
Algorithmica (2013) 66:113–152
DOI 10.1007/s00453-012-9629-3

Greedy Δ-Approximation Algorithm for Covering
with Arbitrary Constraints and Submodular Cost

Christos Koufogiannakis · Neal E. Young

Received: 31 August 2010 / Accepted: 20 February 2012 / Published online: 14 March 2012
© Springer Science+Business Media, LLC 2012

Abstract This paper describes a simple greedy Δ-approximation algorithm for any
covering problem whose objective function is submodular and non-decreasing, and
whose feasible region can be expressed as the intersection of arbitrary (closed up-
wards) covering constraints, each of which constrains at most Δ variables of the
problem. (A simple example is VERTEX COVER, with Δ = 2.) The algorithm gen-
eralizes previous approximation algorithms for fundamental covering problems and
online paging and caching problems.

Keywords Covering · Linear programming · Approximation algorithms · Local
ratio · Primal-dual · Vertex cover · Set cover · Integer linear programming · Online
algorithms · Competitive analysis · Submodular cost · Paging · Caching

1 Introduction and Summary

The classification of general techniques is an important research program within the
field of approximation algorithms. What abstractions are useful for capturing a wide
variety of problems and analyses? What are the scopes of, and the relationships be-
tween, the various algorithm-design techniques such as the primal-dual method, the
local-ratio method [9], and randomized rounding? Which problems admit optimal
and fast greedy approximation algorithms [11, 12, 26]? What general techniques are
useful for designing online algorithms? What is the role of locality among constraints
and variables [9, 46, 53]? We touch on these topics, exploring a simple greedy algo-
rithm for a general class of covering problems. The algorithm has approximation ratio
Δ provided each covering constraint in the instance constrains only Δ variables.

Throughout the paper, R̄≥0 denotes R≥0 ∪ {∞} and Z̄≥0 denotes Z≥0 ∪ {∞}.

C. Koufogiannakis · N.E. Young
Department of Computer Science and Engineering, University of California, Riverside, Riverside,
CA, USA

114 Algorithmica (2013) 66:113–152

The conference version of this paper is [44].

Definition 1 (Submodular-Cost Covering) An instance is a triple (c, C,U), where

− The cost function c : R̄
n
≥0 → R̄≥0 is submodular,1 continuous, and non-decreasing.

− The constraint set C ⊆ 2R̄
n≥0 is a collection of covering constraints, where each

constraint S ∈ C is a subset of R̄
n
≥0 that is closed upwards2 and under limit. We

stress that each S may be non-convex.
− For each j ∈ [n], the domain Uj (for variable xj) is any subset of R̄≥0 that is

closed under limit.

The problem is to find x ∈ R̄
n
≥0, minimizing c(x) subject to xj ∈ Uj (∀j ∈ [n]) and

x ∈ S (∀S ∈ C).

The definition assumes the objective function c(x) is defined over all x ∈ R̄
n
≥0,

even though the solution space is constrained to x ∈ U . This is unnatural, but any c

that is properly defined on U extends appropriately3 to R̄
n
≥0. In the cases discussed

here c extends naturally to R̄
n
≥0 and this issue does not arise.

We call this problem SUBMODULAR-COST COVERING.4

For intuition, consider the well-known FACILITY LOCATION problem. An instance
is specified by a collection of customers, a collection of facilities, an opening cost
fj ≥ 0 for each facility, and an assignment cost dij ≥ 0 for each customer i and
facility j ∈ N(i). The problem is to open a subset F of the facilities so as to minimize
the cost to open facilities in F (that is,

∑
j∈F fj) plus the cost for each customer

to reach its nearest open, admissible facility (that is,
∑

i min{dij | j ∈ F }). This is
equivalent to SUBMODULAR-COST COVERING instance (c, C,U), with

− a variable xij for each customer i and facility j , with domain Uij = {0,1},
− for each customer i, (non-convex) constraint maxj∈N(i) xij ≥ 1 (the customer is

assigned a facility),
− and (submodular) cost c(x) = ∑

j fj maxi xij + ∑
i,j dij xij (opening cost plus

assignment cost).

1Formally, c(x) + c(y) ≥ c(x ∧ y) + c(x ∨ y), where x ∧ y (and x ∨ y) are the component-wise minimum
(and maximum) of x and y. Intuitively, there is no positive synergy between the variables: let ∂j c(x)

denote the rate at which increasing xj would increase c(x); then, increasing xi (for i �= j) does not increase
∂j c(x). Any separable function c(x) = ∑

j cj (xj) is submodular, the product c(x) = ∏
j xj is not. The

maximum c(x) = maxj xj is submodular, the minimum c(x) = minj xj is not.
2If y ≥ x and x ∈ S, then y ∈ S, perhaps the minimal requirement for a constraint to be called a “covering”
constraint.
3One way to extend c from U to R̄≥0: take the cost of x ∈ R̄

n≥0 to be the expected cost of x̃, where
x̃j is rounded up or down to its nearest elements a, b in Uj such that a ≤ xj ≤ b: take x̃j = b with

probability
b−xj

b−a
, otherwise take x̃j = a. If a or b doesn’t exist, let x̃j be the one that does. As long as c

is non-decreasing, sub-modular, and (where appropriate) continuous over U , this extension will have these
properties over R̄

n≥0.
4Changed from “MONOTONE COVERING” in the conference version [44] due to name conflicts.

Algorithmica (2013) 66:113–152 115

problem approximation ratio method where comment

VERTEX COVER 2 − ln ln Δ̂/ ln Δ̂ local ratio [30] see also [6, 24, 28, 29, 31, 34, 40, 50]
SET COVER Δ LP; greedy [33, 34]; [5] Δ = maxi |{j | Aij > 0}| �
CIP-01 w/Aij ∈ Z≥0 maxi

∑
j Aij primal-dual [10, 27] quadratic time �

CIP-UB Δ ellipsoid [16, 54, 55] KC-ineq., high-degree-poly time �

SUBMOD-COST COVER Δ greedy [our §2] min{c(x) | x ∈ S (∀S ∈ C)} new
SET/VERTEX COVER Δ greedy [our §7.1] linear time
FACILITY LOCATION Δ greedy [our §7.1] linear time new
CMIP-UB Δ greedy [our §7.2] near-linear time new
2-STAGE CMIP-UB Δ greedy [our §7.3] quadratic time new

Fig. 1 Some Δ-approximation algorithms for covering problems. “�” = generalized or strengthened here

A Greedy Algorithm for Submodular-Cost Covering (Sect. 2) The core contribution
of the paper is a greedy Δ-approximation algorithm for the problem, where Δ is
the maximum number of variables that any individual covering constraint S in C
constrains.

For S ∈ C , let vars(S) contain the indices of variables that S constrains (i.e., j ∈
vars(S) if membership of x in S depends on xj). The algorithm is roughly as follows.

Start with an all-zero solution x, then repeat the following step until all con-
straints are satisfied: Choose any not-yet-satisfied constraint S. To satisfy S,
raise each xj for j ∈ vars(S) (i.e., raise the variables that S constrains), so that
each raised variable’s increase contributes the same amount to the increase in
the cost.

Section 2 gives the full algorithm and its analysis.

Fast Implementations (Sect. 7) One important special case of SUBMODULAR-COST

COVERING is COVERING INTEGER LINEAR PROGRAMS with upper bounds on the variables
(CIP-UB), that is, problems of the form min{c · x | x ∈ Z

n
≥0;Ax ≥ b;x ≤ u} where

each cj , bi , and Aij is non-negative. This is a SUBMODULAR-COST COVERING instance
(c,U, C) with variable domain Uj = {0,1, . . . , uj } for each j and a covering con-
straint Aix ≥ bi for each i, and Δ is the maximum number of non-zeros in any row
of A.

Section 7 describes a nearly linear-time implementation for a generalization of this
problem: COVERING MIXED INTEGER LINEAR PROGRAMS with upper bounds on the vari-
ables (CMIP-UB). As summarized in the bottom half of Fig. 1, Sect. 7 also describes
fast implementations for other special cases: VERTEX COVER, SET COVER, FACILITY LO-

CATION (linear time); and two-stage probabilistic CMIP-UB (quadratic time).

Related Work: Δ-Approximation Algorithms for Classical Covering Problems (Top
Half of Fig. 1) See e.g. [35, 62] for an introduction to classical covering prob-
lems. For VERTEX COVER

5 and SET COVER in the early 1980’s, Hochbaum gave a Δ-
approximation algorithm based on rounding an LP relaxation [33]; Bar-Yehuda and
Even gave a linear-time greedy algorithm (a special case of the algorithms here) [5].
A few years later Hall and Hochbaum gave a quadratic-time primal-dual algorithm

5SET MULTICOVER is CIP-UB restricted to Aij ∈ {0,1}; SET COVER is SET MULTICOVER restricted to
bi = 1; VERTEX COVER is SET COVER restricted to Δ = 2.

116 Algorithmica (2013) 66:113–152

online problem competitive ratio deterministic online comment
SKI RENTAL 2; e

e−1 det.; random [39, 47] �

PAGING k = Δ potential function [56, 59] e.g. LRU, FIFO, FWF, Harmonic �
CONNECTION CACHING O(k) reduction to paging [1, 20] �
WEIGHTED CACHING k primal-dual [56, 63, 64] e.g. Harmonic, Greedy-Dual �
FILE CACHING k primal-dual [15, 65, 66] e.g. Greedy-Dual-Size, Landlord �
UNW. SET COVER O(logΔ log n

opt) primal-dual [13, 14] unweighted
CLP O(logn) fractional [13, 14] min{c · x | Ax ≥ b;x ≤ u},
SUBMOD-COST COVER Δ potential function [our §2] includes the above, CMIP-UB new
UPGRADABLE CACHING d + k by reduction [our §3] d components, k files in cache new

Fig. 2 Δ-competitive online paging and caching. “�” = generalized or strengthened here

for SET MULTICOVER [27]. In the late 1990’s, Bertsimas and Vohra further generalized
that result with a quadratic-time primal-dual algorithm for COVERING INTEGER PRO-

GRAMS with {0,1}-variables (CIP-01), but restricted to integer constraint matrix A and
with approximation ratio maxi

∑
j Aij ≥ Δ [10]. In 2000, Carr et al. gave the first

Δ-approximation for CIP-01 [16]. In 2009 (independently of our work), Pritchard ex-
tended that result to CIP-UB [54, 55]. Both [16] and [54, 55] use the (exponentially
many) Knapsack-Cover (KC) inequalities to obtain integrality gap6 Δ, and their al-
gorithms use the ellipsoid method, so have high-degree-polynomial running time.

As far as we know, SET COVER is the most general special case of SUBMODULAR-COST

COVERING for which any nearly linear time Δ-approximation algorithm was previously
known, while CIP-UB is the most general special case for which any polynomial-time
Δ-approximation algorithm was previously known.

Independently of this paper, Iwata and Nagano give Δ-approximation algorithms
for variants of VERTEX COVER, SET COVER, and EDGE COVER with submodular (and pos-
sibly decreasing!) cost [36].

Online Covering, Paging, and Caching (Sect. 3) In online covering (following,
e.g. [2, 13, 14]), the covering constraints are revealed one at a time in any order. An
online algorithm must choose an initial solution x, then, as each constraint “x ∈ S” is
revealed, must increase variables in x to satisfy the constraint, without knowing fu-
ture constraints and without decreasing any variable. The algorithm has competitive
ratio Δ if the cost of its final solution is at most Δ times the optimal (offline) cost
(plus a constant that is independent of the input sequence). The algorithm is said to
be Δ-competitive.

The greedy algorithm here is a Δ-competitive online algorithm for SUBMODULAR-

COST COVERING.
As recently observed in [2, 13, 14], many classical online paging and caching

problems reduce to online covering (usually online SET COVER). Via this reduction, the
algorithm here generalizes many classical deterministic online paging and caching al-
gorithms. These include LRU and FWF for PAGING [59], BALANCE and GREEDY DUAL for
WEIGHTED CACHING [17, 63, 64], LANDLORD [65, 66] (a.k.a. GREEDY DUAL SIZE) [15], for

6The standard LP relaxation has arbitrarily large gap (e.g. min{x1 | 10x1 + 10x2 ≥ 11;x2 ≤ 1} has gap
10).

Carr et al. [16] state (without details) that their CIP-01 result extends CIP-UP, but it is not clear how
(see [54, 55]).

Algorithmica (2013) 66:113–152 117

FILE CACHING, and algorithms for CONNECTION CACHING [1, 20–22] (all results marked
with “�” in Fig. 2).

As usual, the competitive ratio Δ is the cache size, commonly denoted k, or, in
the case of FILE CACHING, the maximum number of files ever held in cache (which is
at most the cache size).

Section 3 illustrates this connection using CONNECTION CACHING as an example.
Section 3 also illustrates the generality of online SUBMODULAR-COST COVERING by

describing a (d + k)-competitive algorithm for a new class of upgradable caching
problems, in which the online algorithm chooses not only which pages to evict, but
also how to pay to upgrade d hardware parameters (e.g. cache size, CPU, bus, net-
work speeds, etc.) to reduce later costs and constraints (somewhat like SKI RENTAL [39]
and multi-slope SKI RENTAL [47]—special cases of online SUBMODULAR-COST COVERING

with Δ = 2).
Section 4 describes a natural randomized generalization of the greedy algorithm

(Algorithm 2), with even more flexibility in incrementing the variables. This yields
a stateless Δ-competitive online algorithm for SUBMODULAR-COST COVERING, general-
izing Pitt’s VERTEX COVER algorithm [4] and the HARMONIC k-server algorithm as it
specializes for PAGING and WEIGHTED CACHING [56].

