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Abstract The basic goal in combinatorial group testing is to identify a set of up
to d defective items within a large population of size n � d using a pooling strat-
egy. Namely, the items can be grouped together in pools, and a single measurement
would reveal whether there are one or more defectives in the pool. The threshold
model is a generalization of this idea where a measurement returns positive if the
number of defectives in the pool reaches a fixed threshold u > 0, negative if this
number is no more than a fixed lower threshold � < u, and may behave arbitrarily
otherwise. We study non-adaptive threshold group testing (in a possibly noisy set-
ting) and show that, for this problem, O(dg+2(logd) log(n/d)) measurements (where
g := u − � − 1 and u is any fixed constant) suffice to identify the defectives, and also
present almost matching lower bounds. This significantly improves the previously
known (non-constructive) upper bound O(du+1 log(n/d)). Moreover, we obtain a
framework for explicit construction of measurement schemes using lossless con-
densers. The number of measurements resulting from this scheme is ideally bounded
by O(dg+3(logd) logn). Using state-of-the-art constructions of lossless condensers,
however, we obtain explicit testing schemes with O(dg+3(logd)quasipoly(logn))

and O(dg+3+βpoly(logn)) measurements, for arbitrary constant β > 0.
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1 Introduction

Combinatorial group testing is a classical problem that deals with identification of
sparse Boolean vectors using disjunctive queries. Suppose that among a large set of n

items it is suspected that, for some sparsity parameter d � n, up to d items might be
“defective”. In technical terms, defective items are known as positives and the rest are
called negatives. In a pooling strategy, the items may be arbitrarily grouped in pools,
and a single “measurement” reveals whether there is one or more positives within the
chosen pool. The basic goal in group testing to design the pools in such a way that the
set of positives can be identified from a number of measurements that is substantially
less than n.

Since its introduction in 1940’s [16], group testing and its variations have been
extensively studied and have found surprisingly many applications in seemingly un-
related areas. In particular, we mention applications in molecular biology and DNA
library screening (cf. [3, 24, 31, 33, 38, 44, 45] and the references therein), multi-
access communication [43], data compression [28], pattern matching [12], streaming
algorithms [13], software testing [2], compressed sensing [14], and secure key distri-
bution [6], among others. We refer the reader to [17, 18] for an extensive review of
the major results in this area.

Formally, in classical group testing one aims to learn an unknown Boolean vector
(x1, . . . , xn) ∈ {0,1}n which is known to be d-sparse (that is, contains at most d non-
zero entries) using a set of m measurements, where each measurement is defined by
a subset of the coordinates I ⊆ [n] and outputs the logical “or”

∨
i∈I xi . The goal

is then to design the measurements in such a way that all d sparse vectors become
uniquely identifiable using as few number of measurements as possible.

A natural generalization of classical group testing (that we call threshold testing),
introduced by Damaschke [15], considers the case where the measurement outcomes
are determined by a threshold predicate instead of the logical or. Namely, this model
is characterized by two integer parameters �,u such that 0 ≥ � < u (that are con-
sidered fixed constants), and each measurement outputs positive if the number of
positives within the corresponding pool is at least u. On the other hand, if the num-
ber of positives is less than or equal to1 �, the test returns negative, and otherwise the
outcome can be arbitrary (that is, either 0 or 1 in any arbitrary way). In this view, clas-
sical group testing corresponds to the special case where � = 0 and u = 1. In addition
to being of theoretical interest, the threshold model is interesting for applications, in
particular in biology, where the measurements have reduced or unpredictable sensi-
tivity or may depend on various factors that must be simultaneously present in the
sample to result in a positive outcome.

The difference g := u − � − 1 is known as the gap parameter. As shown by Dam-
aschke [15], in threshold group testing identification of the set of positives is only pos-
sible when the number of positives is at least u. Moreover, regardless of the number

1The proceedings version of this paper [11] and also the author’s Ph.D. thesis [10] use a slightly different
notation where the test returns negative if the number of positives in the group is strictly less than �.
Accordingly in those versions the gap parameter is defined to be u − � rather than u − � − 1. A revised
notation is used in this version to make the exposition consistent with the original paper of Damaschke
[15].
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of measurements, in general the set of positives can be only approximately identified
within up to g false positives and g false negatives (thus, unique identification can
only be guaranteed when � = u − 1). Additionally, Damaschke constructed a scheme
for identification of the positives in the threshold model. For the gap-free case where
g = 0, the number of measurements in this scheme is O(d logn), which is nearly op-
timal (within constant factors). However, when g > 0, the number of measurements
becomes O(dnb + du), for an arbitrary constant b > 0, if up to g + (u − 1)/b mis-
classifications are allowed.

A drawback of the scheme presented by Damaschke is that the measurements are
adaptive; i.e., the group chosen by each measurement can depend on the outcomes
of the previous ones. For numerous applications (in particular, in molecular biology),
adaptive measurements are infeasible and must be avoided. In a non-adaptive setting,
all measurements must be specified before their outcomes are revealed. This makes it
convenient to think of the measurements in a matrix form. Specifically, a non-adaptive
measurement matrix is an m × n Boolean matrix whose ith row is the characteristic
vector of the set of items participating in the ith pool, and the goal would be to design
a suitable measurement matrix.

More recently, non-adaptive threshold testing has been considered by Chen and
Fu [5]. They observe that a generalization of the standard notion of disjunct ma-
trices, the latter being extensively used in the literature of classical group testing,
is suitable for the threshold model. Throughout this work, we refer to this general-
ized notion as strongly disjunct matrices and to the standard notion as classical dis-
junct matrices. Using strongly disjunct matrices, they show that O(edu+1 log(n/d))

non-adaptive measurements suffices to identify the set of positives (within g false
positives/negatives) even if up to e erroneous measurements are allowed in the
model. This number of measurements almost matches (up to constant factors) the
known lower bounds on the number of rows of strongly disjunct matrices. How-
ever, the dependence on the sparsity parameter is du+1, which might be prohibitive
for an interesting range of parameters, when the thresholds are not too small (e.g.,
� + 1 = u = 10) and the sparsity parameter is rather large (e.g., d = n1/10).

In this work, we consider the non-adaptive threshold model in a possibly noisy
setting, where a number of measurement outcomes (specified by an error parame-
ter e ≥ 0) may be incorrect. Our first observation is that, a new variation of classi-
cal disjunct matrices (that is in general strictly weaker than strongly disjunct matri-
ces) suffices for the purpose of threshold group testing. Using a randomness-efficient
probabilistic construction (that requires poly(d, logn) bits of randomness), we con-
struct generalized disjunct matrices with O(dg+2(logd) log(n/d)) rows. Thus, we
bring the exponent of d in the asymptotic number of measurements from u + 1 (that
is optimal for strongly disjunct matrices) down to g + 2, which is independent of the
actual choice of the thresholds and only depends on the gap between them. We also
show that this tradeoff is essentially optimal for our notion of disjunct matrices. In
the gap-free case, we furthermore show that this tradeoff is in fact the best to hope for
(up to a logd term) for any threshold testing design, and thus our notion of disjunct
matrices is indeed optimal (Corollary 13). For the positive-gap case, we show that
the dependence dg+2, up to poly-logarithmic factors, is necessary for any threshold
testing design, and thus our notion obtains the correct exponent (Corollary 28).
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We proceed to define a new auxiliary object, namely the notion of regular matri-
ces, that turns out to be the key combinatorial object in our explicit constructions.
Intuitively, given a gap g ≥ 0, a suitable regular matrix M1 can be used to take any
measurement matrix M2 designed for the threshold model with lower threshold � = 0
and higher threshold u = g + 1 and “lift” it up to matrix that works for any arbitrary
lower threshold �′ > 0 and the same gap g. Therefore, for instance, in order to ad-
dress the gap-free model, it would suffice to have a non-adaptive scheme for the clas-
sical group testing model with � + 1 = u = 1. This transformation is accomplished
using a simple product that increases the height of the original matrix M2 by a mul-
tiplicative factor equal to the height of the regular matrix M1, while preserving the
“low-threshold” distinguishing properties of the original matrix M2.

Next, we introduce a framework for construction of regular matrices using strong
lossless condensers that are fundamental objects in derandomization theory, and more
generally, theoretical computer science. We show that, by using an optimal condenser,
it is possible to construct regular matrices with only O(d(logd) logn) rows. This al-
most matches the upper bound achieved by a probabilistic construction that we also
present in this work. To this date, no explicit construction of such optimal lossless
condensers is known (though probabilistic constructions are easy to obtain). How-
ever, using state of the art in explicit condensers [4, 27], we will obtain two ex-
plicit constructions of regular matrices with incomparable parameters. Namely, one
with O(d(logd)quasipoly(logn)) rows and another with O(d1+βpoly(logn)), where
β > 0 is any arbitrary constant and the exponent of the term poly(logn) depends
on the choice of β . By combining regular matrices with strongly disjunct ones (de-
signed for the lowered thresholds �′ = 0 and u′ = g+1), we obtain our threshold test-
ing schemes. The bounds obtained by our final schemes are summarized in Table 1.
When the lower threshold � is not too small, our explicit constructions (rows M8 and
M9 of Table 1) significantly improve what was previously known to be achievable
even using non-constructive proofs.

The rest of the paper is organized as follows. In Sect. 1.1 we introduce prelimi-
nary notions and fix some notation. In Sect. 2 we formalize the notion of threshold
testing designs. Moreover, we review the notion of strongly disjunct matrices and
introduces our weaker notion of threshold disjunct matrices (for the gap-free case
g = 0), in addition to the notion of regular matrices and its properties. We will also
prove lower bounds on the number of rows of such matrices. In Sect. 3 we obtain
matching probabilistic upper bounds on the number of rows using the probabilistic
method. Furthermore, we develop our construction of regular matrices from lossless
condensers, and instantiate the parameters in Sect. 3.1. This in particular leads to our
explicit threshold testing schemes. In Sect. 4 we extend all our results to the case with
nonzero gap. In Sect. 5, we obtain explicit constructions of strongly disjunct matrices
from error-correcting codes, by extending the classical technique initiated by Kautz
and Singleton. Finally, in Sect. 6 we discuss the future directions.

1.1 Preliminaries

For a matrix M , we denote by M[i, j ] the entry of M at the ith row and the j th
column. Similarly, we denote the ith entry of a vector v by v(i). The support a vector
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Table 1 Summary of the parameters achieved by various constructions of threshold disjunct matrices.
The noise parameter p ∈ [0,1) is arbitrary, and thresholds �,u = � + g + 1 are fixed constants. “Exp”
and “Rnd” respectively indicate explicit and randomized constructions. “KS” refers to the construction of
strongly disjunct matrices based on Kautz-Singleton superimposed codes [29], as described later in Sect. 5
(the bounds in rows M1–M5 are obtained by strongly disjunct matrices)

Number of rows Tolerable errors Remarks

M1 O
(
du+1 log(n/d)

(1−p)2

)
Ω

(
pd

log(n/d)

(1−p)2

)
Rnd: Random strongly disjunct matrices.

M2 O
((

d
1−p

)u+1 logn
)

Ω
(
pd

logn
1−p

)
Exp: KS using codes on the GV bound.

M3 O
(( d logn

1−p

)u+1)
Ω

(
pd

logn
1−p

)
Exp: KS using Reed-Solomon codes.

M4 O
((

d
1−p

)2u+1 logn
)

Ω
(
pd

logn
1−p

)
Exp: KS using Algebraic Geometric codes.

M5 O
(( d

√
logn

1−p

)u+3/2)
Ω

(
p
( d

√
logn

1−p

)3/2)
Exp: KS using Hermitian codes
(d � √

logn).

