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Abstract Given an unlabeled, unweighted, and undirected graph with n vertices and
small (but not necessarily constant) treewidth k, we consider the problem of pre-
processing the graph to build space-efficient encodings (oracles) to perform various
queries efficiently. We assume the word RAM model where the size of a word is
Ω(logn) bits.

The first oracle, we present, is the navigation oracle which facilitates primitive
navigation operations of adjacency, neighborhood, and degree queries. By way of an
enumeration argument, which is of interest in its own right, we show the space re-
quirement of the oracle is optimal to within lower order terms for all graphs with n

vertices and treewidth k. The oracle supports the mentioned queries all in constant
worst-case time. The second oracle, we present, is an exact distance oracle which fa-
cilitates distance queries between any pair of vertices (i.e., an all-pairs shortest-path
oracle). The space requirement of the oracle is also optimal to within lower order
terms. Moreover, the distance queries perform in O(k3 log3 k) time. Particularly, for
the class of graphs of popular interest, graphs of bounded treewidth (where k is con-
stant), the distances are reported in constant worst-case time.
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1 Introduction

Graphs are arguably one of the most relevant structures to model relationships among
entities. With the ever-growing number of entities in objects to model, the corre-
sponding graphs increase in size. As a result, compact representation of graphs has
always been of interest. In addition to compression of graphs, one ought to be able
to use the graph in its compressed form. In this paper, we consider the problem of
representing graphs compactly while allowing efficient access and utilization of the
graph by way of efficient support for navigation and distance queries.

Random graphs are highly incompressible [4]. Fortunately, graphs that arise in
practice are not random and often have particular combinatorial structures. There-
fore, researchers have considered graphs with various combinatorial structures for
the purpose of space-efficient representation: these combinatorial properties include
but are not limited to: bounded arboricity, decomposability [35], separability [4, 5],
planarity [16, 36, 38, 45], triconnected and/or triangulated planarity [14].

In this paper, we are interested in compact representation of graphs with small
treewidth (to be defined in Sect. 2). Graphs of bounded treewidth are of interest
since many NP-hard problems on general graphs are solvable in polynomial time
on graphs with bounded treewidth. These graphs include such prevalent families of
graphs as trees (treewidth 1), series-parallel graphs (treewidth 2), outerplanar graphs
(treewidth 2), Halin graphs (treewidth 3). Graphs arising in various practical applica-
tions tend to have small treewidth. Flow graphs of structured programs have treewidth
at most six [43]. In addition, many problems in practical applications require the
treewidth of input graphs to be small, therefore the input graphs are necessarily of
small treewidth: for instance, an algorithm that calculates the resistance in electrical
networks requires that the graph is of treewidth at most three [8]. The gate matrix
layout problem in VLSI layout design suggests that graphs corresponding to well-
shaped circuits have small treewidth [18]. A good evolution tree in the perfect phy-
logeny problem in evolution theory corresponds to a graph of small treewidth [11].
Graphs with small treewidth occur in numerous more real-world applications [9, 17].

We assume the standard word RAM model where a word is Ω(lgn) bits wide and
n is the number of vertices (lg denotes log2). This is a realistic assumption commonly
made in word RAM algorithms and succinct data structures [27, 37]; we essentially
assume that a word of RAM is wide enough so that a vertex can be distinguished by
a label that fits in a word and can be read in constant time. Note that the graphs we
consider are unlabelled. However, there is an implicit labeling of vertices in oracles’
encoding which enables us to distinguish vertices in order to refer them in queries.

1.1 Contribution

In Sect. 4, we describe a data structure that encodes a given undirected and unlabeled
graph with n vertices and of treewidth k in k(n + o(n) − k/2) + O(n) bits and sup-
ports degree, adjacency, and neighborhood queries in constant time. Degree query
is to report the degree of a vertex. Adjacency query is, given two vertices u,w, to
determine if edge (u, v) exists. Neighborhood queries are to report all neighbors of a
given vertex in constant time per neighbor. These three queries constitute the set of
primitive navigational queries often required in a graph [4, 5, 24].
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Space-efficient encoding of trees (graphs with treewidth k = 1) is a well-
studied topic in the context of succinct representations [23, 25, 32–34, 38, 42].
An implicit representation of graphs of treewidth k exists which requires n(lgn +
O(k lg lg(n/k))) bits [29], and this is not optimal. Although it is not explicitly men-
tioned, the succinct representation of separable graphs given in [5] yields an optimal
navigation oracle for graphs of bounded treewidth where treewidth k = O(1). This is
since graphs with constant treewidth are also separable (roughly speaking, a graph is
separable if all its subgraphs can be partitioned into two approximately equally sized
parts by removing a relatively small number of vertices [4]). The storage requirement
of the oracle for separable graphs is optimal to within lower order terms, and the
previously-mentioned navigation queries perform in constant time. In this paper, we
extend the result to graphs with treewidth k = Ω(1).

Moreover, we show that the storage requirement of the oracle is optimal for all
values of k by proving that k(n−o(n)− k/2)+ δn bits are required to encode graphs
with n vertices and of treewidth k where δ is a positive constant. Our proof works
by way of a counting argument which is of independent interest as to the best of our
knowledge there existed no such enumerative result for graphs with a given treewidth.
Previously an analogous lower bound of kn − o(kn)1 was given [28] for graphs with
page-number k: a family of graphs which include graphs with treewidth smaller than
k [20]. The navigation oracle adopts the encoding of [5] for values k = O(1) and
the encoding outlined in this paper for k = Ω(1). Since the storage requirement of
the oracle matches the lower bound for constant values of k and our lower bound for
non-constant values of k, both the space of the oracle and the lower bound are tight.
Throughout the paper, we interchangeably use the terms ‘lower bound’ and ‘entropy
bound’. We follow the convention of referring lower bounds as entropy bounds (e.g.,
see [1, 2]). For constant values of k, some entropy bounds are known: for instance,
for trees (k = 1) of size n, the entropy is about 1.56n bits [39] and for series-parallel
graphs (k = 2) of size n, the entropy at least 3.18n bits [6].

In the second part of the paper, we give distance oracles for undirected, unlabeled,
and unweighted graphs with n vertices and of treewidth k. For all values of k, the
oracle requires the entropy bound number of bits to within lower order terms. These
are exact oracles that report the distance of two given vertices precisely. The distance
queries perform in time O(k3 lg3 k). We note that for graphs of bounded treewidth
where k is constant (the family of graphs of our interest), this query time becomes
constant.

The topic of distance queries for graphs is a well-studied area [46]. There is a
large volume of work on approximate distance oracles where the reported distance
between two given vertices can be a multiplicative factor term away from the ac-
tual distance [44]. For unweighted undirected graphs (the class that we consider in
this paper), it is known that with subquadratic preprocessing time, approximate dis-
tance oracles can be generated that require superlinear space and report distances in
constant time [3]. The superlinear space bound is strongly conjectured to be a lower
bound [44]. Exact distance oracles for unweighted undirected graph require Ω(n2)

1Note that there is an ambiguity in term o(kn). We occasionally follow the convention to use o(kn) instead
of ko(n).
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bits and there exists such an oracle with a space of about 0.79n2 bits [26]. Hence,
we show that for graphs with bounded treewidth, these results can be significantly
improved as there is a linear-size exact distance oracle. It was previously known that
for trees, there exists an oracle with the entropy space bound to within lower order
terms that answers distance queries in constant time [23]. Therefore in a sense, we
also extend this result from trees to all tree-like graphs (graphs of constant treewidth).

