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Abstract Here we show that, given a set of clusters C on a set of taxa X , where
|X | = n, it is possible to determine in time f (k) · poly(n) whether there exists a
level-≤ k network (i.e. a network where each biconnected component has reticula-
tion number at most k) that represents all the clusters in C in the softwired sense, and
if so to construct such a network. This extends a result from Kelk et al. (in IEEE/ACM
Trans. Comput. Biol. Bioinform. 9:517–534, 2012) which showed that the problem
is polynomial-time solvable for fixed k. By defining “k-reticulation generators” anal-
ogous to “level-k generators”, we then extend this fixed parameter tractability result
to the problem where k refers not to the level but to the reticulation number of the
whole network.

Keywords Phylogenetics · Fixed parameter tractability · Directed acyclic graphs

1 Introduction

1.1 Phylogenetic Networks and Softwired Clusters

The traditional model for representing the evolution of a set of species X (or, more
abstractly, a set of taxa) is the rooted phylogenetic tree [9, 10, 25]. Essentially, this is
a singly-rooted tree where the leaves are bijectively labelled by X and the edges are
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Fig. 1 Example of a
phylogenetic network with five
reticulations. The encircled
subgraphs form its biconnected
components, also known as its
“tangles”. This binary network
has level equal to 2 since each
biconnected component contains
at most two reticulations

directed away from the root. In recent years there has been a growing interest in ex-
tending this model to also incorporate non-treelike evolutionary phenomena such as
hybridizations, recombinations and horizontal gene transfers. This has subsequently
stimulated research into rooted phylogenetic networks which generalize rooted phy-
logenetic trees by also permitting nodes with indegree two or higher, known as retic-
ulation nodes, or simply reticulations. For detailed background information on phy-
logenetic networks we refer the reader to [14–16, 22, 24, 28]. Figure 1 shows an
example of a rooted phylogenetic network.

We are interested in the following biologically-motivated optimization problem.
We are given a set C of clusters on X , where a cluster is simply a strict subset of X .
We wish to construct a phylogenetic network that “represents” all the clusters in C
such that the amount of reticulation in the network is “minimized”. There are sev-
eral different definitions of “represents” and “minimized” present in the literature. In
this article we will consider only the softwired definition of “represents” [14–16, 31].
Most of our formal definitions will be deferred to the preliminaries. Nevertheless, it is
helpful to already formally state that a rooted phylogenetic tree T on X represents a
cluster C ⊂ X if T contains an edge (u, v) such that C is exactly equal to the subset of
X reachable from v by directed paths. A phylogenetic network N on X , on the other
hand, represents a cluster C ⊂ X in the softwired sense if there exists some rooted
phylogenetic tree T on X such that T represents C and T is topologically embedded
inside N . Regarding “minimized”, we consider two closely related, but subtly differ-
ent, variants of minimality. The first variant, reticulation number minimization, aims
at minimizing the total number of reticulation nodes in the network.1 The second,
less well-known variant, level minimization [18, 19, 26, 29, 30], asks us to minimize
the maximum number of reticulation nodes contained in any “tangled” region of the
network, which correspond to the non-trivial biconnected components of the under-
lying undirected graph (see Fig. 1). The reticulation number is a global optimality
criterion, while the level is a local optimality criterion. In general minimizing for one
variant does not induce minimum solutions for the other variant (see e.g. [15, Fig. 3]),
although the algorithmic techniques used to tackle these problems are often related

1This is the definition when all reticulation vertices have indegree-2, for more general networks reticulation
number is defined slightly differently. See the Preliminaries for more information.



888 Algorithmica (2014) 68:886–915

[20]. Both these problems are NP-hard and APX-hard [2, 28]. This raises the natural
question: given a set of clusters C and a fixed integer r , is it NP-hard to determine
whether or not there exists a network with reticulation number (respectively, level)
equal to r representing C ?

Prior to this article there were only partial answers known to these questions. In
[20] it was proven that the level-oriented question can be answered in polynomial
time if the level is fixed. A striking aspect of this proof is that the running time of
the algorithm is only polynomial time in a highly theoretical sense: it is too high
to be of any practical interest. This exorbitant running time has two causes. Firstly,
the exhaustive enumeration of all level-k generators [29], essentially the set of all
possible underlying topologies of a network constituted of a biconnected component
if the taxa are ignored. Secondly, after determining the correct generator, a second
wave of exhaustive enumeration determines where a critical subset of X should be
located within the network, after which all remaining elements of X can easily be
added without much computational effort.

The question of whether a corresponding positive result would hold for reticula-
tion number minimization was left open, although the emergence of several partial
results and practically efficient algorithms [15, 20] suggested that this might well
be the case. Furthermore, it was not obvious how the algorithm from [20] could be
adapted to yield a fixed parameter tractable algorithm for level minimization—where
the parameter is the level of the network k-since k appears as an exponent of |X | in
the running time of the algorithm. (We refer to [6, 7, 11, 23] for an introduction to
fixed parameter tractability). Curiously, the main problem is not the enumeration of
the generators, because the number of generators is independent of |X | [8], but the
allocation of the critical initial subset of taxa to their correct location in the network.

In this article we settle all these questions by proving for the first time that
both level minimization and reticulation number minimization are fixed parameter
tractable (where, in the case of reticulation number minimization, the parameter is
the reticulation number of the whole network). We give one algorithm for level min-
imization and one algorithm for reticulation minimization, although the two algo-
rithms have a large common core. The algorithms again rely heavily on generators,
which we extend here to also be useful in the context of reticulation number mini-
mization; generators had hitherto only appeared in the level minimization literature.
In both algorithms the major non-triviality is showing how the network structure can
still be adequately recovered if the parameter is no longer allowed to appear in the
exponent of |X | as it was in [20].

1.2 Beyond Softwired Clusters: The Wider Context

We believe that this approach is significant beyond the softwired cluster literature.
Other articles discuss the problem of constructing rooted phylogenetic networks not
by combining clusters but by combining triplets [27, 30], characters [12, 13, 21, 35]
or entire phylogenetic trees into a network. These models are in general mutually
distinct although they do have a significant common overlap which reaches its peak
in the case of data derived from two phylogenetic trees. To see this, note that if one
takes the union of clusters represented by a set of two or more phylogenetic trees,
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then the reticulation number (or level) required to represent these clusters is in gen-
eral less than or equal to the reticulation number (or level) required to topologically
embed the trees themselves in the network, and this inequality is often strict. How-
ever, in the case of a set comprising exactly two trees the inequality becomes equality
[28]. Hence for data obtained from two trees one could solve the reticulation number
minimization and level minimization problems for clusters by using algorithms devel-
oped for the problem of topologically embedding the trees themselves into a network.
These algorithms are highly efficient and fixed parameter tractable in a practical, as
opposed to solely theoretical sense [1, 3, 5, 32]. However, these tree algorithms do
not help us with more general cluster sets, because for more than two trees the optima
of the cluster and tree models start to diverge. Indeed, the cluster model often saves
reticulations with respect to the tree model by weakening the concept of “above” and
“below” in the network, which is exactly why the input tree topologies do not gen-
erally survive if one atomizes them into their constituent clusters [28]. Moreover, the
literature on embedding three or more trees into a network is not yet mature, with ar-
ticles restricting themselves to preliminary explorations [4, 17, 34]. It therefore seems
plausible that the generator approach might be adapted to the tree model (or the other
constructive methods mentioned) to yield a unified technique for producing positive
complexity results for reticulation number minimization and level minimization, even
in the case of many input trees (or data obtained from many input trees).

2 Preliminaries

Consider a set of taxa X , where |X | = n. A rooted phylogenetic network (on X ),
henceforth network, is a directed acyclic graph with a single node with indegree zero
(the root), no nodes with both indegree and outdegree equal to 1, and nodes with
outdegree zero (the leaves) bijectively labelled by X . In this article we usually iden-
tify the leaves with X . The indegree of a node v is denoted δ−(v) and v is called a
reticulation if δ−(v) ≥ 2, otherwise v is a tree node. An edge (u, v) is called a retic-
ulation edge if its target node v is a reticulation and is called a tree edge otherwise.
When counting reticulations in a network, we count reticulations with more than two
incoming edges more than once because, biologically, these reticulations represent
several reticulate evolutionary events. Therefore, we formally define the reticulation
number of a network N = (V ,E) as

r(N) =
∑

v∈V :δ−(v)>0

(δ−(v) − 1) = |E| − |V | + 1.

