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Abstract Let G be a finite undirected graph with edge set E. An edge set E′ ⊆ E is
an induced matching in G if the pairwise distance of the edges of E′ in G is at least
two; E′ is dominating in G if every edge e ∈ E \ E′ intersects some edge in E′. The
Dominating Induced Matching Problem (DIM, for short) asks for the existence of an
induced matching E′ which is also dominating in G; this problem is also known as
the Efficient Edge Domination Problem.

The DIM problem is related to parallel resource allocation problems, encoding
theory and network routing. It is NP-complete even for very restricted graph classes
such as planar bipartite graphs with maximum degree three. However, its complexity
was open for Pk-free graphs for any k ≥ 5; Pk denotes a chordless path with k vertices
and k − 1 edges. We show in this paper that the weighted DIM problem is solvable in
linear time for P7-free graphs in a robust way.

Keywords Dominating induced matching · Efficient edge domination · P7-free
graphs · Linear time algorithm · Robust algorithm

1 Introduction

Let G be a simple undirected graph with vertex set V and edge set E. A subset M

of E is an induced matching in G if the G-distance of every pair of edges e, e′ ∈ M ,
e �= e′, is at least two, i.e., e ∩ e′ = ∅ and there is no edge xy ∈ E with x ∈ e and
y ∈ e′. A subset M ⊆ E is a dominating edge set if every edge e ∈ E \ M shares an
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endpoint with some edge e′ ∈ M , i.e., if e ∩ e′ �= ∅. A dominating induced matching
(d.i.m. for short) is an induced matching which is also a dominating edge set.

Let us say that an edge e ∈ E is matched by M if e ∈ M or there is an e′ ∈ M with
e ∩ e′ �= ∅. Thus, M is a d.i.m. of G if and only if every edge of G is matched by M

but no edge is matched twice.
The Dominating Induced Matching Problem (DIM, for short) asks whether a

given graph has a dominating induced matching. This can also be seen as a special
3-colorability problem, namely the partition into three independent vertex sets A,B ,
and C such that G[B ∪ C] is an induced matching: If M ⊆ E is a d.i.m. of G then
the vertex set has the partition V = A ∪ V (M) with independent vertex set A, and
independent sets B,C with B ∪ C = V (M).

Dominating induced matchings are also called edge packings in some papers, and
DIM is known as the Efficient Edge Domination Problem (EED for short). A brief
history of EED as well as some applications in the fields of resource allocation, en-
coding theory and network routing are presented in [14] and [16].

Grinstead et al. [14] showed that EED is NP-complete in general. EED remains
hard for bipartite graphs [18]. In particular, [17] shows the intractability of EED for
planar bipartite graphs and [10] for very restricted bipartite graphs with maximum
degree 3 (the restrictions are some forbidden subgraphs). In [4], it is shown that the
problem remains NP-complete for planar bipartite graphs with maximum degree 3
but is solvable in polynomial time for hole-free graphs (in [9, 17], the complexity
of EED was mentioned as an open problem for weakly chordal graphs which are a
subclass of hole-free graphs). Some other new results for EED are given in [7]. In [9],
as another open problem, it is mentioned that for any k ≥ 5, the complexity of DIM
is unknown for the class of Pk-free graphs. Note that the complexity of the related
problems Maximum Independent Set and Maximum Induced Matching is unknown
for P5-free graphs, and a lot of work has been done on subclasses of P5-free graphs.

In this paper, we show that for P7-free graphs, DIM is solvable in linear time.
Actually, we consider the edge-weighted optimization version of DIM, namely the
Minimum Dominating Induced Matching Problem (MDIM), which asks for a domi-
nating induced matching M in G = (V ,E) of minimum weight with respect to some
given weight function ω : E → R (if existent). For P5-free graphs, DIM is solvable
in time O(n2) as a consequence of the fact that the clique-width of (P5,gem)-free
graphs is bounded [5, 6] and a clique-width expression can be constructed in time
O(n2) [3]. In [9], it is mentioned that DIM is expressible in a certain kind of Monadic
Second Order Logic, and in [12], it was shown that such problems can be solved in
linear time on any class of bounded clique-width assuming that the clique-width ex-
pressions are given or can be determined in the same time bound. It is well known
that the clique-width of cographs (i.e., P4-free graphs) is at most 2 (and such clique-
width expressions can be determined in linear time) and thus the DIM problem can
be solved in linear time on cographs. In Sect. 4 we give a simple characterization of
cographs having a d.i.m.

Our algorithm for P7-free graphs is based on a structural analysis of such graphs
having a d.i.m. It is robust in the sense of [20] since it is not required that the input
graph is P7-free; our algorithm either determines an optimal d.i.m. correctly or finds
out that G has no d.i.m. or is not P7-free.
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The paper is structured as follows: In Sect. 2, we give further basic notions. In
Sect. 3, we develop some tools for the main algorithm, in Sect. 4 we solve the DIM
problem for cographs in a simple way in linear time, in Sect. 5 we describe structural
properties of a P7-free graph with d.i.m. and in particular discuss its distance levels
with respect to an edge in a d.i.m. In Sect. 6, in procedure Check(xy), for a candidate
edge xy (for which it is still unknown whether it is in a d.i.m.), it is analyzed whether
its distance levels fulfill the properties of the distance levels described in Sect. 5, and
one either obtains a d.i.m. or the answer that the input graph has no d.i.m. or is not
P7-free. In Sect. 7, as another preparing step, we solve the DIM problem for P7-free
bipartite graphs in linear time, and finally, in Sect. 8 we solve the DIM problem
for P7-free graphs robustly in linear time. If one only aims for a polynomial time
algorithm then one can carry out Check(xy) for every edge xy in G; most of the tools
are only necessary for obtaining a linear time algorithm. In particular, Check(xy) is
done only for a fixed number of candidate edges.

2 Further Basic Notions

Let G be a finite undirected graph without loops and multiple edges. Let V denote its
vertex set and E its edge set; let |V | = n and |E| = m. For v ∈ V , let N(v) := {u ∈
V | uv ∈ E} denote the open neighborhood of v, and let N [v] := N(v) ∪ {v} denote
the closed neighborhood of v. If xy ∈ E, we also say that x and y see each other,
and if xy �∈ E, we say that x and y miss each other. A vertex set S is independent
(or stable) in G if for every pair of vertices x, y ∈ S, xy �∈ E. A vertex set is a clique
in G if for every pair of vertices x, y ∈ S, x �= y, xy ∈ E holds. For uv ∈ E let
N(uv) := N(u) ∪ N(v) \ {u,v} and N [uv] := N [u] ∪ N [v]. Distinct vertices x and
y are true twins if N [x] = N [y].