Related Work: Randomized Online Algorithms For most online problems here, no
deterministic online algorithm can be better than Δ-competitive (where Δ = k), but
better-than-Δ-competitive randomized online algorithms are known. Examples in-
clude SKI RENTAL [39, 47], PAGING [25, 49], WEIGHTED CACHING [2, 15], CONNECTION

CACHING [20], and FILE CACHING [3]. Some cases of online SUBMODULAR-COST COV-

ERING (e.g. VERTEX COVER) are unlikely to have better-than-Δ-competitive random-
ized algorithms. It would be interesting to classify which cases admit better-than-Δ-
competitive randomized online algorithms.

Relation to Local-Ratio and Primal-Dual Methods (Sect. 6) Sect. 6 describes how
the analyses here can be recast (perhaps at some expense in intuition) in either the
local-ratio framework or (at least for linear costs) the primal-dual framework. Local
ratio is usually applied to problems with variables in {0,1}; the section introduces an
interpretation of local ratio for more general domains, based on residual costs.

Similarly, the Knapsack Cover (KC) inequalities are most commonly used for
problems with variables in {0,1}, and it is not clear how to extend the KC inequalities
to more general domains (e.g. from CMIP-01 to CMIP-UB). (The standard KC inequal-
ities suffice for O(log(Δ̂))-approximation of CMIP-UB [41], but may require some
modification to give Δ-approximation of CMIP-UB [54, 55].) The primal-dual anal-
ysis in Sect. 6 uses a new linear program (LP) relaxation for LINEAR-COST COVERING

that may help better understand how to extend the KC inequalities.
Section 6 also discusses how the analyses here can be interpreted via a certain

class of valid linear inequalities, namely inequalities that are “local” in that they can
be proven valid by looking only at each single constraint S ∈ C in isolation.

Related Work: Hardness Results, Log-Approximation Algorithms Even for simple
covering problems such as SET COVER, no polynomial-time (Δ − ε)-approximation

118 Algorithmica (2013) 66:113–152

algorithms (for any constant ε > 0) are currently known for small (e.g. constant) Δ.
A particularly well studied special case, with Δ = 2, is VERTEX COVER, for which some
complexity-theoretic evidence suggests that such an algorithm may not exist [6, 24,
28–31, 34, 40, 50].

For instances where Δ is large, O(log Δ̂)-approximation algorithms may be more
appropriate, where Δ̂ is the maximum number of constraints in which any variable
occurs. Such algorithms exist for SET COVER [19, 37, 38, 48, (greedy, 1975)] for CIP

[60, 61, (ellipsoid, 2000)] and CIP-UB [41, (ellipsoid/KC inequalities, 2005)]. It is
an open question whether there is a fast greedy O(log Δ̂)-approximation algorithm
handling all of these problems (via, say, CIP-UB).

Recent works with log-approximations for submodular-cost covering problems in-
clude [18, 32, 57, 58]. Most of these have high-degree-polynomial run time. For ex-
ample, the (lnn)-approximation algorithm for two-stage probabilistic SET-COVER [32]
requires solving instances of SUBMODULAR FUNCTION MINIMIZATION [51, 52], which re-
quires high-degree-polynomial run time. ([32] also claims a related 2-approximation
for two-stage probabilistic VERTEX COVER without details.)

Related Work: Distributed and Parallel Algorithms Distributed and parallel approx-
imation algorithms for covering problems are an active area of study. The simple form
of the greedy algorithm here makes it particularly amenable for distributed and/or par-
allel implementation. In fact, it admits poly-log-time distributed and parallel imple-
mentations, giving (for example) the first poly-log-time 2-approximation algorithms
for the well-studied (weighted) VERTEX COVER and MAXIMUM WEIGHT MATCHING prob-
lems. See [42, 43, 45] for details and related results.

Organization Section 2 gives the greedy algorithm for SUBMODULAR-COST COVERING

(Algorithm 2) and proves that is has approximation ratio Δ. Section 3 describes ap-
plications to online problems. Section 4 describes randomized generalizations of the
greedy algorithm, including a stateless online algorithm. Sections 5 and 6 explain
how to view the analysis via the local-ratio and primal-dual methods. Section 7 de-
tails fast implementations for some special cases. After Sect. 2, each section may be
read independently of the others.

2 Greedy Algorithm for Submodular-Cost Covering (Algorithm 2)

This section gives the full greedy algorithm for SUBMODULAR-COST COVERING

(Algorithm 2) and the analysis of its approximation ratio. We assume SUBMODULAR-

COST COVERING instances are given in canonical form:

Definition 2 (Canonical form) An instance (c,U, C) is in canonical form if each
variable domain is unrestricted (each Uj = R̄≥0). Such an instance is specified by
just the pair (c, C).

This assumption is without loss of generality by the following reduction:

Algorithmica (2013) 66:113–152 119

Observation 1 For any SUBMODULAR-COST COVERING instance (c,U, C), there is an
equivalent canonical form instance (c, C′). By “equivalent”, we mean that any x that
is feasible in (c,U, C) is also feasible in (c, C′), and that any x′ that is minimally
feasible in (c, C′) is also feasible in (c,U, C).

Given any feasible solution x′ to (c, C′), one can compute a feasible solution x to
(c,U, C) with c(x) ≤ c(x′) by taking each xj = max{α ∈ Uj | α ≤ xj }.

The reduction is straightforward and is given in the Appendix. The idea is to in-
corporate the variable-domain restrictions “xj ∈ Uj ” directly into each covering con-
straint S ∈ C , replacing each occurrence of xj in each S by max{α ∈ Uj | α ≤ xj }.
For example, applied to a CIP-UB instance (c,U, C) as described in the introduc-
tion, the reduction produces the canonical instance (c, C′) in which each covering
constraint Aix ≥ bi in C is replaced in C′ by the stronger non-convex covering con-
straint

∑

j

Aij

⌊
min(xj , uj)

⌋ ≥ bi.

To satisfy these constraints, it doesn’t help to assign any xj a value outside of
Uj = {0,1, . . . , uj }: any minimal x satisfying the constraints in C′ will also satisfy
xj ∈ {0,1, . . . , uj } for each j .

In the rest of the paper, we assume all instances are given in canonical form. To
handle an instance (c,U, C) that is not in canonical form, apply the above reduc-
tion to obtain canonical instance (c, C′), use one of the algorithms here to compute
a Δ-approximate solution x for (c, C′), then compute vector x′ as described after
Observation 1.

Definition 3 For any covering constraint S and x ∈ R
n
≥0, let “x ≤

S
y”, “x >

S
y”, etc.,

mean that the operator holds coordinate-wise for coordinates in vars(S). E.g. x ≤
S

y

if xj ≤ yj for all j ∈ vars(S).

Observation 2 If x ∈ S and y ≥
S

x, then y ∈ S.

The observation is true simply because S is closed upwards, and membership of
y in S depends only on yj for j ∈ vars(S). We use this observation throughout the
paper.

To warm up the intuition for Algorithm 2, we first introduce and analyze a sim-
pler version, Algorithm 1, that works only for linear costs. The algorithm starts with
x ← 0, then repeatedly chooses any unmet constraint S, and, to satisfy S, raises all
variables xj with j ∈ vars(S) at rate 1/cj , until x satisfies S:

120 Algorithmica (2013) 66:113–152

Fig. 3 Two steps of Algorithm 1, where x∗ = (0,2,0). Dark portions of x∗
2 have been charged

Greedy algorithm for Linear-Cost Covering ALG. 1
Input: (linear) cost vector c ∈ R

n≥0, canonical constraints C
Output: Δ-approximate solution x

1. Recall that vars(S) contains the indices of variables that S constrains.
2. Start with x ← 0, then, for each of the constraints S ∈ C, in any order:
3. Just until x ∈ S, do:
4. for all j ∈ vars(S) simultaneously, raise xj continuously at rate 1/cj .
5. Return x.

As the variables increase in Line 4, the cost of x increases at rate | vars(S)| ≤ Δ (each
variable contributes to the cost increase at unit rate).7 The proof of the approximation
ratio relies on the following observation:

Observation 3 Let y be any feasible solution. Consider an iteration for a con-
straint S. Unless the current solution x already satisfies S at the start of the iteration,
at the end of the iteration, x has some variable xk with k ∈ vars(S) such that xk ≤ yk .
(That is, x �>

S
y.)

Proof At the start of the iteration, since y but not x satisfies S, Observation 2 implies
that x �≥

S
y. During the iteration, while Line 4 is raising the xj for j ∈ vars(S), if

at some moment x ≥
S

y, then, since y ∈ S, it must be (by Observation 2) that x ∈ S

also, so at that moment Line 4 stops raising the variables, before x >
S
y. �

As the variables increase in Line 4, Observation 3 implies that, for some xk , the
growing interval [0, xk] covers (at rate 1/ck) a larger and larger fraction of the corre-
sponding interval [0, x∗

k] in the optimal solution x∗. This allows the Δ-rate increase
in the cost of x to be charged at unit rate to the cost of x∗, proving that the final cost
of x is at most Δ times the cost of x∗.

For example, consider two iterations of Algorithm 1 on input min{x1 + x2 + x3 |
x1 +x2 ≥ 4;x2 +x3 ≥ 4} with optimal solution x∗ = (0,4,0), as shown in Fig. 3. The
first iteration does a step for the first constraint, raising x1 and x2 by 2, and charging
the cost increase of 4 to the [0,2] portion of x∗

2 . The second iteration does a step for
the second constraint, raising x2 and x3 both by 1, and charging the cost increase of
2 to the [2,3] portion of x∗

2 .

7If some cj = 0, then xj is raised instantaneously to ∞ at cost 0, after which the cost of x increases at
rate less than | vars(S)|.

Algorithmica (2013) 66:113–152 121

We generalize this charging argument by defining the residual problem for the cur-
rent x, which is the problem of finding a minimum-cost augmentation of the current
x to make it feasible. For example, after the first iteration of Algorithm 1 in the exam-
ple above, the residual problem for x = (2,2,0) is equivalent to min{y1 + y2 + y3 |
y1 + y2 ≥ 0;y2 + y3 ≥ 2}. For notational simplicity, in the definition of the residual
problem, instead of shifting each constraint, we (equivalently, but perhaps less intu-
itively) leave the constraints alone but modify the cost function (we charge y only for
the part of y that exceeds x):8

Definition 4 (Residual problem) Given any SUBMODULAR-COST COVERING instance
(c, C), and any x ∈ R̄

n
≥0, define the residual problem for x to be the instance (c̃x, C)

with cost function c̃x(y) = c(x ∨ y) − c(x).
For Q ⊆ R

n
≥0, define the cost of Q in the residual problem for x to be c̃x(Q) =

miny∈Q c̃x(y).
If Q is closed upwards, then c̃x(Q) equals min{c(y) − c(x) | y ≥ x, y ∈ Q}.

In all cases here Q is closed upwards, and we interpret c̃x(Q) as the minimum
increase in c(x) necessary to raise coordinates of x to bring x into Q. The residual
problem (c̃x, C) has optimal cost c̃x(

⋂
S∈C S).

Here is the formal proof of the approximation ratio, as it specializes for
Algorithm 1.

Lemma 1 (Correctness of Algorithm 1) Algorithm 1 is a Δ-approximation algo-
rithm for LINEAR-COST COVERING.

Proof First consider the case when every cost cj is non-zero. Consider an iteration
for a constraint S ∈ C .

Fix any feasible y. The cost c̃x(y) of y in the residual problem for x is the sum∑
j cj max(yj −xj ,0). As Line 4 raises each variable xj for j ∈ vars(S) at rate 1/cj ,

by Observation 3, one of the variables being raised is an xk such that xk < yk . For
this k, the term ck max(yk − xk,0) in the sum is decreasing at rate 1. No terms in the
sum increase. Thus, c̃x(y) decreases at rate at least 1.

Meanwhile, the cost c(x) of x increases at rate | vars(S)| ≤ Δ. Thus, the algorithm
maintains the invariant c(x)/Δ + c̃x(y) ≤ c(y) (true initially because c(0) = 0 and
c̃0(y) = c(y)). Since c̃x(y) ≥ 0, this implies that c(x) ≤ Δc(y) at all times.

In the case that some cj = 0 during an iteration, the corresponding xj ’s are set
instantaneously to ∞. This increases neither c(x) nor c̃x(y), so the above invariant is
still maintained and the conclusion still holds. �

The main algorithm (Algorithm 2, next) generalizes Algorithm 1 in two ways:
First, the algorithm works with any submodular (not just linear) cost function. (This
generalization is more complicated but technically straightforward.) Second, in each
iteration, instead of increasing variables just until the constraint is satisfied, it chooses
a step size β ≥ 0 explicitly (we will see that this will allow a larger step than in

8Readers may recognize a similarity to the local-ratio method. This is explored in Sect. 5.