M6 O
(
dg+2 (logd) log(n/d)

(1−p)2

)
Ω

(
pd

log(n/d)

(1−p)2

)
Rnd: Construction 2.

M7 O
(
dg+3 (logd) log2 n

(1−p)2

)
Ω

(
pd2 log2 n

(1−p)2

)
Constructions 4 and 1 combined, assuming
optimal condensers and strongly disjunct
matrices.

M8 O
(
dg+3 (logd)T2 logn

(1−p)g+2

)
Ω

(
pd2 T2 logn

1−p

)
Exp: Constructions 4 and 1 combined using
Theorem 16 and M2, where T2 =
exp(O(log3 logn)) = quasipoly(logn).

M9 O
(
dg+3+β T �

3 logn

(1−p)g+2

)
Ω

(
pd2−β logn

1−p

)
Exp: Constructions 4 and 1 combined using
Theorem 17 and M2, where β > 0 is any
arbitrary constant and T3 =
((logn)(logd))1+u/β = poly(logn, logd).

Ω(dg+2 logd n + edg+1) e Lower bound (Theorem 25).

x ∈ {0,1}n, denoted by supp(x), is a subset of [n] := {1, . . . , n} such that i ∈ supp(x)

if and only if x(i) = 1. The Hamming weight of x, denoted by wgt(x) is defined
as |supp(x)|. The Hamming distance between vectors x, x′ ∈ {0,1}n is denoted by
dist(x, x′).

For an m × n Boolean matrix M and S ⊆ [n], we denote by M|S the m × |S|
submatrix of M formed by restricting M to the columns picked by S. Moreover, for
a vector x ∈ {0,1}n, we use M[x]�,u to denote the set of all possible outcomes of
measuring x in the threshold model with lower and upper thresholds � and u and
using the measurement matrix M . Formally, for any y ∈ M[x]�,u we have y(i) = 1 if
|supp(M(i))∩supp(x)| ≥ u, and y(i) = 0 if |supp(M(i))∩supp(x)| ≤ �, where here
M(i) indicates the ith row of M . In the gap-free case, the measurement outcome is
uniquely defined (since there is no ambiguity in the measurement process), and thus
the set M[x]�,u only contains a single element that we denote by M[x]u.

The min-entropy of a distribution X with finite support Ω is given by

H∞(X ) := min
x∈Ω

{− log X (x)},

where X (x) is the probability that X assigns to the outcome x and logarithm is
taken to base 2. A flat distribution is one that is uniform on its support. For such
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a distribution X , we have H∞(X ) = log(|supp(X )|). The statistical distance be-
tween two distributions X and Y defined on the same finite space Ω is given by
1
2

∑
s∈Ω |X (s) − Y (s)|, which is half the �1 distance of the two distributions when

regarded as vectors of probabilities over Ω . Two distributions X and Y are said to be
ε-close if their statistical distance is at most ε. We will use the shorthand Un for the
uniform distribution on {0,1}n, and X ∼ X for a random variable X drawn from a
distribution X .

The main technical tool that we use in our explicit constructions is the notion of
lossless condensers, defined below.

Definition 1 A function f : {0,1}ñ ×{0,1}t → {0,1}�̃ is a strong lossless condenser
for entropy k and with error ε (in short, (k, ε)-condenser) if for every distribution X
on {0,1}ñ with min-entropy at least k, random variable X ∼ X and a seed Y ∼ Ut , the
distribution of (Y,f (X,Y )) is ε-close to some distribution (Ut , Z) with min-entropy
at least t + k. A condenser is explicit if it is polynomial-time computable.

We will use the following “almost-injectivity” property of lossless condensers in
our proofs.

Proposition 2 Let X be a flat distribution with min-entropy logK over a finite sam-
ple space Ω and f : Ω → Γ be a mapping to a finite set Γ . If f (X ) is ε-close to
having min-entropy logK , then there is a set T ⊆ Γ of size at least (1 − 4ε)K such
that

(∀y ∈ T ) f (x) = y ∧ f (x′) = y ⇒ x = x′.

Proof Suppose that X is uniformly supported on a set S ⊆ Ω of size K . For each
y ∈ Γ , define ny := |{x ∈ Ω : f (x) = y}|. Denote by μ the distribution f (X ) over Γ

and by μ′ a distribution on Γ with min-entropy logK that is ε-close to μ, which is
guaranteed to exist by the assumption. Define T := {y ∈ Γ : ny = 1}, and similarly,
T ′ := {y ∈ Γ : ny ≥ 2}. Observe that for each y ∈ Γ we have μ(y) = ni/K , and also
supp(μ) = T ∪ T ′. Thus,

|T | +
∑

y∈T ′
ny = K. (1)

The fact that μ and μ′ are ε-close implies that

∑

y∈T ′
|μ(y) − μ′(y)| ≤ 2ε ⇒

∑

y∈T ′
(ny − 1) ≤ 2εK.

In particular, this means that |T ′| ≤ 2εK (since by the choice of T ′, for each y ∈ T ′
we have ny ≥ 2). Furthermore,

∑

y∈T ′
(ny − 1) ≤ 2εK ⇒

∑

y∈T ′
ny ≤ 2εK + |T ′| ≤ 4εK.
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This combined with (1) gives

|T | = K −
∑

y∈T ′
ny ≥ (1 − 4ε)K,

as desired. �

2 Variations of Disjunct Matrices

The combinatorial structure used by Chen and Fu in their non-adaptive scheme is the
following generalization of the standard notion of disjunct matrices that we refer to
as strongly disjunct matrices throughout this work.

Definition 3 A matrix (with at least d + u columns) is said to be strongly (d, e;u)-
disjunct if for every choice of d +u columns C1, . . . ,Cu,C

′
1, . . . ,C

′
d , all distinct, we

have
∣
∣
∣
∣

u⋂

i=1

supp(Ci) \
d⋃

i=1

supp(C′
i )

∣
∣
∣
∣ > e.

Observe that, strongly (d, e;u)-disjunct matrices are, in particular, strongly
(d ′, e′;u′)-disjunct for any d ′ ≤ d , e′ ≤ e, and u′ ≤ u. Moreover, classical (d, e)-
disjunct matrices that are extensively used in group testing literature (see [17,
Chap. 7]) are equivalent to strongly (d, e;1)-disjunct matrices.

To make the main ideas more transparent, until Sect. 4 we will focus on the gap-
free case where � = u − 1. The extension to nonzero gaps is straightforward and will
be discussed in Sect. 4. Moreover, often we will implicitly assume that the Hamming
weight of the Boolean vector that is to be identified is at least u (since otherwise, we
know from the work of Damaschke [15] that confusions cannot be avoided), and will
take the thresholds �,u to be fixed constants.

The notion of strongly disjunct matrices, in its general form, has been studied
in the literature under different names and equivalent formulations, e.g., superim-
posed (u, d)-designs/codes, superimposed distance codes, and (u, d) cover-free fam-
ilies (see [6, 7, 20, 23, 30, 39, 40] and the references therein). An important motiva-
tion for the study of this notion is the following hidden hypergraph-learning problem
(cf. [17, Chap. 12]), itself being motivated by the so-called complex model in compu-
tational biology [6]: Suppose that G is a u-hypergraph; that is, a hypergraph where
each edge is a set of u vertices. on a vertex set V of size n, and denote by V (G)

the set of vertices induced by the hyper-edge set of G; i.e., v ∈ V (G) if and only if
G has a hyper-edge incident to v. Then assuming that |V (G)| ≤ d for a sparsity pa-
rameter d , the aim is to learn G using as few (non-adaptive) queries of the following
type as possible: Each query specifies a set Q ⊆ V , and its corresponding answer
is a Boolean value which is 1 if and only if G has a hyperedge contained in Q.
It is known that [6, 25], in the hypergraph-learning problem, any suitable grouping
strategy defines a strongly disjunct matrix (whose rows are characteristic vectors of
individual queries Q), and conversely, any strongly disjunct matrix can be used as
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the incidence matrix of the set of queries. The parameter e determines “noise toler-
ance” of the measurement scheme. Namely, a strongly (d, e;u)-disjunct matrix can
uniquely distinguish between d-sparse hypergraphs even in presence of up to �e/2�
erroneous query outcomes.

For gap-free threshold group testing, the successful strategy needed for distin-
guishing between d-sparse Boolean vectors can trivially be captured by the following
definition.

Definition 4 Let n ≥ d ≥ u > 0 and e ≥ 0 be integer parameters. A Boolean
matrix M with n columns is said to be a (d, e;u)-threshold design if for every
d-sparse x, x′ ∈ {0,1}n of Hamming weight u or more such that x �= x′, we have
dist(M[x]u,M[x′]u) > e.

The key observation made by Chen and Fu [5] is that threshold group testing
corresponds to the special case of the hypergraph learning problem where the hidden
graph G is known to be a u-clique.2 In this case, the unknown Boolean vector in
the corresponding threshold testing problem would be the characteristic vector of
V (G). It follows that strongly disjunct matrices are threshold designs as defined in
Definition 4 Specifically,

Theorem 5 [5] Let M be a Boolean matrix with n columns that is strongly (d, e;u)-
disjunct. Then, M is a (d, e;u)-threshold design.

Nonconstructively, a probabilistic argument akin to the standard argument for the
case of classical disjunct matrices (see [17, Chap. 7]) can be used to show that
strongly (d, e;u)-disjunct matrices exist with m = O(du+1(log(n/d))/(1 − p)2)

rows and error tolerance e = Ω(pd log(n/d)/(1 − p)2), for any noise parameter
p ∈ [0,1). On the negative side, however, several concrete lower bounds are known
for the number of rows of such matrices [23, 39, 40]. In asymptotic terms, these re-
sults show that one must have m = Ω(du+1 logd n + edu), and thus, the probabilistic
upper bound is essentially optimal.

For the underlying strongly disjunct matrix, Chen and Fu [5] use a greedy con-
struction [7] that achieves, for any e ≥ 0, O((e+1)du+1 log(n/d)) rows, but may take
exponential time in the size of the resulting matrix. Nevertheless, as observed by sev-
eral researchers [6, 23, 25, 30], a classical explicit construction of combinatorial de-
signs due to Kautz and Singleton [29] can be extended to construct strongly disjunct
matrices. This concatenation-based construction transforms any error-correcting code
having large distance into a disjunct matrix. While the original construction uses
Reed-Solomon codes and achieves nice bounds, it is possible to use other families
of codes. In particular, as recently shown by Porat and Rothschild [34], codes on
the Gilbert-Varshamov bound (cf. [32]) result in nearly optimal disjunct matrices.
Moreover, for a suitable range of parameters, they give a deterministic construction

2As standard in graph theory, a u-clique on the vertex set V is a u-hypergraph (V ,E) such that, for some
V ′ ⊆ V , E is the set of all subsets of V ′ of size u.
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of such codes that runs in polynomial time in the size of the resulting disjunct ma-
trix (albeit exponential in the dimension of the code)3. We will elaborate on details
of this class of constructions in Sect. 5, and will additionally consider a family of
algebraic-geometric codes and Hermitian codes which give incomparable bounds, as
summarized in Table 1 (rows M2–M5).

2.1 Threshold Disjunct and Regular Matrices

Even though, as discussed above, the general notion of strongly (d, e;u)-disjunct
matrices is sufficient for threshold group testing with upper threshold u, in this section
we show that a new, weaker, notion of disjunct matrices defined below (which, as we
show later, turns out to be strictly weaker when u > 1), would also suffice. We also
define an auxiliary notion of regular matrices.