For U ⊆ V , let G[U ] denote the induced subgraph of G with vertex set U , hence,
the graph which contains exactly the edges xy ∈ E with both vertices x and y in U .
Throughout this paper, subgraphs are meant to be induced subgraphs.

Let G (or co-G) denote the complement graph of G = (V ,E), i.e., G = (V ,E)

with xy ∈ E if and only if x �= y and xy �∈ E.
Let A and B be disjoint vertex sets in G. If every vertex from A sees (misses,

respectively) every vertex from B , we denote this by A 1©B (by A 0©B , respectively).
A set H of at least two vertices of a graph G is called homogeneous if H �=

V (G) and every vertex outside H is adjacent to all vertices in H or to no vertex
in H . Obviously, H is homogeneous in G if and only if H is homogeneous in the
complement graph G.

A homogeneous set H is maximal if no other homogeneous set properly con-
tains H . It is well known that in a connected graph G with connected complement G,
the maximal homogeneous sets are pairwise disjoint and can be determined in linear
time (see, e.g., [19]).

A chordless path Pk (chordless cycle Ck , respectively) has k vertices, say
v1, . . . , vk , and edges vivi+1, 1 ≤ i ≤ k − 1 (and vkv1, respectively). We say that
Pk has length k − 1 and Ck has length k. Let Ki denote the clique with i vertices.
Let K4 − e or diamond be the graph with four vertices and five edges, say vertices
a, b, c, d and edges ab, ac, bc, bd, cd ; its mid-edge is the edge bc. Let W4 denote the
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Fig. 1 K4, W4, diamond, gem, co-C6, domino and butterfly

graph with five vertices consisting of a C4 and a universal vertex (see Fig. 1). Let
K1,k denote the star with one universal vertex and k independent vertices. A star is
nontrivial if it contains a P3 or an edge, otherwise it is trivial.

For two vertices x, y ∈ V , let distG(x, y) denote the distance between x and y

in G, i.e., the length of a shortest path between x and y in G. The distance of two
edges e, e′ ∈ E is the length of a shortest path between e and e′, i.e., distG(e, e′) =
min{distG(u, v) | u ∈ e, v ∈ e′}. In particular, this means that distG(e, e′) = 0 if and
only if e ∩ e′ �= ∅. For a vertex x, let Ni(x) denote the distance levels of x: Ni(x) :=
{v | distG(v, x) = i}. Thus, N1(x) = N(x). For an edge xy, let Ni(xy) denote the
distance levels of xy: Ni(xy) := {z | distG(z, xy) = i}. Thus, N1(xy) = N(xy).

A connected component of G is a maximal vertex subset U ⊆ V such that all pairs
of vertices of U are connected by paths in G[U ]. A 2-connected component of G is a
maximal vertex subset U ⊆ V such that all pairs of vertices of U are connected by at
least two vertex-disjoint paths in G[U ]. The 2-connected components are also called
blocks. A vertex v is a cut-vertex of a connected graph G if G − v is disconnected.
A block of G is a leaf block if it contains only one cut-vertex of G, otherwise it is an
internal block. It is well known that the blocks of a graph can be determined in linear
time [15] (see also [1]).

For a set F of graphs, a graph G is called F -free if G contains no induced sub-
graph from F . A hole is a Ck for some k ≥ 5. A graph is hole-free if it is Ck-free for
all k ≥ 5. A graph is chordal if it is Ck-free for all k ≥ 4. A graph is weakly chordal
if it is Ck-free and Ck-free for all k ≥ 5.

If M is a d.i.m., an edge is matched by M if it is either in M or shares a vertex
with some edge in M . Likewise, a vertex is matched if it is in V (M).

Note that M is a d.i.m. in G if and only if it is a dominating vertex set in the
line graph L(G) and an independent vertex set in the square L(G)2. Thus, the DIM
problem is simultaneously a packing and a covering problem.

3 Some Basic Tools

3.1 Reducing the Graph by Mandatory Edges

If an edge e ∈ E is contained in any d.i.m. of G, we call it mandatory (or forced) in G.
If an edge xy is mandatory, we can reduce the graph as follows: Delete x and y and
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all edges incident to x and y, and give all edges in distance one to xy the weight ∞.
This means that these edges are not in any d.i.m. of finite weight in G. Let us call the
resulting graph Reduced(G, {xy}).

For a set M of mandatory edges, let Reduced(G,M) denote the reduced graph by
applying the reduction step Reduced(G, {xy}) to each edge xy ∈ M (in any order)
as defined above. Obviously, this graph is an induced subgraph of G and can be
determined in linear time for given G and M . Moreover:

Observation 1 Let M ′ be an induced matching which is a set of mandatory edges
in G. Then G has a d.i.m. M if and only if Reduced(G,M ′) has a d.i.m. M \ M ′.

We can also color red all vertices in distance 1 to a mandatory edge; subsequently,
an edge ab with a red vertex a cannot be matched in vertex a; it has to be matched in
vertex b. If also b is red then G has no d.i.m.

Reduced(G,M) is used in Algorithm P7-Free-DIM of Sect. 8.

3.2 Reducing Singular Triangle Leaf Blocks

In Algorithm P7-Free-DIM of Sect. 8, we also need another kind of reduction which
is described subsequently. Let c be a cut-vertex of a leaf block consisting of the
triangle abc. We call this a triangle leaf block. If c is a cut-vertex of only one such leaf
block and no other leaf block has c as its cut-vertex, we call G[{a, b, c}] a singular
triangle leaf block. For graph G, let G∗ denote the graph obtained from G by omitting
all such singular triangle leaf blocks. Obviously, G∗ can be constructed in linear time.

There, we also need the following transformation: For every singular triangle leaf
block abc with cut-vertex c and corresponding edge weights w(ab), w(ac), w(bc),
let Tr(G,abc) be the graph with the same cut-vertex c where the triangle is re-
placed by a path a′b′c with new vertices a′, b′, and weights w(ab) for edge a′b′
and min(w(ac),w(bc)) for edge b′c. Let Tr(G) be the result of applying Tr(G,abc)

to all singular triangle leaf blocks abc of G. Obviously, G has a d.i.m. if and only if
Tr(G,abc) has a d.i.m., and the optimal weights of d.i.m.’s in G and Tr(G,abc) are
the same. The only problem is the fact that the new graph is not necessarily P7-free
when G is P7-free. We will apply this construction only in one case, namely when
the internal blocks of G form a distance-hereditary bipartite graph; then Tr(G) is also
distance hereditary bipartite.

3.3 Finding Some Mandatory Edges

The following observations are helpful, in particular for obtaining mandatory edges
(some of them are mentioned e.g. in [4]):

Observation 2 Let M be a d.i.m. in G.

(i) M contains at least one edge of every odd cycle C2k+1 in G, k ≥ 1, and exactly
one edge of every odd cycle C3, C5, C7 of G.