122 Algorithmica (2013) 66:113–152

Algorithm 1). Then, for each j ∈ vars(S), it increases xj maximally so that the cost
c(x) of x increases by (at most) β .

Greedy algorithm for Submodular-Cost Covering ALG. 2
Input: objective c, canonical constraints C
Output: Δ-approximate solution x (provided conditions of Theorem 1 are met).
1. Let x ← 0.
2. While ∃ S ∈ C such that x �∈ S do:
3. Choose any S such that x �∈ S and do stepc(x, S) (defined below).
4. Return x.

Subroutine stepc . . . makes progress towards satisfying x ∈ S.
Input: current solution x, unsatisfied S ∈ C
1. Choose any step size β ∈ [0, c̃x(S)]. . . . discussed before Theorem 1.
2. For each j ∈ vars(S), let x′

j ∈ R̄≥0 be the maximum such that raising xj to
x′
j would increase c(x) by at most β. . . . recall c(x) is continuous

3. For j ∈ vars(S), let xj ← x′
j .

Choosing the Step Size β In an iteration for a constraint S, the algorithm can choose
any step size β ≥ 0 subject to the restriction β ≤ c̃x(S) = min{c(y) − c(x) | y ∈
S,y ≥ x}. That is, β is at most the minimum cost that would be necessary to increase
variables in x to bring x into S. To understand ways in which Algorithm 2 can choose
β , consider the following.

− In all cases, Algorithm 2 can take β as Algorithm 1 does: just large enough to
ensure x ∈ S after the iteration. By an argument similar to the proof of Lemma 1,
this particular β is guaranteed to satisfy the restriction β ≤ c̃x(S). (Of course
another option is to take any β smaller than this β .)

− In some cases, Algorithm 2 can take β larger than Algorithm 1 does. For example,
consider a linear constraint xu +xw ≥ 1 with linear cost c(x) = xu +xw . Consider
an iteration for this constraint, starting with xu = xw = 0. Algorithm 1 would take
β = 1/2 and xu = xw = 1/2, satisfying the constraint. But c̃x(S) = 1 (to bring x

into S would require raising xu + xw to 1), so Algorithm 2 can take β = 1 and
xu = xw = 1, “over-satisfying” the constraint.

− It would be natural to set β to its maximum allowed value c̃x(S), but this value
can be hard to compute. Consider a single constraint S:

∑
j cj min(1, �xj�) ≥

1, with cost function c(x) = ∑
j cj xj . Then c̃0(S) = 1 if and only if there is a

subset Q such that
∑

j∈Q cj = 1. Determining this for arbitrary c is SUBSET SUM,
which is NP-hard. Still, determining a “good enough” β is not hard: take, e.g. β =
min{cj (1 − xj) | xj < 1}. If x �∈ S, then this is at most c̃x(S) because to bring x

into S would require raising at least one xj < 1 to 1. This choice of β is easy to
compute, and with it Algorithm 2 will satisfy S within Δ iterations.

In short, computing c̃x(S) can be hard, but finding a “good” β ≤ c̃x(S) is not hard.
A generic choice is to take β just large enough to bring x into S after the iteration,
as Algorithm 1 does, but in some cases (especially in online, distributed, and parallel
settings where the algorithm is restricted) other choices may be easier to implement

Algorithmica (2013) 66:113–152 123

or lead to fewer iterations. For a few examples, see the specializations of Algorithm 2
in Sect. 7.

The proof of the approximation ratio for Algorithm 2 generalizes the proof of
Lemma 1 in two ways: the proof has a second case to handle step sizes β larger than
Algorithm 1 would take, and the proof handles the more general (submodular) cost
function (the generality of which makes this proof unfortunately more abstract).

Theorem 1 (Correctness of Algorithm 2) For SUBMODULAR-COST COVERING, if
Algorithm 2 terminates, it returns a Δ-approximate solution.

Proof Consider an iteration for a constraint S ∈ C . By the submodularity of c, the
iteration increases the cost c(x) of x by at most β| vars(S)|.9 We show that, for any
feasible y, the cost c̃x(y) of y in the residual problem for x decreases by at least β .
Thus, the invariant c(x)/Δ + c̃x(y) ≤ c(y), and the theorem, hold.

Recall that x ∧ y (resp. x ∨ y) denotes the coordinate-wise minimum (resp. maxi-
mum) of x and y.

Let x and x′ denote the vector x before and after the iteration, respectively. Fix
any feasible y.

First consider the case when y ≥ x (the general case will follow from this one).
The submodularity of c implies c(x′) + c(y) ≥ c(x′ ∨ y) + c(x′ ∧ y). Subtracting
c(x) from both sides and rearranging terms gives (with equality if c is separable,
e.g. linear)

[
c(y) − c(x)

] − [
c
(
y ∨ x′) − c

(
x′)] ≥ c

(
x′ ∧ y

) − c(x).

The first bracketed term is c(y ∨ x) − c(x) = c̃x(y) (using here that y ≥ x so
y ∨ x = y). The second bracketed term is c̃x′(y). Substituting c̃x(y) and c̃x′(y) for
the two bracketed terms, respectively, we have

c̃x(y) − c̃x′(y) ≥ c
(
x′ ∧ y

) − c(x). (1)

Note that the left-hand side is the decrease in the residual cost for y in this iteration,
which we want to show is at least β . The right-hand side is the cost increase when x

is raised to x′ ∧ y (i.e., each xj for j ∈ vars(S) is raised to min(x′
j , yj)).

To complete the proof for the case y ≥ x, we show that the right-hand side is at
least β .

Recall that if y is feasible, then there must be at least one xk with k ∈ vars(S) and
xk < yk .

Subcase 1. When also x′
k < yk for some k ∈ vars(S). The intuition in this case is that

raising x to x′ ∧ y raises xk to x′
k , which alone costs β (by Algorithm 2). Formally,

let z be x with just xk raised to x′
k . Then:

(i) Algorithm 2 chooses x′
k maximally such that c(z) ≤ c(x) + β .

9To see this, consider the variables xj for j ∈ vars(S) one at a time, in at most Δ steps; by submodularity
of c, in a step that increases a given xj , the increase in c(x) is at most what it would have been if xj had
been increased first, i.e., at most β .

124 Algorithmica (2013) 66:113–152

(ii) c(z) = c(x) + β because (i) holds, c is continuous, and x′
k < ∞.

(iii) z ≤ x′ ∧ y because z ≤ x′ and (using x ≤ y and x′
k < yk) z ≤ y.

(iv) c(z) ≤ c(x′ ∧ y) because c is non-decreasing, and (iii) holds.

Substituting (ii) into (iv) gives c(x)+β ≤ c(x′ ∧y), that is, c(x′ ∧y)− c(x) ≥ β .

Subcase 2. Otherwise x′ ≥
S

y. The intuition in this case is that x′ ∧ y =
S

y, so that
raising x to x′ ∧ y is enough to bring x into S. And, by the assumption on β in
Algorithm 2, it costs at least β to bring x into S.
Here is the formal argument. Let z = x′ ∧ y. Then:

(a) z =
S
y by the definition of z and x′ ≥

S
y.

(b) z ∈ S by (a), y ∈ S, and Observation 2.
(c) z ≥ x by the definition of z and x′ ≥ x and y ≥ x.
(d) c̃x(S) ≤ c(z) − c(x) by (b), (c), and the definition of c̃x(S).
(e) β ≤ c̃x(S) by the definition of Algorithm 2.

By transitivity, (d) and (e) imply β ≤ c(z) − c(x), that is, c(x′ ∧ y) − c(x) ≥ β .

For the remaining case (when y �≥ x), we show that the case y ≥ x implies this case.
The intuition is that if yj < xj , then c̃x(y) is unchanged by raising yj to xj , so we
may as well assume y ≥ x. Formally, define ŷ = y ∨ x ≥ y. Then ŷ ≥ x and ŷ is
feasible.

By calculation, c̃x(y) = c(x ∨ y) − c(x) = c(x ∨ (y ∨ x)) − c(x) = c̃x(ŷ).
By calculation, c̃x′(y) = c(x′ ∨ y) − c(x′) = c(x′ ∨ (y ∨ x)) − c(x′) = c̃x′(ŷ).
Thus, c̃x(y) − c̃x′(y) equals c̃x(ŷ) − c̃x′(ŷ), which by the case already considered

is at least β . �

3 Online Covering, Paging, and Caching

Recall that in online SUBMODULAR-COST COVERING, each constraint S ∈ C is revealed
one at a time; an online algorithm must raise variables in x to bring x into the given
S, without knowing the remaining constraints. Algorithm 1 or Algorithm 2 can do
this, so by Theorem 1 they yield Δ-competitive online algorithms.10

Corollary 1 Algorithm 1 and Algorithm 2 give Δ-competitive deterministic online
algorithms for SUBMODULAR-COST COVERING.

Using simple variants of the reduction of WEIGHTED CACHING to online SET COVER

from [2], Corollary 1 naturally generalizes a number of known results for PAGING,
WEIGHTED CACHING, FILE CACHING, CONNECTION CACHING, etc. as described in the intro-
duction. To illustrate such a reduction, consider the following CONNECTION CACHING

problem. A request sequence r is given online. Each request rt is a subset of the
nodes in a network. In response to each request rt , a connection is activated (if not

10If the cost function is linear, in responding to S this algorithm needs to know only S and the values
of variables in S and their cost coefficients. In general, the algorithm needs to know S, the entire cost
function, and all variables’ values.

Algorithmica (2013) 66:113–152 125

already activated) between all nodes in rt . Then, if any node in rt has more than k

active connections, some of the connections (other than rt) must be deactivated (pay-
ing cost(rs) to deactivate connection rs) to leave each node with at most k active
connections.

Reduce this problem to online SET COVER as follows. Let variable xt indicate
whether connection rt is closed before the next request to rt after time t , so the
total cost is

∑
t cost(rt)xt . For each node u and each time t , for any (k + 1)-subset

Q ⊆ {rs | s ≤ t;u ∈ rs}, at least one connection rs ∈ Q − {rt } (where s is the time
of the most recent request to rs) must have been deactivated, so the following con-
straint11 is met: maxrs∈Q−{rt } xs ≥ 1.

This is an instance of online SET COVER, with a set for each time t (corresponding
to xt) and an element for each triple (u, t,Q) (corresponding to the constraint for that
triple as described above).

Algorithm 1 (via Corollary 1) gives the following k-competitive algorithm. In re-
sponse to a connection request rt , the connection is activated and xt is set to 0. Then,
as long as any node, say u, has k + 1 active connections, the current x violates the
constraint for the triple (u,Q, t), where Q contains u’s active connections. Node u

implements an iteration of Algorithm 1 for the violated constraint: for all connections
rs ∈ Q − {rt }, it simultaneously raises xs at rate 1/ cost(rs), until some xs reaches 1.
Node u then arbitrarily deactivates connections rs ∈ Q with xs = 1 so that at most k

of u’s connections remain active.
For a more involved example with a detailed analysis, see Sect. 3.1.

Remark: On k/(k −h+1)-Competitiveness The classic competitive ratio of k/(k −
h + 1) (versus opt with cache size h ≤ k) can be reproduced in the above settings
as follows. For any set Q as described above, opt must meet the stronger constraint∑

rs∈Q−{rt }�xs� ≥ k−h+1. In this scenario, the proof of Lemma 1 extends to show a
ratio of k/(k−h+1) (use that the variables are in [0,1], so there are at least k−h+1
variables xj such that xj < yj , so c̃x(y) decreases at rate at least k − h + 1).

3.1 Covering Constraint Generality; Upgradable Online Problems

Recall that the covering constraints in SUBMODULAR-COST COVERING need not be con-
vex, only closed upwards. This makes them relatively powerful. The main purpose of
this section is to illustrate this power, first by describing a simple example modeling
file-segment requests in the http: protocol, then by using it to model upgradable
online caching problems.

Http File-Segment Requests The http: protocol allows retrieval of segments of
files. To model this, consider each file f as a group of arbitrary segments (e.g. bytes or
pages). Let xt be the number of segments of file rt evicted before its next request. Let
c(rt) be the cost to retrieve a single segment of file rt , so the total cost is

∑
t xt c(rt).

Then (for example), if the cache can hold at most k segments total, model this with

11We assume the last request must stay cached. If not, don’t subtract rt from Q in each constraint. The
competitive ratio is k + 1.

126 Algorithmica (2013) 66:113–152

constraints of the form (for a given subset Q)
∑

s∈Q max{0, size(rs) − �xs�} ≤ k

(where size(rs) is the total number of segments in rs).
Running Algorithm 1 on an online request sequence gives the following online

algorithm. At time t , respond to the file request rt as follows. Bring all segments
of rt into the cache. Until the current set of segments in cache becomes cacheable,
increase xs for each file with a segment in cache (other than rt) at rate 1/c(rs). Mean-
while, whenever �min(xs, size(rs))� increases for some xs , evict segment �xs� of rs .
Continue until the segments remaining in cache are cacheable.

The competitive ratio will be the maximum number of files in the cache. (In con-
trast, the obvious approach of modeling each segment as a separate cacheable item
will give competitive ratio equal to the maximum number of individual segments ever
in cache.)

Upgradable Caching The main point of this section is to illustrate the wide variety
of online caching problems that can be reduced to online covering, and then solved
via algorithms such as Algorithm 1.