A rooted phylogenetic tree on X , henceforth tree, is simply a network that has
reticulation number zero. We say that a network N on X displays a tree T if T can
be obtained from N by performing a series of node and edge deletions and eventually
by suppressing nodes with both indegree and outdegree equal to 1, see Fig. 2 for an
example. We assume without loss of generality that each reticulation has outdegree at
least one. Consequently, each leaf has indegree one. We say that a network is binary
if every reticulation node has indegree 2 and outdegree 1 and every tree node that is
not a leaf has outdegree 2.
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Fig. 2 A phylogenetic tree T (a) and a phylogenetic network N (b, c); (b) illustrates in grey that N

displays T (deleted edges are dashed); (c) illustrates that N represents (amongst others) the cluster {c, d, e}
in the softwired sense (dashed reticulation edges are “switched off”)

Proper subsets of X are called clusters, and a cluster C is a singleton if |C| = 1.
We say that an edge (u, v) of a tree represents a cluster C ⊂ X if C is the set of
leaf descendants of v. A tree T represents a cluster C if it contains an edge that
represents C. It is well-known that the set of clusters represented by a tree is a laminar
family, often called a hierarchy in the phylogenetics literature, and uniquely defines
that tree. We say that a network N represents a cluster C “in the softwired sense” if
N displays some tree T on X such that T represents C, see Figs. 2 and 3. In this
article we only consider the softwired notion of cluster representation and henceforth
assume this implicitly.2 A network represents a set of clusters C if it represents every
cluster in C (and possibly more). The set of all softwired clusters represented by a
network can be obtained as follows. For a network N , we say that a switching of
N is obtained by, for each reticulation node, deleting all but one of its incoming
edges. Given a network N and a switching TN of N , we say that an edge (u, v) of
N represents a cluster C w.r.t. TN if (u, v) is an edge of TN and C is the set of
labelled leaf descendants of v in TN . The set of all softwired clusters represented
by N , denoted C(N), is the set of clusters represented by all edges of N w.r.t. TN ,
where TN ranges over all possible switchings [16]. Note that every tree displayed by
N corresponds to one or more switchings of N . It is also natural to define that an
edge (u, v) of N represents a cluster C if there exists some switching TN of N such
that (u, v) represents C w.r.t. TN . Note that, in general, an edge of N might represent
multiple clusters, and a cluster might be represented by multiple edges of N .

Given a set of clusters C on X , throughout the article we assume that, for any
taxon x ∈ X , C contains at least one cluster C containing x and that C contains
at least one non singleton cluster.3 For a set C of clusters on X we define r(C) as
min{r(N)|N represents C} and we refer to this as the reticulation number of C . The
related concept of level requires some more background. A directed acyclic graph
is connected (also called “weakly connected”) if there is an undirected path (ig-
noring edge orientations) between each pair of nodes. A node (edge) of a directed

2Alternatively, we say that a network N represents a cluster C ⊂ X “in the hardwired sense” if there exists
a tree edge (u, v) of N such that C is the set of leaf descendants of v.
3Otherwise C can be trivially represented by the star tree on X .
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Fig. 3 Two examples of
networks that represent, among
others, the set of clusters
C = {{a, b,f, g, i},
{a, b, c, f, g, i}, {a, b,f, i},
{b, c, f, i}, {c, d, e,h},
{d, e,h}, {b, c, f,h, i},
{b, c, d, f,h, i}, {b, c, i},
{a,g}, {b, i}, {c, i}, {d,h}}. The
network in (a) is a simple
level-4 network, and the
network in (b) is a binary simple
level-2 network

graph is called a cut-node (cut-edge) if its removal disconnects the graph. A directed
graph is biconnected if it contains no cut-nodes. A biconnected subgraph B of a di-
rected graph G is said to be a biconnected component if there is no biconnected sub-
graph B ′ �= B of G that contains B . A phylogenetic network is said to be a level- ≤ k

network if each biconnected component has reticulation number less than or equal
to k.4 A network is called simple if the removal of a cut-node or a cut-edge creates
two or more connected components of which at most one is non-trivial (i.e. con-
tains at least one edge). A (simple) level-≤ k network N is called a (simple) level-k
network if the maximum reticulation number among the biconnected components of
N is precisely k. For example, the network in Fig. 1 is a level-2 network (which is
not simple), the network in Fig. 3(a) is a simple level-4 network and the network in
Fig. 3(b) is a simple level-2 network. Note that a tree is a level-0 network. For a set C
of clusters on X we define the level of C , denoted l(C), as the smallest k ≥ 0 such that
there exists a level-k network that represents C . It is immediate that for every cluster
set C it holds that r(C) ≥ l(C), because a level-k network always contains at least one
biconnected component containing k reticulations.

We say that two clusters C1,C2 ⊂ X are compatible if either C1 ∩ C2 = ∅
or C1 ⊆ C2 or C2 ⊆ C1, and incompatible otherwise. Consider a set of clusters C .
The incompatibility graph IG(C) of C is the undirected graph (V ,E) that has node
set V = C and edge set E = {{C1,C2} | C1 and C2 are incompatible clusters in C}.
We say that a set of taxa X ′ ⊆ X is compatible with C if X ′ = X or every cluster
C ∈ C is compatible with X ′, and incompatible otherwise.

We say that a set of clusters C on X is separating if it is incompatible with all sets
of taxa X ′ such that X ′ ⊂ X and |X ′| ≥ 2.

When we write f (k) we mean “some function that only depends on k”. For sim-
plicity we overload f (k) to refer to multiple different functions with this property. We
write poly(n) to mean “some function f (n) that is polynomial in n”, where |X | = n.
As in the case of f (k), we often overload this expression. Indeed, the goal of this
article is not to derive exact expressions for the running time, but to show that it is
bounded above by f (k) · poly(n). It should be noted that the f (k) that we encounter
in this article can be extremely exponential in k. Also, |C| can in general be expo-
nentially large as a function of n, but (as we shall see in due course) we may assume

4Note that to determine the reticulation number of a biconnected component, the indegree of each node is
computed using only edges belonging to this biconnected component.
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that |C| is bounded above by f (k) · poly(n) when the parameter k (reticulation num-
ber or level) is fixed. This is indeed obvious for the reticulation number and will be
shown to be also true for the level in Sect. 3.2. The next lemma ensures that, if our
goal is to find a network representing a set of clusters and minimizing the level or the
reticulation number, we can restrict our attention to binary networks:

Lemma 1 [20] Let N be a network on X . Then we can transform N into a binary
network N ′ such that N ′ has the same reticulation number and level as N and all
clusters represented by N are also represented by N ′.

It is well-known that for every set of taxa X , it is possible to construct a binary
network with at most |X | − 1 reticulations which represents every possible cluster
on X [28]. This implies that r(C) and l(C) are well defined for any set of clusters C .
Thanks to this observation and to Lemma 1, there exists a binary network N with
reticulation number r(C) (or with level l(C) if we are interested in level minimization)
that represents C . We henceforth restrict our analysis to binary networks and, except
in places where it might cause confusion to not be explicit, we will not emphasize
again that we only deal with this kind of network.

3 Minimizing Level is Fixed Parameter Tractable

The aim of this section is to show that level-minimization is fixed parameter tractable.
To compute l(C), we will repeatedly query, “Is l(C) = k? If so, construct a network
with level equal to k that represents C ”, where k starts at 0 and is incremented by
1 until the query is answered positively. Assuming that the queries are correctly an-
swered, this process will terminate after l(C)+1 iterations. Hence, to prove an overall
running time of f (l(C)) · poly(n), it is sufficient to show that for each k we can cor-
rectly answer the query in time at most f (k) · poly(n). Note that r(C) = l(C) = 0 if
and only if all the clusters in C are pairwise mutually compatible, which can be easily
checked in time poly(n), so we henceforth assume that k ≥ 1.

The high-level idea is the following. In [16, 31] it is shown that level-k networks
can be constructed using a divide and conquer strategy. Informally, the idea is to
construct a level-≤ k network for each connected component of the incompatibility
graph IG(C) and then to combine these into a single network. The clusters in each
connected component first have to be processed, which creates (for each component)
a separating set of clusters. From Lemma 1 of [20], we know that, if a level-k network
representing a separating set of clusters C on X exists, a simple level-k network
representing C has to exist. Moreover, the transformation underpinning Lemma 1
allows us to assume that this simple level-k network is binary. Hence, the divide and
conquer strategy essentially reduces to constructing binary simple level-≤ k networks
for separating sets of clusters (and then combining them into a single network).

In Sect. 3.1 we show how to construct a simple level-k network in time f (k) ·
poly(n) from a separating set of clusters. Subsequently we show in Sect. 3.2 how to
combine these networks in time f (k) · poly(n) into a single level-k network.
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Fig. 4 The single level-1 generator and the four level-2 generators. Here the sides have been labelled with
capital letters

3.1 Constructing Simple Networks from Separating Cluster Sets

Before proving the main result of this paper, we need to prove some preliminary
results.

Proposition 1 Given a simple level-k network N and a set of clusters C on X , check-
ing whether C is represented by N can be done in time f (k) ·poly(n), where n = |X |.

Proof Note that a simple level-k network contains exactly k reticulations. Thus, there
are at most 2k trees displayed by N and each tree represents at most 2(n−1) clusters.
This means that |C(N)| is at most 2k+1(n − 1). Since N cannot represent C if |C| >

|C(N)|, checking whether C ⊆ C(N) takes at most f (k) · poly(n) time. �

Thus, if |C| > 2k+1(n − 1), since C is assumed to be separating, it is not possible
that l(C) = k and we can immediately answer “no” to the query.5 We thus henceforth
assume that |C| ≤ 2k+1(n − 1) i.e. that C contains at most f (k) · poly(n) clusters.