Definition 6 A Boolean matrix M with n columns is called (d, e;u)-regular if for
every subset of columns S ⊆ [n] (called the critical set) and every Z ⊆ [n] (called the
zero set) such that u ≤ |S| ≤ d , |Z| ≤ |S|, S ∩Z = ∅, there are more than e rows of M

at which M|S has weight exactly u and (at the same rows) M|Z has weight zero. Any
such row is said to u-satisfy S and Z. If, in addition, for every distinguished column
i ∈ S, more than e rows of M both u-satisfy S and Z and have a 1 at the ith column,
the matrix is called threshold (d, e;u)-disjunct (and the corresponding “good” rows
are said to u-satisfy i, S, and Z).

To distinguish between the above variant of disjunct matrices and strongly dis-
junct matrices or classical disjunct matrices, we will refer to our variant as threshold
disjunct matrices throughout the paper.

It is easy to verify that (assuming 2d ≤ n) the classical notion of (2d − 1, e)-
disjunct matrices is equivalent to strongly (2d − 1, e;1)-disjunct and threshold
(d, e;1)-disjunct. Moreover, any threshold (d, e;u)-disjunct matrix is (d, e;u)-
regular, (d − 1, e;u − 1)-regular, and classical (d, e)-disjunct (but the reverse im-
plications do not in general hold). Therefore, the known lower bound of m =
Ω(d2 logd n + ed) that applies for (d, e)-disjunct matrices holds for threshold
(d, e;u)-disjunct matrices as well (see Theorem 10). Below we show that our no-
tion of disjunct matrices suffices for threshold designs.

Lemma 7 Let M be an m × n Boolean matrix that is threshold (d, e;u)-disjunct.
Then for every distinct d-sparse vectors x, x′ ∈ {0,1}n such that supp(x) � supp(x′),
wgt(x) ≥ |supp(x′) \ supp(x)| and wgt(x) ≥ u, we have

|supp(M[x]u) \ supp(M[x′]u)| > e. (2)

Moreover, M is a (d, e;u)-threshold design. Conversely, if M satisfies (2) for every
choice of x and x′ as above, it must be threshold (�d/2�, e;u)-disjunct.

3In this regard, this construction of disjunct matrices can be considered weakly explicit in that, contrary to
fully explicit constructions, it is not clear if each individual entry of the matrix can be computed in time
poly(d, logn).
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Proof First, suppose that M is threshold (d, e;u)-disjunct, and let y := M[x]u and
y′ := M[x′]u. Take any i ∈ supp(x) \ supp(x′), and let S := supp(x) and Z :=
supp(x′) \ supp(x). Note that |S| ≤ d and by assumption, we have |Z| ≤ |S|. Now,
Definition 6 implies that there is a set E of more than e rows of M that u-satisfy i

as the distinguished column, S as the critical set and Z as the zero set. Thus for ev-
ery j ∈ E, the j th row of M restricted to the columns chosen by supp(x) must have
weight exactly u, while its weight on supp(x′) is less than u. Therefore, y(j) = 1 and
y′(j) = 0 for more than e choices of j .

The claim that M is a (d, e;u)-threshold design follows from the above argument
combined with the observation that at least one of the two possible orderings of any
two distinct d-sparse vectors, at least one having weight u or more, satisfies the con-
ditions required by the lemma.

For the converse, consider any choice of a distinguished column i ∈ [n], a critical
set S ⊆ [n] containing i (such that |S| ≥ u), and a zero set Z ⊆ [n] where |Z| ≤ |S|.
Define d-sparse Boolean vectors x, x′ ∈ {0,1}n so that supp(x) := S and supp(x′) :=
Z ∪ (S \ {i}). Let y := M[x]u and y′ := M[x′]u and E := supp(y) \ supp(y′). By
assumption we know that |E| > e. Take any j ∈ E. Since y(j) = 1 and y′(j) = 0, we
get that the j th row of M restricted to the columns picked by Z ∪ (S \ {i}) must have
weight at most u − 1, whereas it must have weight at least u when restricted to S. As
the sets {i}, S \{i}, and Z are disjoint, this can hold only if M[j, i] = 1, and moreover,
the j th row of M restricted to the columns picked by S (resp., Z) has weight exactly
u (resp., zero). Hence, this row (as well as all the rows of M picked by E) must
u-satisfy i, S, and Z, confirming that M is threshold (�d/2�, e;u)-disjunct. �

We point out that Lemma 7 proves a matching converse, suggesting that the no-
tion of threshold disjunct matrices might be “close” to a characterization of threshold
designs (Definition 4), up to a constant factor in the sparsity parameter. However, this
does not imply a precise characterization since the assumptions of Lemma 7 con-
sider a particular ordering on the sparse vectors x and x′, which must be consistent
with the ordering in (2). However, as we show in Sect. 2.3, threshold designs (Def-
inition 4) and threshold disjunct matrices (Definition 6) satisfy the same asymptotic
lower bounds on the number of rows, which nearly matches the upper bounds that we
prove by probabilistic arguments (Lemma 14), assuming that the threshold parameter
is an absolute constant. Thus, quantitatively, our notion of threshold disjunct matrices
essentially provides an optimal way of constructing threshold group testing designs.

2.2 Direct Product of Matrices

We will use regular matrices as intermediate building blocks in our constructions of
disjunct matrices to follow. The connection with disjunct matrices is made apparent
through a direct product of matrices defined in Construction 1. Intuitively, using this
product, regular matrices can be used to transform any measurement matrix suitable
for the standard group testing model to one with comparable properties in the thresh-
old model. The following lemma formalizes the idea.
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• Given: Boolean matrices M1 and M2 that are m1 × n and m2 × n, respectively.
• Output: An m × n Boolean matrix M1 � M2, where m := m1m2.
• Construction: Let the rows of M := M1 � M2 be indexed by the set [m1] × [m2].

Then the row corresponding to (i, j) is defined as the bit-wise or of the ith row of
M1 and the j th row of M2.

Construction 1: Direct product of measurement matrices

Lemma 8 Let M1 and M2 be Boolean matrices with n columns, such that M1 is
(d −1, e1;u−1)-regular. Let M := M1 �M2, and suppose that for d-sparse Boolean
vectors x, x′ ∈ {0,1}n such that wgt(x) ≥ wgt(x′), we have

|supp(M2[x]1) \ supp(M2[x′]1)| ≥ e2.

Then, |supp(M[x]u) \ supp(M[x′]u)| ≥ (e1 + 1)e2.

Proof First we consider the case where u > 1. Let y := M2[x]1 ∈ {0,1}m2 , y′ :=
M2[x′]1 ∈ {0,1}m2 , where m2 is the number of rows of M2, and let E := supp(y) \
supp(y′). By assumption, |E| ≥ e2. Fix any i ∈ E so that y(i) = 1 and y′(i) = 0.
Therefore, the ith row of M2 must have all zeros at positions corresponding to
supp(x′) and there is a j ∈ supp(x) \ supp(x′) such that M2[i, j ] = 1. Define
S := supp(x) \ {j}, Z := supp(x′) \ supp(x), z := M[x]u and z′ := M[x′]u.

As wgt(x) ≥ wgt(x′), we know that |Z| ≤ |S| + 1. The extreme case |Z| = |S| + 1
only happens when x and x′ have disjoint supports, in which case one can remove an
arbitrary element of Z to ensure that |Z| ≤ |S| and the following argument (consid-
ering the assumption u > 1) still goes through.

By the definition of regularity, there is a set E1 consisting of at least e1 + 1 rows
of M1 that (u − 1)-satisfy the critical set S and the zero set Z. Pick any k ∈ E1, and
observe that z must have a 1 at position (k, i). This is because the row of M indexed
by (k, i) has a 1 at the j th position (since the kth row of M2 does), and at least
u − 1 more 1’s at positions corresponding to supp(x) \ {j} (due to regularity of M1).
On the other hand, note that the kth row of M1 has at most u − 1 ones at positions
corresponding to supp(x′) (because supp(x′) ⊆ S ∪Z), and the ith row of M2 has all
zeros at those positions (because y′(i) = 0). This means that the row of M indexed
by (k, i) (which is the bit-wise or of the kth row of M1 and the ith row of M2) must
have less than u ones at positions corresponding to supp(x′), and thus, z′ must be 0
at position (k, i). Therefore, z and z′ differ at position (k, i).

Since there are at least e2 choices for i, and for each choice of i, at least e1 + 1
choices for k, we conclude that in at least (e1 + 1)e2 positions, z has a one while z′
has a zero.

The argument for u = 1 is similar, in which case it suffices to take S := supp(x)

and Z := supp(x′) \ supp(x). �

As a corollary it follows that, when M1 is a (d − 1, e1;u − 1)-regular and M2 is a
classical (d, e2)-disjunct matrix, the product M := M1 �M2 will distinguish between
any two distinct d-sparse vectors (of weight at least u) in at least (e1 + 1)(e2 + 1)
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positions of the measurement outcomes. This combined with Lemma 7 would imply
that M is, in particular, threshold (�d/2�, (e1 + 1)(e2 + 1)− 1;u)-disjunct. However,
using a direct argument similar to the above lemma it is possible to obtain a slightly
better result, given by Lemma 9.

Lemma 9 Suppose that M1 is a (d, e1;u−1)-regular and M2 is a classical (2d, e2)-
disjunct matrix. Then M1 � M2 is a threshold (d, (e1 + 1)(e2 + 1) − 1;u)-disjunct
matrix.

As a particular example of where Lemma 8 can be used, we remark that the mea-
surement matrices constructed in [9] that are not necessarily disjunct but allow ap-
proximation of sparse vectors in highly noisy settings of the standard group testing
model (as well as those used in adaptive two-stage schemes; cf. [8] and the refer-
ences therein), can be combined with regular matrices to offer the same qualities in
the threshold model. In the same way, numerous existing results in group testing can
be ported to the threshold model by using Lemma 8.

2.3 Lower Bounds

In this section, we show that the known asymptotic lower bounds on the number of
rows of classical disjunct matrices apply to threshold designs (Definition 4) and our
notion of threshold disjunct matrices (6) as well. It is immediate from the definitions
that, assuming 2d ≤ n, a threshold (d, e;u)-disjunct matrix is in particular a classical
(d, e)-disjunct matrix. Thus the latter lower bound is straightforward.

Theorem 10 For every integer d > 0 there is an n0 > 0 such that the following holds.
For any n ≥ n0, let M be an m × n threshold (d, e;u)-disjunct matrix. Then,

m = Ω(d2 logd n + de).

Proof Immediate from the known bounds on the number of rows of classical disjunct
matrices (e.g., Theorem 2.19 of [39]). �

Now, in order to show that any (d, e;u)-threshold design must satisfy essentially
the same lower bound as in Theorem 10, we first observe the following combinatorial
property of such matrices.

Lemma 11 Let M be a (d + 1, e;� + 1)-threshold design. Then it satisfies the fol-
lowing property:

“For every S ⊆ [n] such that |S| = d and every i ∈ [n] \ S, there are more than e

rows of M at which the ith column of M contains a 1 and moreover in those rows,
M|S has weight exactly �.”

Proof This is a special case of Lemma 26 that will be proved later (it suffices to set
u = � + 1 and g = 1 in Lemma 26). �
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Theorem 12 For every integer d > 0 there is an n0 > 0 such that the following holds.
For any n ≥ n0, let M be an m × n Boolean matrix that satisfies the property quoted
in Lemma 11. Then,

m = Ω

((
d

� + 1

)2

logd n + de

(� + 1)2

)

.

Proof We reduce the matrix to a classical disjunct matrix, and use the existing lower
bounds. Let d ′ := �d/(� + 1)� and e′ := e/(� + 1). We define the following notation:
For a set S ⊆ [n] and i ∈ [n] \S, a vector v ∈ {0,1}n is said to satisfy (i, S) if v(i) = 1
and v(j) = 0 for all j ∈ S.