An UPGRADABLE CACHING instance is specified by a maximum cache size k, a num-
ber d of hardware components, the eviction-cost function cost(· · ·), and, for each
time step t (revealed in an online fashion) a request rt and a cacheability predicate,
cacheablet (· · ·). As the online algorithm proceeds, it chooses not only how to evict
items, but also how to upgrade the hardware configuration. The hardware configu-
ration is modeled abstractly by a vector γ ∈ R

d
≥0, where γi is the cost spent so far

on upgrading the ith hardware component. Upgrading the hardware configuration is
modeled by increasing the γi ’s, which (via cost(· · ·) and cacheable(· · ·)), can de-
crease item eviction costs and increase the power of the cache.

In response to each request, if the requested item rt is not in cache, it is brought
in. The algorithm can then increase any of the γi ’s arbitrarily (increasing a given γi

models spending to upgrade the ith hardware component). The algorithm must then
evict items (other than rt) from cache until the set Q of items remaining in cache is
cacheable, that is, it satisfies the given predicate cacheablet (Q,γ). The cost to evict
any given item rs is cost(rs, γ) for γ at the time of eviction.

The eviction-cost function cost(· · ·) and each predicate cacheablet (· · ·) must
meet the following monotonicity restrictions. The eviction-cost function cost(rs, λ)

must be monotone non-increasing with respect to each λi . (Intuitively, upgrading the
hardware can only decrease eviction costs.) The predicate cacheablet (Q,λ) must be
monotone with respect to Q and each λi . That is, increasing any single λi cannot
cause the value of the predicate to switch from true to false. (Intuitively, upgrading
the hardware can only increase the power of the cache.) Also, if a set Q is cacheable
(for a given t and γ) then so is every subset Q′ ⊆ Q. Finally, for simplicity of pre-
sentation, we assume that every cacheable set has cardinality k or less.

The cost of a solution is the total paid to evict items, plus the final hardware con-
figuration cost,

∑d
i=1 γi . The competitive ratio is defined with respect to the mini-

mum cost of any sequence of evictions that meets all the specified cacheability con-
straints.12 Note that the offline solution may as well fix the optimal hardware config-

12This definition assumes that the request sequence and cacheability requirements are independent of the
responses of the algorithm. In practice, even for standard paging, this assumption might not hold. For

Algorithmica (2013) 66:113–152 127

uration at the start, before the first request, as this maximizes subsequent cacheability
and minimizes subsequent eviction costs.

Standard FILE CACHING is the special case when cacheablet (Q,γ) is the pred-
icate “

∑
rs∈Q size(rs) ≤ k” and cost(rs, γ) depends only on rs ; that is, d = 0.

Using UPGRADABLE CACHING with d = 0, one could model independent use of the
cache by some interfering process: the cacheability predicate could be changed to
cacheablet (Q) ≡ “

∑
rs∈Q size(rs) ≤ kt”, where each kt is at most k but otherwise

depends arbitrarily on t . Or, using UPGRADABLE CACHING with d = 1, one could also
model a cache that starts with size 1, with upgrades to larger sizes (up to a maximum
of k) available for purchase at any time. Or, also with d = 1, one could model that
upgrades of the network (decreasing the eviction costs of arbitrary items arbitrarily)
are available for purchase at any time. One can also model fairly arbitrary restrictions
on cacheability: for example (for illustration), one could require that, at odd times t ,
two specified files cannot both be in cache together, etc.

Next we describe how to reduce UPGRADABLE CACHING to online SUBMODULAR-COST

COVERING with Δ = d + k, giving (via Algorithm 1) a (d + k)-competitive online
algorithm for UPGRADABLE CACHING. The resulting algorithm is a natural generalization
of existing algorithms.

Theorem 2 (Upgradable caching) UPGRADABLE CACHING has a (d + k)-competitive
online algorithm, where d is the number of upgradable components and k is the
maximum number of files ever held in cache.

Proof Given an arbitrary UPGRADABLE CACHING instance with T requests, define a
SUBMODULAR-COST COVERING instance (c, C) over R

d+T
≥0 as follows.

The variables are as follows. For i = 1, . . . , d , variable γi is the amount invested
in component i. For t = 1, . . . , T , variable xt is the cost (if any) incurred for evicting
the t th requested item rt at any time before its next request. Thus, a solution is a pair
(γ, x) ∈ R

d
≥0 × R

T≥0. The cost function is c(γ, x) = ∑d
i=1 γi + ∑T

t=1 xt .
At any time t , let A(t) denote the set of times of active requests, the times of the

most recent requests to each item:

A(t) = {
s | s ≤ t,

(∀s′ ≤ t
)
rs′ = rs → s′ ≤ s

}
.

In what follows, in the context of the current request rt at time t , we abuse notation
by identifying each time s ∈ A(t) with its requested item rs . (This gives a bijection
between A(t) and the requested items.)

For any given subset Q ⊆ A(t) of the currently active items, and any hardware
configuration γ , either the set Q is cacheable or at least one item s ∈ Q − {t} must
be evicted by time t . In short, any feasible solution (γ, x) must satisfy the predicate

cacheablet (Q,γ) or ∃s ∈ Q − {t} such that xs ≥ cost(rs, γ).

example, a fault incurred by one process may cause another process’s requests to come earlier. In this
case, the optimal offline strategy would choose responses that take into account the effects on inputs at
subsequent times (possibly leading to a lower cost). Modeling this accurately seems difficult.

128 Algorithmica (2013) 66:113–152

For a given t and Q, let St (Q) denote the set of solutions (γ, x) satisfying the above
predicate. The set St (Q) is closed upwards (by the restrictions on cacheable and cost)
and so is a valid covering constraint.

The online algorithm adapts Algorithm 1, as follows. It initializes γ = x = 0. Af-
ter request rt , the algorithm keeps in cache the set of active items whose eviction
costs have not been paid, which we denote C:

C = Ct(γ, x) = {t} ∪ {
s ∈ A(t) | xs < cost(rs, γ)

}
.

To respond to request rt , as long as the cached set C is not legally cacheable (i.e.,
cacheablet (C, γ) is false), the corresponding constraint, St (C) is violated, and the
algorithm performs an iteration of Algorithm 1 for that constraint. By inspection,
this constraint depends on the following variables: every λi , and each xs where rs is
cached and s �= t (that is, s ∈ C − {t}). Thus, the algorithm increases these vari-
ables at unit rate, until either (a) xs ≥ cost(rs, γ) for some cached rs and/or (b)
cacheablet (C, γ) becomes true (due to items leaving C and/or increases in γ). When
case (a) happens, the algorithm evicts that rs to maintain the invariant that the cached
set is C, then continues with the new constraint for the new C. When case (b) hap-
pens, the currently cached set is legally cacheable, and the algorithms is done re-
sponding to request t ,

This completes the description of the algorithm. For the analysis, we define the
constraint collection C in the underlying SUBMODULAR COVERING instance (c, C) to con-
tain just those constraints St (C) for which the algorithm, given the request sequence,
does steps. When the algorithm does a step at time t , the cached set C contains only t

and items that stayed in cache (and were collectively cacheable) after the previous re-
quest. Since at most k items stayed in cache, by inspection, the underlying constraint
St (C) depends on at most d + k variables in (γ, x). Thus, the degree Δ of (c, C) is at
most d + k.

For the SUBMODULAR-COST COVERING instance (c, C), let (γ ∗, x∗) and (γ ′, x′), re-
spectively, be the solutions corresponding to opt and generated by the algorithm,
respectively. For the original upgradable caching instance (distinct from (c, C)), let
opt and A denote the costs of, respectively, the optimal solution and the algorithm’s
solution.

Then A ≤ c(γ ′, x′) because the algorithm paid at most x′
s to evict each evicted

item rs . (We use here that xs ≥ cost(rs, γ) at the time of eviction, and xs does not
decrease after that; note that xs may exceed cost(rs, γ) because some items with
positive x′

s might not be evicted.) The approximation guarantee for Algorithm 1
(Lemma 1) ensures c(γ ′, x′) ≤ Δc(γ ∗, x∗).

By transitivity A ≤ c(γ ′, x′) ≤ Δc(γ ∗, x∗) = Δopt . �

Flexibility in Tuning the Algorithm In practice, it is well known that a competi-
tive ratio much lower than k is desirable and usually achievable for paging. Also,
for file caching (where items have sizes), carefully tuned variants of LANDLORD

(a.k.a. GREEDY-DUAL SIZE) outperform the original algorithms [23]. In this context,
it is worth noting that the above algorithm can be adjusted, or tuned, in various ways
while keeping its competitive ratio.

Algorithmica (2013) 66:113–152 129

First, there is flexibility in how the algorithm handles “free” requests—requests to
items that are already in the cache. When the algorithm is responding to request rt , let
t ′ be the most recent time that item was requested but was not in the cache at the time
of the request. Let F(t) = {s | t ′ < s < t, rs = rt } denote the times of these recent free
requests to the item. Worst-case sequences have no free requests, and, although each
free request rs costs nothing, the analysis in the proof above charges xs for it anyway.

The algorithm in the proof stops the step for the current constraint St (C) and re-
moves an item s from the cache C when some xs reaches cost(rs, γ). Modify the al-
gorithm to stop the step (and remove s from C) sooner, specifically, when xs reaches
cost(rs, γ)−∑

s′∈F(s) xs′ for some s ∈ C (effectively reducing the eviction cost of rs
by

∑
s′∈F(s) xs′ . The modified algorithm is still a specialization of Algorithm 1. Al-

though the resulting solution (x, γ) may be infeasible, the approximation guarantee
still applies, in that (x, γ) has cost at most Δ opt. The online solution A is feasible
though, and has cost equal to the cost of (x, γ), and is thus Δ-competitive.

In the above description, each free request is used to reduce the effective cost of a
later request to the same item. Whereas the unmodified algorithm generalizes LRU,
the modified algorithm generalizes FIFO.

Even more generally, the sum over the free requests rs of xs can be arbitrarily
distributed over the non-free requests to reduce their effective costs (leading to earlier
eviction). Essentially the same analysis still shows k-competitiveness.

There is a second, independent source of flexibility—the rates at which the vari-
ables are increased in each step. As it specializes for FILE CACHING, the algorithm in
the proof raises each xs at unit rate until xs reaches cost(rs). This raises the total cost
c(x, γ) at rate

∑
s∈C−{t} 1 ≤ k, while (in the analysis of Algorithm 1) the residual

cost of opt decreases at rate at least 1, implying a competitive ratio of k. In contrast,
LANDLORD (effectively) raises each xs at rate size(rs) until xs reaches cost(rs). This
raises c(x, γ) more rapidly, at rate

∑
s∈C−{t} size(rs), but this sum is also at most k

(since all summed items fitted in the cache before rt was brought in). This implies the
(known) competitive ratio of k for LANDLORD. Generally, for items of size larger than
1, the algorithm could raise xs at any rate in [1, size(rs)]. The more general algorithm
still has competitive ratio at most k.

Analogous adjustments can be made in other applications of Algorithm 1. For
some applications, adjusting the variables’ relative rates of increase can lead to
stronger theoretical bounds.

4 Stateless Online Algorithm and Randomized Generalization of Algorithm 2

This section describes two randomized algorithms for SUBMODULAR-COST COVERING:
Algorithm 3—a stateless Δ-competitive online algorithm, and an algorithm that gen-
eralizes both that and Algorithm 2. For simplicity, in this section we assume each Uj

has finite cardinality. (The algorithms can be generalized in various ways to arbitrary
closed Uj , but the presentation becomes more technical.13)

Algorithm 3 generalizes the HARMONIC k-server algorithm as it specializes for PAG-

ING and CACHING [56], and Pitt’s WEIGHTED VERTEX COVER algorithm [4].

13Here is one of many ways to modify Algorithm 3 to handle arbitrary closed Uj ’s. In each step, take
β small enough so that for each j ∈ vars(S), either Uj contains the entire interval [xj , xj + β], or Uj

130 Algorithmica (2013) 66:113–152

Definition 5 (Stateless online algorithm) An online algorithm for a (non-canonical)
SUBMODULAR-COST COVERING instance (c,U, C) is stateless provided the only state it
maintains is the current solution x, in which each xj is assigned only values in Uj .

Although Algorithm 1 and Algorithm 2 maintain only the current partial solution x ∈
R

n
≥0, for problems with variable-domain restrictions xj may take values outside Uj .

So these algorithms are not stateless.14

The stateless algorithm initializes each xj to minUj . Given any constraint S, it
repeats the following until S is satisfied: it chooses a random subset J ⊆ vars(S),
then increases each xj for j ∈ J to its next allowed value, min{α ∈ Uj | α > xj }.
The subset J can be any random subset such that, for some β ≥ 0, for each j ∈
vars(S), Pr[j ∈ J] equals β/βj , where βj is the increase in c(x) that would result
from increasing xj .

For example, one could take J = {r} where r is chosen so that Pr[r = j] ∝ 1/βj .
Or take any β ≤ minj βj , then, independently for each j ∈ vars(S), take j in J with
probability β/βj . Or, choose τ ∈ [0,1] uniformly, then take J = {j | β/βj ≥ τ }.

