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Abstract We revisit various string indexing problems with range reporting features,
namely, position-restricted substring searching, indexing substrings with gaps, and
indexing substrings with intervals. We obtain the following main results.

• We give efficient reductions for each of the above problems to a new problem,
which we call substring range reporting. Hence, we unify the previous work by
showing that we may restrict our attention to a single problem rather than studying
each of the above problems individually.

• We show how to solve substring range reporting with optimal query time and little
space. Combined with our reductions this leads to significantly improved time-
space trade-offs for the above problems. In particular, for each problem we obtain
the first solutions with optimal time query and O(n logO(1) n) space, where n is the
length of the indexed string.

• We show that our techniques for substring range reporting generalize to substring
range counting and substring range emptiness variants. We also obtain non-trivial
time-space trade-offs for these problems.

Our bounds for substring range reporting are based on a novel combination of suffix
trees and range reporting data structures. The reductions are simple and general and
may apply to other combinations of string indexing with range reporting.
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1 Introduction

Given a string S of length n the string indexing problem is to preprocess S into
a compact representation that efficiently supports substring queries, that is, given
another string P of length m report all occurrences of substrings in S that match P .
Combining the classic suffix tree data structure [15] with perfect hashing [14] leads to
an optimal time-space trade-off for string indexing, i.e., an O(n) space representation
that supports queries in O(m + occ) time, where occ is the number of occurrences of
P in S.

In recent years, several extensions of string indexing problems that add range
reporting features have been proposed. For instance, Mäkinen and Navarro proposed
the position-restricted substring searching problem [22, 23]. Here, queries take an
additional range [a, b] of positions in S and the goal is to report the occurrences of P

within S[a, b]. For such extensions of string indexing no optimal time-space trade-off
is known. For instance, for position-restricted substring searching one can either get
O(n logε n) space (for any constant ε > 0) and O(m + log logn + occ) query time
or O(n1+ε) space with O(m + occ) query time [8, 9, 22, 23]. Hence, removing the
log logn term in the query comes at the cost of significantly increasing the space.

In this paper, we revisit a number string indexing problems with range report-
ing features, namely position-restricted substring searching, indexing substrings with
gaps, and indexing substrings with intervals. We achieve the following results.

• We give efficient reductions for each of the above problems to a new problem,
which we call substring range reporting. Hence, we unify the previous work by
showing that we may restrict our attention to a single problem rather than studying
each of the above problems individually.

• We show how to solve substring range reporting with optimal query time and little
space. Combined with our reductions this leads to significantly improved time-
space trade-offs for all of the above problems. For instance, we show how to solve
position-restricted substring searching in O(n logε n) space and O(m+occ) query
time.

• We show that our techniques for substring range reporting generalize to substring
range counting and substring range emptiness variants. We also obtain non-trivial
time-space trade-offs for these problems.

Our bounds for substring range reporting are based on a novel combination of suffix
trees and range reporting data structures. The reductions are simple and general and
may apply to other combinations of string indexing with range reporting.

1.1 Substring Range Reporting

Let S be a string where each position is associated with a integer value in the range
[0, u]. The integer associated with position i in S is the label of position i, denoted
label(i), and we call S a labeled string. Given a labeled string S, the substring range
reporting problem is to compactly represent S while supporting substring range re-
porting queries, that is, given a string P and a pair of integers a and b, 0 ≤ a ≤ b ≤ u,
report all starting positions in S that match P and whose labels are in the range [a, b].
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We assume a standard unit-cost RAM model with word size w and a standard
instruction set including arithmetic operations, bitwise boolean operations, and shifts.
We assume that a label can be stored in a constant number of words and therefore
w = Θ(logu). The space complexity is the number of words used by the algorithm.
All bounds mentioned in this paper are valid in this model of computation.

To solve substring range reporting a basic approach is to combine a suffix tree with
a 2D range reporting data structure. A query for a pattern P and range [a, b] consists
of a search in the suffix tree and then a 2D range reporting query with [a, b] and the
lexicographic range of suffixes defined P . This is essentially the overall approach
used in the known solutions for position-restricted substring searching [4, 8–10, 22,
23, 32], which is a special case of substring range reporting (see the next section).