The time to construct the oracles depends heavily on the time to compute the
treewidth of the given graph and compute the tree decomposition correspondingly.
Determining the treewidth of a graph is NP-hard [12]. Fortunately however, for
graphs with constant treewidth, the treewidth and the corresponding tree decompo-
sition can be determined in linear time [10]. Moreover, for graphs with treewidth
k = ω(1), there exists a polynomial time algorithm that approximates the treewidth
within O(log k) factor and generates the corresponding tree decomposition [13]. All
other aspects of navigation oracles can be constructed in O(kn) time where k is the
determined treewidth and n is the number of vertices. For the distance oracle, the
other computational bottleneck is that we pre-compute distances between every pairs
of vertices at the initial stage, and this can be accomplished in o(kn2) time [15].

2 Tree Decompositions and Variations

In this section, we illustrate the notion of tree decomposition and treewidth which
are the basis of our constructions. Intuitively, “the treewidth of a graph measures the
‘tree-likeness’ of the graph, while a tree decomposition is the mapping of the graph
into a tree depicting such tree-like structure [19]”. More precisely, a tree decomposi-
tion of a graph G is a tree T so that each node of the tree, also called a bag, includes a
subset of vertices of G. Each edge of G should find its both endpoints in at least one
same bag. Also, each vertex should appear in a set of bags which form a connected
subtree of the tree decomposition. These properties imply a locality property for a
tree decomposition, i.e., if we remove the vertices of a bag, the resulted graph will be
disconnected. This provides many useful properties for tree decompositions. Before
going to these properties, we present a formal definition of a tree decomposition.

Definition 1 [9] A tree decomposition of a graph G = (V ,E) of treewidth k is a pair
({Xi‖i ∈ I }, T ) where {Xi} is a family of subsets of V (bags), and T is a rooted tree
whose nodes are the subsets Xi such that

–
⋃

i∈I Xi = V and maxi∈I |Xi | = k + 1.
– for all edges (v,w) ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi .
– for all i, j, k ∈ I : if Xj is on the path from Xi to Xk in T , then Xi ∩ Xk ⊆ Xj .

We say a vertex v ∈ V is introduced in node Xi(i ∈ I ) of the tree, if v is in bag Xi

(v ∈ Xi ) but not in that of the parent of Xi . All vertices at the bag of the root node
are introduced by definition.

So, the treewidth of a tree decomposition is the maximum number of vertices in
any bag of the tree, and the treewidth of a graph is the minimum treewidth of any
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Fig. 1 A graph with treewidth k = 2 and its standard tree decomposition. The graph edges are depicted
in solid black, while the shaded edges complete the graph into a (full) 2-tree. Underlined labels in the tree
decomposition correspond to vertices that are introduced in the bags

tree decomposition of the graph. For example, a tree has a tree decomposition with
two vertices in each bag, i.e., treewidth 1. A tree with a single node which includes
all vertices is a valid tree decomposition for any graph; however such tree decompo-
sition does not carry any information about the structure of the graph. In contrast, a
tree decomposition with small treewidth enables us to efficiently store information
about the structure of the graph to perform navigation queries. To yield this, instead
of encoding the structure of the graph as a whole, we encode the tree decomposition
of the graph. The simple tree-structure of a tree decomposition enables us to effi-
ciently encode it. Moreover, we store additional information to separate graphs with
the same tree decomposition. Note that a single tree decomposition can be associated
with many graphs, depending on which edges exist in the graph. By the definition
of tree decomposition, there can be an edge between any two vertices in the same
bag. A (full) k-tree is a graph with treewidth k in which all these potential edges ex-
ist. A partial k-tree is a subgraph of a full k-tree in which a subset of the potential
edges are missing. To encode a graph, beside the structure of the tree decomposition,
we store additional information to distinct the graph from other partial k-trees. The
details of such construction are presented in Sect. 4.

To provide an efficient distance oracle, we use a property of tree decomposition
which enables us to locate some intermediate vertices on the shortest path between
any pair of vertices. This property is elaborated in the following lemma.

Lemma 1 Let T be a tree decomposition of a graph G. Also, let x and y be two
vertices of G and P = (x = p0,p1, . . . pl−1, y = pl) be the shortest path between x

and y. Let X and Y be two bags in T which respectively contain x and y. Any node
on the unique path between X and Y on T includes at least one node pi (0 ≤ i ≤ l)
of P .

Proof By the definition of tree decomposition, each vertex v of G is listed in the bags
of a contiguous subtree Tv of T . Consider two vertices pi and pi+1 in P . Since pi

and pi+1 are neighbors, there is a bag in T which contains both of them. So the union
of subtrees Tpi

and Tpi+1 forms a contiguous subtree of T . With a similar argument,
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the union of all subtrees of the nodes p0, . . . , pl forms a contiguous subtree in T .
Such subtree includes X and Y and hence any bag on the path between them. So any
bag between X and Y includes at least one vertex pi of P . �

Instead of storing the distance between any pair for vertices, we can store the
distance between any vertex and the vertices which appear in ancestor nodes of that
vertex in the tree decomposition. Moreover, the tree structure of the decomposition
enables us to divide it into smaller subtrees and reduce the global distance queries
into local distance queries in smaller graphs. The details of these constructions can
be found in Sect. 5.

We introduce two specially adapted types of tree decomposition, each used for
one of the oracles. For the navigation oracle, we use standard tree decompositions,
in which each bag contains exactly k + 1 vertices, and two neighboring nodes share
exactly k vertices, i.e., each node introduces one vertex. A standard tree decompo-
sition of a graph is depicted in Fig. 1. It is known that a tree decomposition can be
transformed into a standard tree decomposition in linear time [7].

To design distance oracles, we use height-restricted tree decompositions, which
we define as those whose height is logarithmic in the number of vertices, i.e.,
height(T ) = O(logn). A tree decomposition can be transformed into a height-
restricted tree decomposition by the following lemma:

Lemma 2 Given a tree decomposition with treewidth k of a graph with n vertices,
one can obtain, in linear time, a height-restricted tree decomposition with n nodes
and width at most 3k + 2.

Proof There exists a transformation [7] that given a tree decomposition with width
k, gives a binary tree decomposition with O(n) nodes and width at most 3k + 2. The
transformation is a parallel algorithm in NC1, however it is not hard to observe that
the algorithm can be simulated sequentially in linear time.

To reduce the number of nodes to exactly n, it suffices to observe that there are at
most n introductions of vertices in bags (a vertex v is introduced in a bag if the parent
bag does not contain v). Hence if the number of bags is larger than n, there are bags
whose associated set of vertices is a subset of that of the parent bag. We eliminate
such bags by making their children, direct children of their grandparents. It is easy to
verify that the resulting tree is a valid tree decomposition with n bags. Furthermore,
the elimination process is performed in linear time. �

3 Lower Bound

To the best of our knowledge, there exists no enumerative result for the number of
unlabeled graphs with a given number of vertices and of treewidth k. We prove such a
result in this section. We use the concept of asymmetric trees (also known as identity
trees) first introduced by Erdös and Rényi in [21]. These are trees in which the only
automorphism is the identity. An automorphism of a tree is a permutation p of its
nodes such that there is an edge between nodes u and v if and only if there is an edge
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Fig. 2 Two different understanding of tree vertices in an asymmetric 4-graph. Filled-in vertices are tree
vertices

between p(u) and p(v). The identity permutation is obviously an automorphism. An
asymmetric tree is a tree for which there is no other automorphism, i.e., each node
can be uniquely distinguished from others.