Stateless algorithm for Submodular-cost Covering ALG. 3
Input: cost c, finite domains U , constraints C
1. Initialize xj ← minUj for each j .
2. In response to each given constraint S, repeat the following until x ∈ S:
3. For each j ∈ vars(S):
4. If xj < maxUj :
5. Let x̂j = min{α ∈ Uj | α > xj } be the next largest value in Uj .
6. Let βj be the increase in c(x) that would result from raising xj to x̂j .
7. Else:
8. Let x̂j = xj and βj = ∞.
9. If (∀j ∈ vars(S)) βj = ∞: Return “infeasible”.

10. Increase xj to x̂j for all j ∈ J , where J is any random subset of vars(S)

such that, for some β ≥ 0, for each j ∈ vars(S), Pr[j ∈ J] = β/βj .
Above interpret 0/0 as 1. (Note that there are many ways to choose J

with the necessary property.)

contains just xj from that interval. For the latter type of j , take βj and x̂j as described in Algorithm 3.
For the former type of j , take βj = β and take x̂j to be the smallest value such that increasing xj to x̂j

would increase c(x) by β . Then proceed as above. (Taking β infinitesimally small gives the following
process. For each j ∈ vars(S) simultaneously, xj increases continuously at rate inversely proportional to
its contribution to the cost, if it is possible to do so while maintaining xj ∈ Uj , and otherwise xj increases
to its next allowed value randomly according to a Poisson process whose intensity is inversely proportional
to the resulting expected increase in the cost.)
14The online solution is not x, but rather x′ ≤ x defined from x by x′

j
= max{α ∈ Uj | α ≤ xj } or some-

thing similar, so the algorithms maintain state other than the current online solution x′ . For example, for
paging problems, the algorithms maintain xt ∈ [0,1] as they proceed, where a requested item rs is cur-
rently evicted only once xs = 1. To be stateless, they should maintain each xt ∈ {0,1}, where xs = 0 iff
page rs is still in the cache.

Algorithmica (2013) 66:113–152 131

In the case that each Uj = {0,1} and c is linear, one natural special case of the algo-
rithm is to repeat the following as long as there is some unsatisfied constraint S:

Choose a single k ∈ {j | j ∈ vars(S), xj = 0} at random, so that Pr[k = j] ∝ 1/cj .
Set xk = 1.

Theorem 3 (Correctness of stateless Algorithm 3) For online SUBMODULAR-COST COV-

ERING with finite variable domains, Algorithm 3 is stateless. If the step sizes are chosen
so the number of iterations has finite expectation (e.g. taking β = �(minj βj)), then
it is Δ-competitive (in expectation).

Proof By inspection the algorithm maintains each xj ∈ Uj . It remains to prove
Δ-competitiveness.

Consider any iteration of the repeat loop. Let x and x′, respectively, denote x

before and after the iteration. Let β and βj be as in the algorithm.
First we observe that iteration increases the cost of algorithm’s solution x by at

most βΔ in expectation:

Claim 1 Cost c(x) increases by at most
∑

j∈vars(S)(β/βj)βj = β| vars(S)| ≤ βΔ in
expectation.

The claim follows easily by direct calculation and the submodularity of c.
Inequality (1) from the proof of Theorem 1 still holds: c̃x(y)− c̃x′(y) ≥ c(x′ ∧y)−

c(x), so the next claim implies that the residual cost of any feasible y ≥ x decreases
by at least β in expectation:

Claim 2 For any feasible y ≥ x, EJ [c(x′ ∧ y) − c(x) | x] ≥ β .

Proof of Claim By Observation 2, there is a k ∈ vars(S) with yk > xk . Since yk ∈
Uk , the algorithm’s choice of x̂k ensures yk ≥ x̂k . Let z be obtained from x by raising
just xk to x̂k . With probability β/βk , the subroutine raises xk to x̂k ≤ yk , in which
case c(x′ ∧ y) − c(x) ≥ c(z) − c(x) = βk . This implies EJ [c(x′ ∧ y) − c(x) | x] ≥
(β/βk)βk = β , proving Claim 2.

Thus, for y ≥ x, in each iteration, the residual cost of y decreases by at least β in
expectation: EJ [c̃x(y) − c̃x′(y) | x] ≥ β . By the argument at the end of the proof of
Theorem 1, this implies the same for all feasible y (even if y �≥ x).

In sum, the iteration increases the cost of x by at most Δβ in expectation, while
decreasing the residual cost of any feasible y by at least β in expectation. By standard
probabilistic arguments, this implies that the expected final cost of x is at most Δ

times the initial residual cost of y (which equals the cost of y).
Formally, c(xt) + Δc̃xt (y) is a super-martingale, where random variable xt de-

notes x after t iterations.
Let random variable T be the number of iterations. Using, respectively, c̃xT (y) ≥

0, a standard optional stopping theorem, and c̃x0(y) = c(y)−c(x0) (because x0 ≤ y),
the expected final cost E[c(xT)] is at most

E
[
c
(
xT

) + Δc̃xT (y)
] ≤ E

[
c
(
x0) + Δc̃x0(y)

] = c
(
x0) + Δ

(
c(y) − c

(
x0)) ≤ Δc(y).

�

132 Algorithmica (2013) 66:113–152

Most General Randomized Algorithm Algorithm 2 raises the variables continu-
ously, whereas Algorithm 3 steps each variable xj through the successive values
in Uj . For some instances, both of these choices can lead to slow running times.
Next is an algorithm that generalizes both of these algorithms. The basic algorithm
is simple, but the condition on β is more subtle. The analysis is a straightforward
technical generalization of the previous analyses.

The algorithm has more flexibility in increasing variables. This may be important
in distributed or parallel applications, where the flexibility allows implementing the
algorithm so that it is guaranteed to make rapid (probabilistic) progress. (The flexi-
bility may also be useful for dealing with limited-precision arithmetic.)

The algorithm is Algorithm 2, modified to call subroutine random_stepc(x, S)

(Algorithm 4, below) instead of stepc(x, S) to augment x in each iteration.

Subroutine random_stepc ALG. 4
Input: current solution x ∈ R̄

n≥0, unsatisfied constraint S ∈ C)

1. Fix an arbitrary probability pj ∈ [0,1] for each j ∈ vars(S).
. . . above, taking each pj = 1 gives Algorithm 2

2. Choose a step size β ≥ 0 where β is at most expression (2) in Theorem 4.
3. For j with pj > 0, let x̂j be maximum such that raising xj to x̂j would raise

c(x) by at most β/pj .
4. Choose a random subseta J ⊆ vars(S) s.t. Pr[j ∈ J] = pj for j ∈ vars(S).
5. For j ∈ J , let xj ← x̂j .

aAs in Algorithm 3, the events “j ∈ J ” for j ∈ vars(S) can be dependent. See the last line of
Algorithm 3.

The step-size requirement is a bit more complicated.

Theorem 4 (Correctness of randomized algorithm) For SUBMODULAR-COST COVERING

suppose, in each iteration of the randomized algorithm for a constraint S ∈ C and
x �∈ S, the step size β ≥ 0 is at most

min
{
EJ

[
c
(
x ↑y

J

) − c(x)
] : y ≥ x;y ∈ S

}
, (2)

where x ↑y
J is a random vector obtained by choosing a random subset J from the

same distribution used in Line 4 of random_step and then raising xj to yj for j ∈ J .
Suppose also that the expected number of iterations is finite. Then the algorithm re-
turns a Δ-approximate solution in expectation.

Note that if p = 1, then (2) simplifies to c̃x(S). If c is linear, (2) simplifies to c̃′
x(S)

where c′
j = pjcj .

Proof The proof mirrors the proof of Theorem 3.
Fix any iteration. Let x and x′, respectively, denote x before and after the iteration.

Let p, β , x̂, and J be as in random_step.

Algorithmica (2013) 66:113–152 133

Claim 1 The expected increase in c(x) is

EJ

[
c
(
x′) − c(x)|x] ≤

∑

j∈vars(S)

pjβ/pj = β| vars(S)| ≤ βΔ.

The claim follows easily by calculation and the submodularity of c.
Inequality (1) from the proof of Theorem 1 still holds: c̃x(y)− c̃x′(y) ≥ c(x′ ∧y)−

c(x), so the next claim implies that the residual cost of any feasible y ≥ x decreases
by at least β in expectation:

Claim 2 For any feasible y ≥ x, EJ [c(x′ ∧ y) − c(x) | x] ≥ β .

Proof of Claim The structure of the proof is similar to the corresponding part of the
proof of Theorem 1.

Recall that if y is feasible, then there must be at least one xk with k ∈ vars(S) and
xk < yk .

Subcase 1 When also there is an x̂k < yk for k ∈ vars(S) with pk > 0.
In case of the event k ∈ J , raising x to x′ ∧ y raises xk to x̂k , which alone (by
Algorithm 4) costs β/pk .
Thus, the expected cost to raise x to x′ ∧ y is at least Pr[k ∈ J]β/pk = β .

Subcase 2 Otherwise, x̂j ≥ yj for all j ∈ J (for all possible J).
In this case, x′ ∧ y ≥ x ↑y

J in all outcomes.
Thus, the expected cost to increase x to x′ ∧y is at least the expected cost to increase
x to x ↑y

J .
By the assumption in the theorem, this is at least β . This proves Claim 2.

Claims 1 and 2 imply Δ-approximation via the argument in the final paragraphs of
the proof of Theorem 3. �

5 Relation to Local-Ratio Method

The local-ratio method has most commonly been applied to problems with variables
taking values in {0,1} and with linear objective function c · x (see [4, 6, 8, 9]; for one
exception, see [7]). For example, [8] shows a form of equivalence between the primal-
dual method and the local-ratio method, but that result only considers problems with
solution space {0,1}n (i.e., 0/1-variables). Also, the standard intuitive interpretation
of local-ratio—that the algorithm reduces the coefficients in the cost vector c—works
only for 0/1-variables.

Here we need to generalize to more general solution spaces. To begin, we first
describe a typical local-ratio algorithm for a problem with variables over {0,1} (we
use CIP-01). After that, we describe one way to extend the approach to more gen-
eral variable domains. With that extension in place, we then recast Theorem 1 (the
approximation ratio for Algorithm 2) as a local-ratio analysis.

134 Algorithmica (2013) 66:113–152

Local-Ratio for {0,1} Variable Domains Given a (non-canonical) LINEAR-COST COV-

ERING instance (c,U, C) where each Uj = {0,1}, the standard local-ratio approach
gives the following Δ-approximation algorithm:

Initialize vector � = c. Let “the cost of x under �” be
∑

j �j xj . Let x̂(�) be
the maximal x ∈ {0,1}n that has zero cost under � (i.e., x̂j (�) = 1 if �j = 0).
As long as x̂(�) fails to meet some constraint S ∈ C , repeat the following: Until
x̂(�) ∈ S, simultaneously for all j ∈ vars(S) with �j > 0, decrease �j at unit
rate. Finally, return x̂(�).

The algorithm has approximation ratio Δ = maxS | vars(S)| by the following argu-
ment. Fix the solution xa returned by the algorithm. An iteration for a constraint S

decreases �jx
a
j for each j ∈ vars(S) at rate xa

j ≤ 1, so it decreases � · xa at rate at
most Δ. On the other hand, in any feasible solution x∗, as long as the variables xj for
j ∈ S are being decreased, at least one j ∈ vars(S) with �j > 0 has x∗

j = 1 (otherwise
x̂(�) would be in S). Thus the iteration decreases � · x∗ at rate at least 1. From this it
follows that c · xa ≤ Δc · x∗ (details are left as an exercise).

This local-ratio algorithm is the same as Algorithm 1 for the case U = {0,1}n (and
linear cost). To see why, observe that the modified cost vector � in the local-ratio algo-
rithm is implicitly keeping track of the residual problem for x in Algorithm 1. When
the local-ratio algorithm reduces a cost �j at unit rate, for the same j , Algorithm 1
increases xj at rate 1/cj . This maintains the mutual invariant (∀j) �j = cj (1−xj)—
that is, �j is the cost to raise xj the rest of the way to 1. Thus, as they proceed together,
the CIP-01 instance (�, C) defined by the current (lowered) costs � is exactly the resid-
ual problem (c̃x, C) for the current x in Algorithm 1. To confirm this, note that the
cost of any y in the residual problem for x is c̃x(y) = ∑

j cj max(yj − xj ,0) =∑
j :yj =1 cj (1 − xj), whereas in the local-ratio algorithm the cost for y under � is

∑
j :yj =1 �j , and by the mutual invariant above these are equal.
So, at least for linear-cost covering problems with {0,1}-variable domains, we

can interpret local-ratio via residual costs, and vice versa. On the other hand, resid-
ual costs extend naturally to more general domains. Is it possible to likewise extend
the local-ratio cost-reduction approach? Simply reducing some costs �j until some
�j = 0 does not work—�jx

a
j may decrease at rate faster than 1, and when �j reaches

0, it is not clear which value xj should take in Uj .