Depending on the choice of the 2D range reporting data structure this approach
leads to different trade-offs. In particular, if we plug in the 2D range reporting data
structure of Alstrup et al. [2], we get a solution with O(n logε n) space and O(m +
log logu + occ) query time (see Mäkinen and Navarro [22, 23]). The log logu term
in the query time is from the range reporting query. Alternatively, if we use a fast
data structure for the range successor problem [8, 9, 32] to do the range reporting,
we get optimal O(m + occ) query time but increase the space to at least Ω(n1+ε).
Indeed, since any 2D range reporting data structure with O(n logO(1) n) space must
use Ω(log logu) query time [27], we cannot hope to avoid this blowup in space with
this approach.

Our first main contribution is a new and simple technique that overcomes the in-
herent problem of the previous approach. We show the following result.

Theorem 1 Let S be a labeled string of length n with labels in the range [0, u]. For
any constants ε, δ > 0, we can solve substring range reporting using O(n(logε n +
log logu)) space, O(n(logn+ logδ u)) expected preprocessing time, and O(m+occ)
query time, for a pattern string of length m.

Compared to the previous results we achieve optimal query time with an additional
O(n log logu) term in the space. For the applications considered here, we have that
u = O(n) and therefore the space bound simplifies to O(n(logε n + log logu)) =
O(n logε n). Hence, in this case there is no asymptotic space overhead.

The key idea to obtain Theorem 1 is a new and simple combination of suffix trees
with multiple range reporting data structures for both 1 and 2 dimensions. Our solu-
tion handles queries differently depending on the length of the input pattern such that
the overall query is optimized accordingly.

Interestingly, the idea of using different query algorithms depending on the length
of the pattern is closely related to the concept of filtering search introduced for the
standard range reporting problem by Chazelle as early as 1986 [6]. Our new results
show that this idea is also useful in combinatorial pattern matching.

Finally, we also consider substring range counting and substring range emptiness
variants. Here, the goal is to count the number of occurrences in the range and to
determine whether or not the range is empty, respectively. Similar to substring range
reporting, these problems can also be solved in a straightforward way by combining a
suffix with a 2D range counting or emptiness data structure. We show how to extend
our techniques to obtain improved time-space trade-offs for both of these problems.
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1.2 Applications

Our second main contribution is to show that substring range reporting actually cap-
tures several other string indexing problems. In particular, we show how to reduce
the following problems to substring range reporting.

• Position-restricted substring searching: Given a string S of length n, construct a
data structure supporting the following query: Given a string P and query interval
[a, b], with 1 ≤ a ≤ b ≤ n, return the positions of substrings in S matching P

whose positions are in the interval [a, b].
• Indexing substrings with intervals: Given a string S of length n, and a set of inter-

vals π = {[s1, f1], [s2, f2], . . . , [s|π |, f|π |]} such that si , fi ∈ [1, n] and si ≤ fi , for
all 1 ≤ i ≤ |π |, construct a data structure supporting the following query: Given a
string P and query interval [a, b], with 1 ≤ a ≤ b ≤ n, return the positions of sub-
strings in S matching P whose positions are in [a, b] and in one of the intervals in
π .

• Indexing substrings with gaps: Given a string S of length n and an integer d , the
problem is to construct a data structure supporting the following query: Given two
strings P1 and P2 return all positions of substrings in S matching P1 ◦ �d ◦ P2.
Here ◦ denotes concatenation and � is a wildcard matching all characters in the
alphabet.

Previous Results Let m be the length of P . Mäkinen and Navarro [22, 23] intro-
duced the position-restricted substring searching problem. Their fastest solution uses
O(n logε n) space, O(n logn) expected preprocessing time, and O(m + log logn +
occ) query time. Crochemore et al. [8, 9] proposed another solution using O(n1+ε)

space, O(n1+ε) preprocessing time, and O(m + occ) query time (see also Sect. 1.1).
Using techniques from range non-overlapping indexing [7] it is possible to improve
these bounds for small alphabet sizes [28]. Several succinct versions of the prob-
lem have also been proposed [4, 22, 23, 32]. All of these have significantly worse
query time since they require superconstant time per reported occurrence. Finally,
Crochemore et al. [11] studied a restricted version of the problem with a = 1 or
b = n.