If all the leaves of a binary simple level-k network N are removed and all nodes
with both indegree and outdegree equal to 1 are suppressed, the resulting structure
is called a level-k generator as defined in [29]. See Fig. 4 for the level-1 and level-2
generators. The number of level-k generators is bounded by f (k) [8].6

The sides of a level-k generator are defined as the union of its edges (the edge
sides) and its nodes of indegree-2 and outdegree-0 (the node sides). The number of
sides in a generator is bounded by f (k), because the sum of its vertices and edges is
linear in k [30].

Definition 1 The set N k (for k ≥ 1) is defined as the set of all networks that can be
constructed by choosing some level-k generator G and then applying the following
leaf hanging transformation to G such that each taxon of X appears exactly once
in the resulting network. (This is essentially identical to the definition given in [30],
which is only a superficial refinement of the definition given in [29]).

5Recall that, by Lemma 1 of [20], the existence of a level-k network representing a separating set of
clusters C on X implies that a simple level-k network representing C has to exist.
6Note that the number of level-k generators grows rapidly in k, lying between 2k−1 and k!250k [8].
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1. First, for each pair u,v of vertices in G connected by a single edge (u, v), replace
(u, v) by a path with l ≥ 0 internal vertices and, for each such internal vertex w,
add a new leaf w′, an edge (w,w′), and label w′ with some taxon from X . All
the taxa added in this way are “on side s” where s is the side corresponding to the
edge (u, v). (It is also permitted that the path has zero internal nodes i.e. that the
side remains empty).

2. Second, for each pair u,v of vertices in G connected by two edges, treat the two
edges as in step 1, but ensure that at least one of the two paths does not have zero
internal nodes.

3. Third, for each vertex v of G with indegree 2 and outdegree 0 add a new leaf y, an
edge (v, y) and label y with a taxon x ∈ X ; we say “taxon x is on side s” where s

is the side corresponding to vertex v.

The main reason for step 2 in Definition 1 is to ensure that multi-edges in gen-
erators do not survive in the final network, since our definition of phylogenetic net-
work does not allow multi-edges. The next lemma follows directly from the results
in Sect. 3.1 of [29]:

Lemma 2 The set N k (for k ≥ 1) is equal to the set of all binary simple level-k
networks.

For example, the simple network in Fig. 3(b) has been obtained from generator 2a

(see Fig. 4) by putting 0 taxa on sides A and D, 1 taxon on side F , 2 taxa on side B

and 3 taxa on sides C and E.
By Lemma 1 of [20] and Lemmas 1 and 2, we have the following:

Corollary 1 Let C be a separating set of clusters on X such that l(C) ≥ 1. Then there
exists a network N in N l(C) such that N represents C .

Given a taxon set X , we call any network resulting from adding all taxa in X to
sides of a generator G (in the sense of Definition 1) a completion of G on X . Here
we call a side that receives ≥ 2 taxa a long side, a side that receives 1 taxon a short
side and a side that receives 0 taxa an empty side. Figure 3(b) is thus a completion of
generator 2a, where sides A and D are empty, side F is short, and sides B,C,E are
long. Note that in simple networks node sides (such as F in the example) are always
short. Indeed, they cannot be empty—otherwise they will violate the definition of a
network—and they cannot be long, since simple networks never have two or more
taxa with the same parent [20].

Given a generator G, we call a set of side guesses for G, denoted by SG, a set
of guesses about the type of each side of G (i.e. whether it is empty, short, or long).
A completion N of G on X respects SG if all sides that are long in SG receive at least
2 taxa in N , sides that are short in SG one taxon and empty sides zero taxa. Then we
have the following result:

Observation 1 Searching in the space of all binary simple level-k networks on X
is equivalent to searching in the space of all completions of a level-k generator G
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respecting a set of side guesses SG, iterating overall all sets of side guesses for a
generator and all level-k generators.

Let G be a level-k generator and let SG be a set of side guesses for G. We say
that the pair (G,SG) is side-minimal w.r.t. a separating cluster set C on X and an
integer k, if there exists a completion N of G on X respecting SG that is a level-k
network representing C and, amongst all simple level-k networks that represent C ,
N has a minimum number of long sides, and (to further break ties) amongst those
networks it has a minimum number of short sides.

We define an incomplete network as a generator G, a set of side guesses SG, a set
of finished sides (i.e. those sides for which we have already decided that no more taxa
will placed on them), a set of future sides (i.e. those short and long sides that have
had no taxa allocated yet), at most one long side—the active side—on which at least
one taxon has already been placed but where we might still want to add some more
taxa, and information describing the position of already-allocated taxa on the finished
and active sides. A valid completion of an incomplete network is an assignment of
the unallocated taxa to the future sides and (possibly) above the taxa already placed
on the active side, that respects SG and such that the resulting network (which we
call the result of the valid completion) represents C . Informally, the result of a valid
completion is any network on X respecting SG and representing C that is obtained by
respecting all placements of taxa made thus far.

For example, consider again the network in Fig. 3(b). Let N be the network in
that figure and let N ′ be the network obtained from N by deleting taxa c, d, e and
suppressing the resulting vertices with indegree and outdegree both equal to 1. Let
G be generator 2a, and let SG be the set of side-guesses where sides A and D are
empty, side F is short, and sides B,C,E are long. Then N ′ is an incomplete network
for (G,SG) where sides A,B,D,E are finished, F is a future side and C is the active
side. We can perform a valid completion of N ′ by putting taxa d and e above taxon h

on side C and then putting c on side F . In this case, N is the result of the completion,
although in general an incomplete network might have many valid completions, or
none.

Given a cluster set C , we write x →C y if and only if every non-singleton cluster
in C containing x, also contains y. Then we have the following result.

Proposition 2 Given a separating set of clusters C on X and an ordered set of distinct
taxa of X (x1, . . . , xj ) such that j ≥ 2 and xi →C xi+1 for 1 ≤ i ≤ (j − 1). Then
xj �→C x1.

Proof If xi →C xi+1 for 1 ≤ i ≤ (j − 1) and xj →C x1, this means that the set X ′ =⋃j

i=1 xi is compatible with C . Note that we can have that X ′ = X only if all clusters
in C are singleton clusters, but this is not possible (see footnote 3). So X ′ ⊂ X and
thus, since |X ′| ≥ 2, we have a contradiction. �

The following observations will be useful to prove Lemma 3.

Observation 2 Let N be a phylogenetic network on X representing a set of clusters
C on X constructed by choosing some level-k generator G and then applying the leaf
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hanging transformation described in Definition 1 to G. If two taxa x and y in X are
on the same side of the generator underlying N and the parent of x is a descendant
of the parent of y, then y →C x.

Given a simple phylogenetic network N , we say that a side s′ is reachable from a
side s in N if there is a directed path in the generator underlying N from the head of
side s to the tail of side s′.

Observation 3 Let N be a phylogenetic network on X representing a set of clusters
C on X constructed by choosing some level-k generator G and then applying the leaf
hanging transformation described in Definition 1 to G. Moreover, let x and y be two
taxa of X on the same side s of the generator underlying N such that y →C x and let
z be a taxon on a side s′ �= s such that s′ is not reachable from s and z →C x. Then
we have that z →C y.

Proof Since z →C x, we know that every non-singleton cluster that contains z also
contains x. Now, let C such a cluster. C is represented by some tree T displayed by
N , so some edge e in T is such that C is the set of all taxa reachable from directed
paths from the head of e. Now, z and x are both in C, so there is a directed path from
the head of e to z and a directed path from the head of e to x. Since s′ is not reachable
from s, the only way that such a directed path can reach x is via the parent of y, hence
the fact that z →C y. If no cluster C containing z and x exists, since z →C x we have
that the only cluster containing z is the singleton cluster {z}. Then, obviously, z →C y

too. �

Observation 4 Let N be a phylogenetic network on X representing a set of clusters
C on X constructed by choosing some level-k generator G and then applying the leaf
hanging transformation described in Definition 1 to G. Let x and y be two taxa in
X on the same side s of the generator underlying N such that there exists an edge e

from the parent of y to the parent of x. Then e represents all clusters in C containing
x but not y.

Observation 5 Let C be a separating cluster set on X . Then every size-2 subset of
X is incompatible with C .

Let N be a simple phylogenetic network, l a taxon and s a side of the generator
G underlying N . We denote by N(l, s) the following operations: If s is a short side,
then N(l, s) is simply the network obtained by putting l on side s (in the sense of
Definition 1). Otherwise, s is a long side, and then N(l, s) is the network obtained
by placing l “just above” the highest taxon on side s. If there are not yet any taxa on
side s then we simply let l be the first taxon on side s. (See Fig. 5 for clarification).
Note that we exclude from consideration the case where s is a short side that already
has a taxon on it.