Harary et al. showed the total number of asymmetric trees on n nodes is u(n) ∼
cn−5/2μ−n in which c and μ are positive constants roughly equal to 0.299388 and
0.397213, respectively [31]. We use this result to count asymmetric k-graphs as a
family of graphs with treewidth k.

Definition 2 An asymmetric k-graph on n vertices is a graph which has an asymmet-
ric tree of size n − k as an induced subgraph. The vertices of this subgraph are called
tree vertices. Among the other k vertices, there is one vertex, called center, which is
connected to all other k − 1 non-tree vertices and is not connected to any of the n− k

tree vertices (Fig. 2).

Lemma 3 Any asymmetric k-graph has a tree decomposition of width at most k.

Proof Consider a tree decomposition of the asymmetric tree, which has at most two
vertices in each bag. We include all other vertices except the center in all bags. Now
each bag contains 2 + (k − 1) vertices. We create a new bag of size k involving all
non-tree vertices (including center) and attach it to an arbitrary position in the tree
decomposition (Fig. 3). The result is a legitimate tree decomposition of width k (at
most k + 1 vertices in each bag). �

To get a lower bound on the number of graphs of treewidth k, we count the asym-
metric k-graphs, which form a proper subset of the family of all k-treewidth graphs.

Theorem 1 The number of asymmetric k-graphs with n vertices is at least xn ∼
c2(k+δ)n−(k2+(3+2δ)k−2)/2 × (n − k)−5/2/(n(k − 1)!) where c and δ are constants
roughly equal to 0.299388 and 0.332015, respectively.

Proof We count the number of partially labeled asymmetric k-graphs in which the
center is fixed and its neighbors are labeled from 1 to k − 1. We note that there are
at most n(k − 1)! ways to get such labeling for the same graph as there are at most n

ways to fix the center and (k − 1)! ways to label the neighbors of the center. Also, in
the partially labeled graphs, non-tree vertices are distinct from the tree vertices, since
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Fig. 3 An asymmetric 4-graph and a tree decomposition of width 4. The labels are added for the illustra-
tion of the tree decomposition

Fig. 4 A partially labeled
graph, associated with graph of
Fig. 2

they form the neighbors of the center. There are un−k ways to build an asymmetric
tree on n− k tree vertices, where un−k is given by [31]. Now, assume the tree is fixed

(Fig. 4). There are 2(k−1
2 ) ways to fix a structure on the non-tree vertices (it can be

any labeled graph on k − 1 vertices). A tree vertex can be connected to any subset
of non-tree vertices, hence there are 2k−1 options for each tree vertex, giving a total
number of 2(n−k)(k−1) options for all tree vertices. Since there is no isomorphism
between tree vertices and non-tree vertices are labelled, we are not double counting.

Therefore, the number of partially labeled graphs is α = un−k2(k−1
2 ) × 2(n−k)(k−1).

As mentioned above, at most n(k − 1)! of these partially labeled graph represent the
same unlabeled graph. Therefore, there are at least xn = α/(n(k − 1)!) asymmetric
k-graphs on n vertices. Replacing un−k with c(n−k)−5/2μ−(n−k) (as proved in [31]),
and also applying δ = −(lgμ + 1) completes the proof. �

Since we match the bound with an encoding, the exponent is tight to within lower
order terms.

Corollary 1 At least k(n − o(n) − k/2) + δn bits are required to represent a graph
of treewidth k with n vertices, where δ is a constant roughly equal to 0.332015.
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4 Navigation Oracles

In this section, we provide a compact representation of graphs of size n and treewidth
k which supports adjacency, neighborhood, and degree queries in constant time in the
lgn-bits word RAM model. The representation requires k(n + o(n) − k/2) + O(n)

bits, which is optimal by Corollary 1.

4.1 Auxiliary Structures

Like most other succinct encodings, our oracles make use of some existing data struc-
tures which we elaborate in this section.

4.1.1 Succinct Rank/Select Structures

For a binary sequence S, accessS(i) reports the content of the i’th position of S,
rankS(i, c) reports the number of occurrences of c before position i, and selectS(i, c)

reports the index of the i’th occurrence of c in S (c ∈ {0,1}). There are data structures
which represent a binary sequence of length n using n+o(n) bits and support access,
rank, select in constant time. Moreover, for sequences with m ones (m � n), the
space can be reduced to lg

(
n
m

) + n/ lgn + Õ(n3/4) bits to support the queries in
constant time [40].

4.1.2 Balanced Parenthesis and Multiple Parenthesis

A balanced parenthesis sequence of size 2n, which is equivalent to an ordered tree of
size n, can be represented in 2n + o(n) bits, with support of access(v), rank(v, ‘(’),
select(v, ‘(’), findmatch(v), and child(i, v) in constant time [32]; where access, rank,
and select are defined as before, findmatch(v) finds the position of the parenthesis
matching the parenthesis at position v, and child(v, q) finds the position of the q’th
child of node v [42].

A multiple parenthesis sequence is an extension of balanced parenthesis in which
there are k types of parenthesis. An open parenthesis of type i, denoted by (i , is
matched by a closed parenthesis of the same type, denoted by )i .

Lemma 4 [2] A multiple parenthesis sequence with 2n parentheses of k types,
in which the parentheses of any given type are balanced, can be represented us-
ing (2 + ε)n lg k + o(n lgk) + O(n) bits to support m_access, m_rank, m_select,
m_findmatch and m_enclose in O(1) time, for any constant ε such that 0 < ε < 1;
all operations are defined as before, m_enclose(v, i) gives the position of the tightest
open parenthesis of type i which encloses v.

Compact Tables Given a binary matrix M of size k ×n, we are interested in a com-
pact representation of M which supports the following queries: access(i, j) which
gives the content of M[i, j ], r_successor(i, j) which gives the index of the column
that contains the next ‘1’ after column j in row i, and c_successor(i, j) which is
defined identically on columns. For our purpose, we need to represent matrices in
which k ≤ n, and the first k columns form a triangular submatrix.
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Fig. 5 A triangular matrix of size k × k (matrix A) can be stored as a regular matrix of size 	k/2
 × k

(matrix C). The dark spots form matrix B mentioned in the text

Lemma 5 A k × n matrix, in which the first k columns form an upper triangular
submatrix (k ≤ n), can be represented using kn−k2/2+o(kn) bits to support access
and successor queries in constant time.

Proof It is known that a binary matrix of size n × n can be represented using n2 +
o(n2) to support access(i, j), r_successor(i, j), and c_successor(i, j) in constant
time [24]. It is not hard to verify their approach works for the case where the matrix
is rectangular and of size k × n.