Local Ratio for More General Domains One way to extend local-ratio to more gen-
eral variable domains is as follows. Consider any (non-canonical) instance (c,U, C)

where c is linear. Assume for simplicity that each variable domain Uj is the same:
Uj = {0,1, . . . , u} for some u independent of j , and that all costs cj are non-zero. For
each variable xj , instead of maintaining a single reduced cost �j , the algorithm will
maintain a vector �j ∈ R

u
≥0 of reduced costs. Intuitively, �jk represents the cost to

increase xj from k − 1 to k. (We are almost just reducing the general case to the 0/1
case by replacing each variable xj by multiple copies, but that alone doesn’t quite
work, as it increases Δ by a factor of u.) Define the cost of any x ∈ {0,1, . . . , u}n
under the current � to be

∑
j

∑xj

k=1 �jk . As a function of the reduced costs �, define

x̂(�) to be the maximal zero-cost solution, i.e. x̂j (�) = max{k | ∑k
i=1 �ji = 0}.

Algorithmica (2013) 66:113–152 135

The local-ratio algorithm initializes each �jk = cj , so that the cost of any x under
� equals the original cost of x (under c). The algorithm then repeats the following
until x̂(�) satisfies all constraints.

1. Choose any constraint S that x̂(�) does not meet. Until x̂(�) ∈ S, do:
2. Just until an �jk reaches zero, for all j ∈ vars(S) with x̂j (�) < u

3. simultaneously, lower �jkj
at unit rate, where kj = x̂j (�) + 1.

Finally the algorithm returns x̂(�) (the maximal x with zero cost under the final �).
One can show that this algorithm is a Δ-approximation algorithm (for Δ w.r.t. the

original CIP-UB instance) by the following argument. Fix xa and x∗ to be, respec-
tively, the algorithm’s final solution and an optimal solution. In an iteration for a
constraint S, as � changes, the cost of xa under � decreases at rate at most Δ, while
the cost of x∗ under � decreases at rate at least 1. We leave the details as an exercise.

In fact, the above algorithm is equivalent to Algorithm 1 for CIP-UB. If the two
algorithms are run in sync, at any given time, the CIP-01 instance with modified cost
� exactly captures the residual problem for Algorithm 1.

Local-ratio for Submodular-Cost Covering The previous example illustrates the ba-
sic ideas underlying one approach for extending local-ratio to problems with general
variable domains: decompose the cost into parts, one for each possible increment of
each variable, then, to satisfy a constraint S, for each variable xj with j ∈ vars(S),
lower just the cost for that variable’s next increment. This idea extends somewhat
naturally even to infinite variable domains, and is equivalent to the residual-cost in-
terpretation.

Next we tackle SUBMODULAR-COST COVERING in full generality. We recast the proof
of Theorem 1 (the correctness of Algorithm 2) as a local-ratio proof. Formally, the
minimum requirement for the local-ratio method is that the objective function can
be decomposed into “locally approximable” objectives. The common cost-reduction
presentation of local ratio described above gives one such decomposition, but oth-
ers have been used (e.g. [7]). In our setting, the following local-ratio decomposition
works. (We discuss the intuition after the lemma and proof.)

Lemma 2 (Local-ratio lemma) Any algorithm returns a Δ-approximate solution
x provided there exist T ∈ Z≥0 and ct : R

n
≥0 → R≥0 (for t = 1,2, . . . , T) and

r : R
n
≥0 → R≥0 such that

(a) for any y, c(y) = ∑T
t=1 ct (y) + r(y),

(b) for all t , and any y and feasible x∗, ct (y) ≤ ct (x∗)Δ,
(c) the algorithm returns x such that r(x) = 0.

Proof Properties (a)–(c) state that the cost function can be decomposed into parts,
where, for each part ct (), any solution y is Δ-approximate, and, for the remaining part
r(), the solution x returned by the algorithm has cost zero. Since x is Δ-approximate
w.r.t. each ct (), and x has cost zero for the remaining part, x is Δ-approximate over-
all. Formally, let x∗ be an optimal solution. By properties (a) and (c), (b), then (a),

136 Algorithmica (2013) 66:113–152

respectively,

c(x) =
T∑

t=1

ct (x) ≤
T∑

t=1

ct
(
x∗)Δ + r

(
x∗)Δ = c

(
x∗)Δ.

�

In local-ratio as usually presented, the local-ratio algorithm determines the cost
decomposition as it proceeds. The only state maintained by the algorithm after itera-
tion t is the “remaining cost” function �t , defined by �t (y) = c(y) − ∑

s≤t c
s(y). In

iteration t , the algorithm determines some portion ct of �t−1 satisfying Property (b)
in the lemma and removes it from the cost. (This is the key step in designing the algo-
rithm.) The algorithm stops when it has removed enough of the cost so that there is a
feasible solution xa with zero remaining cost (�T (xa) = 0), then returns that xa (tak-
ing r = �T for Property (c) in the lemma). By the lemma, this xa is a Δ-approximate
solution.

For a concrete example, consider the local-ratio algorithm for the linear-cost, 0/1-
variable case described at the start of this section. Let T be the number of iterations.
For t = 0,1, . . . , T , let �t be the modified cost vector at the end of iteration t (so �0

is the original cost vector). Define ct (y) = (�t − �t−1) · y to be the decrease in the
cost of y due to the change in � in iteration t . Define r(y) = �T · y to be the modified
cost vector at termination (so the returned solution x = x̂(�T) has r(x) = 0). It is
easy to see that property (a) and (c) hold. To see that property (b) holds, recall that in
iteration t the algorithm reduces all �j for j ∈ vars(S) with �j > 0, simultaneously
and continuously at unit rate. It raises each xj to 1 when �j reaches 0. It stops once
x ∈ S. At most Δ of the �j ’s are being lowered at any time, so the rate of decrease
in � · y for any y ∈ {0,1}n is at most Δ. But for any x∗ ∈ S, the rate of decrease in
� · x∗ is at least 1, because at least one j ∈ vars(S) has x∗

j = 1 and �j > 0 (otherwise
x would be in S).

Next we describe how to generate such a decomposition of the cost c correspond-
ing to a run of Algorithm 2 on an arbitrary SUBMODULAR-COST COVERING instance
(c, C). This gives an alternate proof of Theorem 1. The proof uses the previously
described idea for extending local ratio to more general domains. Beyond that, it is
slightly more complicated than the argument in the previous paragraph for two rea-
sons: it handles submodular costs, and, more subtly, in an iteration for a constraint S,
Algorithm 2 can increase variables more than enough to satisfy S (of course this is
handled already in the previous analysis of Algorithm 2, which we leverage below).

Lemma 3 (Correctness of Algorithm 2 via local-ratio) Algorithm 2, run on any in-
stance (c, C) of SUBMODULAR-COST COVERING, implicitly generates a cost decomposi-
tion {ct } and r as described in Lemma 2. Thus, Algorithm 2 gives a Δ-approximation.

Proof Assume without loss of generality that c(0) = 0. (Otherwise use cost function
c′(x) = c(x) − c(0). Then c′(x) is still non-negative and non-decreasing, and, since
Δ ≥ 1, the approximation ratio for c′ implies it for c.)

Let xt denote Algorithm 2’s vector x after t iterations. Let T be the number of
iterations.

Algorithmica (2013) 66:113–152 137

Recall that c̃xt is the cost in the residual problem (c̃xt , C) for x after iteration t :
c̃xt (y) = c(xt ∨ y) − c(xt).

Define ct so that the “remaining cost” function �t (as discussed before the lemma)
equals the objective c̃xt in the residual problem for xt . Specifically, take ct (y) =
c̃xt−1(y) − c̃xt (y). Also define r(y) = c̃xT (y).

These ct and r have properties (a)–(c) from Lemma 2.
Properties (a) and (c) follow by direct calculation. To show (b), fix any y. Then

ct (y) = c(xt) − c(xt−1) + c(xt−1 ∨ y) − c(xt ∨ y) ≤ c(xt) − c(xt−1). So ct (y) is at
most the increase in the cost c(x) of x during iteration t . In the proof of Theorem 1,
this increase in c(x) in iteration t is shown to be at most Δβ . Also, for any feasible
x∗, the cost c̃x(x

∗) for x∗ in the residual problem for x is shown to reduce by at
least β . But the reduction in c̃x(x

∗) is exactly ct (x∗). Thus, ct (y) ≤ Δβ ≤ Δct(x∗),
proving Property (b). �

Each ct in the proof captures the part of the cost c lying “between” xt−1 and xt .
For example, if c is linear, then ct (y) = ∑

j cj |[0, yj] ∩ [xt−1
j , xt

j]|. The choice of xt

in the algorithm guarantees property (b) in the lemma.

6 Relation to Primal-Dual Method; Local Valid Inequalities

Next we discuss how Algorithm 1 can be reinterpreted as a primal-dual algorithm.
It is folklore that local-ratio and primal-dual algorithms are “equivalent”; for ex-

ample [8] shows a formal equivalence between the primal-dual method and the local-
ratio method. But that result only applies to problems with solution space {0,1}n (i.e.,
0/1-variables), and the underlying arguments do not seem to extend directly to this
more general setting.

Next we present two linear-program relaxations for LINEAR-COST COVERING, then
use the second one to reprove Lemma 1 (that Algorithm 1 is a Δ-approximation al-
gorithm for LINEAR-COST COVERING) using the primal-dual method.

Fix any LINEAR-COST COVERING instance (c, C) in canonical form.
To simplify the presentation, assume at least one optimal solution to (c, C) is finite

(i.e., in R
n
≥0).

For any S ∈ C , let S denote the complement of S in R̄
n
≥0. Let S

∗
denote the closure

of S under limit.
By Observation 2, if x is feasible, then, for any S ∈ C and y ∈ S, x meets the

non-domination constraint x �<
S

y (that is, xj ≥ yj for some j ∈ vars(S)). By a limit
argument,15 the same is true if y ∈ S

∗
. In sum, if x is feasible, then x meets the

non-domination constraint for every (S, y) where S ∈ C and y ∈ S
∗
. For finite x, the

converse is also true:

15If x ∈ S and y ∈ S
∗

, then y is the limit of some sequence {yt } of points in S. Each yt has xt
j (t)

≥ yt
j (t)

for some j (t) ∈ vars(S). Since | vars(S)| is finite, for some j ∈ vars(S), the infinite subsequence {yt |
j (t) = j} also has y as a limit point. Then yj is the limit of the yt

j
’s in this subsequence, each of which is

at most xj , so yj is at most xj .

138 Algorithmica (2013) 66:113–152

Observation 4 If x ∈ R
n
≥0 meets the non-domination constraint for every S ∈ C and

y ∈ S
∗
, then x is feasible for (c, C).

Proof Assume x is not feasible. Fix an S ∈ C with x �∈ S. Define y(ε) by yj (ε) =
xj + ε so limε→0 y = x �∈ S. Since S is closed under limit, y(ε′) �∈ S for some ε′ > 0.
Since x is finite, xj < yj (ε

′) for each j ∈ vars(S). Thus, x <
S

y(ε′) (i.e., x fails to
meet the non-domination constraint for (S, y(ε′))). �

First Relaxation The non-domination constraints suggest this relaxation of (c, C):

minimize c · x subject to
(∀S ∈ C, y ∈ S

∗) ∑

j∈vars(S)

xj /yj ≥ 1.

Let (c, R1) denote this LINEAR-COST COVERING instance. Call it Relaxation 1.

Observation 5 Fix any x ∈ R
n
≥0 that is feasible for (c, R1).

Then Δx is feasible for (c, C).

Proof Fix any S ∈ C and y ∈ S
∗
.

Then
∑

j∈vars(S) xj /yj ≥ 1. Thus, maxj∈vars(S) xj /yj ≥ 1/| vars(S)|.
Thus, maxj∈vars(S) Δxj/yj ≥ 1.
That is, Δx meets the non-domination constraint for (any) (S, y).
By Observation 4, Δx is feasible for (c, C). �

Corollary 2 (Relaxation gap for first relaxation) The relaxation gap16 for (c, R1) is
at most Δ.

Proof Let x be a finite optimal solution for (c, R1). By Obs. 5, Δx is feasible for
(c, C), and has cost c · (Δx) = Δ(c · x). Thus, the optimal cost for (c, C) is at most Δ

times the optimal cost for (c, R1). �

Incidentally, (c, R1) gives an ellipsoid-based LINEAR-COST COVERING Δ-approx-
imation algorithm.17

Linear-Cost Covering Reduces to Set Cover From the LINEAR-COST COVERING in-
stance (c, C), construct an equivalent (infinite) SET COVER instance (c′, (E, F)) as
follows. Recall the non-domination constraints: x �<

S
y for each S ∈ C and y ∈ S

∗
.

16The relaxation gap is the maximum, over all instances (c, C) of LINEAR-COST COVERING, of the ratio

[optimal cost for (c, C)]/[optimal cost for its relaxation (c, R1)].
17Briefly, run the ellipsoid method to solve (c, R1) using a separation oracle that, given x, checks whether

Δx ∈ S for all S ∈ C , and, if not, returns an inequality that x violates for R1 (from the proof of Observa-
tion 5). Either the oracle finds, for some x, that Δx ∈ S for all S, in which case x′ = Δx is a Δ-approximate
solution for (c, C), or the oracle returns to the ellipsoid method a sequence of violated inequalities that,
collectively, prove that (c, R1) (and thus (c, C)) is infeasible.