The core of our proof of fixed-parameter tractability relies on Algorithm 1 (see
pseudocode). Let us assume that we have an incomplete network N with an active
side s (which is by definition long) such that all long sides s′ �= s that are reachable
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Fig. 5 Three examples of the
N(l, s) operation. (a) N(l, s)

when s is an unfinished short
node side; (b) N(l, s) when s is
an unfinished short edge side (or
a long side that does not yet
have any taxa); (c) N(l, s) when
s is a long side that already has
at least one taxon

from s, are finished. (These preconditions will be motivated in due course.) Infor-
mally, Algorithm 1 identifies and returns a set of possible next steps in constructing
a valid solution. It decides whether to terminate the side s (and declare it finished),
or to add a single new taxon to the top of it. In the case that it decides to add a taxon,
it has to decide which specific taxon to add. Furthermore, when this taxon is added,
it can force some other taxa to be allocated to unfinished short sides that are “be-
neath” s, and the algorithm also has to decide how to allocate these taxa. In this way,
Algorithm 1 can also cause some short sides to be allocated a taxon, although the
algorithm itself is only applied to long sides.7

Lemma 3 Let C be a separating set of clusters on X and let k be the first integer for
which a level-k network representing C exists. Let N be an incomplete network such
that its underlying generator G and set of side guesses SG are such that (G,SG)

is side-minimal w.r.t. C and k, and let s be the active side of N . Then, if a valid
completion for N exists, Algorithm 1 computes a set of (incomplete) networks N
such that this set contains at least one network for which a valid completion exists.

Proof Recall that, from Corollary 1, we can restrict our search to networks in N k .
We write X (N) to denote the set of taxa present in a (incomplete) network N . For

7Indeed, short sides can only be allocated taxa in two ways. Firstly, indirectly via Algorithm 1. Secondly,
when there are no longer any unfinished long sides, at the very end of the entire procedure, in Algorithm 3.
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Algorithm 1 addOnSide(N,s)

1: X ′ ← X \ X (N);
2: xi ← the most recent taxon inserted on side s;
3: L ← {l ∈ X ′ | l →C xi};
4: L′ ← {l ∈ L| there does not exist l′ ∈ L such that l′ �= l and l →C l′};
5: U ← {s′|s′ �= sis a side of N that is not yet finished and is reachable from s};
6: for l ∈ L′ do
7: S(l) = ⋃{C ∈ C | xi ∈ C and l �∈ C};
8: B(l) = X ′ ∩ S(l).
9: if U = ∅ then

10: if |L′| �= 1 then declare s as finished in N and return N ;

11: l ← removeFirst(L′);
12: if B(l) �= ∅ then declare s as finished in N and return N ;

13: if N(l, s) does not represent C restricted to X (N) ∪ {l} then
14: declare s as finished in N and return N ;
15: else return N(l, s);
16: else
17: if L′ = ∅ then
18: declare s as finished in N and return N ;
19: if |L′| ≥ 2 then
20: N ← N , where s is declared as finished;
21: if |L′| ≤ |U | then
22: N ′ ← the set of networks obtainable from N by allocating all taxa

in L′ to sides in U ;
23: N ← N ∪ N ′;
24: if |L′| − 1 ≤ |U | then
25: for l ∈ L′ do
26: N ′ ← the set of networks obtainable from N(l, s) by allocating

all taxa in L′ \ {l} to sides in U ;
27: N ← N ∪ N ′;
28: return N ;
29: if |L′| = 1 then
30: l ← removeFirst(L′);
31: if B(l) �= ∅ then
32: N ← N , where s is declared as finished;
33: for each side s′ ∈ U do
34: N ← N ∪ {N(l, s′)};
35: if |B(l)| ≤ |U | then
36: N ′ ← the set of all networks obtainable from N(l, s) by allocat-

ing all taxa in B(l) to sides in U ;
37: N ← N ∪ N ′;
38: else
39: if N(l, s) does not represent C restricted to X (N) ∪ {l} then
40: N ← N , where s is declared s as finished;
41: for each side s′ ∈ U do



Algorithmica (2014) 68:886–915 899

42: N ← N ∪ {N(l, s′)};
43: else
44: D ← an arbitrary set of |U | taxa such that D ∩ X = ∅;
45: N∗(l, s) ← a network obtained from N(l, s) by arbitrarily and

bijectively assigning each taxon in D to a side in U ;
46: C̄ ← {C ∈ C such that xi ∈ C, l �∈ C, and C ⊆ X (N)};
47: if N∗(l, s) does not represent C̄ then
48: N ← N , where s is declared s as finished;
49: for each side s′ ∈ U do
50: N ← N ∪ {N(l, s′)};
51: else
52: N ← N(l, s);
53: return N ;

a set of clusters C on X and a subset X ′ ⊆ X , we define the restriction of C to
X ′ as {C ∩ X ′|C ∈ C}. We start the proof by analyzing the case when U = ∅ (see
Algorithm 1 for the definition of X ′, U , B(l), etc.). �

Case U = ∅ Suppose |L′| �= 1. If |L′| = 0 then there are two possibilities. If L = ∅
then clearly no taxon l can be placed directly above xi on s, because that would mean
l →C xi , and thus l ∈ L, contradiction. Hence the only correct move is to declare that
the side s is finished and return N . If L �= ∅ then, since |L′| = 0, we have that, for
every l ∈ L there exists some l′ ∈ L such that l �= l′ and l →C l′. Clearly the →C
relation is not allowed to create cycles in L, because otherwise the set of taxa in the
cycle would form a cluster compatible with C (see Proposition 2). Suppose we start
at an arbitrary taxon in L and perform a non-repeating walk on the taxa of L by
following the →C relation. Given that L is of finite size and this walk cannot visit
a taxon of L that it has already visited earlier in the walk (thus creating a cycle),
we will find a taxon l ∈ L such that there is no l′ ∈ L such that l �= l′ and l →C l′,
meaning that l ∈ L′, contradiction. So the case that L �= ∅ but L′ = ∅, cannot actually
happen. Now, consider the case that |L′| ≥ 2. Algorithm 1 will always end the side s

and return N in this case. Indeed, no valid completion of N can have some taxon p

that has not yet been allocated above xi on side s. Suppose this is not true. Clearly,
from Observation 2, p →C xi , so p ∈ L. In this case, all taxa in L′ are either equal to
p, or underneath p and above xi . Indeed, let l �= p be a taxon in L′ and suppose, for
the sake of contradiction, that l is above p on side s or on another side s′. If l is above
p on side s, then from Observation 2 we have that l →C p. If l is on another side s′,
the fact that |U | = 0 implies that there is no room under side s so, by Observation 3
we have that l →C p. Thus, in both cases (i.e. if l is above p on side s or on a
different side s′) we have that l →C p, meaning that l �∈ L′, contradiction. We can
hence conclude that each taxon in L′ is either equal to p, or underneath p and above
xi in any completion of N where p is on s. But, however one arranges two or more
taxa on one side, at least one taxon will imply another taxon in the sense of the →C
relation. More formally, in any case there exist two taxa l and l′ in L′ such that l �= l′
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and l →C l′. This implies that l �∈ L′, contradiction. This concludes the correctness
of the case |L′| �= 1.

We now consider the case when |L′| = 1. Let l be the only taxon in L′. In this
case, Algorithm 1 will return N if B(l) �= ∅. Indeed, no valid completion of N exists
where one or more taxa are placed above xi on s. Suppose this is wrong. In that case,
observe that in every valid completion l always has to be the taxon directly above
xi . Indeed, if there was some valid completion such that l is not directly above xi ,
then there would exist some taxon l′ �= l such that l′ →C xi (from Observation 2) and
l →C l′ (as before, this follows from the fact that U = ∅ and from Observations 2
and 3). This would mean that l �∈ L′, contradiction. So we assume that l is directly
above xi . Now, since B(l) �= ∅, there is some cluster in the input that contains xi ,
does not contain l, and contains some not-yet allocated taxon distinct from l. From
Observation 4, the only edge that can represent such a cluster is the edge e between
the parents of xi and l. But all the clusters represented by e consist only of already-
allocated taxa, because U = ∅. This means that adding l on side s will only lead us
to construct non-valid completions. Hence we conclude that, if B(l) �= ∅, all valid
completions of N do not contain any other taxon on s and ending the side s is the
right choice.