For the indexing substrings with intervals problem, Crochemore et al. [8–10] gave
a solution with O(n log2 n) space, O(|π | + n log3 n) expected preprocessing time,
and O(m + log logn + occ) query time. They also showed how to achieve O(n1+ε)

space, O(n1+ε + |π |) preprocessing time, and O(m + occ) query time. Several pa-
pers [3, 18, 21] have studied the property matching problem, which is similar to the
indexing substrings with intervals problem, but where both start and end point of the
match must be in the same interval.

Iliopoulos and Rahman [19] studied the problem of indexing substrings with gaps.
They gave a solution using O(n logε n) space, O(n logn) expected preprocessing
time, and O(m + log logn + occ) query time, where m is the length of the two input
strings. Crochemore and Tischler recently proposed a variant of the problem [12].

Our Results We reduce position-restricted substring searching, indexing substrings
with intervals, and indexing substrings with gaps to substring range reporting. Ap-
plying Theorem 1 with our new reductions, we get the following result.
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Theorem 2 Let S be a string of length n and let m be the length of the query. For
any constant ε > 0, we can solve

(i) Position-restricted substring searching using O(n logε n) space, O(n logn) ex-
pected preprocessing time, and O(m + occ) query time.

(ii) Indexing substrings with intervals using O(n logε n) space, O(|π | + n logn)

expected preprocessing time, and O(m + occ) query time.
(iii) Indexing substrings with gaps using O(n logε n) space, O(n logn) expected pre-

processing time, and O(m + occ) query time (m is the size of the two input
strings).

This improves the best known time-space trade-offs for all three problems, that all
suffer from the trade-off inherent in 2D range reporting.

The reductions are simple and general and may apply to other combinations of
string indexing with range reporting.

2 Basic Concepts

2.1 Strings and Suffix Trees

Throughout the section we will let S be a labeled string of length |S| = n with labels
in [0, u]. We denote the character at position i by S[i] and the substrings from posi-
tion i to j by S[i, j ]. The substrings S[1, j ] and S[i, n] are the prefixes and suffixes of
S, respectively. The reverse of S is SR . We denote the label of position i by labelS(i).
The order of suffix S[i, n], denoted orderS(i), is the lexicographic order of S[i, n]
among the suffixes of S.

The suffix tree for S, denoted TS , is the compacted trie storing all suffixes of S [15].
The depth of a node v in TS is the number of edges on the path from v to the root. Each
of the edges in TS is associated with some substring of S. The children of each node
are sorted from left to right in increasing alphabetic order of the first character of the
substring associated with the edge leading to them. The concatenation of substrings
from the root to v is denoted strS(v). The string depth of v, denoted strdepthS(v), is
the length of strS(v). The locus of a string P , denoted locusS(P ), is the minimum
depth node v such that P is a prefix of strS(v). If P is not a prefix of a substring in S

we define locusS(P ) to be ⊥.
Each leaf � in TS uniquely corresponds to a suffix in S, namely, the suffix strS(�).

Hence, we will use labelS(�) and orderS(�) to refer to the label and order of the
corresponding suffix. For an internal node v we extend the notation such that

labelS(v) = {
labelS(�) | � is a descendant leaf of v

}
,

orderS(v) = {
orderS(�) | � is a descendant leaf of v

}
.

Since children of a node are sorted, the left to right order of the leaves in TS cor-
responds to the lexicographic order of the suffixes of S. Hence, for any node v,
orderS(v) is an interval. We denote the left and right endpoints of this interval by
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lv and rv . When the underlying string S is clear from the context we will often drop
the subscript S for brevity.

The suffix tree for S uses O(n) space and can be constructed in O(sort(n)) time,
where sort(n) is the time for sorting n values in the model of computation [13]. We
only need a standard comparison-based O(n logn) suffix tree construction in our
results. Let P be a string of length m. If locusS(P ) = ⊥ then P does not occur
as a substring in S. Otherwise, the substrings in S that match P are the suffixes in
orderS(locusS(P )). Hence, we can compute all occurrences of P in S by traversing
the suffix tree from the root to locusS(P ) and then report all suffixes stored in the
subtree. Using perfect hashing [14] to represent the outgoing edges of each node in TS

we achieve an O(n) solution to string indexing that supports queries in O(m + occ)
time (here occ is the total number of occurrences of P in S).