For each i ∈ [n], we create a set T (i) ⊆ [n] according to the following greedy
algorithm:

1. Initialize T (i) with the empty set.
2. Let S ⊆ [n] \ (T (i) ∪ {i}) be any set of size at most d ′ such that the number of

rows of M that satisfy (i, S) is at most e′. If there is no such S, terminate.
3. Set T (i) := T (i) ∪ S, and go to step 2.

First, we argue that the above algorithm always terminates after looping at most
� times. Suppose for the sake of contradiction that the algorithm loops more and let
S1, . . . , S�+1 be the disjoint sets S obtained in the first �+1 iterations of the loop. Let
M ′ be the matrix obtained from M by removing all the rows where the ith column
has a zero, and define T ′ := S1 ∪ · · · ∪ S�+1.

By the way the algorithm chooses the sets Sj , we know for each Sj that all but at
most e′ rows of M ′|Sj

have nonzero weights. Therefore, all but at most e′(� + 1) = e

rows of M ′|T have weights at least �+ 1 (i.e., at least one nonzero entry for the range
of each Sj ).

On the other hand, since |Sj | ≤ d ′ for all j , we have |T ′| ≤ d ′(� + 1) ≤ d . So, the
property of Lemma 11 implies that there are more than e rows of M ′ where M ′|T ′
has weight exactly �. This is a contradiction. Therefore, we conclude, for every i, that
|T (i)| ≤ �d ′ < d .

Now, define an undirected graph G = (V ,E) where V := [n] and {i, j} ∈ E iff
either j ∈ T (i) or i ∈ T (j). We know from the upper bound on the size of every
T (i) that the maximum degree of this graph is less than 2d . Therefore, the graph has
an independent set V ′ ⊆ V of size at least n/(2d). Let M ′′ := M|V ′ , with columns
indexed by the elements of V ′.

Now, consider any i ∈ V ′ and any set S ⊆ V ′ \ i where |S| = d ′. Since V ′ is an
independent set of G, we know that T (i)∩V ′ = ∅. Since the greedy algorithm, given
input i, has terminated at step 2, we know that there are more than e′ rows of M ′′ that
satisfy (i, S) (otherwise the algorithm would add S to T (i) and loop another time).
Since this holds for every choice of (i, S), we conclude that the matrix M ′′ must be a
classical (d ′, e′)-disjunct matrix.

Let n′ be the number of columns of M ′′, so we know that n′ ≥ n/(2d). Now
it suffices to apply the known asymptotic lower bounds for the number of rows of
classical disjunct matrices [19, 37, 39] on M ′′. In particular, Theorem 2.19 of [39]
implies that, for some absolute constant c > 0, and whenever n is sufficiently large
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for the given parameter d ,

m ≥ 0.7c
(d ′ + 1)2

log(d ′ + 1)
logn′ + 0.5c(d ′ + 1)e′

= Ω

(
d2(logn − logd − 1)

(� + 1)2 logd
+ de

(� + 1)2

)

,

which implies the claimed bound assuming n is large enough. �

Corollary 13 For every integer d > 0 there is an n0 > 0 such that the following
holds. For any n ≥ n0, let M be an m×n Boolean matrix that is a (d, e;u)-threshold
design, for some constant u > 0. Then,

m = Ωu(d
2 logd n + de).

Proof Immediate from Lemma 11 and Theorem 12. �

3 Constructions

In this section, we obtain several construction of regular and disjunct matrices. Our
first construction, described in Construction 2, is a randomness-efficient probabilistic
construction that can be analyzed using standard techniques from the probabilistic
method. The bounds obtained by this construction are given in Lemma 14 below. The
amount of random bits required by this construction is polynomially bounded in d

and logn, which is significantly smaller than it would be had we picked the entries of
M fully independently.

Lemma 14 For every p ∈ [0,1) and integer parameter u > 0, Construction 2 with
m′ = Ou(d log(n/d)/(1 − p)2) (resp., m′ = Ou(d

2 log(n/d)/(1 − p)2)) outputs a
(d,Ωu(pm′);u)-regular (resp., threshold (d,Ωu(pm′/d);u)-disjunct) matrix with
probability 1 − o(1).

Proof We show the claim for regular matrices, the proof for disjunct matrices is simi-
lar. Consider any particular choice of a critical set S ⊆ [n] and a zero set Z ⊆ [n] such
that u ≤ |S| ≤ d and |Z| ≤ |S|. Choose an integer i so that 2i−1u ≤ |S| ≤ 2iu, and
take any j ∈ [m′]. Denote the (i, j)th row of M by the random variable w ∈ {0,1}n,
and by q the “success” probability that w|S has weight exactly u and w|Z is all zeros.

• Given: Integer parameters n,m′, d,u.
• Output: An m × n Boolean matrix M , where m := m′�log(d/u)�.
• Construction: Let r := �log(d/u)�. Index the rows of M by [r]×[m′]. Sample the

(i, j)th row of M independently from a (u + 1)-wise independent distribution on
n bit vectors, where each individual bit has probability 1/(2i+2u) of being 1.

Construction 2: Probabilistic construction of regular and disjunct matrices
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For an integer r > 0, we will use the shorthand 1r (resp., 0r ) for the all-ones (resp.,
all-zeros) vector of length r . We have

q =
∑

R⊆[S]
|R|=u

Pr[(w|R) = 1u ∧ (w|Z∪(S\R)) = 0|S|+|Z|−u]

=
∑

R

Pr[(w|R) = 1u] · Pr[(w|Z∪(S\R)) = 0|S|+|Z|−u | (w|R) = 1u]

(a)=
∑

R

(1/(2i+2u))u · (1 − Pr[(w|Z∪(S\R)) �= 0|S|+|Z|−u | (w|R) = 1u])

(b)≥
∑

R

(1/(2i+2u))u · (1 − (|S| + |Z| − u)/(2i+2u))

≥ 1

2

(|S|
u

)

(1/(2i+2u))u ≥ 1

2

( |S|
u

)u

· (1/(2i+2u))u ≥ 1

23u+1 · uu
=: c, (3)

where (a) and (b) use the fact that the entries of w are (u+ 1)-wise independent, and
(b) uses an additional union bound. Here the lower bound c > 0 is a constant that
only depends on u. Now, let e := m′pq . using Chernoff bounds, and independence
of the rows, the probability that there are at most e rows (among (i,1), . . . , (i,m′))
whose restrictions to S and Z have weights u and 0, respectively, becomes upper
bounded by

exp(−(m′q − e)2/(2m′q)) = exp(−(1 − p)2m′q/2) ≤ exp(−(1 − p)2m′c/2).

Now take a union bound on all the choices of S and Z to conclude that the probability
that the resulting matrix is not (d, e;u)-regular is at most

⎛

⎝
d∑

s=u

(
n

s

) s∑

z=0

(
n − s

z

)
⎞

⎠ exp(−(1 − p)2m′c/2),

which can be made o(1) by choosing m′ = Ou(d log(n/d)/(1 − p)2).
The proof of the claim for disjunct matrices follows along the same lines, except

that we additionally need the vector w to be 1 at the position corresponding to the dis-
tinguished column i. Under this additional requirement, the lower bound on q would
become Ωu(1/d), and this only increases the number of rows by a factor Ou(d). �

A significant part of this work is a construction of regular matrices using strong
lossless condensers. Details of the construction are described in Construction 4 that
assumes a family of lossless condensers with different entropy requirements,4 and in
turn, uses Construction 3 as a building block. The theorem below analyzes the ob-
tained parameters without specifying any particular choice for the underlying family
of condensers.

4We have assumed that all the functions in the family have the same seed length t . If this is not the case,
one can trivially set t to be the largest seed length in the family.
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• Given: A strong lossless (k, ε)-condenser f : {0,1}ñ × {0,1}t → {0,1}�̃, integer
parameter u ≥ 1 and real parameter p ∈ [0,1) such that ε < (1 − p)/32.

• Output: An m × n Boolean matrix M , where n := 2ñ and m = 2t+kOu(2u(�̃−k)).
• Construction: Let G1 = ({0,1}�̃, {0,1}k,E1) be any bipartite bi-regular graph with

left vertex set {0,1}�̃, right vertex set {0,1}k , edge set E1, left degree d� := 8u,
and right degree dr := 8u2�̃−k . Replace each right vertex v of G1 with

(
dr

u

)
ver-

tices, one for each subset of size u of the vertices on the neighborhood of v, and
connect them to the vertices in the corresponding subsets. Denote the resulting
graph by G2 = ({0,1}�̃, V2,E2), where |V2| = 2k

(
dr

u

)
and E2 is the edge set of the

graph. Define the bipartite graph G3 = ({0,1}n,V3,E3), where V3 := {0,1}t × V2
is the set of right vertices, as follows: Each left vertex x ∈ {0,1}n is connected to
(y,Γ2(f (x, y)), for each y ∈ {0,1}t , where Γ2(·) denotes the neighborhood func-
tion of G2 (i.e., Γ2(v) denotes the set of vertices adjacent to v in G2). The output
matrix M is the bipartite adjacency matrix of G3 with columns indexed by the left
vertices of row indexed by the right vertices of the graph.

Construction 3: A building block for construction of regular matrices

• Given: Integer parameters d ≥ u ≥ 1, real parameter p ∈ [0,1), and a family
f0, . . . , fr of strong lossless condensers, where r := �log(d/u′)� and u′ is the
smallest power of two such that u′ ≥ u. Each fi : {0,1}ñ × {0,1}t → {0,1}�̃(i)
is assumed to be a strong lossless (k(i), ε)-condenser, where k(i) := logu′ + i + 1
and ε < (1 − p)/32.

• Output: An m × n Boolean matrix M , where n := 2ñ and m =
2t d

∑r
i=0 Ou(2u(�̃(i)−k(i))).

• Construction: For each i ∈ {0, . . . , r}, denote by Mi the output matrix of Construc-
tion 3 when instantiated with fi as the underlying condenser, and by mi its number
of rows. Define ri := 2r−i and let M ′

i denote the matrix obtained from Mi by re-
peating each row ri times. Construct the output matrix M by stacking M ′

0, . . . ,M
′
r

on top of one another.

Construction 4: Regular matrices from strong lossless condensers

Theorem 15 The m × n matrix M output by Construction 4 is (d,pγ 2t ;u)-regular,
where γ = max{1,Ωu(d · min{2k(i)−�̃(i) : i = 0, . . . , r})}.

Proof As a first step, we verify the upper bound on the number of measurements m.
Each matrix Mi has mi = 2t+k(i)Ou(2u(�̃(i)−k(i))) rows, and M ′

i has miri rows, where
ri = 2r−i . Therefore, the number of rows of M is

r∑

i=0

rimi =
r∑

i=0

2t+logu′+r+1mi = 2t d

r∑

i=0

Ou(2
u(�̃(i)−k(i))).
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Let S,Z ⊆ {0,1}ñ respectively denote any choice of a critical set and zero set
of size at most d , where |Z| ≤ |S|, and choose an integer i ≥ 0 so that 2i−1u′ ≤
|S| ≤ 2iu′. Arbitrarily grow the two sets S and Z to possibly larger, and disjoint,
sets S′ ⊇ S and Z′ ⊇ Z such that |S′| = |Z′| = 2iu′ (for simplicity we have assumed
that d ≤ n/2). Our goal is to show that there are “many” rows of the matrix Mi (in
Construction 4) that u-satisfy S and Z.

Let k := k(i) = logu′ + i + 1, �̃ := �̃(i), and denote by G1,G2,G3 the bipartite
graphs used by the instantiation of Construction 3 that outputs Mi . Thus we need to
show that “many” right vertices of G3 are each connected to exactly u of the vertices
in S and none of those in Z.

