removing s. Likewise, G[x, t] has hole-free
proportional contact representation with rectangles, where x occupies the top and t

occupies the right after removing x. Let Γt be what remains of this representation
after removing x and t . We now explain how to merge Γs and Γt and add s and t

such that the resulting drawing satisfies all requirements; see also Fig. 5.
Scale the width of Γt until the bounding box of Γt is less wide than the rectangle

of x in Γs . To maintain a proportional contact representation, scale the height of Γt

by the inverse of the scale-factor for the width. Now Γt can be attached at the bottom
right end of the representation of x in Γs . Add a rectangle for t on the right that spans
the whole height (and extends below it at the bottom), and make its width such that
its area is as prescribed for t . Add a rectangle for s such that it spans the whole width
(and extends past it to the left), and make its height such that its area is as prescribed
for s. This gives the desired representation without holes.

The above induction proof naturally gives rise to a recursive algorithm to find Γ .
We now show that this algorithm can be implemented in linear time. In order to do
this, we make sure that all coordinates in the representation are scaled at most once.
Let T be the dual graph of G minus the vertex for the outer-face; it is easy to see
that T is a tree with maximum degree three. Let the root of T be the vertex that
corresponds to the inner face {s, x, t}; then the subtrees of T correspond to the dual
trees of the subgraphs. Rather than re-scaling Γt at each recursive step, we only re-
scale the bounding box of Γt and store at the node of T that represents G[t, x] the
scale-factors for the width and height that must be applied to all nodes in Γt . At
the end of the algorithm a linear-time top-down traversal finds the scaling factor for
each vertex v of T by multiplying all the scaling factors stored along the path from
vx to v. Then with another linear-time top-down traversal of T we can compute the
coordinates of all the points in Γ , which concludes the construction. �

Figure 6(b) illustrates a proportional contact representation of the maximal out-
erplanar graph in Fig. 6(a) with rectangles, computed by the algorithm above. Since
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Fig. 6 (a) A maximal
outerplanar graph G,
(b) a proportional contact
representation of G with
rectangles

a rectangle is a rectilinear polygon with the fewest sides possible, the representation
obtained by this algorithm is also optimal. However, the outer boundary of the repre-
sentation obtained by our construction has size Θ(n). It was already known that the
outer-face cannot be a rectangle if the vertices are rectangles [22], but we improve
this to a stronger result:

Lemma 3 There exists a maximal outer-planar graph for which any contact repre-
sentation with rectangles requires Ω(n) sides on the outer-face.

Proof Consider any maximal outer-planar graph G such that �n/2	 vertices have
degree two (any maximal outer-planar graph whose inner dual is a full binary tree
suffices). Suppose Γ is a proportional contact representation of G with rectangles.
Since rectangles are convex, no two of them can share two sides. Therefore any vertex
v of degree 2 shares at most two of its sides with other vertices, and so at least two
of its sides with the outer boundary of Γ . Furthermore, these two sides must be
consecutive on P(v); otherwise v would be a cut vertex in G. The common endpoint
of these two sides is then a corner of the outer boundary of Γ , so the outer-face has
at least �n/2	 sides. �

Lemma 3 implies that there exist outer-planar graphs for which any contact repre-
sentation with an outer-boundary of constant size requires at least one of the polygons
to have at least six sides. With the following lemma we show that this lower bound
of six sides can also be matched with any given weights.

Lemma 4 Let G = (V ,E) be a maximal outer-planar graph and let w : V → R
+

be a weight function. Then G has a hole-free proportional contact-representation Γ

with 6-sided rectilinear polygons such that the outer-boundary of Γ is a rectangle. It
can be computed in linear time.

Proof It is quite straightforward to prove this by analyzing the structure of an outer-
planar graph, but it also follows from two earlier results in this paper. We will sketch
the second approach.

First, if G is maximal outer-planar, then we can add one vertex v0 to it that is
adjacent to all others. Then create a Schnyder realizer such that v0 is the root of
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tree T1. Then all of v0’s incident edges are in T1, which means that all other vertices
are leaves in tree T1. Apply our construction from Sect. 2. From the discussion at the
end of Sect. 2, vertices that are leaves in T1 are drawn with 6-gons in this construction.
Omitting the added vertex v0 (which is a rectangle that spans the top) yields the
desired representation.