(ii) No edge of any C4 can be in M .
(iii) If C is a C6 then either exactly two or none of the C-edges are in M .
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Proof (i): Let C be an odd cycle C2k+1 in G, k ≥ 1, with vertices v1, . . . , v2k+1 and
edges vivi+1, i ∈ {1, . . . ,2k + 1} (index arithmetic modulo 2k + 1). Suppose first
that none of the edges of C are in M . Then the edge v1v2 must be matched by an
M-edge, say by v1x, x �= v2, v2k+1. Now the edge v2v3 must be matched in v3 and so
on, until finally the edge v2kv2k+1 must be matched in v2k+1 but now two M-edges
are in distance one-contradiction.

Now for C3’s and C5’s in G, obviously not more than one edge can be in M . If
for a C7, two edges would be in M , say v1v2 ∈ M and v4v5 ∈ M then v6v7 cannot be
matched-contradiction.

(ii): If (v1, v2, v3, v4) is a C4 in G then if v1v2 ∈ M , v3v4 is not matchable.
(iii): This condition obviously holds. �

Let us denote by butterfly (see Fig. 1) a graph of five vertices, say a, b, c, d, e, such
that a, b, c and c, d, e induce a triangle. Let ab and de be the peripheral edges of the
butterfly.

Observation 3 The mid-edge of any diamond in G is mandatory. Moreover, the pe-
ripheral edges of any butterfly are mandatory.

Subsequently, as a kind of preprocessing, some of the mid-edges of diamonds will
be determined. Since for a linear-time algorithm it would be too time-consuming
to determine all diamonds in G, we will mainly find such diamonds whose mid-
edges are edges between true twins having at least two common neighbors. These are
contained in maximal homogeneous sets which can be found in linear time.

3.4 Neighborhood Properties

Since the edges of any d.i.m. must have pairwise distance at least 2, we obtain by
Observation 2:

Observation 4 If G has a d.i.m. then for all vertices v, G[N(v)] is cycle-free and
P4-free.

Thus, the neighborhood of every vertex is the disjoint union of stars. Let S induce
a star in N(v) containing a P3 with vertices a, b, c and edges ab, bc. Then G[S ∪{v}]
is called a diamond-star with mid-edge vb.

Observation 5 If G has a d.i.m. then for all vertices v, one of the following three
cases holds:

(i) G[N(v)] is the disjoint union of exactly one star with P3, and of isolated ver-
tices. In this case, the mid-edge of the corresponding diamond-star is in M .

(ii) G[N(v)] is the disjoint union of at least two edges and of isolated vertices. In
this case, all the edges are in M .

(iii) G[N(v)] is the disjoint union of at most one edge and of isolated vertices.
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Proof Let G have a d.i.m. M . Then by Observation 2(i), M contains an edge of every
triangle, and by Observation 3, any P3 abc in N(v) generates a mandatory edge bv,
and N(v) can not contain two stars with P3 since the mid-edge of any diamond-star
is mandatory. Moreover, if in Case (ii), there are at least two edges in G[N(v)] then
all the edges are in M . �

From the previous observations, it follows (see Fig. 1 for K4,W4, gem, and C6):

Corollary 1 If G has a d.i.m. then G is K4-free, W4-free, gem-free and Ck-free for
any k ≥ 6.

3.5 Homogeneous Sets

Now we deal with homogeneous sets in G.

Proposition 1 Let G have a d.i.m. and let H be a homogeneous set in G.

(i) If H contains an edge then N(H) is stable.
(ii) If |N(H)| ≥ 2 then H is either a stable set or a disjoint union of edges.

(iii) Vertices x and y are true twins with at least two common neighbors in G if and
only if they appear as an edge in a homogeneous set H with |N(H)| ≥ 2.

Proof Let G have a d.i.m. and let H be a homogeneous set in G.
(i): If H contains an edge then since by Corollary 1, G is K4-free, N(H) is stable.
(ii): If |N(H)| ≥ 2 then by Observation 5 and Corollary 1, H must be P3-free, i.e.,

is a disjoint union of cliques. Since G is K4-free, these cliques are edges or vertices.
If there is an edge uv in H and there is a component in H consisting of a single
vertex w then by Observation 3, uv is a mandatory edge and for any a ∈ N(H), the
edge aw cannot be matched-contradiction.

(iii): If x and y are true twins then x, y are contained in a (maximal) homogeneous
set. On the other hand, if x and y with xy ∈ E appear in a P3-free homogeneous set H

(by the proof of (ii), H is P3-free) then x and y are true twins. �

The following procedure uses Observation 5 and the fact that for a homogeneous
set H with |N(H)| = 1, say N(H) = {z}, all connected components of H together
with z are leaf blocks in G.

Procedure Hom-1-DIM(H )
Given: A non-stable homogeneous set H in G with N(H) = {z}.
Task: Determine some mandatory edges or find out that G has no d.i.m.

(a) If H contains a cycle or P4 then STOP-G has no d.i.m.
(b) (Now H is a P4-free forest.) If H contains at least two stars with P3 then STOP-G

has no d.i.m.
(c) (Now H is a P4-free forest which contains at most one star with P3.) If H con-

tains exactly one star with P3, say P3 abc then M := M ∪ {bz}. If another con-
nected component of H contains an edge then STOP-G has no d.i.m.
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(d) (Now H is a P3-free forest, i.e., a disjoint union of edges E′(H) and isolated
vertices V ′(H).) If E′(H) contains at least two edges then M := M ∪ E′(H). If
V ′(H) �= ∅ then STOP-G has no d.i.m.

(e) (Now H is the disjoint union of exactly one edge and isolated vertices V ′(H).) If
there is an edge ab in H and V ′(H) �= ∅ then M := M ∪ {az} or M := M ∪ {bz}
(depending on the better weight).

We postpone the discussion of the final case in (e), namely E′(H) = {ab} and
V ′(H) = ∅ (i.e., the case of a singular triangle leaf block). Since cographs can be
recognized in linear time [8, 11], the following holds:

Lemma 1 Procedure Hom-1-DIM(H) is correct and can be carried out in linear
time.

3.6 Checking the d.i.m. Property in Linear Time

In Sect. 8, we need the following:

Proposition 2 For a given set E′ of edges, it can be tested in linear time whether E′
is a d.i.m., and likewise, whether E′ is an induced matching.

Proof For E′ ⊆ E, in an array of all vertices in V , count the number m(x) of ap-
pearances of each vertex of V in the edges of E′ by going through all edges in E′
once.

(1) Two edges of E′ intersect if and only if one of the vertices appears in more than
one edge of E′, i.e., if there is a vertex x with m(x) ≥ 2.

(2) Two edges of E′ have distance 1 if and only if for an edge xy ∈ E \ E′, both
m(x) ≥ 1 and m(y) ≥ 1.