Moreover, we claim k2/2 + o(k2) bits are sufficient to store a triangular matrix
of size k × k to support the same queries in constant time. Assume A is a k × k

upper triangular matrix (by symmetry we can extend the result to lower triangular
matrix). Let B denote the k/2 × k/2 submatrix formed by the nonzero elements of
the last k/2 rows of A. Then transpose of B is a lower triangular matrix, which
can replace the empty part of the first 	k/2
 rows of A (Fig. 5). The result would
be a matrix C of size 	k/2
 × k, which can be stored using k2/2 + o(k2) bits to
support access and successor queries in constant time. It is easy to observe the queries
on A can be translated to a constant number of queries on C, and vice versa. For
example, for i ≤ j , accessA(i, j) is the same as accessC(i, j) if i ≤ 	k/2
, and equal
to accessC(j − 	k/2
 + 1, i − 	k/2
) if i > 	k/2
. To get c_successorA(i, j) when
i ≤ 	k/2
, we apply c_successorC(i, j). If there is no such successor in C and j >

	k/2
, we scan the (j − 	k/2
 + 1)th row in C using r_successorC(j − 	k/2
 +
1,1). Moreover, to get c_successorA(i, j) when i > 	k/2
, we use r_successorC(j −
	k/2
 + 1, i − 	k/2
) and report the result only if it is at most j − 	k/2
 (otherwise
there is no such successor). The r_successor query on A can be translated to queries
in C by a symmetric argument. Note that for successor queries, we need to map the
answer in C into A in constant time to get appropriate row/column (this is the inverse
of the access query described previously).

To represent a k × n matrix M , in which the first k columns form an upper tri-
angular submatrix (k ≤ n), we store the triangular submatrix A using k2/2 + o(k2)

bits, and the other component A′ using k × (n − k) + o(kn) bits. The total space is
kn − k2/2 + o(kn) bits. The queries on M can be translated to a constant number of
queries on A or A′. For instance accessM(i, j) is equal to accessA(i, j) if j ≤ k and
accessA′(i, j − k) if j > k; the c_successor queries get translated similarly. For row
successor queries, if j ≤ k, r_successorM(i, j) is r_successorA(i, j) and if it fails to
give a successor in A we use r_successorA′(i,1) + k to find the next successor in A′.
In case j > k, r_successorM(i, j) is simply r_successorA′(i, j − k) + k. �
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Fig. 6 A standard tree decomposition, an ordered labeled tree, and a multiple parenthesis are all equivalent

4.2 Encoding the Graph

To introduce a navigation oracle for a graph G, we store a standard tree decomposi-
tion of G, as well as additional information to distinct G from other graphs with the
same tree decomposition. These graphs are the partial k-trees which are subgraphs
of the (full) k-tree associated with the encoded tree decomposition. To encode a tree
decomposition, we will show that a standard tree decomposition is equivalent to an
ordered labeled tree, which can be stored as a multiple parenthesis sequence in o(kn)

bits. The additional information for separating the partial k-trees is stored in a com-
pact table using k(n + o(n) − k/2) bits. Beside these, additional auxiliary structures
are stored in O(n) + o(kn) to perform navigation queries in constant time. The rest
of this section elaborates the details of these constructions.

Assume for a given graph G = (V ,E), a tree decomposition τ of width k is given
in the standard form. Recall that in a standard tree decomposition, each node (except
the root) introduces exactly one vertex, i.e., a node is different from its ancestor node
by exactly one vertex. We assign types to all vertices in a top-down manner: for the
vertices in the root, we fix an arbitrary ordering 1,2, . . . , k + 1 and give a vertex type
i iff it has index i in this ordering. For a vertex v introduced in a bag X, we define
type(v) = j , where j is the type of the vertex in the parent of X which has been
replaced by v. Note that the only information associated with each bag is the type
of the vertex it introduces. Hence, we can represent the tree decomposition τ as an
ordered tree with a single label, of value at most k + 1, on each bag. We assume the
root introduces k + 1 vertices of different types, and to make representation easier
separate them in a path of bags, with labels 1 to k + 1 (see Fig. 6).

To represent τ efficiently, we use the multiple parenthesis structure of Lemma 4.
Assuming a preorder traversal of τ , we open a parenthesis of type i (i ≤ k) whenever
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we enter a bag with label i, and close it when we leave the bag. The result would be
a balanced sequence of 2n parentheses of k + 1 types. Using Lemma 4, this can be
represented using (2 + ε)n lgk + o(n lgk)+O(n) bits. We call this sequence the MP
sequence and label every vertex by the index of its corresponding opening parenthesis
in this sequence. This labeling is implicit and is used only to refer to the vertices in
navigation queries.

The MP sequence provides a complete image of a tree decomposition. To represent
a graph, besides the tree decomposition, we also need to store which edges are indeed
present in each bag. Consider a tree decomposition of width k of a graph, in which a
new vertex is introduced in a bag X. Such vertex can be connected to any subset of
the other k vertices in X. These vertices all have distinct types since they all appear
in the same bag.

Assume the graph vertices are arranged in the order they are introduced in the
preorder walk of the tree decomposition. For each vertex v introduced in bag X,
let lv be a bitmap of size k + 1, such that lv(j) indicates whether there is an edge
between v and uj , where uj is the unique vertex of type j in bag X. Let all lv’s form
the columns of a table M , which we refer to as the ‘big table’, in which the vertices
are arranged in preorder. So, M is a matrix of size (k + 1) × n and M[j, v] = lv(j)

(see Fig. 7). Since two vertices of the same type cannot be connected, for any vertex
v we have M[type(v), v] = 0 (in Fig. 7 these entries are labeled as ‘*’). Also the first
k columns of M are associated with the vertices introduced in the root and form a
triangular submatrix. We apply Lemma 5 to store matrix M in kn − k2/2 + o(kn)

bits to support access and successor queries in constant time.
In order to perform navigation queries, we need to check both MP sequence and

the big table. As mentioned earlier, we refer to each vertex by its index in the MP
sequence. We describe how to find the index of a vertex v in the preorder walk to ac-
cess the associated entries in the big table. We use a map structure as follows: create
a binary sequence S of size 2n with ‘1’ at position i if the i’th element is an open
parenthesis (of any type) and ‘0’ otherwise. We store this sequence using 2n + o(n)

bits to support rank and select in constant time [41]. Now rankS(v,1) gives the index
of v in the preorder walk, and selectS(i,1) retrieves the i’th vertex in the preorder
walk. This enables us to interchangeably refer to a vertex by its position in the pre-
order walk (the big table index) or its position in the MP sequence. Now consider
we are given a range R in the MP sequence, which is represented by its starting
and ending indices (these endpoints are not necessarily open parentheses). Note that
each open parenthesis in range R represents a vertex of the graph and the set of such
vertices maps to a range R′ of vertices in the preorder walk. To perform navigation
queries, we need to retrieve the preorder range R′ from R. If both endpoints of R are
open parentheses, we simply map them into preorder indices as discussed. If R starts
(ends) with a closed parenthesis, we need to find the next (previous) open parenthesis
of any type in the MP sequence. We can use the map structure S to find the index of
next (previous) open parenthesis as selectS(rankS(i,1) ± 1).