2.2 Range Reporting

Let X ⊆ {0, . . . , u}d be a set of points in a d-dimensional grid. The range reporting
problem in d-dimensions is to compactly represent X while supporting range report-
ing queries, that is, given a rectangle R = [a1, b1] × · · · × [ad, bd ] report all points in
the set R ∩X. We use the following results for range reporting in 1 and 2 dimensions.

Lemma 1 (Alstrup et al. [1], Mortensen et al. [25]) For a set of n points in [0, u] and
any constant γ > 0, we can solve 1D range reporting using O(n) space, O(n logγ u)

expected preprocessing time and O(1 + occ) query time.

Lemma 2 (Alstrup et al. [2]) For a set of n points in [0, u] × [0, u] and any constant
ε > 0, we can solve 2D range reporting using O(n logε n) space, O(n logn) expected
preprocessing time, and O(log logu + occ) query time.

3 Substring Range Reporting

We now show Theorem 1. Recall that S is a labeled string of length n with labels
from [0, u].

3.1 The Data Structure

Our substring range reporting data structure consists of the following components.

• The suffix tree TS for S. For each node v in TS we also store lv and rv . We partition
TS into a top tree and a number of bottom trees. The top tree consists of all nodes in
TS whose string depth is at most log logu and all their children. The trees induced
by the remaining nodes are the forest of bottom trees.

• A 2D range reporting data structure on the set of points {(orderS(i), labelS(i)) | i ∈
{1, . . . , n}}.

• For each node v in the top tree, a 1D range reporting data structure on the set
{labelS(i) | i ∈ orderS(v)}.
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We analyze the space and preprocessing time for the data structure. We use the range
reporting data structures from Lemmas 1 and 2. The space for the suffix tree is O(n)

and the space for the 2D range reporting data structure is O(n logε n), for any con-
stant ε > 0. We bound the space for the (potentially Ω(n)) 1D range reporting data
structures stored for the top tree. Let Vd be the set of nodes in the top tree with
depth d . Since the sets orderS(v), v ∈ Vd , partition the set of descendant leaves of
nodes in Vd , the total size of these sets is as most n. Hence, the total size of the 1D
range reporting data structures for the nodes in Vd is therefore O(n). Since there
are at most log logu + 1 levels in the top tree, the space for all 1D range report-
ing data structures is O(n log logu). Hence, the total space for the data structure is
O(n(logε n + log logu)).

We can construct the suffix tree in O(sort(n)) time and the 2D range reporting
data structure in O(n logn) expected time. For any constant γ > 0, the expected
preprocessing time for all 1D range reporting data structures is

O

( ∑

v in top tree

∣∣orderS(v)
∣∣ logγ u

)
= O

(
n log logu logγ u

) = O
(
n log2γ u

)
.

Setting δ = 2γ we use O(n(logn + logδ u)) expected preprocessing time in total.

3.2 Substring Range Queries

Let P be a string of length m, and let a and b be a pair of integers, 0 ≤ a ≤ b ≤ u. To
answer a substring range query we want to compute the set of starting positions for P

whose labels are in [a, b]. First, we compute the node v = locusS(P ). If v = ⊥ then
P is not a substring of S, and we return the empty set. Otherwise, we compute the set
of descendant leaves of v with labels in [a, b]. There are two cases to consider.

(i) If v is in the top tree we query the 1D range reporting data structure for v with
the interval [a, b].

(ii) If v is in a bottom tree, we query the 2D range reporting data with the rectangle
[lv, rv] × [a, b].