As a second proof, observe that G′ = G ∪ v0 is also a 3-tree, and moreover, any
vertex v has at most two children in the representative tree TG′ of G′. Apply the
construction of Sect. 3, but choose the rectangles for the non-empty children of v in
such a way that P(v) has at most 6 sides; one can verify that this is always possible
regardless of which child of v is missing. �

Summing up all the results in this section, we have the following theorem.

Theorem 3 For hole-free proportional contact representations of a maximal outer-
planar graph, rectangles are always sufficient and necessary, and six-sided polygons
are sometimes necessary (and always sufficient) when the outer-boundary has a con-
stant number of sides.

5 Representations for Maximal Series-Parallel Graphs

In the previous sections we studied planar 3-trees (which are the same as maximal pla-
nar graphs of treewidth 3) and maximal outerplanar graphs (which are a strict subset
of maximal planar graphs of treewidth 2). What can be said about the maximal planar
graphs of treewidth 2? These are the same as the so-called maximal series-parallel
graphs (defined formally below.) Since for both maximal outer-planar graphs and pla-
nar 3-trees we can obtain hole-free proportional contact representations with constant
polygon-complexity, one would expect that this also holds for maximal series-parallel
graphs. Surprisingly, this is not the case.

We first define these graphs. A series-parallel graph is a graph G that has two
terminals s and t , and either G is an edge (s, t), or it has been obtained with one of
the following two operations: (1) (Parallel combination) G consists of two or more
series-parallel graphs that all have the terminals s and t . (2) (Combination in series)
G consists of two series-parallel graphs, one with terminals s and some other ver-
tex x, and the other with terminals x and t . As usual, a maximal series-parallel graph
is a series-parallel graph to which we cannot add any more edges and maintain that
the resulting graph has no multi-edge and is still a series-parallel graph.

Now let K+
2,n be the graph that consists of two adjacent vertices {s, t}, which are

adjacent to all of n vertices x1, . . . , xn. In other words, this is K2,n with an added edge
between the two vertices of the size-2 set. Clearly K+

2.n is a maximal series-parallel
graphs.

Lemma 5 In any hole-free contact representation of K+
2,n, there exists a vertex whose

polygon has at least 2n sides.

Proof Let Γ be a contact representation of K+
2,n. Observe that P(xi) can be on the

outerface boundary of Γ for at most two xi ’s, otherwise we could create an outer-
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planar drawing of K2,3, an impossibility. Let Γ ′ be Γ after removing any P(xi) that
is on the outer-face of Γ .

There are at least n − 2 xi ’s left. For each of them, P(xi) is a rectilinear polygon
with at least four corners, and P(xi) is surrounded by P(s) and P(t). Therefore for
every corner of P(xi) there is a corner in P(s) or P(t). (Note that this holds even
if some P(xi) and P(xj ) meet at a corner: In this case there must be two corners of
P(s) and/or P(t) here as well to avoid a non-zero-length contact between P(xi) and
P(xj ).)

This gives at least 4n − 8 corners for s and t . If not both s and t are on the outer-
face of Γ ′, then no xi can have been on the outer-face of Γ , and so there are 4n

corners for s and t . If both s and t are on the outer-face of Γ ′, then the outer-face
boundary gives 8 more corners that have not been counted yet: 4 since any rectilinear
polygon has at least 4 corners, and 4 where the boundaries of P(s) and P(t) meet
at the outerface boundary of Γ ′. Either way, P(s) and P(t) together have at least 4n

corners and the claim holds. �

So we cannot hope for no holes and constant complexity of polygons for series-
parallel graphs. We now show that if either one of those restrictions are dropped, then
proportional contact representations are possible.

5.1 Representations with Arbitrarily Small Holes

We first show that if we allow holes, even of arbitrarily small area, then we can rep-
resent series-parallel graphs using 6-gons. Recall that w(V ′) means the total weight
in vertex set V ′. For any graph G, use w(G) to denote w(V (G)).

Lemma 6 Let G be a maximal series-parallel graph with terminals s, t and let w :
V → R

+ be a weight-function. Let ε > 0 be arbitrarily small. Let R be any rectangle
of area w(V − {s, t}) + ε. Then G − {s, t} has a proportional contact representation
inside R such that a vertex v touches the top/right side of R if and only if v is adjacent
to s/t in G. Furthermore, this representation can be computed in linear time in the
number of vertices in G.