The MP sequence and the big table are sufficient to represent a graph of
treewidth k. The other structures used in the rest of this section are auxiliary structures
maintained to support navigation queries in constant time.
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Fig. 7 The big table associated with graph of Fig. 1. In the big table the vertices are arranged in the order
they are introduced in the preorder walk of the tree decomposition, and there is an entry for each type and
vertex. Consider a vertex like L which has type 3 and is introduced in a bag which also includes A and E

with types 1 and 2, respectively. The entry associated with L in the first row is 0. So L is not connected
to the vertex of type 1 which comes before it, i.e. A. With a same argument, the entry in the second row
implies that L is connected to E

4.3 Supporting Adjacency Queries

Given two vertices u and v we need to know if there is an edge between them. By the
definition of tree decomposition, the necessary condition for having an edge between
u and v is to have at least one bag which includes both. If such a bag exists, we say
there is a potential edge between u and v. A (full) k-tree is indeed a graph which
includes all potential edges and partial k-trees are subgraphs of such (full) k-tree. To
check the adjacency between u and v, our algorithm first checks if there is a potential
edge between u and v by looking at the MP sequence.

Lemma 6 Let u and v be two vertices of a graph G so that u is introduced before
v in the preorder traversal of the standard tree decomposition T of G. Then u and
v appear in the same bag (i.e., there is a potential edge between them) iff they have
distinct types and the open parenthesis associated with u is the tightest parenthesis
of its type to enclose that of v.

Proof First, note that two vertices of the same type cannot appear in the same bag.
Let U and V be two bags of T which respectively introduce u and v. Also, let Tu

and Tv be the subtrees of T respectively rooted at U and V . By the definition of tree
decomposition, u can only appear in bags of Tu and similarly v can only appear in
bags of Tv . In the MP sequence, Tu is mapped to the substring started by the open
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Fig. 8 The MP sequence and the big table associated with the graph of Fig. 7. Assume we need to know
if there is an edge between vertices A and L. Note that the vertices are referred by the indices of their
opening parenthesis in the preorder walk, i.e., 1 and 18 for A and L, respectively. First, the algorithm
checks the types of the vertices using m_access(1) and m_access(18) in the MP sequence to get types 1
and 3 for A and L. Since L comes after A in the preorder walk, the algorithm calls m_enclose(18,1) to
get the tightest parenthesis of type 1 (type of A) which encloses L. Since the output is A (index 1), there
is a potential edge between A and L. Next, the algorithm checks the column associated with L in the big
table. Using the map sequence S, this will be rankS(18,1) = 12’th column in the table. To see if there is
an edge between L and the vertex of type 1 in the bag introducing L, the algorithm uses accessM(1,12)

which gives 0, meaning that there is no edge between A and L

parenthesis associated to u and its matching closed parenthesis (similar statement
holds for v). So, the intersection of Tu and Tv is nonempty iff their substrings in the
MP sequence intersect. Since the MP sequence is balanced, the open parenthesis of
u should enclose that of v. Moreover u does not necessarily appear in all bag of Tu;
it might be overwritten by another vertex w which is introduced in a bag W ∈ Tu. In
this case, w has the same type as u, and u does not appear in nodes of subtree Tw

(the subtree of T rooted at W ). So if the open parenthesis associated with w in the
MP sequence also encloses that of v, then u and v do not appear in the same bag. As
a result u and v appear in the same bag iff the open parenthesis of u is the tightest
parenthesis of its kind to enclose v. �

The above lemma helps to check, in constant time, if u and v appear in the same
bag. We can determine types of u and v from the MP sequence in constant time
using m_access. Assume u proceeds v in preorder walk. Using Lemma 4 we can
also find the tightest parenthesis of the same type as u which encloses v by call-
ing m_enclose(v, j), where j denotes the type of u. Hence we can see if there is a
potential edge between u and v in constant time.

If there is a potential edge between u and v, we have to check the big table to
see if there is an actual edge between them. Note that if u is introduced before v, it
appears in the bag V which introduces v. Let j denote the type of u. The entry in the
j th row of the column associated with v in the big table determines if there is an edge
between v and the vertex of type j in V , which is u. By Lemma 5, we can check the
content of this entry using accessM(j, v) in constant time.

To summarize, to check if there is an edge between two vertices u and v, the algo-
rithm uses m_access and m_enclose to see if there is a bag of the tree decomposition
which includes both. If such a bag does not exists, there is no edge between u and v.
If there is a bag which includes both u and v, the algorithm uses accessM to return
the content of the entry associated with the type of u in the column associated with v.
Figure 8 illustrates the algorithm by an example.
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4.4 Supporting Neighborhood Queries

Given a vertex v, we need to report its neighbors in constant time per neighbor. First,
we show how to report the neighbors which come before v in the preorder walk.
Recall that a vertex u is a potential neighbor of v if there exists a bag containing both
vertices. The column representing v in the big table distinguishes the actual neighbors
of v among the potential neighbors preceding v in preorder. We successively apply
c_successor on the big table M to visit all ‘1’s in the column of v. An entry M[j, v] =
1 implies that v is connected to the vertex of type j in the bag which introduces v. By
Lemma 4.3 such vertex is associated with the parenthesis of type j which encloses
v, and can be reported in constant time using m_enclose(v, j).

Next, we show how to report the neighbors that come after v in the preorder.
We start by showing how to detect the potential neighbors of v. Using the MP se-
quence, we can find the potential neighbors of v in constant time per potential neigh-
bor as follows. We scan the sequence from the position of v and report every ver-
tex (open parenthesis) until we observe the first open parenthesis of the same type
as v. Let w be such parenthesis, we jump to the matching parenthesis of w us-
ing m_findmatchMP (w) in constant time, and continue this process until we see the
closed parenthesis matching v. Therefore, in the tree decomposition, we skip the sub-
trees in which v has been overwritten.

In fact, to report potential neighbors, we report a ‘segment’ of consecutive poten-
tial neighbors and jump to the next segment when v is overwritten by a vertex of the
same type. There are two sources of difficulty to report the actual neighbors in this
manner. First, in a given segment there may be a non-constant number of undesired
potential neighbors between two consecutive actual neighbors (by undesired poten-
tial neighbor we mean a potential neighbor which is not an actual neighbor). Second,
there may be a non-constant number of ‘trivial’ segments which do not include any
actual neighbor. In what follows, we describe how to resolve these issues.

As mentioned, the potential neighbors of a vertex form segments of consecutive
vertices in the preorder walk. A segment of type i is a range of elements in the MP
sequence bordered by two parenthesis of type i. The bordering parenthesis can be
open or closed, and their segment can be empty if they are adjacent in the MP se-
quence (Fig. 9(a)). Each segment is associated to exactly one vertex, which is the
nearest vertex of the same type which encloses it. By this definition, the vertices
which are introduced in a segment associated with a vertex v, will have v in the bags
that introduce them (i.e., v will be the unique vertex of its type in these bags). To
report the actual neighbors in a given segment associated with vertex v, we use the
map structure to find the range of the segment in the big table, and successively ap-
ply r_successorM on the row of the same type as v in the big table to find all 1’s
in the range of the segment. Hence inside a segment, we can report the neighbors in
constant time per neighbor.