Given the points returned by the range reporting data structures, we output the cor-
responding starting positions of the corresponding suffixes. From the definition of
the data structure it follows that these are precisely the occurrences of P within the
range [a, b]. Next consider the time complexity. We find locusS(P ) in O(m) time
(see Sect. 2). In case (i) we use O(1 + occ) time to compute the result by Lemma 1.
Hence, the total time for a substring range query for case (i) is O(m+occ). In case (ii)
we use O(log logu + occ) time to compute the result by Lemma 2. We have that
v = locusS(P ) is in a bottom tree and therefore m ≥ strdepth(parent(locusS(v))) >

log logu. Hence, the total time to answer a substring range query in case (ii) is
O(m + log logu + occ) = O(m + occ). Thus, in both cases we use O(m + occ)
time.

Summing up, our solution uses O(n(logε n + log logu) space, O(n(logn +
logδ u)) expected preprocessing time, and O(m + occ) query time. This completes
the proof of Theorem 1.
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4 Applications

In this section we show how to improve the results for the three problems position-
restricted substring searching, indexing substrings with intervals, and indexing
gapped substrings, using our data structure for substring range reporting. Let
REPORTS(P, a, b) denote a substring range reporting query on string S with pa-
rameters P , a, and b.

4.1 Position-Restricted Substring Searching

We can reduce position-restricted substring searching to substring range reporting by
setting label(i) = i for all i = 1, . . . , n. To answer a query we return the result of the
substring range query REPORTS(P, a, b). Since each label is equal to the position, it
follows that the solution to the substring range reporting instance immediately gives a
solution to position-restricted substring searching. Applying Theorem 1 with u = n,
this proves Theorem 2(i).

4.2 Indexing Substrings with Intervals

We can reduce indexing substrings with intervals to substring range reporting by
setting

label(i) =
{

i if i ∈ ϕ for some ϕ ∈ π,

0 otherwise.

To answer a query we return the result of the substring range reporting query
REPORTS(P, a, b). Let I be the solution to the indexing substrings with intervals
instance and let I ′ be the solution to the substring range reporting instance derived
by the above reduction. Then i ∈ I ⇔ i ∈ I ′.

To prove this assume i ∈ I . Then i ∈ ϕ for some ϕ ∈ π and i ∈ [a, b]. From i ∈ ϕ

and the definition of label(i) it follows that label(i) = i. Thus, label(i) = i ∈ [a, b]
and thus i ∈ I ′. Assume i ∈ I ′. Then label(i) ∈ [a, b]. Since a > 0 also label(i) > 0,
and it follows that label(i) = i. By the reduction this means that i ∈ ϕ for some ϕ ∈ π .
Since i = label(i), we have i ∈ [a, b] and therefore i ∈ I .

We can construct the labeling in O(n+|π |) if the intervals are sorted by startpoint
or endpoint. Otherwise additional time for sorting is needed. A similar approach is
used in the solution by Crochemore et al. [8, 9].

Applying Theorem 1 with u = n, this proves Theorem 2(ii).

4.3 Indexing Substrings with Gaps

We can reduce the indexing substrings with gaps problem to substring range reporting
as follows. Construct the suffix tree of the reverse of S, i.e., the suffix tree TSR for
SR . For each node v in TSR also store lv and rv . Set

labelS(i) =
{

orderSR (n − i + d + 2) for i ≥ d + 2,

0 otherwise.
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Fig. 1 A string S, the labeling for d = 2 (below the string), and the suffix tree of TSR . Given a query
P1 = ab and P2 = bac we find v = locusSR (ba) (marked in the suffix tree). We have lv = 6 and rv = 7
from the left-to-right-order in T

SR . The substring range reporting query REPORTS(P2,6,7) returns 7.
Hence, we report the occurrence at position 7 − 2 − 2 = 3

To answer a query find the locus node v of P R
1 in TSR . Then use the substring range

reporting data structure to return all positions of substrings in S matching P2 whose
labels are in the range [lv, rv]. For each position i returned by REPORTS(P2, lv, rv),
return i − |P1| − d . See Fig. 1 for an example.

Correctness of the Reduction We will now show that the reduction is correct. Let I

be the solution to the indexing substrings with gaps instance and let I ′ be the solution
to the substring range reporting instance derived by the above reduction. We will
show i ∈ I ⇔ i ∈ I ′. Let mi = |Pi | for i = 1,2.