(3) E′ is dominating if and only if for each edge xy ∈ E, m(x) ≥ 1 or m(y) ≥ 1.

Obviously, steps (1)–(3) can be done in time O(n+m). The first two steps are check-
ing whether E′ is an induced matching. �

3.7 Identifying a C3, C5, C7 or P7 in a Non-bipartite Graph

In Algorithm P7-Free-DIM of Sect. 8, we need the following:

Procedure Find-Odd-Cycle-Or-P7
Given: A connected non-bipartite graph G.
Task: Determine an odd cycle C3, C5, C7 or a P7 in G.

(a) Choose a vertex x and determine the distance levels N1,N2, . . . with respect to x.
If N6 �= ∅ then STOP-G contains a P7.

(b) If there is an edge ab ∈ E in N1 then xab is a C3. Else N1 is stable.
(c) If there is an edge ab ∈ E in N2 then either abc is a C3 for a common neighbor

c ∈ N1 of a, b or for neighbors a′ ∈ N1 of a and b′ ∈ N1 of b, xaba′b′ is a C5.
Else N2 is stable.
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(d) If there is an edge ab ∈ E in N3 then either abc is a C3 for a common neighbor
c ∈ N2 of a, b or for neighbors a′ ∈ N2 of a and b′ ∈ N2 of b, and a common
neighbor c ∈ N1 of a′, b′, caba′b′ is a C5 or for neighbors a′′ ∈ N1 of a′ and
b′′ ∈ N1 of b′, xa′′b′′a′b′ab is a C7. Else N3 is stable.

(e) If there is an edge ab ∈ E in N4 then either abc is a C3 for a common neighbor
c ∈ N3 of a, b or for neighbors a′ ∈ N3 of a and b′ ∈ N3 of b, and a common
neighbor c ∈ N2 of a′, b′, caba′b′ is a C5 or for neighbors a′′ ∈ N2 of a′ and
a′′′ ∈ N1 of a′′, xa′′′a′′a′abb′ is a P7. Else N4 is stable.

(f) (Now N5 must contain an edge, otherwise G is bipartite.) For an edge ab in N5,
let a4 denote a neighbor of a in N4 and let ai−1 ∈ Ni−1 denote a neighbor of
ai ∈ Ni , i = 2,3,4. Then either a4ab is a C3 or xa1a2a3a4ab is a P7.

Obviously, the following holds:

Lemma 2 Procedure Find-Odd-Cycle-Or-P7 is correct and runs in linear time.

4 DIM for Cographs in Linear Time

Recall that G is a cograph if and only if G is P4-free. It is well known that a graph
is a cograph if and only if its clique-width is at most 2. Thus, for solving the DIM
problem on cographs, one could use the clique-width argument (as mentioned in the
Introduction). Here we give a simple direct way. By Corollary 1, the following holds:

Corollary 2 If G has a d.i.m. and G is not connected then G is a cograph.

For the subsequent characterization of cographs with d.i.m., we need the following
notion:

G is a super-star if G contains a universal vertex u such that G[V \ {u}] is the
disjoint union of a star and a stable set. Note that every super-star has a d.i.m. M ,
namely if the star contains a P3 with central vertex c then M consists of the single
edge uc, and if the star consists of only one edge ab, then {ua} and {ub} are both
d.i.m.’s, and the choice of an optimal d.i.m. depends on the edge weights. If there
is no edge in G[V \ {u}] then any edge uv is a d.i.m., and the choice of an optimal
d.i.m. depends on the edge weights.

For cographs having a d.i.m., there is the following simple characterization:

Proposition 3 A connected cograph G has a d.i.m. if and only if it is either a super-
star or the join G = G1 1©G2 of a disjoint union of edges G1 and a stable set G2.

Proof Let G be a connected cograph with a d.i.m. M . Then, since G is K4-free,
G = G1 1©G2 for some triangle-free (i.e., bipartite) subgraphs G1 and G2.

Case 1. G1 (or G2) contains only one vertex; without loss of generality say V (G1) =
{u}.

Then by Observation 5, G2 is the disjoint union of at most one star with P3, of
edges and vertices. If exactly one of the connected components of G2 contains a P3
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then this component is a star, say with central vertex c, and uc ∈ M . Now the other
components of G2 must be isolated vertices since in every triangle, exactly one edge
is in M . This shows that in this case, G is a super-star, and an optimal d.i.m. can be
chosen as described above.

If none of these connected components contain P3 then the connected components
of G2 are edges and vertices. If at least two such edges exist then all the connected
components are edges, otherwise there is no d.i.m. This corresponds to the second
case in Proposition 3.

If exactly one of the connected components is an edge, say ab, and all the others
are vertices then ua and ub are possible d.i.m.’s. This is again a special super-star. If
there is no edge in G2 then G is simply a star.

Case 2. G1 and G2 contain at least two vertices.
If none of G1, G2 contains an edge then if both G1 and G2 contain at least two

vertices, every edge is in a C4 and therefore not in M-contradiction.
If G1 contains an edge then by Proposition 1(i), G2 is edgeless, and by Propo-

sition 1(ii), G1 is a disjoint union of edges. In this case, the uniquely determined
d.i.m. of G is the set of edges in G1.

Conversely, it is easy to see that any super-star has a d.i.m., and likewise any join
of a disjoint union of edges and a stable set has a d.i.m. �

Corollary 3 Cographs with d.i.m. can be recognized in linear time.

The following uses Proposition 3:

Procedure Cograph-DIM
Given: A connected cograph G with edge weights.
Task: Decide whether G has a d.i.m. and if yes, determine an optimal d.i.m. of G.

(a) Check whether G is either a super-star or the join of a disjoint union of edges and
a stable set. If yes then G has a d.i.m. as described above, otherwise STOP-G has
no d.i.m.

5 Structure of P7-free Graphs with Dominating Induced Matching

Throughout this section, let G = (V ,E) be a connected P7-free graph having a d.i.m.
Recall that if M is a d.i.m. of G then the vertex set V has the partition V = I ∪V (M)

with independent vertex set I . We suppose that xy ∈ M is an edge in an induced P3
of G and consider the distance levels Ni = Ni(xy), i ≥ 1, with respect to the edge xy

(see Fig. 2). Note that every edge of a hole C5, C6, or C7 is part of an induced P3.
For triangles abc, this is not fulfilled if a and b are true twins. However, according to
Proposition 1, true twins with at least two common neighbors will lead to mandatory
edges as mid-edge of a diamond (or K4 if there is an edge in their neighborhood), and
true twins a, b with only one common neighbor c form a leaf block abc which will be
treated by procedure Hom-1-DIM or will be temporarily omitted by constructing G∗
(as described in Sect. 3.2) and looking for an odd cycle in G∗. Thus we can assume
in this section that xy is an edge in M which is part of an induced P3.
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Fig. 2 Distance levels

5.1 Distance Levels with Respect to an M-Edge xy

We refer to the partition V = V (M) ∪ I with d.i.m. M and independent set I . Since
we assume that xy ∈ M , clearly, N1 ⊆ I and thus:

N1 is a stable set. (1)

Moreover, no edge between N1 and N2 is in M . Since N1 ⊆ I and all neighbors
of vertices in I are in V (M), we have:

N2 is the disjoint union of some edges and isolated vertices. (2)

Let M2 denote the set of edges in N2 and let S2 denote the set of isolated vertices
in N2; N2 = V (M2) ∪ S2. Obviously:

M2 ⊆ M and S2 ⊆ V (M). (3)

Let M3 denote the set of M-edges with one endpoint in S2 (and the other endpoint
in N3).