Consider the uniform distribution X on the set S′ ∪ Z′, which has min-entropy
logu′ + i + 1. By an averaging argument, since the condenser fi is strong, for more
than a p fraction of the choices of the seed y ∈ {0,1}t (call them good seeds), the
distribution Zy := fi(X , y) is ε/(1 − p)-close (in particular, (1/32)-close) to a dis-
tribution with min-entropy logu′ + i + 1.

Fix any good seed y ∈ {0,1}t . Let G = ({0,1}ñ, {0,1}�̃,E) denote a bipartite
graph representation of fi , where each left vertex x ∈ {0,1}ñ is connected to fi(x, y)

on the right. Denote by Γy(S
′ ∪ Z′) the right vertices of G corresponding to the

neighborhood of the set of left vertices picked by S′ ∪ Z′. Note that Γy(S
′ ∪ Z′) =

supp(Zy). Using Proposition 2, we see that since Zy is (1/32)-close to having min-
entropy log(|S′ ∪ Z′|), there are at least (7/8)|S′ ∪ Z′| vertices in Γ (S′ ∪ Z′) that
are each connected to exactly one left vertex in S′ ∪ Z′. Since |S| ≥ |S′ ∪ Z′|/4, this
implies that at least |S′ ∪ Z′|/8 vertices in Γ (S′ ∪ Z′) (call them Γ ′

y ) are connected
to exactly one left vertex in S and no other vertex in S′ ∪ Z′. In particular we get that
|Γ ′

y | ≥ 2k−3.
Now, in G1, let Ty be the set of left vertices corresponding to Γ ′

y (regarding the
left vertices of G1 in one-to-one correspondence with the right vertices of G). The
number of edges going out of Ty in G1 is d�|Ty | ≥ u2k . Therefore, as the number of
the right vertices of G1 is 2k , there must be at least one right vertex that is connected
to at least u vertices in Ty . Moreover, a counting argument shows that the number of

right vertices connected to u or more vertices in Ty is at least 2k−�̃2k/(10u).
Observe that in construction of G2 from G1, any right vertex of G1 is replicated(

dr

u

)
times, one for each u-subset of its neighbors. Therefore, for a right vertex of G1

that is connected to at least u left vertices in Ty , one or more of its copies in G2 must
be connected to exactly u vertex in Ty (among the left vertices of G2) and no other
vertex (since the right degree of G2 is equal to u).

Define γ ′ := max{1,2k−�̃2k/(10u)}. From the previous argument we know that,
looking at Ty as a set of left vertices of G2, there are at least γ ′ right vertices on
the neighborhood of Ty in G2 that are connected to exactly u of the vertices in Ty

and none of the left vertices outside Ty . Letting vy be any such vertex, this implies
that the vertex (y, vy) ∈ V3 on the right part of G3 is connected to exactly u of the
vertices in S, and none of the vertices in Z. Since the argument holds for every good
seed y, the number of such vertices is at least the number of good seeds, which is
more than pγ ′2t . Since the rows of the matrix mi are repeated ri = 2r−i times in M ,
we conclude that M has at least pγ ′2t+r−i ≥ pγ 2t rows that u-satisfy S and Z, and
the claim follows. �
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3.1 Instantiations

We now instantiate the result obtained in Theorem 15 by various choices of the family
of lossless condensers. The crucial factors that influence the number of measurements
are the seed length and the output length of the condenser.

Non-constructively, it can be shown that strong (k, ε) lossless condensers with
input length ñ, seed length t = log ñ + log(1/ε) + O(1), and output length �̃ =
k + log(1/ε) + O(1) exist, and moreover, almost matching lower bounds are known
[4]. In fact, the optimal parameters can be achieved by a random function with over-
whelming probability. In this work, we consider two important explicit constructions
of lossless condensers. Namely, one based on “zig-zag products” due to Capalbo et
al. [4] and another, coding theoretic, construction due to Guruswami et al. [27].

Theorem 16 [4] For every k ≤ ñ ∈ N, ε > 0 there is an explicit lossless (k, ε) con-
denser with seed length O(log3(ñ/ε)) and output length k + log(1/ε) + O(1).

Theorem 17 [27] For all constants α ∈ (0,1) and every k ≤ ñ ∈ N, ε > 0 there is an
explicit strong lossless (k, ε) condenser with seed length t = (1 + 1/α) log(ñk/ε) +
O(1) and output length �̃ = t + (1 + α)k.

As a result, we use Theorem 15 with the above condensers to obtain the following.

Theorem 18 Let u > 0 be fixed, and p ∈ [0,1) be a real parameter. Then for integer
parameters d,n ∈ N where u ≤ d ≤ n,

1. Using an optimal lossless condenser in Construction 4 results in an m1 × n ma-
trix M1 that is (d, e1;u)-regular, where m1 = O(d(logn)(logd)/(1 −p)u+1) and
e1 = Ω(pd logn).

2. Using the lossless condenser of Theorem 16 in Construction 4 results in
an m2 × n matrix M2 that is (d, e2;u)-regular, where m2 = O(T2d(logd)/

(1 − p)u) for some T2 = exp(O(log3((logn)/(1 − p)))) = quasipoly(logn), and
e2 = Ω(pdT2(1 − p)).

3. Let β > 0 be any fixed constant. Then Construction 4 can be instantiated
using the lossless condenser of Theorem 17 so that we obtain an m3 × n

matrix M3 that is (d, e3;u)-regular, where m3 = O(T 1+u
3 d1+β(logd)) for

T3 := ((logn)(logd)/(1 − p))1+u/β = poly(logn, logd), and e3 = Ω(p max{T3,

d1−β/u}).

Proof First we show the claim for M1. In this case, we take each fi in Construction 4
to be an optimal lossless condenser satisfying the (non-constructive) bounds obtained
in5 [4]. Thus we have that 2t = O(ñ/ε) = O(logn/ε), and for every i = 0, . . . , r , we
have 2�̃(i)−k(i) = O(1/ε), where ε = O(1 − p). Now we apply Theorem 15 to obtain
the desired bounds (and in particular, γ = Ω(εd)).

5This result is similar in spirit to the probabilistic argument used in [35] for showing the existence of good
extractors.
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Similarly, for the construction of M2 we set up each fi with the explicit
construction of condensers in Theorem 16 for min-entropy k(i). In this case,
the maximum required seed length is t = O(log3(ñ/ε)), and we let T2 := 2t =
exp(O(log3((logn)/(1−p)))). Moreover, for every i = 0, . . . , r , we have 2�̃(i)−k(i) =
O(1/ε). Plugging these parameters in Theorem 15 gives γ = Ω(εd) and the bounds
on m2 and e2 follow.

Finally, for M3 we use Theorem 17 with α := β/u. Thus the maximum seed length
becomes t = (1 +u/β) log(ñ(logd)/(1 −p))+O(1), and for every i = 0, . . . , r , we
have �̃(i) − k(i) = O(t + β(logd)/u). Clearly, T3 = Θ(2t ), and thus (using Theo-
rem 15) the number of measurements becomes m3 = T 1+ud1+β(logd). Moreover,
we get γ = max{1,Ω(d1−β/u/T )}, which gives e3 = Ω(pT γ ) = p max{T ,d1−β/u},
as claimed. �

By combining this result with Lemma 9 using any explicit construction of clas-
sical disjunct matrices, we obtain threshold (d, e;u)-disjunct matrices that can be
used in the threshold model with any fixed threshold, sparsity d , and error tolerance
�e/2�. In particular, using the coding-theoretic explicit construction of nearly op-
timal classical disjunct matrices from codes on the Gilbert-Varshamov bound [34]
(Theorem 30 in the appendix), we obtain threshold (d, e;u)-disjunct matrices with
m = O(m′d2(logn)/(1−p)2) rows and error tolerance e = Ω(e′pd(logn)/(1−p)),
where m′ and e′ are respectively the number of rows and error tolerance of any of the
regular matrices obtained in Theorem 18. We note that in all cases, the final depen-
dence on the sparsity parameter d is, roughly, O(d3) which has an exponent indepen-
dent of the threshold u. Rows M7–M9 of Table 1 summarize the obtained parameters
for the general case (with arbitrary gaps). We see that, when d is not negligibly small
(e.g., d = n1/10), the bounds obtained by our explicit constructions are significantly
better than those offered by strongly disjunct matrices.

4 The Case with Positive Gaps

In preceding sections we have focused on the case where g = 0. However, in this
section we observe that all the techniques that we have developed in this work can
be extended to the positive-gap case in a straightforward way. The main observations
are listed below. Recall from [15] that in the positive-gap case, we can only hope to
distinguish between distinct d-sparse vectors x and x′ where at least one has support
size u or more and either |supp(x) \ supp(x′)| > g or |supp(x′) \ supp(x)| > g. We
will call any pair of such vectors distinguishable. Moreover, we naturally extend the
Definition 4 of threshold designs to the positive-gap case as follows.

Definition 19 (Definition 4, generalized) Let n ≥ d ≥ u > 0 and g ∈ [0, u), and e ≥ 0
be integer parameters, and define � := u−g−1. A Boolean matrix M with n columns
is said to be a (d, e;u,g)-threshold design if for every d-sparse x, x′ ∈ {0,1}n of
Hamming weight u or more such that |supp(x) \ supp(x′)| > g, every y ∈ M[x]�,u
and every y′ ∈ M[x′]�,u, we have dist(y, y′) > e.
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4.1 Generalized Threshold Disjunct Matrices

For the positive-gap case, Definition 6 of threshold disjunct matrices can be adapted
to allow more than one distinguished column in disjunct matrices. In particular, in
general we may require the matrix M to have more than e rows that u-satisfy every
choice of a critical set S, a zero set Z, and any set of g + 1 designated columns I ⊆ S

(at which all entries of the corresponding rows must be 1). Denote this generalized
notion by threshold (d, e;u,g)-disjunct matrices. It is straightforward to extend the
arguments of Lemma 7 to show that the generalized notion of threshold (d, e;u,g)-
disjunct matrices suffices to capture non-adaptive threshold group testing with upper
threshold u and gap g. More precisely, the generalized definitions of threshold dis-
junct and regular matrices are as follows.

Definition 20 (Definition 6, generalized) Let n,d, e,u, g be non-negative integers
where g < u ≤ d ≤ n. A Boolean matrix M with n columns is called threshold
(d, e;u,g)-disjunct if for every subset of columns S ⊆ [n] (called the critical set),
every Z ⊆ [n] (called the zero set) such that u ≤ |S| ≤ d , |Z| ≤ |S|, S ∩ Z = ∅, and
every set I ⊆ S of g + 1 distinguished columns (|I | = g + 1), there are more than e

rows of M that u-satisfy S and Z and moreover, M|I has all ones at those columns.
Moreover, M is called (d, e;u,g)-regular if for every choice of the critical and zero
sets S,Z ⊆ [n] with |Z| ≤ |S| + g, there is a set of more than e rows of M that
(u − g)-satisfy S and Z.

Note the slight difference between the notion of regular matrices above compared
to Definition 6, namely, that the zero set Z can now be slightly larger than the critical
set S (by at most u), and that the matrix is now required to (u−g)-satisfy (as opposed
to u-satisfy) every choice of S and Z. The two notions coincide for g = 0. In general,
the difference between the two notions of regular matrices is negligible as long as the
parameter g remains small. In particular, it is straightforward to verify that all our
results about the construction of regular matrices in the gap-free case (Constructions
2 and 4) as well as the obtained bounds (Lemma 14, Theorems 15 and 18) hold for
the generalized notion of regular matrices with only a slight effect on the hidden
terms that only depend on the threshold parameter u. We will see, however, that the
generalized notion of threshold disjunct matrices is stronger than Definition 6 and
the extra requirements may substantially affect the bounds (but not the construction
techniques).