We also need to address how to select the appropriate segments. We say a segment
is nontrivial if it includes at least one actual neighbor of v, and it is trivial otherwise.
The main issue is that there may be a non-constant number of trivial segments asso-
ciated with a vertex, and we cannot afford to probe all of them. To resolve this issue,
we store two auxiliary structures: one is to distinguish nontrivial segments among all
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Fig. 9 The MP sequence and the contracted parenthesis of type 1 for the graph of Fig. 7. Assume we
need to report the neighbors of vertex A. The ignore sequence for vertex A (IgA) is 100100, i.e., the first
and fourth segments are non-trivial and need to be checked. Note that the third segment which includes
vertices L and M is trivial since A is not connected to any of them. To report neighbors in the 4th segment
associated with A in the MP sequence, we find the 3rd child of A in the contracted parenthesis of type 1
(the starred vertex in (b)); its matching parenthesis and the one after (arrowed ones) are the representative
boundaries of the segment in the contracted sequence, which can be mapped to the MP sequence. The
vertices in the segment are O , P , and Q, and the entries in the big table associated with type 1 (type of A)
and these are respectively 0, 1, and 1 (these entries are shadowed in Fig. 8). Using r_successor operations
in the big table, the algorithm skips O and reports P and Q

segments associated to each vertex, and the other is to locate the nontrivial segments
in the preorder sequence.

For each vertex v, we define a bitmap Igv where Igv(i) determines whether the
ith segment associated with v is nontrivial (‘1’) or trivial (‘0’). We store an ignore
sequence IG as follows: read vertices in preorder, for each vertex v write down a ‘2’
followed by the sequence Igv . The result would be a sequence of length 3n − (k + 1)

on alphabet {0,1,2}. This sequence can be stored using O(n) bits to support select in
constant time [30]. To see why the size of IG is 3n− (k+1), we observe that there are
2ni −1 segments of type i where ni is the number of vertices of type i; therefore there
are 2n− (k + 1) segments in total. Since each segment is associated with exactly one
vertex, the size of IG is 2n − (k + 1) + n. Igv is precisely the subsequence beginning
at position selectIG(i,2) + 1 and ending at position selectIG(i + 1,2), in which i is
the index of v in the preorder walk.

Using the ignore sequence, we can distinguish the indices of non-trivial segments
among all segments associated with a vertex v. We also need to locate these segments
in the MP sequence and subsequently use the map structure to locate the range of
the segment in the big table. For each type i, we store a contracted parenthesis of
type i, denoted by Ci , as a copy of the MP sequence in which all parenthesis except
those of type i are removed. The result would be a balanced parenthesis sequence, or
equivalently an ordered tree, for each type. The total size of these trees is equal to n

and we need 2n + o(n) bits to represent them.
Now we demonstrate how to locate the t’th segment of vertex v in the MP se-

quence. If t = 1, the desired segment starts with the parenthesis representing v and
ends with the next parenthesis of the same type, which can be located in constant
time. If t > 1, we locate the segment in the contracted parenthesis sequence and map
it into the MP sequence as follows. Let i be the type of v. First we locate v in the
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contracted parenthesis, using vc = selectCi
(x, ‘(’) where x is the rank of v among

vertices of the same type, i.e., x = rankMP(v, ‘(i’). Observe that the t’th segment of
v starts after the closed parenthesis matching the open parenthesis representing the
t’th child of v in the contracted parenthesis (Fig. 9(b)). We apply α = childCi

(vc, t)

and β = findmatchCi
(α) to find β,β + 1 as the two neighboring parenthesis of type

i which bound segment t in the contracted parenthesis. Using rank and select, re-
spectively on Ci and MP, we can locate these parentheses in the MP sequence (see
Fig. 9).

To summarize, to report neighbors of vertex v which come after v in preorder, we
use the ignore sequence to find the indices of nontrivial segments among all segments
associated to v. We use the contracted parenthesis to find the actual positions of
nontrivial segments in the MP sequence, and use the map structure to find the range
of the segments in the big table. Using r_successor operation in the big table we can
report neighbors in constant time per neighbor.

The additional space used for supporting neighbor report are due to the ignore
sequence and the contracted parenthesis, which require O(n) bits.

4.5 Supporting Degree Queries

To support degree queries, we observe that a graph of treewidth k on n vertices has
at most kn − k(k − 3)/2 edges, which is the number of edges in a (full) k-tree of
the same size. This is true since in a standard decomposition of a k-tree, the root
introduces exactly

(
k
2

)
edges, and the other n− 1 bags each introduce exactly k edges

which sums up to kn − k(k − 3)/2 edges.
We create the following degree sequence D. Considering vertices in preorder, we

store the degree of vertices in unary format, i.e., for each vertex v of degree d(v),
write down d(v) ‘1’s followed by a ‘0’. The resulting sequence D has n zeros and
2m ones, where m is the number of edges in the graph. We represent degree sequence
using lg

(
n+2m

n

) + (n + 2m)/ lg(n + 2m) + Õ(n + 2m)3/4 ≤ n lg((n + 2m)e/n) +
o(n+2m) bits, to support rank and select queries in constant time [40]. As mentioned
previously, m ≤ kn, and hence the size of the sequence is n lgk +o(kn) bits, which is
O(n) when k = O(1), and o(kn) for non-constant values of k.2 To retrieve the degree
of a vertex v, we simply compute rankD(i + 1,0)− rankD(i,0)− 1 in constant time,
where i is the index of v in preorder.

The size of the auxiliary structures for supporting neighbor request is O(n) bits,
and there is no additional index for adjacency queries (Sect. 4.3). Together with the
main structures (the MP sequence, the big table, and the map sequence), the size of
the oracle would be k(n + o(n) − k/2) + O(n) bits.

Theorem 2 Given a graph of size n and treewidth k, an oracle is constructed to
answer degree, adjacency, and neighborhood queries in constant time. The storage
requirement of the oracle is optimal to within lower order terms.

2Note that for non-constant values of k the value of n lg k is indeed ko(n).



Algorithmica (2014) 69:92–116 109

5 Distance Oracles

In this section we introduce a distance oracle which outputs the distance of two given
vertices of a graph of treewidth k in time O(k3 lg3 k). The storage requirement of this
oracle is asymptotically optimal to within lower order terms.

First we illustrate a simple idea which provides the basis of our constructions. Let
x and y be two vertices of a graph G, and X and Y be two nodes of a tree decompo-
sition T of G which respectively introduce x and y. Also, let Z be the least common
ancestor of X and Y in T . Lemma 1 implies that any node in the path between X and
Y in T includes at least one vertex in the shortest path between x and y. Hence, there
is at least one vertex in Z which belongs to the shortest path between x and y. As
a result, to find the distance between x and y, it suffices to find the minimum value
of d(x, z) + d(z, y) for all vertices like z in Z. A simple distance oracle is hence
achieved by explicitly storing the distance between any vertex x and all ancestor ver-
tices of x, where ancestor vertices of x are the vertices which belong to an ancestor
node of the node introducing x in the tree decomposition. In a tree decomposition of
width k and height h, there are at most h(k + 1) ancestor vertices for each vertex.
Hence, our simple oracle requires nh(k + 1) lgn bits to answer distance queries in
time O(k). If we apply Lemma 2 to achieve a height-restricted tree decomposition,
the storage requirement of the oracle will be O(nk lg2 n). In what follows, we ap-
ply a recursion technique for decomposing the tree decomposition into smaller trees.
This improves the storage complexity of the oracle to the entropy bound within lower
order terms. The recursion allows us to reduce the distance queries in a large graph
into queries in smaller graphs. Depending on the relation between k and n, the time
complexities of the resulted oracles change. For graph with small treewidth where we
have lg k = O((lg lg lgn)3), the query time is O(k2). For larger values of k the query
time is O(k3 lg3 k).