Since xy is contained in a P3, i.e., there is a vertex r such that y, x, r induce a P3,
we obtain some further properties:

N5 = ∅. (4)

Proof of (4) If there is a vertex v5 ∈ N5 then there is a shortest path (v5, v4, v3,
v2, v1), vi ∈ Ni , i = 1, . . . ,5, connecting v5 and a neighbor v1 of x or y. If v2r ∈ E

then v5, v4, v3, v2, r, x, y is a P7, and if v2 is nonadjacent to any personal neighbor
of x with respect to y then v5, v4, v3, v2, v1, x, r is a P7 or v5, v4, v3, v2, v1, y, x is a
P7-a contradiction which shows (4). �

This kind of argument will be used later again-we will say that the subgraph in-
duced by x, y,N1, v2, v3, v4, v5 contains an induced P7.
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Obviously, by (3) and the distance condition, the following holds:

No edge in N3 and no edge between N3 and N4 is in M. (5)

Furthermore the following statement holds.

N4 is the disjoint union of edges and isolated vertices. (6)

Proof of (6) The proof is very similar to the one of (4): Let uv be an edge in N4 and
let w ∈ N3 see u; then w must see also v since G is P7-free (recall the existence of
r in a P3 with x and y). Then N4 must be P3-free—otherwise any neighbor w ∈ N3
of a P3 abc in N4 would induce a diamond w,a, b, c and then edge wb is mandatory
in contradiction to Observation 3 and condition (5). Moreover, N4 is triangle-free
(otherwise there is a K4 in contradiction to Corollary 1). Then N4 is a disjoint union
of edges and vertices which shows (6). �

Let M4 denote the set of edges in N4 and let S4 denote the set of isolated vertices
in N4; N4 = V (M4) ∪ S4. Note that by (4) and (5), S4 ⊆ I .

Since every edge ab in N4 together with a predecessor c in N3 forms a triangle,
and ac, bc /∈ M , by (5) necessarily:

M4 ⊆ M. (7)

By Observation 2(i), in every odd cycle C3, C5 and C7 of G, exactly one edge
must be in M . Thus, (5) implies:

N3 ∪ S4 is bipartite. (8)

Note that in general, N3 is not a stable set.

5.2 Matching the S2-Vertices by N3-Neighbors

By the previous conditions and in particular, by (5), we obtain:

M = {xy} ∪ M2 ∪ M3 ∪ M4. (9)

From the algorithmic point of view, determining M2 and M4 for a candidate edge
xy is easy since these are the edges in N2 (N4, respectively) if (2) ((6), respectively) is
fulfilled for xy. The crucial point, however, is the problem how to match the vertices
in S2 by edges with neighbors in N3, and the remaining part of this section is dealing
with the conditions under which this is possible.

Let Tone := {t ∈ N3 : |N(t) ∩ S2| = 1}, and Ttwo := {t ∈ N3 : |N(t) ∩ S2| ≥ 2}.
Note that if uv is an edge with u ∈ Ttwo then uv �∈ M and uv must be matched by
an M-edge at v since it cannot be matched at u because of the distance condition; in
particular, Ttwo ⊆ I .

In general, (5) will lead to some forcing conditions since the edges in N3 and
between N3 and N4 have to be matched. If an edge uv ∈ E cannot be matched at u

then it has to be matched at v—in this case, as described later, we color the vertex v
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green if it has to be matched by an M3 edge. (For an algorithm checking the existence
of a d.i.m., it is useful to observe that if vertices in distance one get color green then
no d.i.m. exists.)

Let S3 := (N(M2) ∩ N3) ∪ (N(M4) ∩ N3) ∪ Ttwo. Then by definition, S3 ⊆ N3,
and obviously S3 ⊆ I holds. Furthermore, since S4 ⊆ I , one obtains:

S3 ∪ S4 is a stable set. (10)

Let T ∗
one := Tone \ S3. Then N3 = S3 ∪ T ∗

one is a partition of N3. In particular, T ∗
one

contains the M-mates of the vertices of S2. Recall that M3 denotes the set of M-edges
with one endpoint in S2 (and the other endpoint in T ∗

one).
Let S2 = {u1, u2, . . . , uk}, and let Ti := T ∗

one ∩ N(ui), i = 1, . . . , k. Then T ∗
one =

T1 ∪ · · · ∪ Tk is a partition of T ∗
one. The following condition is necessary for the exis-

tence of M3:

For all i = 1, . . . , k, Ti �= ∅, and exactly one vertex of Ti is in V (M3). (11)

Recall that by Observation 5, G[Ti] is the disjoint union of at most one star
with P3, and of edges and isolated vertices. Furthermore, by Observation 5, G[Ti]
cannot contain two edges, i.e., the following statement holds for all i = 1, . . . , k:

G[Ti] is the disjoint union of isolated vertices and at most one star Yi with an edge.
(12)

Proof of (12) Assume that there are two edges, say ab and a′b′, in Ti . Then by
Observation 5, ab and a′b′ are mandatory, but ui ∈ V (M)-contradiction. �

Assume that Ti contains the star Yi with an edge.

For all i, j = 1, . . . , k, i �= j,Yi sees no vertex of Tj . (13)

Proof of (13) Let t ′i t ′′i be an edge of Yi . By contradiction assume that a vertex tj ∈ Tj ,
i �= j , is adjacent to Yi , say tj sees t ′′i . Then, since by (8), G[T ∗

one] is triangle-free, tj
is nonadjacent to t ′i , and now x, y,N1, uj , tj , t

′′
i , t ′i induce a subgraph of G containing

a P7. �

5.3 Pairing the N3-Neighborhoods of Vertices in S2

Claim 1 For all i = 1, . . . , k, there is at most one j with j �= i such that a vertex in
Ti sees a vertex in Tj .

Proof of Claim 1 By contradiction assume that there are two indices j �= h such that
some vertices in Ti see vertices in Tj and Th.