Now consider the case B(l) = ∅ and let C′ be C restricted to X (N)∪{l}. If N(l, s)

does not represent C′ we are definitely correct to declare the side s as finished and
return N . Indeed, all valid completions of N do not contain any other taxon on s.
Suppose it is not correct. Then there exists a valid completion of N where at least
one taxon is above xi on s. Again, for the same reasons as above we assume that l

is always the taxon directly above xi . Since N(l, s) does not represent C′, and this
incompatibility cannot be eliminated by adding more taxa, we conclude that there are
no valid completions of N with taxa above xi on side s. Hence, ending the side s is
the only correct option. Suppose now that N(l, s) does represent C′; Algorithm 1
adds l above xi on side s, and does not declare s as finished. This conclusion can only
be incorrect if all valid completions require that l is not directly above xi . We observe
that in any valid completion of N there can be no taxon l′ �= l directly above xi on
s, because otherwise, as before, since U = ∅ we will have that l →C l′ →C xi and
hence l �∈ L′, contradiction. So all valid completions terminate the side at xi . Let N ′
be an arbitrary valid completion of N and denote by N ′′ the network obtained from
N ′ by moving l, wherever it is, just above xi . Firstly, we claim that N ′′ still represents
C . Recall that l →C xi , so the only potential problem is with clusters in C that contain
xi but do not contain l. Let C be such a cluster not represented by N ′′. Suppose
C �⊆ X (N)∪{l}. But in this case we would have B(l) �= ∅ in N , contradiction. So the
only possibility is that C ⊆ X (N)∪{l}. Clearly C was in C′ and was thus represented
by N(l, s). Moreover, from Observation 4, the edge that represents C in N(l, s) is the
edge between the parents of l and xi . Given that U = ∅, no more taxa can be added
“underneath” side s and this edge still represents C in N ′′ because N ′ is a valid
completion of N . Hence moving l in the way is safe in terms of cluster representation.

Secondly, we claim that moving l in this way does not alter the side types i.e. the
empty/short/long sides before moving l remain empty/short/long after moving l. To
see this, note that moving l from its original location reduces the number of taxa by
1 on some side, and increases the number of taxa of s by 1. Side s is by assumption
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already long, so remains so. The side of N ′ containing l cannot change from being
long to being short in N ′′, because this lowers the total number of long sides, and
by assumption the pair (G,SG) underlying N is side-minimal. Similarly it cannot
change from being short to being empty, because this leaves the number of long sides
the same but reduces the number of short sides, again contradicting the assumption
that (G,SG) is side-minimal. Combining these two claims—that moving l is safe for
cluster representation and does not alter the side types nor the underlying generator—
let us conclude that there is a valid completion for N in which l is placed directly
above xi . Hence it is correct to add l above xi on side s, and not to declare s as
finished.

Case U �= ∅ The case |L′| = 0 is identical to the corresponding subcase when
U = ∅. This means that in this case it is always correct to declare the side s as finished
and return N .

Consider now the case |L′| ≥ 2. Observe firstly that, if some taxon l ∈ L′ is placed
directly above xi , then all remaining taxa in L′ must be allocated to sides in U . To see
why this is, note that for every l′ ∈ L′ we have that l′ →C xi . So, if l′ �= l is placed
above l on s or on a side not in U , then, from Observation 2 and 3 we would have
that l′ →C l →C xi , contradicting the fact that l′ is in L′. We only need to show that,
if a valid completion for N exists, then the set N contains a network for which there
exists a valid completion. Note that N contains (line 20) N , where s is declared as
finished, (lines 21–23) all possible networks obtained from N by allocating all taxa
in L′ to sides in U and (lines 24–27) all possible networks obtained from N(l, s) by
allocating all taxa in L′ \ {l} to sides in U , iterating over all l ∈ L′. The only case that
these three sets do not describe, is when every valid completion has a taxon p �∈ L′
directly above xi , but at least one taxon l ∈ L′ is not mapped to U . But this implies,
similarly to the case |U | = 0, that l →C p →C xi , so l �∈ L′, contradiction. Hence this
case cannot happen, and the three sets actually describe all possible outcomes in this
situation. So at least one of them will contain a network with a valid completion in
the case N does have a valid completion.

Consider now the case |L′| = 1. We begin with the subcase B(l) �= ∅. Similar to
previous arguments we know that, if we place l (the only element in L′) directly above
xi , all taxa in B(l) have to be allocated to U . This holds because, from Observation 4,
any cluster that contains xi but not l is represented by the edge between the parents
of l and xi . If B(l) �= ∅, the set N is composed of (line 32) N , where s is declared
as finished, (lines 33–34) all possible networks obtained from N by allocating l to a
side in U and (lines 35–37) all possible networks obtained from N(l, s) by allocating
all taxa in B(l) to sides in U . Observe that the only situation that these three guesses
do not describe, is when some taxon p �= l is placed above xi and l is not mapped
to U . But in this case we would have that l →C p →C xi , contradicting the fact that
l is in L′. So N does again describe all possible outcomes.

This leaves us with the very last subcase, |L′| = 1 and B(l) = ∅. The subcase when
N(l, s) does not represent C restricted to X (N) ∪ {l} is actually fairly straightfor-
ward. It is clear that l cannot be placed in this position in a valid completion. Hence
the only two situations that line 40 and lines 41–42 do not describe, is when some el-
ement p �= l is placed directly above xi , and l is not mapped to U . But, as before, this
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implies that l →C p →C xi , which as we have seen is not possible. So the only re-
maining subcase is when |L′| = 1, B(l) = ∅ and N(l, s) does represent C restricted
to X (N) ∪ {l}. Now, consider the network N∗(l, s). Informally the dummy taxa in
N∗(l, s) act as “placeholders” for taxa that will only later in the algorithm be mapped
to U . We do not know exactly what these taxa will be, but we know that they will
definitely be there. Consider a cluster C ∈ C̄ . If N∗(l, s) does not represent C then
this must be because of the dummy taxa, because we know that N(l, s) did represent
C restricted to X (N) ∪ {l}. Note that this holds irrespective of the true identity of the
dummy taxa. Hence, C will never be represented by any completion of N(l, s). For
this reason we conclude that, if N∗(l, s) does not represent C̄ , it is definitely correct
to declare the side s finished (line 48) or allocate l to a side in U (lines 49–50).

Finally, suppose N∗(l, s) does represent C̄ . This is the flip-side of the previous
argument. Whatever the true identity of the dummy taxa, every valid completion of
N(l, s) will represent every cluster in C̄ . Let N ′ be an arbitrary valid completion of
N and denote by N ′′ the network obtained from N ′ by moving l, wherever it is, just
above xi . Now, as we did earlier we argue that in this case it is “safe” to put l directly
above xi . Indeed, because B(l) = ∅, the only clusters that might not be represented
in N ′′ are clusters in C̄ . But we have shown that when l is placed directly above xi

all the clusters in C̄ are represented regardless of how we complete the rest of the
network. Secondly, we argue just as before that moving l in this way cannot alter the
side types. So if we place l on side s directly above xi there must still exist a valid
completion. This concludes the proof of the lemma. �

Algorithm 2 will repeatedly call Algorithm 1 until it finally declares the active
side finished. The algorithm works with sets of networks because each execution of
Algorithm 1 potentially returns a set of (incomplete) networks, reflecting the various
different decisions that Algorithm 1 can make. Note that Algorithm 2 is only exe-
cuted for long sides. Also, we note that during the execution of Algorithm 2 a call to
Algorithm 1 might return a network in which the side s is finished but has fewer than
two taxa on it. Such an outcome violates the assumption that side s is long. In such a
case we can easily detect this and cease exploring this particular branch of the search
tree. (Throughout the algorithms in this paper there are actually many such situations
in which we can easily detect that we are exploring a wrong search path, and sub-
sequently prune the search tree. However, to keep the exposition clear we have not
discussed these explicitly).

Algorithm 2 completeSide(N,s)
1: N ← N ;
2: while there exists N ∈ N such that s is not finished in N do
3: N ← N \ N ;
4: N ← N ∪ addOnSide(N, s);

Lemma 4 Let C be a separating set of clusters on X and let k be the first integer for
which a level-k network representing C exists. Let N be an incomplete network such
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that its underlying generator G and set of side guesses SG are such that (G,SG)

is side-minimal w.r.t. C and k, and let s be the active side of N that contains only
a single taxon. Algorithm 2 computes in f (k) · poly(n) time a set of (incomplete)
networks N for which s is a finished side, such that N contains at least one network
for which there exists a valid completion (if any exists).

Proof The correctness follows from Lemma 3. We now prove the running time.
First, note that the size of the set N returned by Algorithm 1 is bounded by f (|U |).

This is evident for the sets N constructed on lines 33–34, 41–42 and 49–50 but it
holds also for the sets N ′ constructed respectively on lines 21–23, 24–27 and 35–
37, since these sets are constructed only if, respectively, |L′| ≤ |U |, |L′| − 1 ≤ |U |
or |B(l)| ≤ |U |. Since in all other cases |N | = 1, the size of the set N returned by
Algorithm 1 is indeed bounded by f (|U |). Since the number of sides in a generator is
bounded by f (k) and U is a subset of the short sides of the generator (which follows
from the fact that all long sides reachable from s are assumed to be finished), we
have that |U | is bounded by f (k). From that and from Proposition 1, it follows that
the running time of Algorithm 1 is f (k) · poly(n).