Proof We prove this by induction on the number of vertices. In the base case, G con-
sists of edge (s, t) only, and the claim is vacuously true since G − {s, t} is empty.
So now assume that G has at least 3 vertices. Since G is a maximal series-parallel
graph, edge (s, t) must exist. Therefore G must be obtained in a parallel combination
of subgraphs G0,G1, . . . ,Gk , all with terminals s and t . (We assume, without loss
of generality, that the naming is such that G0 is the edge (s, t).) We make k as large
as possible, i.e., each subgraph Gi for i > 0 is obtained in a combination in series of
subgraphs Gs

i and Gt
i , where Gs

i has terminals s and xi and Gt
i has terminals xi and t .

The idea is to assign rectangles to each of these subgraphs Gα
i (for i = 1, . . . , k and

α ∈ {s, t}) and place the drawings inside R appropriately. Let V α
i = V (Gα

i )−{xi, α}.
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Fig. 7 The construction for a series-parallel graph. k = 3 in this example. Small numbers indicate in
which step this rectangle was added

We proceed as follows:

1. First, remove a (very slim) rectangle that spans the left side of R and has area
ε′ := ε/(5k + 2).1

2. From the rectangle that remains, remove a very slim rectangle of area ε′ that spans
the bottom.

3. From the rectangle that remains, remove an L-shaped 6-sided polygon P(xk) that
spans the bottom and the left side. Choose the side-lengths such that P(xk) has
area w(xk).

4. From the rectangle that remains, remove a rectangle that spans the left side.
Choose its width such that its area is w(V s

k )+2ε′. Then split it horizontally so that
the rectangle below has area ε′ while the rectangle Rs

k above has area w(V s
k ) + ε′.

5. From the rectangle that remains, remove a very slim rectangle of area ε′ that spans
the left side.

6. From the rectangle that remains, remove a rectangle Rt
k that spans the bottom.

Choose its width such that its area is w(V t
k ) + ε′.

7. Repeat steps 2–6 for k − 1, k − 2, k − 3, . . . ,1.
8. By choice of ε′ and the areas for all rectangles and L-shapes, all that remains of

R after removing rectangle Rt
1 is a slim rectangle (adjacent to the top of Rt

1) of
area ε′.
Figure 7 illustrates the construction. Note that for each rectangle Rα

i , two sides
are adjacent to empty space, one side is adjacent to xi , and the other side is adjacent
to the boundary of R where terminal α will be located. Furthermore, Rα

i has weight
w(V α

i ) + ε′. Hence by induction Gα
i has a proportional contact representation inside

rectangle Rα
i . Moreover, neighbours of the terminals of Gα

i are at the top and right.

1Any distribution of ε area among the empty rectangular regions is feasible, as long as they are all non-
zero; we just give equal area ε′ to all these empty regions.
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If we flip this contact representation horizontally (or in the case of α = t , rotate Rα
i

before applying induction, then rotate the resulting contact representation), then plac-
ing these contact representations inside the rectangles gives the desired proportional
contact representation for G − {s, t}.

As usual the inductive argument can be turned into a recursive algorithm. To see
that the computation takes linear time, first observe that steps 2–6 are repeated k times
where k is in the order of the degree of s and t outside any Gα

i for i = 1, . . . , k and
α ∈ {s, t}. Thus if we count the total number of times these steps are run, this number
will be O(

∑
v∈V deg(v)) = O(n), where n is the number of vertices in G. �

We have thus shown that 6 sides are sufficient for series-parallel graphs, as long as
(arbitrarily small) holes are allowed. To see that 6 sides are necessary, consider K+

2,4.
No matter what embedding we choose, there will always be a vertex that is enclosed
by a triangle in K+

2,4. Since three rectangles cannot enclose a non-zero area, this

shows that K+
2,4 requires 6 sides in any contact representation, even if holes are al-

lowed. We hence have the following theorem:

Theorem 4 6 sides are always sufficient and sometimes necessary for proportional
contact representations of maximal series-parallel graphs with arbitrarily small
holes.

5.2 Hole-free Representations with Many Corners

We now show how with a different invariant for placing vertices, we can create pro-
portional contact representations of series-parallel graphs that have no holes (but
many corners for polygons.)