Case 1. If there is a vertex ti ∈ Ti which sees a vertex tj ∈ Tj and th ∈ Th then,
since there is no triangle in N3, tj misses th, and then x, y,N1, uh, th, tj , ti induce
a subgraph of G containing a P7 (recall the existence of a P3 with x, y and vertex
r ∈ N1).
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Case 2. Thus, assume that there are two vertices t ′i , t ′′i ∈ Ti such that t ′i sees a ver-
tex tj ∈ Tj and t ′′i sees a vertex th ∈ Th. Clearly, by (13), t ′i t ′′i /∈ E, and by Case 1,
t ′i th /∈ E, t ′′i tj /∈ E. Moreover, tj th /∈ E, otherwise we are in Case 1 again. Now
uj , tj , t

′
i , ui, t

′′
i , th, uh induce a P7-contradiction. �

Let us say that Ti sees Tj if there are vertices in Ti and Tj which see each other.
Now by Claim 1, for every i = 1, . . . , k, Ti either sees no Tj , j �= i, and in this case
let us say that Ti is isolated, or sees exactly one Tj , j �= i, in which case we say that
Ti and Tj are paired.

Claim 2 If Ti and Tj are paired then G[Ti ∪ Tj ] contains at most two components
among the four following ones: Yi (defined above), Yj (defined above), Y ′

i which is a
star with center in Ti and the other vertices in Tj , Y ′

j which is a star with center in
Tj and the other vertices in Ti ; in particular, at most one from {Yi, Yj } does exist.

Proof of Claim 2 By (11) and since each edge of G must be matched by M ,
G[Ti ∪ Tj ] contains at most two components among the above ones. By (12) and
(13) it is enough to focus on the possible components of G[Ti ∪ Tj ] with vertices in
both Ti and Tj . In particular, by (12) each such component is a star with center in Ti

(in Tj , respectively) and the other vertices in Tj (in Ti , respectively); if any of such
stars contains a P3 then its center c belongs to V (M3) (in fact otherwise, c would
have two neighbors in Ti or in Tj , and such neighbors should belong to V (M), a con-
tradiction to (11)); then if such stars exist and contain P3, their centers belong to Ti

and Tj respectively; then one obtains the stars described in the claim. Finally, since
G[Ti ∪ Tj ] contains at most two components, by (13) and by definition of paired sets
one has that at most one from {Yi, Yj } does exist. �

Claims 1 and 2 are useful tools to detect M3. Observe that:

(i) if a vertex ti ∈ Ti sees a vertex of S3 ∪ S4, then uiti ∈ M3;
(ii) if a vertex ti ∈ Ti is the center of the star Yi or Y ′

i (in case of paired sets), with a
P3 then uiti ∈ M3.

Let us say that a vertex ti ∈ Ti is green if it enjoys one of the above two conditions
(i), (ii). Then the following statement holds for all i = 1, . . . , k:

G[Ti] contains at most one green vertex, say t∗i (14)

and

G
[
Ti \ N

(
t∗i

)]
is edgeless. (15)

6 Procedure Check(xy)

In our algorithm P7-Free-DIM in Sect. 8, we carry out a fixed number of times the
subsequent
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Procedure Check(xy)

Given: A (candidate) edge xy which is in an induced P3 of G.
Task: Determine a minimum weight d.i.m. M of G with xy ∈ M or unsuccessfully
STOP, i.e., return a proof that G has no d.i.m. M with xy ∈ M or G is not P7-free.

(a) Determine the distance levels N1,N2, . . . with respect to xy.
(b) Check if all the conditions (1), (2), (4), (6), (8), (10)–(13) of Sects. 5.1 and 5.2

are fulfilled. If one of them is not fulfilled then unsuccessfully STOP. Other-
wise, set M := {xy} ∪ M2 ∪ M4. If S2 = ∅, then STOP and return M .

(c) Check if Claim 1 of Sect. 5.3 holds. If not, then unsuccessfully STOP. Other-
wise classify the Ti sets into isolated ones and paired ones.

(d) Check if Claim 2 of Sect. 5.3 holds. If not, then unsuccessfully STOP.
(e) Color green every vertex ti of Ti such that either ti sees a vertex of S3 ∪ S4

or ti is the center of the star Yi or Y ′
i (in case of paired sets) with Yi or Y ′

i

containing P3.
(f) Check if conditions (14)–(15) of Sect. 5.3 hold. If not, then unsuccessfully

STOP.
Notation. For any subset T ′

i of any Ti set introduced in Sect. 5.3, let us say that
a vertex t ′i is a best vertex in T ′

i if w(uit
′
i ) ≤ w(uit

′′
i ) for any t ′′i ∈ T ′

i .
(g) For all isolated Ti , proceed as follows: If Ti has a green vertex t∗i , then set

M := M ∪ {uit
∗
i }. Otherwise set M := M ∪ {uit

′
i } where t ′i is a best vertex in

Yi (if Yi does exist) or is a best vertex in Ti (otherwise).
(h) For all paired Ti and Tj , proceed as follows.

(h.1) If Ti and Tj have a green vertex, respectively t∗i and t∗j , then: if t∗i misses t∗j , and
if G[(Ti ∪Tj )\ (N(t∗i )\N(t∗j ))] is edgeless then set M := M ∪{uit

∗
i }∪{uj t

∗
j };

otherwise unsuccessfully STOP.
(h.2) If Ti has a green vertex t∗i , and if Tj has no green vertex, then: If G[(Ti ∪ Tj ) \

N(t∗i )] has at least one vertex and contains most one component (i.e., Y ′
j or Yj ),

then set M := M ∪ {uit
∗
i } ∪ {uj tj } where tj is, in this order, either the vertex

in Y ′
j ∩ Tj (if), or a best vertex in Yj (if), or a best vertex in Tj . Otherwise

unsuccessfully STOP. If Tj has a green vertex t∗j , and if Ti has no green vertex,
then proceed similarly by symmetry.

(h.3) If Tj and Tj has no green vertex (according to Claim 2 and to the above,
G[Ti ∪ Tj ] contains isolated vertices, at most two isolated edges, and at least
one isolated edge, say ti tj , between Ti and Tj ), then proceed as follows:

• If there exists another edge, say pq , in Ti or Tj then: If p,q ∈ Ti (or p,q ∈
Tj ) then set M := M ∪ {uiz} ∪ {uj tj } where z is a best vertex in {p,q} (or
M := M ∪ {uiti} ∪ {uj z} where z is a best vertex in {p,q}); if p ∈ Ti and
q ∈ Tj , then either set M := M ∪ {uip} ∪ {uj tj } or set M := M ∪ {uiti} ∪
{ujq}, depending on the best alternative.