In the rest of this section, we consider the height-restricted tree decomposition
T as defined in Sect. 2, and obtained using Lemma 2. Let k′ denote the maximum
number of vertices in a node of T . Since by Lemma 2 treewidth of T is at most 3k+2,
we have k′ ≤ 3k + 3.

We define the weight of a node as the number of vertices introduced in (the bag
of) that node. Correspondingly, we define the weight of a subtree as the sum of the
weights of nodes in the subtree. There are three recursive decompositions of G into
smaller subgraphs based on its height-restricted tree decomposition T using the fol-
lowing lemma:

Lemma 7 For any parameter 1 ≤ L ≤ n, a tree with n nodes and node weights at
most k′ can be decomposed into Θ(n/L) subtrees of weight at most 2k′L which are
pairwise disjoint aside from their roots. Furthermore, other than edges stemming
from the component root nodes, there is at most one edge leaving a node of a compo-
nent to its child in another component.

Proof The lemma is essentially the weighted version of and follows trivially from the
following lemma by observing that a subtree of size at most 2L has weight at most
2k′L:
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Fig. 10 Decomposition of a
tree into subtree for value L = 5.
Subtrees have weight at most
2L = 10, and other than edges
stemming from roots of
subtrees, each subtree has at
most one other edge leaving the
subtree to another subtree. The
highlighted nodes are those
which are connected to other
subtrees (portal nodes)

Lemma 8 [22, 23] For any parameter 1 ≤ L ≤ n, a tree with n nodes can be de-
composed into Θ(n/L) subtrees of size at most 2L which are pairwise disjoint aside
from their roots. Furthermore, aside from edges stemming from the component root
nodes, there is at most one edge leaving a node of a component to its child in another
component (Fig. 10). �

5.1 Decomposition into Subgraphs

In the first decomposition phase, the height-restricted tree decomposition T is decom-
posed into smaller subtrees T1, T2, . . . using Lemma 7 with parameter L1 = k′ lg3 n

(and skipping the phase entirely where L1 ≥ n). By the lemma, we obtain n/(k′ lg3 n)

such subtrees, each corresponding to at most 2k′2 lg3 n graph vertices. Let Vi be the
set of such graph vertices that occur in a node in subtree Ti . We define Gi as the
subgraph of G induced on Vi .

Lemma 7 guarantees that there are at most two nodes of each subtree Ti that are
connected via a tree edge to other subtrees; we refer to these tree nodes as portal
nodes (dark nodes in Fig. 10). These nodes correspond to at most 2k′ vertices in each
subgraph. We refer to these vertices as the portal vertices of Gi , and denote this set
of vertices by Pi .

Lemma 1 implies that the shortest path between a vertex x inside Gx and a ver-
tex y outside Gx passes through at least one portal vertex of Gx . So, to find the
distance between x and y, it suffices to have the distance between x and all portal
vertices px

1 . . . px
2k′ of Gx , the distance between y and all portal vertices p

y

1 . . . p
y

2k′
of Gx , and the distance between the portal vertices of x and those of y. Note that
the shortest path between a portal vertex v ∈ {px

1 , . . . , px
2k′ } and w ∈ {py

1 , . . . , p
y

2k′ }
passes through at least one vertex in the common ancestor of any two bags which
include them (see Fig. 11). We explicitly store the distance from each portal vertex to
all vertices that occur in an ancestor node of the corresponding portal node. Namely,
for each vertex v ∈ Pi in a portal tree node V and vertex u in an ancestor node of
V , we explicitly store the distance between v and u. Since the height of the tree is
O(lgn), there are O(k′ lgn) such vertices as u. The storage requirement of this list is
O( n

k′ lg3 n
k′(k′ lgn)lgn) = o(kn) bits.
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Fig. 11 The shortest path
between two vertices x and y

passes through at least one
vertex of any bag on the path
between the bags which
introduce x and y. In particular,
at least one portal vertex of the
graphs associated with x and y

belongs to the shortest path.
Also, at least one vertex of the
bag L is on the shortest path
between x and y, where L is the
lowest common ancestor of
portal nodes of trees associated
with x and y

We construct a portal tree TP which is essentially the projection of tree T on
portal nodes. Nodes of TP correspond to portal nodes of T , and there exist an edge
between two nodes of TP iff the path between the corresponding nodes in T does
not contain another portal node. The projected tree TP has O(n/(k′ lg3 n)) nodes.
We preprocess and store the tree (in O(n/(k′ lg3 n)) bits) to be able to answer lowest
common ancestor queries in constant time [32].

5.2 Vertex Labels

Before going to the further details of the distance oracle, we describe how to refer
to the graph vertices in such oracle. Note that the original graph is unlabelled and
we need to label the vertices suitably for our purposes. Such labelling should be
in a way that we can determine the subgraphs associated with each vertex (and the
portal vertices associated with them) in constant time. The labeling of the vertices
is a recursive procedure according to the recursive decomposition of the graph into
subgraphs. At the first level of recursion, we ensure that the labels of vertices of an
individual subgraph Gi form a consecutive sequence of numbers. We store an index
of O(lgn) bits for each sequence of numbers to associate it with the corresponding
subgraph. These indices together with a rank/select structure enable us to look-up the
corresponding subgraph of a given vertex in constant time. The labeling of vertices
within an individual subgraph Gi is determined recursively in the same manner: the
subgraph is decomposed into smaller subgraphs and vertex labels of each such small
subgraph correspond to a consecutive subsequence of the sequence of Gi , and so on.
At the deepest level of recursion, the labeling is set according to the method we use
to produce distance oracles.

Some vertices are duplicated in more than one subgraph Gi and this can also hap-
pen in lower levels of recursion. These vertices are a subset of the portal vertices.
Therefore, the numbers we assign as labels can exceed n. However, we need a dis-
tinct unique label for each vertex to refer to it. To resolve this issue, at each level of
recursion, we maintain rank/select data structures (as in [5]) to identify duplicates.
The genuine label of each vertex is an integer from 1 to n and is the rank of that ver-
tex in the duplicate-eliminated list of labels. The rank/select data structure allows us
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to translate between the unique label and the original label in constant time. As there
are O(k′) portal vertices per subgraph per level of recursion the space requirement of
such rank/select structures remain o(kn) bits.

5.3 Reduction to the Subgraphs

We now show one can reduce the problem of generating distance oracles to within
Gi ’s with an additional O(k2) term in time and o(kn) term in space. Assume we
have an oracle that answers the following two queries in any Gi in time O(t). The
first query is a regular distance query that asks for the local distances between any
two vertices u,v ∈ Gi . The second query, called portal query, asks for the distances
from any vertex w ∈ Gi to all portal vertices of Gi . Note that this query needs to
report up to 2k′ distance, hence we have t = Ω(k). Provided with a distance oracles
which answers these queries in time O(t) in any Gi , we can determine distances
globally between any two vertices in time O(t + k2).

Given two vertices x, y, we first determine the subgraphs Gx,Gy they belong in
as previously mentioned. We query the local oracles for the distances from x to portal
vertices px

1 , . . . , px
2k′ in Gx and analogously for the distances from y to the portal ver-

tices p
y

1 , . . . , p
y

2k′ of Gy (see Fig. 12). Let Tx and Ty be the subtrees corresponding to
Gx,Gy . We determine in constant time the lowest common ancestor L of the roots of
Tx and Ty in portal tree TP . Portal vertices have their distances to vertices introduced
in their ancestors explicitly stored. Therefore, px

1 , . . . , px
2k′ and also p

y

1 , . . . , p
y

2k′ have
their distances to vertices l1, . . . , l2k′ in the bag of node L stored.