Second, note that, each time that Algorithm 1 returns a set of networks N such that
|N | > 1, |U | decreases or s is declared as finished. Additionally, when U = ∅, then
Algorithm 1 returns only one network per call and we have at most O(n) of these calls
(because either s is declared finished or a new taxon is added to s). Since the search
tree contains f (k) · poly(n) nodes and f (k) · poly(n) time is needed for each node of
the search tree, the running time of Algorithm 2 is bounded by f (k) · poly(n). �

We will subsequently use the term lowest side to denote an unfinished long side
such that there is no other unfinished long side s′ �= s that is reachable from s. The
following lemma is basically the fixed parameter tractable version of Lemma 3 from
[20]. It proves that Algorithm 3, which is the top-level part of the overall procedure, is
FPT. Informally, the algorithm guesses the backbone topology of the network we are
constructing (i.e. the level-k generator); guesses which sides should be long, short or
empty; repeatedly picks a long side to allocate taxa to; guesses the first taxon on that
side; completes the side using Algorithm 2; and collapses the taxa on that side into a
single meta-taxon once it is finished. When all long sides are finished, Algorithm 3
guesses how to allocate taxa to any remaining unfinished short sides.

Lemma 5 Let C be a separating set of clusters on X . Then, for every fixed k ≥ 0,
Algorithm 3 determines whether a level-k network exists that represents C , and if so,
constructs such a network in time f (k) · poly(n).

Proof Algorithm 3 starts by choosing a level-k generator G and a set of side guesses
SG ‘in increasing side order”, i.e. generators and sets of guesses are analyzed in such
a way that generators with a smaller number of sides and sets of side guesses with
a smaller number of long sides, and (to further break ties) short sides, are analyzed
first. This implies that a side-minimal pair (G,SG), if any exists, is analyzed before
any other pair (G′, S′

G) for which a valid completion exists. This is done to be able
to apply Lemma 4.
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Then (see lines 4–18), the algorithm constructs a set of complete networks, i.e.
simple level-k networks where each short side has received a single taxon and each
long side at least two, and returns the first of them that represents C , if any exists.

Algorithm 3 ComputeLevel-k(C )
1: for each level-k generator G in increasing side order /* i.e. generators

with a smaller number of sides are analyzed first */ do
2: for each set of side guesses SG in increasing side order /* i.e. sets of

side guesses with a smaller number of long sides, and (to

further break ties) short sides, are analyzed first */ do
3: N ← (G,SG);
4: while there exists N ∈ N such that N contains a lowest side s do
5: N ← N \ N ;
6: for each l− ∈ X (s)− /* X (s)− denotes the set of all taxa

in X that are candidates to be the first taxon on side s */ do
7: N ′ ← completeSide(N(l−, s), s);
8: N ′′ ← the networks in N ′ where s contains more than one taxon;
9: for each N ∈ N ′′ do

10: collapse all taxa on side s into a single meta-taxon S and
adjust the cluster set accordingly;

11: N ← N ∪ N ′′;
12: if |N | > 0 then
13: while there exists N ∈ N do
14: de-collapse the collapsed sides;
15: N ′ ← the set of networks obtainable from N by allocating the

taxa in X \ X (N) to any short sides that have not yet been
allocated a taxon;

16: if there is a network N ′ ∈ N ′ representing C then
17: return N ′;
18: N ← N \ N ;

19: return ∅;

Note that lines 10 and 14 of the algorithm are only a technical step. Indeed, when
we declare a side s as finished, we assume that we will never alter that side again.
Hence it does not change the analysis if we collapse all the taxa on side s into a
single meta-taxon. That is, if we have decided that the taxa on the side s are—from
the bottom to the top—l−, x1, . . . , xl we simply replace all these taxa by a single
new taxon S and replace l−, x1, . . . , xl by S in any clusters in C that they appear
in (line 10). This collapsing step ensures that the set of sides reachable from the
current lowest side are always empty or short sides. This will be helpful when proving
the running time of Algorithm 3, see below. Note that C stays separating after the
collapsing, since the taxa on s are such that xl →C · · · →C x1 →C l−. When we are
finished allocating all the taxa in X and are ready to check whether the resulting final
network represents C we can simply de-collapse all the S i.e. “unfold” all the long
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sides that we have collapsed (line 14). This means that the correctness of Algorithm 3
follows by Observation 1 and Lemma 4.

We now need to prove the correctness of the running time. First, note that the
number of pairs (G,SG) to consider is bounded by f (k) since both the number of
generators and the number of sides per generator are bounded by f (k).

We now need to prove that the size of X (s)− is at most f (k) for all sides s i.e.
that the number of taxa that might be the first taxon l− on side s, is not too big. So let
l− be any taxon which can fulfil this role, and let x be the taxon directly above l− on
side s. (The taxon x must exist because we assume that s is long). Clearly, x →C l−.
By line 10, we have that the only sides reachable from side s are short and empty
sides. Moreover, we know from Observation 5 that, because C is separating, there
is some non-singleton cluster C ∈ C such that l− ∈ C but x �∈ C. By Observation 4,
such a cluster C has to be represented by the edge e between the parents of x and
l−. Now, any cluster represented by e can only contain taxa that are reachable from
e by a directed path. The only sides that are reachable from side s are short and
empty sides, so the cluster C can only contain at most f (k) taxa (because there are
at most f (k) short sides). So we know that l− is in some cluster C, and that C is
“small” in the sense that its size is bounded above by f (k). So if we take all “small”
clusters, and let X (s)− be their union, we know that we could simply try taking every
element in X (s)− and guessing that it is equal to l−. To ensure that we do not use
too many guesses, we have to show that |X (s)−| is bounded by f (k). To see that
this holds, consider the question: how many taxa are only in clusters that contain at
most c taxa? Observe that on every long side only the c taxa furthest away from
the root are potentially in such clusters. Any taxon closer to the root on a long side
cannot possibly be in a cluster of size at most c, because if it is in a cluster then so
are at least c other taxa too. Hence there are at most f (k) taxa that can be involved
in “small” clusters: the taxa on the short sides and the taxa at the bottom of the long
sides. So we have that |X (s)−| is bounded by f (k) and we can guess l− with at most
f (k) guesses.

The collapsing and de-collapsing steps (lines 10 and 14) can be done in f (k) ·
poly(n) time, as well as completing each side s (line 7), by Lemma 4. Moreover,
by Proposition 1, also checking whether N represents C takes f (k) · poly(n) time.
Additionally, the allocation of remaining taxa to the unfinished short sides (line 15)
takes a time bounded by f (k). Indeed, if we have a number of not yet assigned
taxa bigger than the number of unfinished short sides we can cease exploring this
particular branch of the search tree. This means that, if the size of N is bounded by
f (k), then the entire algorithm can be executed in f (k) · poly(n) time. And this is
indeed the case, since |X (s)−| and (summing over all iterations) the total number of
lowest sides are bounded by f (k) and each time that a side is completed, the number
of unfinished long sides decreases by 1. �

A Comment on the Running Time We have shown that the running time of Algo-
rithm 3 is at most f (k) · poly(n). We wish to emphasize that, due to the wholly theo-
retical nature of the algorithm, the f (k) term is astronomical. To give some indication
of this, the number of level-k generators for k = 1,2,3,4,5 is 1,4,65,1993,91454 re-
spectively [20], and guessing the correct level-k generator is only the first guess in an
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extensive guessing strategy (which also requires us to guess, amongst other things,
whether a side is long, short or empty; the identity of the first taxon on a long side;
and all possible ways of completing the currently active long side). The poly(n) term
is much more reasonable. To start with, after factoring out f (k) terms |C| is only lin-
early large in |X | = n (see Proposition 1). Secondly, the only purely polynomial oper-
ations in the entire procedure are “housekeeping” tasks, such as determining whether
a network represents a set of clusters, constructing the →C relation, identifying sets
such as L and L′ (in Algorithm 1), and collapsing sets of taxa. These are all low-
degree polynomial operations and we estimate that the poly(n) term is no larger than
O(n5). To put this in perspective, the CASS algorithm (which also works with clus-
ters, but which is not guaranteed to be optimal for k > 2 [20]) has a running time at
least O(n3k) [31]. Hence, already for k = 2 the poly(n) term in our FPT algorithm is
faster than the corresponding term in the running time of CASS.

3.2 From Simple Networks to General Networks

To prove the fixed parameter tractability of constructing general level-k networks,
we need to introduce a few other concepts. The most important is the concept of a
decomposable network.

Definition 2 Let C be a set of clusters on a taxon set X with incompatibility graph
IG(C) and let N be a phylogenetic network that represents C . N is said to be decom-
posable w.r.t. C if and only if there exists a cluster-to-edge mapping α : C → E(N)

such that, for any two clusters C1,C2 ∈ C , C1 and C2 lie in the same connected com-
ponent of IG(C) if and only if the two tree edges α(C1) and α(C2) that represent C1
and C2 are contained in the same biconnected component of N .

Let C be a set of clusters on X with incompatibility graph IG(C). The set of back-
bone clusters associated with C is defined as

B(C) = {X (C′) | C′ is a connected component of IG(C)},
where X (C′) = ⋃

C∈C′ C denotes the set of all taxa in C′. Since the set B(C) is com-
patible [16], we have the following result. (Note that the bound we give here is prob-
ably not tight; our goal here is simply to show that it is at most f (k) · poly(n).)