• Otherwise: If (Ti \ {ti}) ∪ (Tj \ {tj }) = ∅, then unsuccessfully STOP; if Ti \
{ti} �= ∅ and Tj \ {tj } = ∅, then set M := M ∪ {uizi} ∪ {uj tj } where zi is
a best vertex in Ti \ {ti}; if Ti \ {ti} = ∅ and Tj \ {tj } �= ∅, then set M :=
M ∪ {uiti} ∪ {ujzj } where zj is a best vertex in Tj \ {tj }; if Ti \ {ti} �= ∅ and
Tj \ {tj } �= ∅, then either set M := M ∪ {uizi} ∪ {uj tj } where zi is a best
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vertex in Ti \ {ti}, or set M := M ∪ {uiti} ∪ {uj zj } where zj is a best vertex
in Tj \ {tj }, depending on the best alternative.

(j) STOP and return M .

Theorem 1 Procedure Check(xy) is correct and runs in linear time.

Proof Correctness: The correctness of Procedure Check(xy) follows from the struc-
tural analysis of P7-free graphs with d.i.m. described in Sects. 5.1, 5.2 and 5.3.

Time bound: (a): Determining the distance levels Ni with respect to edge xy can be
done in linear time, e.g. by using BFS.

(b): Likewise, concerning conditions (1), (2), (4), (6), (8), (10)–(13), we can test
in linear time if N1 is a stable set, N2 is the disjoint union of edges and isolated
vertices, N5 = ∅, N4 is the disjoint union of edges and isolated vertices and N3 ∪ S4

is bipartite. The assignments can be done in linear time: This is obvious for M,S2
and S4. Then determine the degree of all vertices in N3 with respect to S2, and assign
degree one vertices to Tone and degree ≥ 2 vertices to Ttwo. Obviously, a vertex in
N3 which misses S2 has a predecessor in M2, and thus S3 and T ∗

one = Tone \ S3 form
a partition of N3. Obviously, it can be checked in linear time whether N3 ∪ S4 is a
bipartite subgraph and whether S3 ∪ S4 is a stable set.

(c)–(j): All these steps can obviously be done in linear time. �

In the other case when an edge xy is not in any P3, it follows that x and y are true
twins, and this case will be treated by determining the maximal homogeneous sets
of G.

7 DIM for P7-Free Bipartite Graphs in Linear Time

In this section, as a further preparing step for the general case, we show how to solve
the DIM problem on P7-free bipartite graphs in linear time. A domino (see Fig. 1) is
a bipartite graph having six vertices, say x1, x2, x3, y1, y2, y3 such that x1, y1, x2, y2,
x3 induce a P5 with edges x1y1, y1x2, x2y2, y2x3 and y3 sees exactly x1, x2 and x3.

Observation 6 Let M be a d.i.m. of a bipartite P7-free graph B .

(i) If C is a C6 in B then exactly two C-edges are in M .
(ii) B is domino-free.

Proof (i): Assume to the contrary that the statement is not true. Let C be a C6 in B

with vertices v1, . . . , v6 and edges vivi+1, i ∈ {1, . . . ,6} (index arithmetic modulo 6).
Then by Observation 2(iii), none of the C-edges are in M . Then since every edge
of B is matched by M , exactly three vertices of C, say v1, v3, v5, belong to V \
V (M), while v2, v4, v6 belong to V (M): let v′

2, v
′
4, v

′
6 be respectively their M-mates.

Then by definition of M and since B is bipartite, v′
2, v2, v3, v4, v5, v6, v

′
6 induce a

P7-contradiction.
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(ii): If D is a domino in B then by Observation 2(ii), the edges of the two C4’s of
D must be matched from outside but now obviously there is a P7-contradiction. �

If moreover, B is C6-free, it is (6,2)-chordal bipartite, i.e., distance hereditary and
bipartite (see e.g. [2]). In this case, DIM can be easily solved in linear time by us-
ing the clique-width argument [12, 13] since the clique-width of distance-hereditary
graphs is at most 3 (and 3-expressions can be determined in linear time). We want to
give a robust linear-time algorithm for P7-free bipartite graphs for solving the DIM
problem. If a bipartite graph B is given, the algorithm either solves the DIM problem
optimally or shows that there is a domino or P7 in B . The algorithm constructs the
distance levels starting from an arbitrarily chosen vertex. Then it checks whether B is
distance hereditary as in [2]. If a domino or P7 is found, the algorithm unsuccessfully
stops, and if a C6 C is found, one of the pairs of opposite edges in C must be in M ,
say v1v2 and v4v5, and in this case, it is checked by Check(v1v2) whether the distance
levels starting from v1v2 have the required properties.

For making this paper self-contained, we repeat Corollary 5 of [2]:

Corollary 4 (Bandelt, Mulder [2]) Let G be a connected graph, and let u be any
vertex of G. Then G is bipartite and distance hereditary if and only if all distance
levels Nk(u) are edgeless, and for any vertices v,w ∈ Nk(u) and neighbors x and y

of v in Nk−1(u), we have

(∗) N(x) ∩ Nk−2(u) = N(y) ∩ Nk−2(u), and further,
(∗∗) N(v) ∩ Nk−1(u) and N(w) ∩ Nk−1(u) are either disjoint, or one is contained

in the other.

We have to check level by level beginning with the largest index, whether condi-
tions (∗) and (∗∗) are fulfilled. If one of them is violated, we obtain a hole or domino.

This leads to the following procedure for the bipartite case which includes a certi-
fying recognition algorithm:

Procedure P7-Free-Bipartite-DIM
Given: A connected bipartite graph B with edge weights.
Task: Determine a d.i.m. M in B of minimum weight (if existent) or unsuccessfully
STOP, i.e., find out that B has no d.i.m. or is not P7-free.

(a) Choose a vertex u ∈ V and determine the distance levels N1(u),N2(u), . . . with
respect to u. If N6(u) �= ∅ then STOP-B is not P7-free.

(b) For all levels Nk(u), k ≤ 5, beginning with N5(u), check whether conditions (∗)

and (∗∗) are fulfilled. If one of them is violated, we obtain an obstruction which
is either a hole C8 or C10 (in the case of a C8 or C10 STOP-B is not P7-free), or
a C6 C (in which case we have to proceed with C) or a domino-STOP-B has no
d.i.m. or is not P7-free.

(c) If for all levels, conditions (∗) and (∗∗) are fulfilled, B is distance hereditary and
bipartite. Apply the clique-width approach for solving the DIM problem.
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(d) (Now B is not distance hereditary and C is a C6 in B .) For three consecutive
edges ab of C, carry out Check(ab). If none of them ends successfully then
STOP-B has no d.i.m., otherwise we obtain an optimal d.i.m. (among the at most
three solutions).