Below we show that the generalized notion of threshold disjunct matrices suffices
for construction of threshold designs for the positive-gap case.

Lemma 21 (Lemma 7, generalized) Let M be an m × n Boolean matrix that is
threshold (d, e;u,g)-disjunct, and define � := u − g − 1. Then for every distinguish-
able d-sparse vectors x, x′ ∈ {0,1}n, each having support size u or more and such
that |supp(x)\supp(x′)| > g and wgt(x) ≥ |supp(x′)\supp(x)|, the following holds.
Let y ∈ M[x]�,u and y′ ∈ M[x′]�,u. Then,

|supp(y) \ supp(y′)| > e. (4)
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Moreover, M is a (d, e;u,g)-threshold design. Conversely, if M satisfies (4) for every
choice of x, x′, y, y′ as above, it must be threshold (�d/2�, e;u,g)-disjunct (assum-
ing n > d + g).

Proof First, suppose that M is threshold (d, e;u,g)-disjunct, and let y ∈ M[x]�,u
and y′ ∈ M[x′]�,u be arbitrarily chosen. Take any I ⊆ supp(x) \ supp(x′) of size
g + 1, and let S := supp(x) and Z := supp(x′) \ supp(x). Note that |S| ≤ d and by
assumption, we have |Z| ≤ |S|. Now, Definition 20 implies that there is a set E of
more than e rows of M that u-satisfy I as the set of distinguished columns, S as the
critical set and Z as the zero set. Thus for every j ∈ E, the j th row of M restricted
to the columns chosen by supp(x) must have weight exactly u, while its weight on
supp(x′) is at most u − g − 1 = �. Therefore, y(j) = 1 and y′(j) = 0 for more than
e choices of j .

The claim that M is a (d, e;u,g)-threshold design follows from the above ar-
gument combined with the observation that, given any two d-sparse distinguishable
vectors, having Hamming weight u or more, at least one of their two possible order-
ings satisfies the conditions required by the lemma.

For the converse, consider any choice of a set of distinguished columns I ⊆ [n]
with |I | = g + 1, a critical set S ⊆ [n] containing I (such that |S| ≥ u), and a zero
set Z ⊆ [n] where |Z| ≤ |S|. Define d-sparse Boolean vectors x, x′ ∈ {0,1}n so that
supp(x) := S and supp(x′) := Z ∪ (S \ I ). We note that wgt(x) = |supp(x)| ≥ u and
also, without loss of generality, wgt(x′) ≥ u (if the latter is not the case, we can simply
enlarge Z by arbitrarily adding up to g + 1 elements outside the support of S to it and
observe that is suffices to show the claim for the larger Z).

Let y := M[x]�+1 and y′ := M[x′]u, and observe that y, y′ ∈ M[x]�,u. Moreover,
let E := supp(y) \ supp(y′). By assumption we know that |E| > e. Take any j ∈ E.
Since y(j) = 1 and y′(j) = 0, we get that the j th row of M restricted to the columns
picked by Z ∪ (S \ I ) must have weight at most � = u − (g + 1), whereas it must
have weight at least u when restricted to S. As the sets I, S \ I , and Z are disjoint and
|I | = g + 1, this can hold only if the j th row of M restricted to the columns picked
by S, Z, and I has weights exactly u, 0, and g + 1, respectively. Hence, this row (as
well as all the rows of M picked by E) must u-satisfy I, S, and Z, confirming that M

is threshold (�d/2�, e;u,g)-disjunct. �

4.2 Strongly Disjunct Versus Threshold Disjunct Matrices

The following proposition directly follows from the definitions, and relates strongly
disjunct matrices to generalized threshold disjunct matrices.

Proposition 22 Let n,d, e,u, g be non-negative integers where g < u ≤ d ≤ n −
(d + g + 1). Suppose that M and M ′ are binary m × n matrices, where M is thresh-
old (d, e;u,g)-disjunct and M ′ is strongly (2d, e;u)-disjunct. Then, M is strongly
(d, e;g + 1)-disjunct and M ′ is threshold (d, e;u,g)-disjunct.

Proof First, we verify the conditions of Definition 3 for M . Consider any pair of
disjoint sets I,Z ⊆ [n] where |I | = g + 1 and |Z| ≤ d . Let S ⊆ [n] be any set of size
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d containing I and disjoint from Z. Note that |Z| ≤ |S|. From Definition 20 (with the
critical set S, zero set Z, and distinguished set I ), there is a set of more than e rows
of M at which M|Z is all zeros and M|I is all ones. In other words, denoting the ith
column of M by Ci , we have that

∣
∣
∣
∣

⋂

i∈I

supp(Ci) \
⋃

i∈Z

supp(Ci)

∣
∣
∣
∣ > e,

as required by Definition 3.
Now consider the matrix M ′ and any choice of a I, S,Z as in Definition 20. Let

J ⊆ S be any subset of S of size u that contains I , and S′ := Z ∪ (S \ J ). Note that
|S′| ≤ |S| + |Z| ≤ 2d . Now from Definition 3 of strongly disjunct matrices, we know
that

∣
∣
∣
∣

⋂

i∈J

supp(Ci) \
⋃

i∈S′
supp(Ci)

∣
∣
∣
∣ > e.

In other words, there is a set of more than e rows of M ′ at which M ′|I is all ones,
M ′|S has weight exactly u, and M ′|Z is all zeros, as required by Definition 20. �

The special case u = g + 1 in the above proposition is particularly interesting.
A chain of reductions between strongly disjunct and threshold disjunct matrices in
this case implied by the above result is schematically shown below.

threshold-(2d, e;g + 1, g)-disjunct
↓

strongly (2d, e;g + 1)-disjunct
↓

threshold-(d, e;g + 1, g)-disjunct
↓

strongly (d, e;g + 1)-disjunct

Therefore, when the upper threshold u is more than the gap parameter g by one
(equivalently, when the lower threshold � is zero), the two notions of threshold dis-
junct matrices and strongly disjunct matrices become equivalent up to a multiplica-
tive factor in the sparsity parameter d . As discussed in Sect. 2, almost matching
lower bounds and upper bounds on the number of rows m achievable by a strongly
(d, e;g + 1)-disjunct matrix are known. Asymptotically, the number of rows must al-
ways satisfy m = Ω(dg+2 logd n+edg+1) and moreover, a probabilistic construction
achieves m = O(dg+2 log(n/d)) and e = Ω(d log(n/d)) with probability 1 − o(1)

(see Table 1). As a result, the upper and lower bounds on the number of rows of
strongly disjunct and threshold disjunct matrices become equivalent up multiplica-
tive constants when the lower threshold � is zero.

Proposition 22 asserts that the notion of strongly disjunct matrices is in general
stronger than threshold disjunct matrices. As we will see below, the former becomes
strictly stronger when � > 0. As the lower threshold � becomes larger, the discrepancy
between the number of rows achievable by threshold disjunct matrices and strongly
disjunct matrices becomes more significant (see Table 1).
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4.3 Probabilistic Upper Bounds

As pointed out after Definition 20, the generalized definition of regular matrices may
affect the bounds obtained by our probabilistic and explicit constructions (Construc-
tions 2 and 4) only by hidden factors depending on u (essentially without any change
in the proofs). For the case of generalized disjunct matrices, however, the bounds may
substantially change depending on the gap parameter g.

Below we generalize Lemma 14 for the case of threshold disjunct matrices and
show that Construction 2 results in a threshold (d,Ωu(pd log(n/d)/(1 −p)2);u,g)-
disjunct matrix (with probability 1 − o(1)) if the number of measurements is in-
creased by a factor O(dg). More precisely, we can now show the following lemma.

Lemma 23 (Lemma 14, generalized) For every p ∈ [0,1) and integer parameters
u > g ≥ 0, Construction 2 with m′ = Ou(d

g+2 log(n/d)/(1 − p)2) outputs a thresh-
old (d,Ωu(pm′/dg+1);u,g)-disjunct matrix with probability 1 − o(1).

Proof The proof essentially follows along the same lines as the proof of Lemma 14.
The difference, compared to the case g = 0 covered by Lemma 14, is that we have
a set I of distinguished columns I ⊆ [n] in Definition 20 where |I | = g + 1 and the
random vector w in the proof of Lemma 14 must have ones at all positions picked
by I . With this requirement, the lower bound on the success probability q in (3)
becomes c = Ωu(1/dg+1). The rest of the proof remains unchanged except for the
new lower bound on c, which makes the error tolerance parameter e in the proof
lower bounded by Ω(pm′/dg+1), while increasing the parameter m′ to a quantity
upper bounded by Ou(d

g+2 log(n/d)/(1 − p)2). �

4.4 The Direct Product

Lemma 9 can be extended to positive gaps as follows.

Lemma 24 (Lemma 9, generalized) Suppose that M1 is a (d, e1;u,g + 1)-regular
and M2 is a strongly (2d, e2;g + 1)-disjunct matrix. Then M1 � M2 is a threshold
(d, (e1 + 1)(e2 + 1) − 1;u,g)-disjunct matrix.

Proof Let � := u − g − 1 and M := M1 � M2. Towards verifying that M satisfies
the requirements of Definition 20, consider a set I ⊆ [n] of distinguished columns of
M , where n is the number of columns of the matrices and |I | = g + 1, in addition
to critical and zero sets S,Z ⊆ [n] as in Definition 20 satisfying |Z| ≤ |S|. Index
the rows of M naturally by the elements of [m1] × [m2], where m1 and m2 are the
number of rows of M1 and M2, respectively, and the (i, j)th row of M is the bitwise
disjunction of the ith row of M1 and the j th row of M2.

Let S′ := S \ I and Z′ := Z ∪ (S \ I ). Observe that |Z| ≤ |S| ≤ |S′| + g + 1 =
|S|+|I | and |Z′| ≤ 2d . From Definition 20, there is a set E1 ⊆ [m1] of size more than
e1 such that M1|S′ has weight exactly � = u − |I |, and M2|Z is all zeros. Moreover,
there is a set E2 ⊆ [m2] of size more than e2 at which M2|I has all ones and M2|Z′ has
all zeros. This means that, at all rows corresponding to E1 × E2, the product matrix
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M has weight exactly � + |I | = u at positions corresponding to S and all zeros at
positions corresponding to Z. Therefore, M indeed u-satisfies any choice of the sets
I , S, Z at more than (e1 + 1)(e2 + 1) − 1 rows. �

Consequently, using the coding-theoretic construction of strongly disjunct ma-
trices described in Sect. 5, our explicit constructions of threshold (d, e;u)-disjunct
matrices obtained in Sect. 3 can be extended to the positive gap model at the cost of
a factor O(dg) increase in the number of measurements. The results from combining
the above lemma with various constructions of regular and strongly disjunct matrices
are summarized in Table 1.

4.5 Lower Bounds

We now extend the lower bounds proved in Sect. 2.3 to the positive-gap case, and
show that the optimal exponent of d in the number of measurements is g + 1.

The lower bound on the number of rows of threshold disjunct matrices is an im-
mediate consequence of Proposition 22.

Theorem 25 For every integer d > 0 there is an n0 > 0 such that the following holds.
For any n ≥ n0, let M be an m × n threshold (d, e;u,g)-disjunct matrix. Then, for
some absolute constant c > 0,

m ≥ 0.7c

(
g+d+1

g+1

)
(g + d + 1)

log
(
g+d+1

g+1

) logn + 0.5c

(
g + d + 1

g + 1

)

e

= Ω
(
(d/g)g+2 logd n + (d/g)g+1e

)
.