Algorithmica (2013) 66:113–152 139

Such a constraint is met if, for some j ∈ vars(S), xj is assigned a value r ≥ yj . In-
troduce an element e = (S, y) into the element set E for each pair (S, y) associated
with such a constraint. For each j ∈ [n] and r ∈ R≥0, introduce a set s(j, r) into the
set family F , such that set s(j, r) contains element (S, y) if assigning xj = r would
ensure x �<

S
y (i.e., would satisfy the non-domination constraint for (S, y)). That is,

s(j, r) = {(S, y) | j ∈ vars(S), r ≥ yj }. Take the cost of set s(j, r) to be c′
jr = rcj

(equal to the cost of assigning xj = r).

Observation 6 (Reduction to Set Cover) The LINEAR-COST COVERING instance (c, C)

is equivalent to the above SET COVER instance (c′, (E, F)). By “equivalent” we mean
that each feasible solution x to (c, C) corresponds to a set cover X for (E, F) (where
s(j, r) ∈ X iff xj = r) and, conversely, each set cover X for (E, F) corresponds
to a feasible solution x to (c, C) (where xj = ∑

r:s(j,r)∈X r). Each correspondence
preserves cost.

The observation is a consequence of Observation 4.
Note that above reduction increases Δ.

Second Relaxation, via Set Cover Relaxation 2 is the standard LP relaxation of
SET COVER, applied to the equivalent SET COVER instance (c′, (E, F)) above, with a
variable Xjr for each set s(j, r) ∈ F :

minimize
∑

j,r

rcjXjr subject to
(∀S ∈ C, y ∈ S

∗) ∑

j∈vars(S)

∑

r≥yj

Xjr ≥ 1.

(There is a technicality in the definition above—the index r of the inner sum ranges
over [yj ,∞). Should one sum, or integrate, over r? Either can be appropriate—the
problem and its dual will be well-defined and weak duality will hold either way. Here
we restrict attention to solutions X with finite support, so we sum. The same issue
arises in the dual below.)

We denote the above relaxation (c′, R2). By Observation 6, any feasible solution
x to (c, C) gives a feasible solution to (c, R2) of the same cost (via Xjr = 1 iff r = xj

and Xjr = 0) otherwise. Incidentally, any feasible solution X to (c′, R2) also gives a
solution x to (c, R1) of the same cost, via xj = ∑

r rXjr . That is, Relaxation 1 is a
relaxation of Relaxation 2. The converse is not generally true.18

Dual of Set-Cover Relaxation The linear-programming dual of Relaxation 2 is the
standard SET COVER dual: fractional packing of elements under (capacitated) sets. We
use a variable ze for each element e:

maximize
∑

e∈E

ze subject to
(∀s(j, r) ∈ F

) ∑

e∈s(j,r)

ze ≤ rcj .

18The instance (c, C) defined by min{x1 + x2 | x ∈ R
2≥0;x1 + x2 ≥ 1} has optimum cost 1. In its first

relaxation (c, R1), x1 = x2 = 1/4 with cost 1/2 is feasible. But one can show (via duality) that (c′, R2)

has optimal cost at least 1.

140 Algorithmica (2013) 66:113–152

Recall E = {(S, y) | S ∈ C, y ∈ S
∗}; s(j, r) = {(S, y) ∈ E | j ∈ vars(S), r ≥ yj }.

We now describe the primal-dual interpretation of Algorithm 1.

Lemma 4 (Primal-dual analysis of Algorithm 1) Algorithm 1 can be augmented to
compute, along with the solution x to (c, C), a solution z to the dual of Relaxation 2
such that c ·x is at most Δ times the cost of z. Thus, Algorithm 1 is a Δ-approximation
algorithm.

Proof Initialize z = 0. Consider an iteration of Algorithm 1 for some constraint S′.
Let x and x′, respectively, be the solution x before and after the iteration. Fix ele-
ment e′ = (S′, x′). Augment Algorithm 1 to raise19 the dual variable ze′ by β . This
increases the dual cost by β . Since the iteration increases the cost of x by at most
βΔ, the iteration maintains the invariant that the cost of x is at most Δ times the dual
cost.

To finish, we show the iteration maintains dual feasibility. For any element e =
(S, y) ∈ E, let S(e) denote S. Increasing the dual variable ze′ by β maintains the
following invariant:

for all j ∈ [n], xj cj =
∑

e:j∈vars(S(e))

ze.

The invariant is maintained because ze′ occurs in the sum iff j ∈ vars(S(e′)) =
vars(S′), and each xj is increased (by β/cj) iff j ∈ vars(S′), so the iteration increases
both sides of the equation equally.

Now consider any dual constraint that contains the raised variable ze′ . Fix the
pair (j, r) defining the dual constraint. That e′ ∈ s(j, r) implies j ∈ vars(S′) and
x′
j ≤ r . Each dual variable ze that occurs in this dual constraint has j ∈ vars(S(e)).

But, by the invariant, at the end of the iteration, the sum of all dual variables ze with
j ∈ vars(S(e)) equals x′

j cj . Since x′
j ≤ r , this sum is at most rcj . Thus, the dual

constraint remains feasible at the end of the iteration. �

6.1 Valid Local Inequalities; the “Price of Locality”

Here is one general way of characterizing the analyses in this paper in terms of valid
inequalities. Note that each of the valid inequalities that is used in Relaxation 1 from
Sect. 6 can be obtained by considering some single constraint “x ∈ S” in isolation,
and adding valid inequalities for just that constraint. Call such a valid inequality “lo-
cal”. This raises the following question: What if we were to add all local valid in-
equalities (ones that can be obtained by looking at each S in isolation)? What can we
say about the relaxation gap of the resulting polytope?

Formally, fix any SUBMODULAR-COST COVERING instance min{c(x) | x ∈ S for all
S ∈ C}. Consider the “local” relaxation (c, L) obtained as follows. For each constraint
S ∈ C , let conv(S) denote the convex closure of S. Then let L = {conv(S) | S ∈ C}.

19In fact this dual variable must be 0 before this, because x′
j

> xj for some j , so this dual variable has not
been raised before.

Algorithmica (2013) 66:113–152 141

Equivalently, for each S ∈ C , let LS contain all of the linear inequalities on variables
in vars(S) that are valid for S, then let L = ⋃

S∈C LS . For LINEAR-COST COVERING,
Relaxation 1 above is a relaxation of (c, L), so Corollary 2 implies that the gap is at
most Δ. It is not hard to find examples20 showing that the gap is at least Δ.

Of course, if we add all (not just local) valid inequalities for the feasible region⋂
S∈C S, then every extreme point of the resulting feasible region is feasible for (c, C),

so the relaxation gap would be 1.

7 Fast Implementations for Special Cases of Submodular-Cost Covering

This section has a linear-time implementation of Algorithm 2 for FACILITY LOCATION

(and thus also for SET COVER and VERTEX COVER), a nearly linear-time implementation
for CMIP-UB, and an O(NΔ̂ logΔ)-time implementation for two-stage probabilistic
CMIP-UB. (Here N is the number of non-zeroes in the constraint matrix and Δ̂ is the
maximum, over all variables xj , of the number of constraints that constrain that vari-
able.) The section also introduces a two-stage probabilistic version of SUBMODULAR

COVERING, and shows that it reduces to ordinary SUBMODULAR COVERING.
For FACILITY LOCATION, Δ is the maximum number of facilities that might serve

any given customer. For SET COVER, Δ is the maximum set size. For VERTEX COVER,
Δ = 2.

7.1 Linear-Time Implementations for Facility Location, Set Cover, and Vertex
Cover

The standard integer linear program for FACILITY LOCATION is not a covering linear
program due to constraints of the form “xij ≤ yj ”. Also, the standard reduction of
FACILITY LOCATION to SET COVER increases Δ exponentially. For these reasons, we for-
mulate FACILITY LOCATION directly as the following special case of SUBMODULAR-COST

COVERING, taking advantage of submodular cost:

minimize
∑

j

fj max
i

xij +
∑

ij

dij xij

subject to (for each customer i) max
j∈N(i)

xij ≥ 1.

20Here is an example in R
2. For v ∈ R

2, let |v| denote the 1-norm
∑

i |vi |. For each v ∈ R
2≥0 such that

|v| = 1, define constraint set Sv = {x ∈ R
2≥0 : (∃j)xj ≥ vj }. Consider the covering problem min{|x| :

(∀v)x ∈ Sv}.
Each constraint x ∈ Sv excludes points dominated by v, so the intersection of all Sv ’s is {x ∈ R

2≥0 :
|x| ≥ 1}. On the other hand, since Sv contains the points (v1,0) and (0, v2), conv(Sv) must contain x =
v2(v1,0) + v1(0, v1) = (v1v2, v1v2), where v1v2 ≤ (1/2)2 = 1/4. Thus, each conv(Sv) contains x =
(1/4,1/4), with |x| = 1/2. Thus, the relaxation gap of (c, L) for this instance is at least 2.

Another example with Δ = 2, this time in R
n≥0. Consider the sets Sij = {x ∈ R

n≥0 : max(xi , xj) ≥ 1}.
Consider the covering problem min{|x| : (∀i, j)x ∈ Sij }. Each point x ∈ ⋂

ij Sij has |x∗| ≥ (n− 1)/n, but
x = (1/2,1/2,1/2, . . . ,1/2) is in each conv(S), and |x| = n/2, so the relaxation gap of (c, L) is at least 2.

142 Algorithmica (2013) 66:113–152

Above j ∈ N(i) if customer i can use facility j . (N(i) = vars(Si) where Si is the
constraint above for customer i.)

Theorem 5 (Linear-time implementations) For (non-metric) FACILITY LOCATION, SET

COVER, and VERTEX COVER, the greedy Δ-approximation algorithm (Algorithm 2) has
a linear-time implementation.

Proof The implementation is as follows.

1. Start with all xij = 0. Then, for each customer i, in any order, do the following:
2. Let β = minj∈N(i)[dij + fj (1 − maxi′ xi′j)] (the minimum cost to raise xij to 1

for any j ∈ N(i)).
3. For each j ∈ N(i), raise xij by min[β/dij , (β + fj maxi′ xi′j)/(dij + fj)].
4. Assign each customer i to any facility j (i) with xij (i) = 1.
5. Open the facilities that have customers.

Line 3 raises the xij ’s just enough to increase the cost by β per raised xij and to
increase maxj∈N(i) xij to 1.

By maintaining, for each facility j , maxi xij , the implementation can be done in
linear time, O(

∑
i |N(i)|).

SET COVER is the special case when dij = 0; VERTEX COVER is the further special
case Δ = 2. �

7.2 Nearly Linear-Time Implementation for CMIP-UB

This section describes a nearly linear-time implementation of Algorithm 2 for COVER-

ING MIXED INTEGER LINEAR PROGRAMS with upper bounds on the variables (CMIP-UB),
that is, problems of the form

min
{
c · x | x ∈ R

n
≥0;Ax ≥ B;x ≤ u; (∀j ∈ I) xj ∈ Z

}
,

where c ∈ R
n
≥0, A ∈ R

m×n
≥0 and B ∈ R

n
≥0 have no negative entries. The set I contains

the indices of the variables that are restricted to take integer values, while u ∈ R̄
n
≥0

gives the upper bounds on the variables. Δ is the maximum number of non-zeroes in
any row of A. We prove the following theorem:

Theorem 6 (Implementation for CMIP-UB) For CMIP-UB, Algorithm 2 can be im-
plemented to return a Δ-approximation in O(N logΔ) time, where N is the total
number of non-zeroes in the constraint matrix.

Proof Fix any CMIP-UB instance as described above. For each constraint Aix ≥ Bi

(each row of A), do the following. For presentation (to avoid writing the sub-
script i), rewrite the constraint as a · x ≥ b (where a = Ai and b = Bi). Then
bring the constraint into canonical form, as follows. Assume for simplicity of pre-
sentation that integer-valued variables in S come before the other variables (that is,
I ∩ vars(S) = {1,2, . . . , �} for some �). Assume for later in the proof that these

Algorithmica (2013) 66:113–152 143

� variables are ordered so that a1 ≥ a2 ≥ · · · ≥ a�. (These assumptions are with-
out loss of generality.) Now incorporate the variable-domain restrictions (x ≤ u and
(∀j ∈ I) xj ∈ Z) into the constraint by rewriting it as follows:

�∑

j=1

aj

⌊
min(xj , uj)

⌋ +
∑

j>�

aj min(xj , uj) ≥ b.

(canonical constraint S for Aix ≥ Bi)

Let C be the collection of such canonical constraints, one for each original cover-
ing constraint Aix ≥ Bi .

Intuition The algorithm focuses on a single unsatisfied S ∈ C , repeating an iteration
of Algorithm 2 (raising the variables xj for j ∈ vars(S)) until S is satisfied. It then
moves on to another unsatisfied S, and so on, until all constraints are satisfied. While
working with a particular constraint S, it increases each xj for j ∈ vars(S) by β/cj

for some β . We must choose β ≤ c̃x(S) (the optimal cost to augment x to satisfy S),
thus each step requires some lower bound on c̃x(S). But the steps must also be large
enough to satisfy S quickly.

For intuition, consider first the case when S has no variable upper bounds (each
uj = ∞) and no floors. In this case, the optimal augmentation of x to satisfy S simply
raises the single most cost-effective variable xj (minimizing aj /cj) to satisfy S, so
c̃x(S) is easy to calculate exactly and taking β = c̃x(S) satisfies S in one iteration.