If i ∈ I then there is an occurrence of P1 at position i in S and an occurrence of
P2 at position i′ = i + m1 + d in S. It follows directly, that there is an occurrence of
P R

1 at position i′′ = n − (i + m1) + 2 in SR . By definition,

labelS
(
i′
) = labelS(i +m1 +d) = orderSR

(
n− (i +m1 +d)+d +2

) = orderSR

(
i′′

)
,

where the second equality follows from the fact that i + m1 + d ≥ d + 2. Since there
is an occurrence of P R

1 at position i′′ in SR , we have labelS(i′) = orderSR (i′′) ∈
orderSR (locusSR (P R

1 )). Thus, labelS(i′) ∈ [lv, rv], and since there is an occurrence of
P2 at position i′ in S, we have i′ − m1 − d = i ∈ I ′.

If i ∈ I ′ then there is an occurrence of P2 at position i′ = i +m1 +d with label(i′)
in the range [lv, rv], where v = locusSR (P R

1 ). We need to show that this implies that
there is an occurrence of P1 at position i in S. By definition,

labelS
(
i′
) = orderSR

(
n − i′ + d + 2

) = orderSR (n − i − m1 + 2).

Let i′′ = n − i − m1 + 2. Since orderSR (i′′) = labelS(i′) ∈ [lv, rv], there is an occur-
rence of P R

1 at position i′′ in SR . It follows directly, that there is an occurrence of P1

at position n − i′′ − m1 + 2 = n − (n − i − m1 + 2) − m1 + 2 = i in S. Therefore,
i ∈ I .



Algorithmica (2014) 69:384–396 393

Complexity Construction of the suffix tree TSR takes time O(n logn) and the label-
ing can be constructed in time O(n). Both use space O(n). It takes O(m1) time to
find the locus nodes of P R

1 in TSR . The substring range reporting query takes time
O(m2 + occ). Thus the total query time is O(m + occ).

Applying Theorem 1 with u = n, this completes the proof of Theorem 2(iii).

5 Substring Range Counting and Emptiness

We now show how to apply our techniques to substring range counting and sub-
string range emptiness. Analogous to substring range reporting, the goal is here to
count the number of occurrences in the range and to determine whether or not the
range is empty, respectively. A straightforward way to solve these problems is to
combine a suffix tree with a 2D range counting data structure and a 2D range empti-
ness data structure, respectively. Using the techniques from Sect. 3 we show how to
significantly improve the bounds of this approach in both cases. We note that by the
reductions in Sect. 4 the bounds for substring range counting and substring range
emptiness also immediately imply results for counting and emptiness versions of
position-restricted substring searching, indexing substrings with intervals, and index-
ing substrings with gaps.

5.1 Preliminaries

Let X ⊆ {0, . . . , u} be a set of points in a d-dimensional grid. Given a query rectangle
R = [a1, b1] × · · · × [ad, bd ], a range counting query computes |R ∩ X|, and a range
emptiness query computes if R ∩ X = ∅. Given X the range counting problem and
the range emptiness problem is to compactly represent X, while supporting range
counting queries and range emptiness queries, respectively. Note that any solution
for range reporting or range counting implies a solution for range emptiness with the
same complexity (ignoring the occ term for range reporting queries). We will need
the following additional geometric data structures.

Lemma 3 (JáJá et al. [20]) For a set of n points in [0, u] × [0, u] we can
solve 2D range counting in O(n) space, O(n logn) preprocessing time, and
O(logn/ log logn + log logu) query time.

Lemma 4 (van Emde Boas et al. [30, 31], Mehlhorn and Näher [24]) For a set of
n points in [0, u] we can solve 1D range counting in O(n) space, O(n log logn)

preprocessing time, and O(log logu) query time.

To achieve the result of Lemma 4 we use a van Emde Boas data structure [30, 31]
implemented in linear space [24] using perfect hashing. This data structure supports
predecessor queries in O(log logu) time. By also storing for each point it’s rank
in the sorted order of the points, we can compute a range counting query by two
predecessor queries. To build the data structure efficiently we need to sort the points
and build suitable perfect hash tables. We can sort deterministically in O(n log logn)

time [17], and we can build the needed hash tables in O(n) time using deterministic
hashing [16] combined with a standard two-level approach (see e.g., Thorup [29]).
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Lemma 5 (Chan et al. [5]) For a set of n points in [0, u] × [0, u] we can solve
2D range emptiness in O(n log logn) space, O(n logn) preprocessing time, and
O(log logu) query time.