Proof Immediate from combining Proposition 22 and Theorem 2.19 of [39] that
proves a lower bound on the number of rows of strongly disjunct matrices. The
asymptotic simplification is straightforward. �

In order to lower bound the number of measurements in a threshold design, we
first generalize Lemma 11 as follows.

Lemma 26 Let M be a (d +g, e;u,g − 1)-threshold design, and � := u− (g − 1)−
1 = u − g. be the lower threshold Then M satisfies the following property:

“For every S ⊆ [n] such that |S| = d and every T ⊆ [n] \ S such that |T | = g,
there are more than e rows of M at which M|T consists of all ones and moreover in
those rows, M|S has weight exactly �.”

Proof Let D := d + g be the sparsity parameter in the threshold model that M is
designed for. In order to verify the claimed property for a given choice of S and
T , consider the D-sparse vectors x, x′ ∈ {0,1}n such that supp(x) = S ∪ T and
supp(x′) = S. Let y := M[x]�+1 and y′ := M[x′]u, and observe that y, y′ ∈ M[x]�,u.
Also, since x′ is point-wise less than or equal to x, or in symbols x′ � x, by mono-
tonicity it also follows that y′ � y.
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Thus, we know from the assumption that there are more than e positions at which
y and y′ are different. Let j be any such position. In particular, we know that y(j) = 1
and y′(j) = 0. Therefore, by Definition 19 and the way that the threshold model is
defined, the submatrix M|supp(x′) must have weight at most � at the j th row and
M|supp(x) must have weight at least u at the j th row. Since the support of x is chosen
to be larger than the support of x′ at exactly g positions, and g = u − �, the only
possibility is to have M|supp(x) (that is, M|S∪T ) with weight exactly u at the j th
row and M|supp(x)\supp(x′) (that is, M|T ) having all ones at the j th row. In turn, this
implies that M|supp(x′) (that is, M|S ) must have weight exactly � at that row.

This concludes proof, since the argument holds for every possible choice of the
distinguishing entry j . �

The following theorem is the analogous version of Theorem 12 for the positive-
gap case.

Theorem 27 For every integer d > 0 there is an n0 > 0 such that the following holds.
For any n ≥ n0, let M be an m × n Boolean matrix that satisfies the property quoted
in Lemma 26. Then,

m = Ω

(
m′

logm′ +
(

d

� + 1

)2

logd n + de

(� + 1)2

)

, where

m′ := (d/�g)g+1 logd n + (d/�g)ge

(g + �) logn
.

In particular, when �, g are absolute constants, we have

m = Ω�,g

(
1

logd + log(e + 2)
·
(

dg+1

logd
+ dge

logn

)

+ d2 logd n + de

)

.

Proof First, observe that the property quoted in Lemma 26 is stronger than the prop-
erty quote in Lemma 11. Thus, the lower bound of Theorem 12 holds; namely, we
have

m = Ω

((
d

� + 1

)2

logd n + de

(� + 1)2

)

.

Therefore, it suffices to show that m = Ω(m′/ logm′). Given the matrix M , we will
use a “random resampling method” to create a strongly disjunct matrix out of M , and
will then use the known lower bounds related to strongly disjunct matrices.

Given a vector v ∈ {0,1}n, a resampling of v is a random vector v′ ∈ {0,1}n de-
fined in the following way: For ever i ∈ [n], if v(i) = 0, then we set v′(i) = 0. Other-
wise, we independently set v′(i) = 1 with probability 1/� and zero with the remaining
probability.

Let t > 0 be an integer parameter to be determined later. Let M1, . . . ,Mt be ran-
dom m×n Boolean matrices, such that each Mi is obtained from M by independently
resampling each row of the matrix. Also, define the mt × n Boolean matrix M ′ by
stacking M1, . . . ,Mt on top of one another. We will argue that, if t is chosen suf-
ficiently large, there is a nonzero probability that M ′ becomes a strongly disjunct
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matrix. Thus, there is a fixing of the resampling randomness that indeed makes M ′
strongly disjunct, which then allows us to obtain the desired lower bound.

Consider any triple (j, T ,W) where j ∈ [m], T ,W ⊆ [n] such that |T | = g,
|W | = �, T ∩ W = ∅, and moreover, the j th row of M has all-ones at the columns
picked by T and W . We say that the triple survives in Mi when on the j th row of Mi ,
the columns picked by T all contain ones and those picked by W all contain zeros.
The probability of this happening is exactly

p = (1 − 1/�)� · 1/�g ≥ c/�g,

for some absolute constant c > 0. The probability that the triple does not survive in
any of M1, . . . ,Mt is

(1 − p)t ≤ (1 − c/�g)t ≤ Ct/�g

,

for some absolute constant C ∈ (0,1). Combined with a union bound on all choices
of (j, T ,W), we deduce that the probability that some triple does not survive in any
of M1, . . . ,Mt is at most

mng+�Ct/�g = 2logm+(g+�) logn−(t/�g) log(1/C),

which is strictly less than 1 for some large enough choice of t , namely, for t ≥ t0 such
that

t0 = O(�g((g + �) logn + logm)).

Now, pick t := t0 and fix the resampling randomness so that all triples (j, T ,W)

survive. We claim that the matrix M ′ is strongly (d, e;g)-disjunct.
In order to verify the disjunctness property, consider any choice of sets S,T ⊆ [n]

such that |S| = d and |T | = g. Let J be the set of rows of M where M|T has all-ones
and M|S has Hamming weight �. By the property quoted in Lemma 26, we know that
|J | > e.

For any j ∈ J , we know that the j th row of M|S is supported on some set W ⊆ [n]
of size �. We know, on the other hand, that the triplet (j, T ,W) survives in some Mi .
Clearly, by the way we defined the survival property, this implies that j th row of Mi

(and thus, the corresponding row in M ′) contains all-ones at columns picked by T

and all-zeros at columns picked by S. Since this argument holds for any choice of S,
T , and j , we conclude that M ′ is strongly (d, e;g)-disjunct.

The number of rows of M ′ is mt . We can now apply the known lower bounds on
the number of rows of strongly disjunct matrices in order to lower bound the number
of rows of M ′. In particular, Theorem 2.19 of [39] implies that, for some absolute
constant c′ > 0, and whenever n is sufficiently large for the given parameter d ,

mt ≥ 0.7c′
(
g+d

g

)
(g + d)

log
(
g+d

g

) logn + 0.5c′
(

g + d

g

)

e

≥ 0.7c′ (g + d)g+1 logn

log(g + d)gg+1
logn + 0.5c′ (g + d)ge

gg

= Ω
(
(d/g)g+1 logd n + (d/g)ge

)
.
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Now we substitute the chosen value of t in the above bound to obtain

m = Ω

(
(d/�g)g+1 logd n + (d/�g)ge

(g + �) logn + logm

)

.

Now if n is sufficiently large for the given d , we can ensure that the conditions of
Proposition 31 in the appendix are satisfied, and the above bound implies that

m = Ω(m′/ logm′), where m′ := (d/�g)g+1 logd n + (d/�g)ge

(g + �) logn
,

as claimed. The simplification when � and g are absolute constants is straightfor-
ward. �

Theorem 27 combined with Lemma 26 implies the desired lower bound on the
number of measurements of a threshold design. The following corollary summarizes
the simplified bounds for the case e = 0.

Corollary 28 For every integer d > 0 there is an n0 > 0 such that the following
holds. For any n ≥ n0, let M be an m × n Boolean matrix that is a (d,0;u,g)-
threshold design, for constants u > g ≥ 0. Then,

m = Ωu

(
dg+2

log2 d
+ d2 logn

logd

)

.

5 Strongly Disjunct Matrices from Codes

A well known coding-theoretic construction of combinatorial designs, and classical
disjunct matrices is due to Kautz and Singleton [29], which was further refined in
several subsequent works (such as [21, 22]).

In this section we describe a construction of strongly disjunct matrices (as in Def-
inition 3) which is a straightforward extension of the original construction of Kautz
and Singleton. Construction 5 explains the idea, which is analyzed in Lemma 29 be-
low. In this section we use standard tools from the theory of error-correcting codes.6

The interested reader is referred the standard texts in coding theory (e.g., the books
by MacWilliams and Sloane [32], van Lint [42], and Roth [36]) for background.

Lemma 29 Construction 5 outputs a strongly (d, e;u)-disjunct matrix for every d <

(ñ − e)/((ñ − d̃)u).

Proof Let C := {c1, . . . , cu} ⊆ [n] and C′ := {c′
1, . . . , c

′
d} ⊆ [n] be disjoint subsets

of column indices. We wish to show that, for more than e rows of M , the entries at
positions picked by C are all-ones while those picked by C′ are all-zeros. For each

6We use the standard coding-theoretic notation of (ñ, k, d̃)q code for a q-ary code of length ñ, size qk ,

and minimum distance at least d̃ .
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• Given: An (ñ, k, d̃)q error-correcting code C ⊆ [q]ñ, and integer parameter u > 0.
• Output: An m × n Boolean matrix M , where n = qk , and m = ñqu.
• Construction: First, consider the mapping ϕ : [q] → {0,1}qu

from q-ary symbols
to column vectors of length qu defined as follows. Index the coordinates of the
output vector by the u-tuples from the set [q]u. Then ϕ(x) has a 1 at position
(a1, . . . , au) if and only if there is an i ∈ [u] such that ai = x. Arrange all code-
words of C as columns of an ñ × qk matrix M ′ with entries from [q]. Then replace
each entry x of M ′ with ϕ(x) to obtain the output m × n matrix M .

Construction 5: Extension of Kautz-Singleton’s method [29]

j ∈ [n], denote the j th column of M ′ by M ′(j), and let M ′(C) := {M ′(cj ) : j ∈ [u]},
and M ′(C′) := {M ′(c′

j ) : j ∈ [d]}.
From the minimum distance of C , we know that every two distinct columns of M ′

agree in at most ñ − d̃ positions. By a union bound, for each i ∈ [d], the number
of positions where M ′(c′

i ) agrees with one or more of the codewords in M ′(C) is at
most u(ñ− d̃), and the number of positions where some vector in M ′(C′) agrees with
one or more of those in M ′(C) is at most du(ñ − d̃).

By assumption, we have ñ − du(ñ − d̃) > e, and thus, for a set E ⊆ [ñ] of size
greater than e, at positions picked by E none of the codewords in M ′(C′) agree with
any of the codewords in M ′(C).

Now let w ∈ [q]n be any of the rows of M ′ picked by E, and consider the qu × n

Boolean matrix W formed by applying the mapping ϕ(·) on each entry of w. We
know that {w(cj ) : j ∈ [u]} ∩ {w(c′

j ) : j ∈ [d]} = ∅. Thus we observe that the partic-
ular row of W indexed by (w(c1), . . . ,w(cu)) (and in fact, any of its permutations)
must have all-ones at positions picked by C and all-zeros at those picked by C′. As
any such row is a distinct row of M , it follows that M is strongly (d, e;u)-disjunct. �

Here we mention a few specific instantiations of the above construction. Namely,
we will first consider the family of Reed-Solomon codes, that are also used in the
original work of Kautz and Singleton [29], and then move on to the family of alge-
braic geometric (AG) codes on the Tsfasman-Vlăduţ-Zink (TVZ) bound, Hermitian
codes, and finally, codes on the Gilbert-Varshamov (GV) bound.

5.1 Reed-Solomon Codes

Let p ∈ [0,1) be an arbitrary “noise” parameter. If we take C to be an [ñ, k, d̃]ñ
Reed-Solomon code over an alphabet of size ñ (which we assume to be a prime
power), where d̃ = ñ − k + 1, we get a strongly disjunct (d, e;u)-matrix with m =
O(du logn/(1 − p))u+1 rows and e = pñ = Ω(pdu(logn)/(1 − p)).