Proposition 3 Given a decomposable level-k network N representing a set of
clusters C on X such that the number of biconnected components of N is equal
to the number of connected components of IG(C). Then N can contain at most
2k+3 · (n − 1)2 clusters.

Proof The fact that B(C) is compatible ensures that the size of B(C) is at most
2(n − 1). In the following we will prove that the number of connected components
of IG(C) is at most 4(n − 1). To prove this, we show that it is impossible to have two
non-trivial connected components of IG(C) (i.e. two connected components contain-
ing more than once cluster each), say C̄ and C̄′, such that X (C̄) = X (C̄′). For the sake
of contradiction, let us suppose that two such components C̄ and C̄′ exist. Let C1 ∈ C̄
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and C′
1 ∈ C̄′ be two clusters such that C1 ∩ C′

1 �= ∅. Since C1 and C′
1 are compatible,

we can suppose w.l.o.g. that C′
1 ⊂ C1. Let C′

2 be another cluster of C̄′ incompatible
with C′

1 (C′
2 exists because C̄′ is not trivial). Then, since C′

1 ∩ C′
2 �= ∅ we have that

C1 ∩C′
2 �= ∅. But C′

2 cannot be a superset of C1 so we have that C′
2 ⊂ C1. Reiterating

this reasoning we obtain that X (C̄′)⊆C1. Since C̄ is not trivial, there exists another
cluster C2 in C̄ that is incompatible with C1. So there exists at least one taxon in X (C̄)

that is not in C1 and we cannot have that X (C̄) = X (C̄′), contradiction. This means
that each non-singleton backbone cluster can correspond to two connected compo-
nents, one trivial and one not. Then we have at most 4(n − 1) connected components
in IG(C), and thus 4(n − 1) biconnected components.

We now prove that each biconnected component B of N can represent at most
2k+1(n − 1) clusters. To see that, let us denote by V ′ the set of nodes of N that are
not in B but whose parents are in B and, for each v ∈ V ′, denote by X (v) the set of
all leaves in N that are reachable by directed paths from v. It is easy to see that the set
V ′ has a particularity: for each node v ∈ V ′ we have that, no matter which switching
TN is chosen, there exists a path in the switching between v and each taxon u ∈ X (v).
Indeed, if this was not true, we will have that v has to be in B , a contradiction. Then
the network N can be modified in the following way: For each node v ∈ V ′, label
it with the set X (v) and delete all the outgoing edges of v. Let N ′ be the rooted
phylogenetic network rooted at the root of the biconnected component B . Because of
the peculiarity of the nodes in V ′, N ′ represents the same cluster set as B in N . With
a line of reasoning similar to that used in Proposition 1, it is easy to see that B can
represent at most 2k+1(n − 1) clusters in N ′, and thus also in N . This concludes the
proof. �

The following theorem ensures that we can focus on decomposable level-k net-
works:

Theorem 1 [31] Let C be a set of clusters. If there exists a level-k network represent-
ing C , then there also exists such a network that is decomposable w.r.t. C .

We can now prove the main result of the section:

Theorem 2 Let C be a set of clusters on X . Then, for every fixed k ≥ 0, it is possible
to determine in time f (k) ·poly(n) whether a level-k network exists that represents C ,
and if so to construct such a network.

Proof By Theorem 1, we know that we can construct a decomposable level-k
network using a divide-and-conquer strategy. A possible approach is described in
Sect. 8.2 of [16]. This approach divides C in g subsets, where g is the number of con-
nected components of the incompatibility graph. Then, each subset Ci is made sepa-
rating w.r.t. X (Ci ) by merging every subset of X (Ci ) that is compatible with Ci (see
[16] for more details). Then a local network is computed for each Ci and finally all
the networks are merged together in a global level-k network representing C . By con-
struction [16], the number of biconnected components of the reconstructed network
is equal to the number of connected components of IG(C). Then, by Proposition 3 we
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can only have a f (k) · poly(n) number of clusters and a poly(n) number of connected
components in IG(C), it is easy to see that the merging of the taxa in each Ci and the
merging of all partial networks into the global one can be conducted in f (k) · poly(n)

time. Moreover, since each subproblem Ci is separating, from Lemma 5 we have
that constructing each local network takes f (k) · poly(n) time. This concludes the
proof. �

4 Minimizing Reticulation Number is Fixed Parameter Tractable

The aim of this section is to show that reticulation number minimization is fixed
parameter tractable. As pointed out for level minimization at the beginning of Sect. 3,
it is sufficient to prove that, given a set of clusters C on taxon set X , we can construct
a phylogenetic network representing C with reticulation number r (if any exists) in
time at most f (r) · poly(n).

To show the main result of this section we will introduce the concepts of ST-
collapsed cluster sets and of r-reticulation generators. We will then prove that all
the results and algorithms used in the previous section to prove that constructing sim-
ple level-k networks is fixed parameter tractable, hold not only for separating cluster
sets and level-k generators but also for ST-collapsed cluster sets and r-reticulation
generators. The main difficulty is to show that several key utility results still hold,
since the other results do not exploit the biconnectedness of simple level-k genera-
tors. For ease of reading we will refer to the extended versions of these results using
their original name followed by the term “(Extended)” (e.g. “Proposition 1” becomes
“Proposition 1 (Extended)”).

Observation 6 Let N be a network on X with reticulation number r . Then N repre-
sents at most 2r+1(n − 1) clusters.

Proof From Lemma 1 we may assume without loss of generality that N is binary.
A binary network with reticulation number r contains exactly r reticulation nodes.
Hence N displays at most 2r trees, and each tree represents at most 2(n − 1) clusters
(because a rooted tree on n taxa contains at most 2(n − 1) edges). �

We can thus henceforth assume that |C| ≤ 2r+1(n − 1) i.e. that C contains at most
f (r) · poly(n) clusters. Then we have that the following holds:

Proposition 1 (Extended) Let N be a network on X with reticulation number at
most r . Then, given a cluster set C , we can check in time f (r) · poly(n) whether N

represents C .

Given a set of taxa S ⊆ X , we use C \ S to denote the result of removing all
elements of S from each cluster in C and we use C|S to denote C \ (X \ S) (i.e. the
restriction of C to S). We say that a set S ⊆ X is an ST-set with respect to C , if S is
compatible with C and any two clusters C1,C2 ∈ C|S are compatible [20]. (We say
that an ST-set S is trivial if S = ∅ or S = X ). An ST-set S is maximal if there is no
ST-set S′ with S ⊂ S′. The following results from [20] will be very useful:
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Corollary 2 [20] Let C be a set of clusters on X . Then there are at most n maximal
ST-sets with respect to C , they are uniquely defined and they partition X .

Lemma 6 [20] The maximal ST-sets of a set of clusters C on X can be computed in
polynomial time.

Here “polynomial time” means poly(n, |C|), but given that the size of C is at most
f (r) · poly(n) it follows that the maximal ST-sets of C can all be computed in time
f (r) · poly(n).

The following corollary says, essentially, that if we want to construct networks
with minimum reticulation number then it is safe to assume that each maximum ST-
set corresponds to (the taxa in) a subtree that is attached to the main network via a
cut-edge.

Corollary 3 [20] Let N be a network that represents a set of clusters C . There exists
a network N ′ such that N ′ represents C , r(N ′) ≤ r(N), l(N ′) ≤ l(N) and all maximal
ST-sets (with respect to C ) are below cut-edges.

Let S = {S1, . . . , Sm} be the set of maximal ST-sets of C . We construct a new
cluster set C′ from C as follows. For each Sj ∈ S , and for each cluster C in C such
that S := Sj ∩C �= ∅, we replace the set S in C by the new taxon sj . In other words we
“collapse” all taxa in each maximal ST-set into a single new taxon that represents that
ST-set. We say that C′ is the ST-collapsed version of C . We say that a cluster set is ST-
collapsed if all its maximal ST-sets are singletons. Note that a separating cluster set C
is necessarily ST-collapsed but the opposite implication does not hold. For example
C = {{a, b}, {b, c}, {a, b, c, d}, {d, e}} on X = {a, b, c, d, e} is ST-collapsed but not
separating because {a, b, c} is compatible with C .

Observation 5 (Extended) Let C be a ST-collapsed cluster set on X . Then every
size-2 subset of X is incompatible with C .

Proof Suppose that this is not true and there exists a size-2 subset of X , say A, that is
compatible with C . Since any two clusters C1,C2 ∈ C|A are necessarily compatible,
A is a ST-set, contradicting the fact that C is ST-collapsed. �

Lemma 7 Let C be a cluster set on X , and let C′ be the ST-collapsed version of C .
Then any network N ′ that represents C′ can be transformed into a network N that
represents C such that r(N) = r(N ′) in poly(|X |) time.