5.2 The Data Structures

We now show how to efficiently solve substring range counting and substring range
emptiness. Recall that S is a labeled string of length n with labels from [0, u].

We can directly solve substring range counting by combining a suffix tree with
the 2D range counting result from Lemma 3. This leads to a solution using O(n)

space and O(m + logn/ log logn + log logu) query time. We show how to im-
prove the query time to O(m + log logu) at the cost of increasing the space to
O(n logn/ log logn). Hence, we remove the logn/ log logn term from the query time
at the cost of increasing the space by a logn/ log logn factor. We cannot hope to
achieve such a bound using a suffix tree combined with a 2D range counting data
structure since any 2D range counting data structure using O(n logO(1) n) space
requires Ω(logn/ log logn) query time [26]. We can also directly solve substring
range emptiness by combining a suffix tree with the 2D range emptiness result from
Lemma 5. This solution uses O(n log logn) space and O(m + log logu) query time.
We show how to achieve optimal O(m) query time with space O(n log logu).

Our data structure for substring range counting and existence follows the construc-
tion in Sect. 3. We partition the suffix tree into a top and a number of bottom trees and
store a 1D data structure for each node in the top tree and a single 2D data structure.
To answer a query for a pattern string P of length m, we search the suffix tree with
P and use the 1D data structure if the search ends in the top tree and otherwise use
the 2D data structure.

We describe the specific details for each problem. First we consider substring
range counting. In this case the top tree consists of all nodes of string depth at most
logn/ log logn. The 1D and 2D data structures used are the ones from Lemma 4
and 3. By the same arguments as in Sect. 3 the total space used for the 1D data struc-
tures for all nodes in the top tree at depth d is at most O(n) and hence the total space
for all 1D data structures is O(n(logn/ log logn)). Since the 2D data structure uses
O(n) space, the total space is O(n logn/ log logn). The time to build all 1D data
structures is O(n(logn/ log logn) · log logn)) = O(n logn). Since the suffix tree and
the 2D data structure can be built within the same bound, the total preprocessing time
is O(n logn). Given a pattern of length m, a query uses O(m + log logu) time if the
search ends in the top tree, and O(m + logn/ log logn + log logu) time if the search
ends in a bottom tree. Since bottom trees consists of nodes of string depth more than
logn/ log logn the time to answer a query in both cases is O(m + log logu). In sum-
mary, we have the following result.

Theorem 3 Let S be a labeled string of length n with labels in the range [0, u].
We can solve substring range counting using O(n logn/ log logn) space, O(n logn)

preprocessing time, and O(m+ log logu) query time, for a pattern string of length m.

Next we consider substring range emptiness. In this case the top tree consists
of all nodes of string depth at most log logu. We use the 1D and 2D data struc-
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tures from Lemma 1 and Lemma 5. The total space for all 1D data structures is
O(n log logu). Since the 2D data structure uses O(n log logn) space the total space
is O(n log logu). For any constant γ > 0, the expected time to build all 1D data
structures is O(n log logu logγ u) = O(n logδ u) for suitable constant δ > 0. The suf-
fix tree and the 2D data structure can be built in O(n logn) time and hence the total
expected preprocessing time is O(n(logn+ logδ u)). If the search for a pattern string
ends in the top tree the query time is O(m) and if the search ends in a bottom tree
the query time is O(m + log logu). As above, the partition in top and bottom trees
ensures that the query time in both cases is O(m). In summary, we have the following
result.

Theorem 4 Let S be a labeled string of length n with labels in the range [0, u].
For any constant δ > 0 we can solve substring range existence using O(n log logu)

space, O(n(logn + logδ u)) expected preprocessing time, and O(m) query time, for
a pattern string of length m.

Acknowledgements We thank Christian Worm Mortensen and Kasper Green Larsen for clarifications
on the preprocessing times for the results in Lemma 3 and Lemma 5.
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