5.2 Algebraic Geometric Codes on the TVZ Bound

Another interesting family for the code C is the family of algebraic geometric codes
that attain the Tsfasman-Vlăduţ-Zink bound (cf. [26, 41]). This family is defined
over any alphabet size q ≥ 49 that is a square prime power, and achieves a minimum
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distance d̃ ≥ ñ − k − ñ/(
√

q − 1). Let e := pn, for a noise parameter p ∈ [0,1). By
Lemma 29, the underlying code C needs to have minimum distance at least ñ(1 −
(1 − p)/(du)). Thus in order to be able to use the above-mentioned family of AG
codes, we need to have q � (du/(1 − p))2 =: q0. Let us take an appropriate q ∈
[2q0,8q0], and following Lemma 29, ñ− d̃ = �ñ(1 −p)/(du)�. Thus, the dimension
of C becomes at least

k ≥ ñ − d̃ − ñ√
q − 1

= Ω

(
ñ(1 − p)

du

)

= Ω(ñ/
√

q0),

and subsequently7 we get that logn = k logq ≥ k = Ω(ñ/
√

q0). Now, noting that
m = quñ, we conclude that

m = quñ = O(q
u+1/2
0 logn) = O

(
du

1 − p

)2u+1

logn,

and e = Ω(pdu(logn)/(1 − p)).
We see that the dependence of the number of measurements on the sparsity pa-

rameter d is worse for AG codes than Reed-Solomon codes by a factor du, but the
construction from AG codes benefits from a linear dependence on logn, compared
to logu+1 n for Reed-Solomon codes. Thus, AG codes become more favorable only
when the sparsity is substantially low; namely, when d � logn.

5.3 Hermitian Codes

A particularly nice family of AG codes arises from the Hermitian function field. Let
q ′ be a prime power and q := q ′2. Then the Hermitian function field over Fq is a finite
extension of the rational function field Fq(x), denoted by Fq(x, y), where we have
yq ′ + y = xq ′+1. The structure of this function field is relatively well understood and
the family of Goppa codes defined over the rational points of the Hermitian function
field is known as Hermitian codes. This family is recently used by Ben-Aroya and
Ta-Shma [1] for construction of small-bias sets. Below we quote some parameters of
Hermitian codes from their work.

The number of rational points of the Hermitian function field is equal to q ′3 + 1,
which includes a common pole Q∞ of x and y. The genus of the function field is
g̃ = q ′(q ′ − 1)/2. For some integer parameter r , we take G := rQ∞ as the divisor
defining the Riemann-Roch space L(G) of the code C , and the set of rational points
except Q∞ as the evaluation points of the code. Thus the length of C becomes ñ =
q ′3. Moreover, the minimum distance of the code is d̃ = n − deg(G) = n − r . When
r ≥ 2g̃ − 1, the dimension of the code is given by the Riemann-Roch theorem, which
is equal to r − g̃ + 1. For the low-degree regime where r < 2g̃ − 1, the dimension k

of the code is the size of the Wirestrauss semigroup of G, which turns out to be the
set W = {(i, j) ∈ N2 : j ≤ q ′ − 1 ∧ iq ′ + j (q ′ + 1) ≤ r}.

7Note that, given the parameters p,d,n, the choice of q depends on p,d , as explained above, and then

one can choose the code length ñ to be the smallest integer for which we have qk ≥ n. But for the sake of
clarity we have assumed that qk = n, which does not affect the asymptotic bounds.
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Now, given parameters d,p of the disjunct matrix, define ρ := (1 − p)/

((d + 1)u), take the alphabet size q as a square prime power, and set r := ρq3/2.
First we consider the case where r < 2g̃ − 1 = 2q − 2

√
q − 1. In this case, the

dimension of the Hermitian code becomes k = |W | = Ω(r2/q) = Ω(ρ2q2). The dis-
tance d̃ of the code satisfies d̃ = ñ− r ≥ ñ(1−ρ) and thus, for e := pñ, conditions of
Lemma 29 are satisfied. The number of the rows of the resulting measurement matrix
becomes m = qu+3/2, and we have n = qk . Therefore,

logn = k logq ≥ k = Ω(ρ2q2) ⇒ q = O(
√

logn/ρ)

⇒ m = O

((
d
√

logn

1 − p

)u+3/2
)

,

and in order to ensure that r < 2g̃ −1, we need to have du/(1−p) � √
logn. On the

other hand, when du/(1 − p) � √
logn, we are in the high-degree regime, in which

case the dimension of the code becomes k = r − g̃ + 1 = Ω(r) = Ω(ρq3/2), and we
will thus have

q = O((logn/ρ)2/3) ⇒ m = O

((
d logn

1 − p

)1+2u/3
)

Altogether, we conclude that Construction 5 with Hermitian codes results in a
strongly (d, e;u)-disjunct matrix with

m = O

((
d
√

logn

1 − p
+

(
d logn

1 − p

)2/3)u+3/2
)

rows, where e = p · Ω(d(logn)/(1 − p) + (d
√

logn/(1 − p))3/2). Compared to the
Reed-Solomon codes, the number of measurements has a slightly worse dependence
on d , but a much better dependence on n. Compared to AG codes on the TVZ bound,
the dependence on d is better while the dependence on n is inferior.

5.4 Codes on the Gilbert-Varshamov Bound

A q-ary (ñ, k, d̃)-code (of sufficiently large length) is said to be on the Gilbert-
Varshamov bound if it satisfies k ≥ ñ(1 − hq(d̃/ñ)), where hq(·) is the q-ary entropy
function defined as

hq(x) := x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x).

It is well known that a random linear code achieves the bound with overwhelming
probability (cf. [32]). Now we apply Lemma 29 on a code on the GV bound, and
calculate the resulting parameters. Let ρ := (1 − p)/(4du), choose any alphabet size
q ∈ [1/ρ,2/ρ], and let C be any q-ary code of length ñ on the GV bound, with
minimum distance d̃ ≥ ñ(1 − 2/q). By the Taylor expansion of the function hq(x)

around x = 1 − 1/q , we see that the dimension of C asymptotically behaves as k =
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Θ(ñ/(q logq)). Thus, the number of columns of the resulting measurement matrix
becomes n = qk = 2Ω(ñ/q). Moreover, the number m of its rows becomes

m = quñ = O(qu+1 logn) = O((d/(1 − p))u+1 logn),

and the matrix becomes strongly (d, e;u)-disjunct for e = pñ = Ω(pd(logn)/

(1 − p)).
We remark that for the range of parameters that we are interested in, Porat and

Rothschild [34] have obtained a deterministic construction of linear codes on the GV
bound that runs in time poly(qk) (and thus, polynomial in the size of the resulting
measurement matrix).

Their construction is based on a derandomization of the probabilistic argument for
random linear codes using the method of conditional expectations, and as such, can
be considered weakly explicit (in the sense that, the entire measurement matrix can be
computed in polynomial time in its length; whereas for a fully explicit construction
one must ideally be able to deterministically compute any single entry of the mea-
surement matrix in time poly(d, logn), which is not the case for this construction).
Altogether, we obtain the following result.

Theorem 30 There is an algorithm that, given integer parameters d ≤ n and u > 0
and real parameter p ∈ [0,1) outputs an m × n binary matrix which is strongly
(d, e;u)-disjunct. The parameters m and e satisfy the bounds m = O((d/(1 −
p))u+1 logn) and e = Ω(pd(logn)/(1 − p)). Moreover, the running time of the al-
gorithm is polynomial in mn.

Using a standard probabilistic argument it is easy to see that a random m × n

matrix, where each entry is an independent Bernoulli random variable with probabil-
ity 1/d of being 1, is with overwhelming probability strongly (d, e;u)-disjunct for
e = Ω(pd log(n/d)/(1 − p)2) and m = O(du+1(log(n/d))/(1 − p)2) (the proof is
very similar to the proof of Lemma 14). Thus we see that, for a fixed p, Construc-
tion 5 when using codes on the GV bound almost matches these parameters. More-
over, the explicit construction based on Reed-Solomon codes possesses the “right”
dependence on the sparsity d , while AG codes on the TVZ bound have a matching
dependence on the vector length n with random measurement matrices, and finally,
the trade-off offered by the construction based on Hermitian codes lies in between
the one for Reed-Solomon codes and AG codes.

6 Concluding Remarks

In this work we have introduced the combinatorial notion of regular binary matrices,
that is used as an intermediate tool towards obtaining threshold testing designs.

Even though our construction, assuming an optimal lossless condenser, matches
the probabilistic upper bound for regular matrices, the number of measurements in
the resulting threshold testing scheme (obtained from the simple direct product in
Construction 1) becomes larger than the probabilistic upper bound by a factor of
Ω(d logn). Thus, an outstanding question is directly constructing threshold disjunct
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matrices that match the probabilistic upper bound. Despite this, the notion of regu-
lar matrices may be of independent interest, and an interesting question is to obtain
(nontrivial) concrete lower bounds on the number of rows of such matrices in terms
of the parameters n,d, e,u (and the gap parameter g in the generalized definition of
Sect. 4).

Moreover, in this work we have assumed the upper threshold u to be a fixed con-
stant, allowing the constants hidden in asymptotic notions to have a poor dependence
on u. An outstanding question is whether the number of measurements can be reason-
ably controlled when the upper threshold u and possibly the gap parameter g become
large; e.g., g,u = Ω(d).

The lower bound proved in Corollary 28 on the number of rows of thresh-
old designs shows an exponent g + 2 for the sparsity parameter, which matches
the upper bounds obtained using the probabilistic method. We conjecture that this
bound can be improved to Ωu(d

g+2 logd n) and more generally when e > 2, to
Ωu(d

g+2 logd n + dg+1e). In other words, for fixed thresholds, we suspect that
the asymptotic bounds for (d, e;u,g)-threshold designs and strongly (d, e;g + 1)-
disjunct matrices should nearly be the same.

Another interesting problem is decoding. While our constructions can combina-
torially guarantee identification of sparse vectors, for applications it is important to
have an efficient reconstruction algorithm as well. Contrary to the case of strongly
disjunct matrices that allow a straightforward decoding procedure (cf. [5]), it is not
clear whether in general our notion of disjunct matrices allow efficient decoding, and
thus it becomes important to look for constructions that are equipped with efficient
reconstruction algorithms.

Finally, for clarity of the exposition, in this work we have only focused on asymp-
totic trade-offs, and it would be nice to obtain good, finite length, estimates on the
obtained bounds that are useful for applications.

Acknowledgements The author thanks Christian Deppe, Arkadii D’yachkov, and Vyacheslav Rykov
for fruitful discussions, and anonymous referees for their feedback on earlier drafts of this work.

Appendix: A Technical Lemma

The following simple proposition is used in the proof of Theorem 27.

Proposition 31 Suppose for some values of a > 0, b,m ≥ 2, and c ≥ 2b/a, we have
m ≥ c · a

b+logm
, where the logarithm is to base 2. Then,

m ≥ (ac/b)

log(ac/b)
.

Proof We can write

m ≥ c · a

b + logm
≥ ca

b logm
⇒ m logm ≥ ac/b,

where the second inequality is from the assumption that b,m ≥ 2.
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Since m logm is an increasing and convex function of m, we know that m ≥ m0,
where m0 is the solution to the equation m0 logm0 = ac/b. Thus it suffices to lower
bound m0.

Since ac/b ≥ 2 by assumption, it follows that m0 ≤ m0 logm0 = ac/b, and thus,

m0 log(ac/b) ≥ m0 logm0 = ac/b ⇒ m0 ≥ (ac/b)

log(ac/b)
,

and the claim follows. �
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