Lemma 7 Let G be a maximal series-parallel graph with terminals s, t , and let
w : V → R

+ be a weight-function. Let R be any rectangle of area w(V ). Then G

has a hole-free proportional contact representations inside R such that s occupies
the entire left side of R, t occupies the entire right side of R, and no other vertices
are on the outer-face of R.

Proof We prove this by induction on the number of vertices. In the base case, G con-
sists of edge (s, t) only, and we can easily create such a representation by splitting R
vertically so that the area to the left is w(s) and the area to the right is w(t).

So assume that G has at least three vertices. Define x1, . . . , xk and graphs
G1, . . . ,Gk and Gs

i , Gt
i as in the proof of Lemma 6. We proceed as follows:

– Fix 0 < ε < min{w(s),w(t)}.
– For each i > 0, let the weight of s in Gi be 1

k
(w(s) − ε), i.e., split the weight of s

among the subgraphs, and reserve a small amount of weight to be added later.
– For each i > 0, let the weight of t in Gi be 1

k
(w(t) − ε).

– Place k rectangles R1, . . . , Rk inside R such that Ri has area w(Gi) (with the
above adjustments for s and t). No two of these rectangles touch each other or
touch the boundary of R, but each of them spans almost the entire width of R, and
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Fig. 8 The hole-free construction for a series-parallel graph. k = 3 in this example

we choose their height so that the area is correct. This is possible since w(G1) +
· · · + w(Gk) = w(G) − 2ε.

– For each i > 0, let the weight of xi in Gs
i and Gt

i be 1
2w(xi) each.

– Split each rectangle Ri vertically such that area to the left is w(Gs
i ) and the area

to the right is w(Gt
i) (with the above adjustment for xi ).

– By induction each Gs
i and Gt

i has a proportional contact representation that fits
inside the rectangle reserved for these graphs. Furthermore, the two polygons of xi

in these representations abut the dividing line of Ri .
– Find a vertical line such that the area of R − ⋃

Ri to the left of it is ε.
– Add this area to the left of the dividing line to s, and all the remaining area of

R − ⋃
Ri to t .

Figure 8 illustrates the construction. One easily verifies that the areas of polygons
are correct. To see that adjacencies are correct, note that only s, xi and ti are on the
outside of Ri . Since G is maximal series-parallel, edges (s, t), (s, xi) and (xi, t) must
exist, so filling the holes with s and t does not add unwanted adjacencies.

Similarly as in previous sections, the inductive argument can be turned into a re-
cursive algorithm, and it can be implemented in linear time if we pre-compute the
weights w(G1), . . . ,w(Gk) by splitting the graph into its smallest components first,
and then computing the weights while combining components. Once these weights
are computed, the time in each recursion is then proportional to the number of parallel
components with terminals {s, t}, which is O(m) = O(n) total. �

We note here the complexity of the polygon of vertex v is O(deg(v)): this clearly
holds in the base case, and is easily proved by induction since s and t receive O(k)

additional corners. The example of K+
2,n shows that a complexity of Ω(�) is required,

where � denotes the maximum degree, so this is asymptotically optimal.
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Theorem 5 O(�) sides are always sufficient and sometimes necessary for hole-free
proportional contact representation of maximal series-parallel graphs.

6 Conclusion

We gave an algorithm for a proportional contact representation of a maximal planar
graph with 10-sided rectilinear polygons, which improves on the previously known
upper bound of 12.

We also described algorithms for special classes of maximal planar graphs that
create representations with fewer sides. We achieve 8-sided rectilinear polygons for
planar 3-trees, 4-sided polygons for maximal outer-planar graphs (or 6-sided poly-
gons if the outerface is a rectangle), and 6-sided polygons for maximal series-parallel
graphs if small holes are allowed. All these results achieve the smallest number of
sides that is possible within this class of graphs.

All algorithms in this paper can be implemented in linear time, and require nothing
more complicated than Schnyder realizers and other elementary planar graph manip-
ulations. In contrast, the very recent improvement in the number of sides to 8 [2], the
proof is non-constructive and requires numerical approximations to find the contact
representation. Finding a constructive proof (and preferably linear-time algorithm)
to construct 8-sided proportional contact representations of maximal planar graphs
remains open.
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