Depending on whether L is indeed either of Tx,Ty or not, two cases are possible.
In the former case where L is either Tx or Ty (say Tx ), the root node of Tx is an
ancestor of Ty . The latter case is where L is different than both Tx and Ty . This case
is depicted in Fig. 12.

In the former case, the distances from p
y
i ’s to px

i ’s are explicitly stored and there-
fore one can easily compute the distance from x to y (i.e. d(x, y)) by determining
the minimum value of d(y,p

y
i ) + d(p

y
i ,px

j ) + d(px
j , x) for all i, j ∈ [2k′]. This pro-

cess requires O(t + k2) time. In the latter case, the distances d(px
i , lj ) for all i, j

are explicitly stored. Therefore, one can compute the distances d(x, li) for all i’s as
minj {d(x,px

j ) + d(px
j , li)} in O(t + k2) time. Analogously, one can compute the

distances from y to li ’s in O(t + k2) time. Thus, the distance between x and y can be
determined as d(x, y) = mini{d(x, li) + d(y, li)} in O(t + k2) time.

5.4 Further Decompositions of the Subgraphs

To answer global distance queries, we need to answer local distance queries in
each Gi . Recall that local queries include regular and portal queries. We decom-
pose each Gi further into yet smaller subgraphs G′

j ’s. The decomposition of each
subgraph is analogous to that of the original graph G into subgraphs Gi ’s. Namely,
given Ti , the tree decomposition of Gi , we use Lemma 2 to obtain a height-restricted
tree decomposition T ′

i of width k′ ≤ 3k + 2. We decompose T ′
i using Lemma 7 with

parameter L2 = k′ lg2(k′)(lg lg(n))3 to obtain smaller subtrees and correspondingly
smaller subgraphs G′

i , each of which has at most 2k′2 lg2 k′(lg lgn)3 vertices.
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Fig. 12 Distance oracle:
computing the distance between
x and y

As in the previous level of decomposition, we explicitly store the distances be-
tween portal vertices corresponding to two portal nodes where one is an ancestor of
the other. The number of bits required to store these distances is

O

(
n

k′ lg2 k′(lg lgn)3
k′(k′ lg

(
k′2 lg3 n

))
lg

(
k′2 lg3 n

)
)

= o(kn).

Additionally, to answer portal queries, we store the distance between each second-
level portal vertex and all first-level portal vertices contained in the same sub-
graph Gi . This structure allows us to produce distances from any vertex v ∈ G′

i to
all portal vertices of the containing subgraph Gj efficiently. More precisely, if dis-
tances from any vertex to all portals of G′

i can be produced in O(t) time, then dis-
tances from the vertex to all portals of the containing subgraph Gj can be produced
in time O(k2 + t) time. The storage requirement of this additional vector of distances
in number of bits is:

O

(
n

k′ lg2(k′)(lg lg(n))3
k′ × k′lg

(
k′2 lg3(n)

)
)

= o(kn).

Hence, the problem has essentially been reduced further to within the smaller sub-
graphs G′

i . For one last time, we recursively decompose smaller subgraphs G′
is into

tiny subgraphs G′′
i ’s. We repeat the same set of steps and use Lemma 7 with param-

eter L3 = k′ lg2(k′)(lg lg lg(n))3 to obtain tiny subgraphs G′′
i . Analogously, one can

reduce the problem to within these tiny subgraphs.

5.5 Distance Oracles for the Tiny Subgraphs

At the bottommost level of recursion, we give compact distance oracles for tiny sub-
graphs G′′

i that support reporting the distance between two given vertices (i.e., regular
queries) and also reporting the distances from a given vertex to all (third-level) portal
vertices of G′′

i (i.e., portal queries) in O(k3 lg3 k) time.
As G′′

i ’s are subgraphs of the original graph, their treewidth is at most k. The
corresponding tree decomposition for these graphs can be obtained trivially by pro-
jecting from the tree decomposition of the original graph. Hence, genuine treewidths
of G′′

i ’s are k (and not k′).
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We distinguish two cases according to the value of k relative to n. For smaller
range of values of k where lgk = O((lg lg lgn)3), the size of a third-level sub-
graph G′′

i is O(k′2 lg2(k′)(lg lg lg(n))3), which is o(lg(n)/k). Therefore, we can
have a look-up table that catalogs all graphs with p vertices and treewidth k − 1
where p < lg(n)/(4k). The representation of Sect. 4 bounds the number of such
graphs to at most p × 2kp+o(kp)+O(p) = o(n3/4 lgn). We exhaustively list answers
to all distance queries together with each graph. Consequently the size of the ta-
ble is O(n3/4 lgnp2) = o(n) (note that for constant values of k, we have G′′

i =
O(lg lg lgn)3 and it is sufficient to have p = lg lgn). A subgraph G′′

i = (V ′′
i ,E′′

i ) is
represented by an index to within the look-up table and therefore, the space require-
ment of each G′′

i matches the entropy of graphs with |V ′′| vertices and of treewidth
k. Since

∑
i |V ′′

i | = n + o(n), the total space of distance oracles for tiny subgraphs
requires space which matches the entropy of graphs with treewidth k to within lower
order terms. Distances in G′′

i are read in constant time from the table and there is
an additive overhead of O(k2) for each level of recursion. Thus, the total distance
query time is O(k2). As a corollary, we have that where k = O(1), the distance query
performs in constant time.

For larger values of k, where lg k = ω((lg lg lgn)3), we simply store a third-level
graph G′′

i = (V ′′
i ,E′′

i ) using the navigation oracle representation of Sect. 4 to store
each G′′

i in k(|V ′′
i | + o(|V ′′

i |) − k/2) + O(|V ′′
i |) bits. Since

∑
i |V ′′

i | = n + o(n), the
total storage requirement for the distance oracle in this case is k(n + o(n) − k/2) +
O(n). In order to determine the distance of a vertex in G′′

i to another vertex or to the
third-level portals of G′′

i , we simply perform a breadth first search (BFS). The time
of performing a BFS is asymptotically the number of edges of such graphs which is
O(k3 lg2(k)(lg lg lg(n))3). In the given range of values of k, this time calculates to
O(k3 lg3(k)). This dominates the overhead of O(k2) from higher recursion levels,
and hence distance queries perform in O(k3 lg3 k) time.

Theorem 3 Given an unlabeled, undirected, and unweighted graph with n vertices
and of treewidth k, an exact distance oracle is constructed to answer distance queries
in time O(k3 lg3 k). The storage requirement of the oracle is optimal to within lower
order terms.

6 Conclusion

We considered the problem of preprocessing a graph with small treewidth to construct
space-efficient oracles that answer a variety of queries efficiently. We presented a
navigation oracle that answers navigation queries of adjacency, neighborhood, and
degree queries in constant time. We also proposed a distance query which reports the
distances of any pair of vertices in O(k3 log3 k) where k is the (determined) treewidth.
By way of an enumerative result, we showed the space requirements of the oracles
are optimal to within lower order terms. For future work, we consider improving the
distance oracle, so that it can recover the shortest path between queried vertices in
time proportional to the size of the path. We also leave the problem of space-efficient
oracles for weighted graphs of small treewidth as future work.
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