Proof Let S = {S1, . . . , Sm} be the set of maximal ST-sets of C . For each Sj ∈ S we
replace the taxon sj in N ′ with the tree on taxon set Sj that represents exactly the set
of clusters C|Sj . �

Corollary 4 Let C be a cluster set on X , and let C′ be the ST-collapsed version of C .
Then r(C′) = r(C).
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Proof Lemma 7 tells us that r(C) ≤ r(C′). To see that r(C′) ≤ r(C), observe that
Corollary 3 allows us to assume the existence of a network N with reticulation num-
ber r(C) such that all the maximal ST-sets of C are below cut-edges in N . If, for each
maximal ST-set Sj of C , we replace the subtree corresponding to Sj with a single
taxon sj , we obtain a network with reticulation number at most r(C) which repre-
sents C′. �

Combining the fact that the transformation described in the proof of Lemma 7
can be executed in time f (r) · poly(n) with Lemma 7 and Corollary 4 we may thus
henceforth restrict our attention to ST-collapsed cluster sets. Networks that represent
ST-collapsed cluster sets have a rather restricted topology, as the following lemma
shows.

Lemma 8 Let C be an ST-collapsed cluster set on X , and let N be a binary network
that represents C . Then it follows that, for each cut edge (u, v) of N , either v is a leaf
labelled by a taxon from X , or there is a directed path starting from v that can reach
a reticulation node.

Proof Let X (v) ⊆ X be the set of taxa reachable from v by directed paths. If
|X (v)| ≥ 2, but there are no reticulation nodes reachable by directed paths from v,
then the subnetwork rooted at v is actually a tree with taxon set X (v), meaning that
X (v) is an ST-set of cardinality 2 or higher. This violates the ST-collapsed assump-
tion, giving a contradiction. If |X (v)| = 1 then it follows that either v is a leaf labelled
by a taxon, or (due to the fact that N is binary and contains no nodes with indegree
and outdegree both equal to 1) at least one reticulation node is reachable from v by a
directed path. �

We are now (finally) ready to define an r-reticulation generator. This is very
closely related to the level-k generator discussed in Sect. 3. The only significant
difference is that r-reticulation generators do not have to be biconnected, and (for
technical reasons) the inclusion of a “fake root”.

Definition 3 An r-reticulation generator is a directed acyclic multigraph, which has
a single node of indegree 0, called the fake root, and this has outdegree 1; precisely
r reticulation nodes (indegree 2 and outdegree at most 1), and apart from that only
nodes of indegree 1 and outdegree 2.

Note that this definition implies that an r-reticulation generator cannot contain any
leaf. As in the case of level-k generators, nodes with indegree 2 and outdegree 0 as
well as all edges are called sides. Figure 6 shows the single 1-reticulation generator
and the seven 2-reticulation generators.

Lemma 9 There are at most f (r) r-reticulation generators and each r-reticulation
generator contains at most f (r) sides.
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Fig. 6 The single 1-reticulation generator and the seven 2-reticulation generators

Proof In Lemma 1 of [30] it is proven that a level-k generator has at most 3k − 1
vertices and at most 4k − 2 edges. The proof there does not exploit the biconnect-
edness of level-k generators, so—with the exception of the fake root—also holds
for r-reticulation generators. By adding 1 to both the vertex and edge upper bounds
to account for the fake root we come to upper bounds of 3r and 4r − 1 respectively.
Since an r-reticulation generator contains r reticulations, we have at most 4r −1 edge
sides and r node sides, so at most 5r − 1 sides. To see that there are at most f (r)

r-reticulation generators observe that between any pair of nodes u and v in the gener-
ator there is either no edge, an edge from u to v (or from v to u), or a multi-edge from
u to v (or from v to u). Hence there are at most 5(3r)2

r-reticulation generators. �

Definition 4 The set N̂ r (for r ≥ 1) is defined as the set of all binary networks that
can be constructed by choosing some r-reticulation generator G, then applying the
leaf hanging transformation described in Definition 1 and finally deleting the fake
root (i.e. the single vertex with indegree 0 and outdegree 1) and its incident edge.

Lemma 10 (Extending Corollary 1) Let C be an ST-collapsed set of clusters on X ,
such that r(C) ≥ 1. Then there exists a network N in N̂ r(C) such that N represents C .
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Proof Let N be any binary network with reticulation number r(C) such that N rep-
resents C . We show how applying the reverse of the transformation described in Def-
inition 4 to N will give some r(C)-reticulation generator G. The lemma will then
follow. We begin by adding a fake root to N i.e. a new vertex u′ and an edge from
u′ to the root of N . (This is the inverse of deleting the fake root). We then delete
all the leaves in N . Any nodes that are created with indegree 2 and outdegree 0 we
leave as they are (this is the inverse of step 3 of Definition 1). Nodes with indegree
1 and outdegree 0 cannot be created, because this would require that there exists a
node v in N which has indegree 1 and outdegree 2 such that both its children are
leaves labelled by taxa. But this would mean that v is the head of a cut-edge e where
e violates the condition described in Lemma 8. Now, consider the nodes that have
been created with indegree and outdegree both equal to 1. Let u be any such node,
and let U = {u}. Whenever U contains a node u whose unique parent p(u) also has
indegree and outdegree both equal to 1, add p(u) to U . Whenever U contains a node
u whose unique child c(u) also has indegree and outdegree both equal to 1, add c(u)

to U . We continue expanding U this way until it cannot grow anymore. Clearly U

stops growing at the point that U contains two nodes utop and ubottom (where possi-
bly utop = ubottom) such that the parent of utop (respectively, child of ubottom) does
not have indegree and outdegree both equal to 1. We suppress all the nodes in U , in
the usual sense. Note, crucially, that this does not affect the indegree or outdegree of
the parent of utop or the child of ubottom. While N still contains nodes of indegree 1
and outdegree 1 we repeat the above process, until none are left; this is the inverse
of steps 1 and 2 of Definition 1. (Note that this process might create multi-edges, but
because it leaves the indegree and outdegree of unsuppressed nodes intact, there will
be at most two edges between any two nodes). Now, let G be the resulting structure.
Observe that the reticulation number of G is the same as N , that every node in G with
indegree 2 has outdegree 0 or 1, that G contains a single fake root, that all nodes in G

with indegree 1 have outdegree 2, and that G contains no leaves. We conclude that G

is an r-reticulation generator and that we could have constructed N by applying the
transformation described in Definition 4 to G. �

Proposition 2 (Extended) Given a ST-collapsed cluster set C on X and an ordered
set of distinct taxa of X (x1, . . . , xj ) such that j ≥ 2 and xi →C xi+1 for 1 ≤ i ≤
(j − 1). Then xj �→C x1.

Proof If xi →C xi+1 for 1 ≤ i ≤ (j − 1) and xj →C x1, this means that the set

X ′ = ⋃j

i=1 xi is compatible with C . Moreover, every non-singleton cluster that con-
tains one element of X ′, contains them all. So every non-singleton cluster C ∈ C is
either disjoint from X ′, or contains it, from which we conclude that any two clus-
ters C1,C2 ∈ C|X ′ are compatible. So X ′ is a ST-set and we have a contradiction. �

Since the number of r-reticulation generators and the number of sides in a gener-
ator is bounded by f (r) from Lemma 9, and we have extended several critical utility
results to also apply to ST-collapsed cluster sets and r-reticulation generators, we
have the following:
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Lemma 7 (Extended) Let C be a ST-collapsed set of clusters on X . Then, for every
fixed r ≥ 0, Algorithm 3 (Extended) determines whether a network that represents C
with reticulation number equal to r exists, and if so, constructs such a network in
time f (r) · poly(n).

Here Algorithm 3 (Extended) coincides with Algorithm 3 but for the fact that in
the former we loop through all r-reticulation generators instead of through all level-k
generators.

From Lemma 7 and Corollary 4, we may finally conclude the following.

Theorem 3 Let C be a set of clusters on X . Then, for every fixed r ≥ 0, it is pos-
sible to determine in time f (r) · poly(n) whether a network that represents C with
reticulation number at most r exists.

5 Conclusions and Open Problems

In this article we have shown that, under the softwired cluster model of phylogenetic
networks, constructing networks with minimum reticulation number (respectively,
level) is fixed parameter tractable where the reticulation number (respectively, level)
is the parameter. The obvious problem with the algorithms in this article is that the
part of the running time that depends only on the parameter is massively exponential.
This contrasts with fixed parameter tractable algorithms for combining two binary
trees into a phylogenetic network. In that literature the dependence on the parameter
is more modest, the state- of-the-art being O(3.18r · n) [33] (where n = |X | and r is
the hybridization number of the two trees).

However, the two binary tree case is rather special [20, 28] and does not obvi-
ously generalize to more complex inputs such as arbitrary sets of clusters or arbitrar-
ily large sets of potentially nonbinary trees. Indeed, there is still no fixed parameter
tractable algorithm for combining an arbitrary set of nonbinary trees into a phyloge-
netic network using a minimum number of reticulations. Could the ideas presented
in this article—in particular, the use of generators—offer a theoretical route to this
result?
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