Procedure Check(ab) assumes that ab is in a C6 of the bipartite graph B . In this
case we have some additional properties, and the procedure could be simplified:

Let N1a = N(a) ∩ N1(ab) (N1b = N(b) ∩ N1(ab), respectively). Obviously, the
following is a partition of N1(ab) if B is bipartite:

N1(ab) = N1a ∪ N1b (16)

As before, N1(ab) has to be stable, and N2(ab) is a disjoint union of edges M2
and isolated vertices S2. Since ab is in a C6, we have that M2 �= ∅.

Since B is P7-free and assuming that ab ∈ M , obviously:

S2 = ∅ and N4(ab) = ∅. (17)

Moreover:

N3(ab) is edgeless. (18)

Finally, since B is P7-free, we obtain:

Vertices in M2 of the same color have the same neighborhood in N1(ab). (19)

Proof of (19) Let ef ∈ M2 and gh ∈ M2 with e and g in the same color class, and
suppose that e sees x ∈ N1a while g misses x. Then there is y ∈ N1b such that yf ∈
E. Since N1(ab) is stable, xy �∈ E. Since g misses x, there is a neighbor z ∈ N1a

of g. Since h,g, z, a, x, e is no P7, ze ∈ E. Again, since N1(ab) is stable, yz �∈ E.
If hy ∈ E then x, e, z, g,h, y, b is a P7. Thus, hy �∈ E but now h,g, z, a, b, y, f is a
P7—a contradiction which shows (19). �

Obviously, {ab} ∪ M2 is a d.i.m. of B if all conditions are fulfilled.

Lemma 3 Procedure P7-Free-Bipartite-DIM is correct and runs in linear time.

Proof The correctness of the procedure follows from the structural analysis of bipar-
tite P7-free graphs with d.i.m. The time bound follows from the fact that procedure
Check(xy) is carried out only for a fixed number of candidate edges, and each step of
the procedure can be done in linear time. �

8 The DIM Algorithm for the General P7-Free Case

In the previous chapters we have analyzed the structure of P7-free graphs having a
d.i.m. Now we are going to use these properties for an efficient algorithm for solving
the DIM problem on these graphs.
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Algorithm P7-Free-DIM
Given: A connected graph G = (V ,E) with edge weights.
Task: Determine a d.i.m. in G of finite minimum weight (if existent) or find out
that G has no d.i.m. or is not P7-free.

(a) If G is bipartite then carry out procedure P7-Free-Bipartite-DIM.
(b) (Now G is not bipartite.) If G is a cograph then apply procedure Cograph-DIM.

If G is not a cograph but G is not connected then STOP-G has no d.i.m.
(c) (Now G is neither bipartite nor a cograph, and G is connected.) Let M := ∅.

Determine the maximal homogeneous sets H1, . . . ,Hk of G. For all i ∈
{1, . . . , k} do the following steps (c.1), (c.2):

(c.1) If |N(Hi)| = 1 and Hi is not a stable set then carry out procedure Hom-1-
DIM(Hi ).

(c.2) In the case when |N(Hi)| ≥ 2 and Hi is not a stable set then check whether
N(Hi) is stable and Hi is a disjoint union of edges; if not then STOP-G has no
d.i.m., otherwise, for all edges xy in Hi , let M := M ∪ {xy}.

(d) If M �= ∅ then construct G′ = Reduced(G,M) as described in Sect. 3.1.
(e) For every connected component C of G′, do:

(e.1) If C is bipartite then carry out procedure P7-Free-Bipartite-DIM for C.
Otherwise:

(e.2) Construct C∗ as described in Sect. 3.2 (where the singular triangle leaf
blocks are temporarily omitted) and carry out Find-Odd-Cycle-Or-P7

for C∗.
(e.3) If an odd cycle C3, C5 or C7 is found, carry out Check(ab) in the com-

ponent C for all (at most seven) edges of the odd cycle. Add the resulting
edge set to the mandatory edges from steps (c.1), (c.2), respectively.

(e.4) If however, C∗ is bipartite then with procedure P7-Free-Bipartite-DIM
for C∗, find out if the procedure unsuccessfully stops or if there is a C6

in C∗; in the last case, do Check(ab) in the component C for all edges of
the C6.

(e.5) Finally, if C∗ is distance hereditary bipartite, construct Tr(C) as de-
scribed in Sect. 3.2 (the omitted triangle leaf blocks are attached as P3’s
and the resulting graph is distance hereditary bipartite) and solve DIM for
this graph using the clique-width argument (or using the linear time DIM
algorithm for chordal bipartite graphs given in [4]).

(f) Finally check once more whether M is a d.i.m. of G. If not then G has no
d.i.m., otherwise return M .

Theorem 2 Algorithm P7-Free-DIM is correct and runs in linear time.

Proof Correctness: The correctness of the algorithm follows from the structural anal-
ysis of P7-free graphs with d.i.m. In particular, if G is bipartite (a cograph, respec-
tively) then procedure P7-Free-Bipartite-DIM (Cograph-DIM, respectively) correctly
solves the DIM problem.

If G is not connected, i.e., G = G1 1©G2 for some nonempty G1,G2 and G has a
d.i.m. then by Corollary 2, G must be a cograph.
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For the maximal homogeneous sets H1, . . . ,Hk of G, there are two cases
|N(Hi)| = 1 or |N(Hi)| ≥ 2. By Proposition 1 and Lemma 1, steps (c.1) and (c.2) are
correct, and G can be correctly reduced by using the obtained set M of forced edges.
Since in procedure Hom-1-DIM, in the last case, the corresponding singular triangle
leaf blocks are postponed, in the reduced graph, every odd cycle contains only edges
in P3’s. Thus, it is correct to apply Check(ab) for the edges of some odd cycle in the
(non-bipartite) reduced graph. Finally one has to add the postponed edges and solve
the DIM problem on these graphs.

Time bound: Step (a) can be done in linear time since procedure P7-Free-Bipartite-
DIM takes only linear time. Step (b) can be done in linear time since it can be recog-
nized in linear time whether G is a cograph (see [8, 11]) and procedure Cograph-DIM
can be done in linear time. Step (c) can be done in linear time since modular decom-
position can be done in linear time and finds the maximal homogeneous sets [19].
There is only a linear number of true twins, and the corresponding reduced graph can
be determined in linear time.

In the reduced graph G′ = Reduced(G,M), procedure Check(xy) is carried out
only for a fixed number of edges xy, and the procedures P7-Free-Bipartite-DIM and
Find-Odd-Cycle-Or-P7 can be done in linear time. �

9 Conclusion

In this paper we solve the DIM problem in linear time for P7-free graphs which
answers an open question from [9]. Actually, we solve the minimum weight DIM
problem in a robust way in the sense of [20]: Our algorithm either solves the problem
correctly or finds out that the input graph has no d.i.m. or is not P7-free. This avoids
to recognize whether the input graph is P7-free; the known recognition time bound is
much worse than linear time. It is a challenging open question whether for some k,
the DIM problem is NP-complete for Pk-free graphs.
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