Next consider the case when S has some variable upper bounds (finite uj). In this
case, we take β to be the minimum cost to either satisfy S or bring some variable
to its upper bound (we call this saturating the variable). This β is easy to calculate,
and will satisfy S after at most vars(S) iterations (as each variable can be saturated at
most once).

Finally, consider the case when S also has floors. This complicates the picture con-
siderably. The basic idea is to relax (remove) the floors, satisfy the relaxed constraint
as described above, and then reintroduce the floors one by one. We reintroduce a floor
only once the constraint without that floor is already satisfied. This ensures that the
constraint with the floor will be satisfied if the term with the floor increases even once.
(If the term for a floored variable xj increases, we say xj is bumped.) We also rein-
troduce the floors in a particular order—in order of decreasing aj . This ensures that
introducing one floor (which lowers the value of the left-hand side) does not break
the property in italics above for previously reintroduced floors.

The above approach ensures that S will be satisfied in O(vars(S)) iterations.
A careful but straightforward use of heaps allows all the iterations for S to be done in
O(vars(S) logΔ) time. This will imply the theorem.

Here are the details. To specify the implementation of Algorithm 2, we first specify
how, in each iteration, for a given constraint S ∈ C and x �∈ S, the implementation
chooses the step size β . It starts by finding a relaxation Sh of S (that is, S ⊆ Sh, so
c̃x(S

h) ≤ c̃x(S)). Having chosen the relaxation, the algorithm then takes β to be the
minimum cost needed to raise any single variable xj (with j ∈ vars(S)) just enough
to either satisfy the relaxation Sh or to cause xj = uj .

144 Algorithmica (2013) 66:113–152

The relaxation Sh is as follows. Remove all floors from S, then add in just enough
floors (from left to right), so that the resulting constraint is unsatisfied. Let Sh be
the resulting constraint, where h is the number of floors added in. Formally, for h =
0,1, . . . , �, define f h(x) = ∑h

j=1 aj�min(xj , uj)� + ∑
j>h aj min(xj , uj) to be the

left-hand side of constraint S above, with only the first h floors retained. Then fix
h = min{h ≥ 0 | f h(x) < b}, and take Sh = {x | f h(x) ≥ b}.

Next we show that this β satisfies the constraint in Algorithm 2.

Lemma 5 (Validity of step size) For S, x �∈ S, and β as described above, β ∈
[0, c̃x(S)].

Proof As S ⊆ Sh, it suffices to prove β ≤ c̃x(S
h). Recall that a variable xj is satu-

rated if xj = uj . Focus on the unsaturated variables in vars(S). We must show that
if we wish to augment (increase) some variables just enough to saturate a variable
or bring x into Sh, then we can achieve this at minimum cost by increasing a single
variable. This is certainly true if we saturate a variable: only that variable needs to
be increased. A special case of this is when some ci is 0—we can saturate xi at zero
cost, which is minimum. Therefore, consider the case where all ci ’s are positive and
the variable increases bring x into Sh.

Let P be the set of unsaturated variables in {x1, . . . , xh}, and let Q be the set
of unsaturated variables among {xj | j > h}. Consider increasing a variable xj ∈ P .
Until xj is bumped (i.e., the term �xj �+1 increases because xj reaches its next higher
integer), f h(x) remains unchanged, but the cost increases. Thus, if it is optimal to
increase xj at all, xj must be bumped. When xj is bumped, f h(x) jumps by aj ,
which (by the ordering of coefficients) is at least ah, which (by the choice of h) is
sufficient to bring x into Sh. Thus, if the optimal augmentation increases a variable in
P , then the only variable that it increases is that one variable, which is bumped once.

The only remaining case is when the optimal augmentation of x increases only
variables from Q. Let xk = arg min{cj /aj | xj ∈ Q}. Clearly it is not advantageous
to increase any variable in Q other than xk . (Let δj ≥ 0 denote the amount by which
we increase xj ∈ Q. If δj > 0 for some j �= k, then we can set δj = 0 and instead
increase δk by aj δj /ak . this will leave the increase in f h(x) intact, so x will still be
brought into Sh, yet will not inflate the cost increase, because the cost will decrease
by cj δj , but increase by ckaj δ/ak ≤ cj δj , where the inequality holds by the definition
of k.) �

By the lemma and Theorem 1, with this choice of β , the algorithm gives a Δ-
approximation. It remains to bound the running time.

Lemma 6 (Iterations) For each S ∈ C , the algorithm does at most 2| vars(S)| itera-
tions for S.

Proof Recall that, in a given iteration, β is the minimum such that raising some single
xk by β/ck (with k ∈ vars(S) and xk < uk) is enough to saturate xk or bring x into Sh.
If the problem is feasible, β < ∞ so there is such an xk . Each iteration increases xj

for all j ∈ vars(S) by β/cj , so must increase this xk by β/ck . Thus, the iteration
either saturates xk or brings x into Sh.

Algorithmica (2013) 66:113–152 145

The number of iterations for S that saturate variable is clearly at most | vars(S)|.
The number of iterations for S that satisfy that iteration’s relaxation (bringing x into
Sh) is also at most | vars(S)|, because, by the choice of h, in the next iteration for
S the relaxation index h will be at least 1 larger. Thus, there are at most 2| vars(S)|
iterations for S before x ∈ S. �

The obvious implementation of an iteration for a given constraint S runs in time
O(| vars(S)|) (provided the constraint’s aj ’s are sorted in a preprocessing step). By
the lemma, the obvious implementation thus yields total time O(

∑
S | vars(S)|2) ≤

O(
∑

S | vars(S)|Δ) = O(NΔ).
To complete the proof of Theorem 6, we show how to use standard heap data

structures to implement the above algorithm to run in O(N logΔ) time. The imple-
mentation considers the constraints S ∈ C in any order. For a given S, it repeatedly
does iterations for that S until x ∈ S. As the iterations for a given S proceed, the
algorithm maintains the following quantities:

• A fixed vector xb , which is x at the start of the first iteration for S, initialized in
time O(| vars(S)|).

• A variable τ , tracking the sum of the β’s for S so far (initially 0). Crucially, the
current x then satisfies xj = xb

j + τ/cj for j ∈ vars(S). While processing a given
S, we use this to represent x implicitly.

We then use the following heaps to find each breakpoint of τ—each value at
which a variable becomes saturated, is bumped, or at which Sh is satisfied and
the index h of the current relaxation Sh increases. We stop when S� (that is, S) is
satisfied.

• A heap containing, for each unsaturated variable xj in vars(S), the value cj (uj −
xb
j) of τ at which xj would saturate. This value does not change until xj is satu-

rated, at which point the value is removed from the heap.
• A heap containing, for each unsaturated integer variable xj (j ≤ h) in Sh, the value

of τ at which xj would next be bumped. This value is initially cj (1− (xb
j −�xb

j �)).
It changes only when xj is bumped, at which point it increases by cj .

• A heap containing, for each unsaturated non-integer variable xj (j > h) in Sj , the
ratio cj /aj . This value does not change. It is removed from the heap when xj is
saturated.

• The current derivative d of f h(x) with respect to τ , which is d =∑
j>h,xj <uj

aj /cj . This value changes by a single term whenever a variable is
saturated or h increases.

• The current slack bh = b − f h(x) of Sh, updated at each breakpoint of τ .

In each iteration, the algorithm queries the min-values of each of the three heaps.
It uses the three values to calculate the minimum value of τ at which, respec-
tively, a variable would become saturated, a variable would be bumped, or a single
(non-integer) variable’s increase would increase f h(x) by the slack bh. It then in-
creases τ to the minimum of these three values. (This corresponds to doing a step
of Algorithm 1 with β equal to the increase in τ .) With the change in τ , it detects
each saturation, bump, and increment of h that occurs, uses the derivative to compute
the increase in f h(x), then updates the data structures accordingly. (For example, it
removes saturated variables’ keys from all three heaps.)

146 Algorithmica (2013) 66:113–152

After the algorithm has finished all iterations for a given constraint S, it explicitly
sets xj ← xb

j + τ/cj for j ∈ vars(S), discards the data structures for S, and moves
on to the next constraint.

The heap keys for a variable xj change (and are inserted or removed) only when
that particularly variable is bumped, or saturated, or when h increases to j . Each
variable is saturated at most once, and h increases at most � ≤ vars(S) times, and
thus there are at most vars(S) bumps (as each bump increases h by at least 1). Thus,
during all iterations for S, the total number of breakpoints and heap key changes is
O(vars(S)). Since each heap operation takes O(logΔ) time, the overall time is then
O(

∑
S∈C | vars(S)| logΔ) = O(N logΔ), where N is the number of non-zeros in A.

This proves the theorem. �

7.3 Two-Stage (Probabilistic) Submodular-Cost Covering

An instance of two-stage SUBMODULAR-COST COVERING is a tuple (W,p, (c, C)) where
(c, C) is an instance of SUBMODULAR-COST COVERING over n variables (so S ⊆ R̄

n
≥0

for each S ∈ C), W : R̄
|C|×n
≥0 → R̄≥0 is a non-decreasing, submodular, continuous

first-stage objective function, and, for each S ∈ C , the activation probability of S

is pS . A solution is a collection X = [xS]S∈C of vectors xS ∈ R̄
n
≥0, one for each

constraint S ∈ C , such that xS ∈ S. Intuitively, xS specifies how S will be satisfied if
S is activated, which happens with probability pS . As usual Δ = maxS∈C | vars(S)|.

The solution should minimize the cost w(X) of X, as defined by the follow-
ing random experiment. Each constraint S is independently activated with prob-
ability pS . This defines a SUBMODULAR-COST COVERING instance (c, A) where A =
{S ∈ C | S is activated} ⊆ C , and the solution xA for that instance defined by xA

j =
max{xS

j | S ∈ A}. Intuitively, xA is the minimal vector that meets the first-stage

commitment to satisfy each activated constraint S with xS . The cost w(X) is then
W(X) + EA[c(xA)], the first-stage cost W(X) (modeling a “preparation” cost) plus
the (expectation of the) second-stage cost c(xA) (modeling an additional cost for as-
sembling the final solution to the second-stage SUBMODULAR-COST COVERING instance
(c, A)).

Facility-Location Example For example, consider a SET COVER instance (c, C) with
elements [m] and sets s(j) ⊆ [m] for j ∈ [n]. That is, minimize c · x subject tox ∈
R

n
≥0, (∀i ∈ [m])maxj :i∈s(j) xj ≥ 1.
Extend this to a two-stage SET COVER instance (W,p, (c, C)) where Wij ≥ 0 and

each pi = 1. Let X = [xi]i be any (minimal) feasible solution to this instance. That
is, xi ∈ {0,1}n says that element i chooses the set s(j) where xi

j = 1. All constraints

are activated in the second stage, so each xA
j = max{xi

j | i ∈ s(j)}. That is, xA
j = 1

iff any element i has chosen set s(j). The cost w(X) is
∑

ij Wij x
i
j + ∑

j cj max{xi
j |

i ∈ s(j)}.
Note that this two-stage SET COVER problem exactly models FACILITY LOCATION. The

first-stage cost W captures the assignment cost; the second-stage cost c captures the
opening cost.

Consider again general two-stage SUBMODULAR-COST COVERING. A Δ-approxima-
tion algorithm for it follows immediately from the following observation:

Algorithmica (2013) 66:113–152 147

Observation 7 Two-stage SUBMODULAR-COST COVERING reduces to SUBMODULAR-COST

COVERING (preserving Δ).

Proof Any two-stage instance (W,p, (c, C)) over n variables is equivalent to a stan-
dard instance (w, C′) over n|C| variables (X = [xS]S∈C) where w(X) is the cost of
X for the two-stage instance as defined above, and, for each S ∈ C , there is a corre-
sponding constraint xS ∈ S on X in C′. One can easily verify that the cost w(X) is
submodular, non-decreasing, and continuous because W(X) and c(x) are. �

Next we describe a fast implementation of Algorithm 2 for two-stage CMIP-UB—
the special case of two-stage SUBMODULAR-COST COVERING where W is linear and the
pair (c, C) form a CMIP-UB instance.

Theorem 7 (Implementation for two-stage CMIP-UB) For two-stage CMIP-UB:

(a) Algorithm 2 can be implemented to return a Δ-approximation in O(NΔ̂ logΔ)

time, where Δ̂ is the maximum number of constraints per variable and N is the
input size

∑
S∈C | vars(S)|.

(b) When p = 1, the algorithm can be implemented to run in time O(N logΔ). (The
case p = 1 of two-stage CMIP-UB generalizes CMIP-UB and FACILITY LOCATION.)

Proof Fix an instance (W,p, (c, C)) of two-stage CMIP-UB. Let (w, C′) be the equiv-
alent instance of standard SUBMODULAR-COST COVERING from Observation 7 over vari-
able vector X = [xS]S∈C . Let random variable xA be as described in the problem
definition (xA

j = max{xS
j | S active}), so that w(X) = W · X + E[c · xA].

We implement Algorithm 2 for the SUBMODULAR-COST COVERING instance (w, C′).
In an iteration of the algorithm for a constraint S on xS , the algorithm computes β as
follows. Recall that the variables in X being increased (to satisfy xS ∈ S) are xS

j for

j ∈ vars(S). The derivative of w(X) with respect to xS
j is

c′
j = WS

j + cj Pr
[
xS
j determines xA

j

]

= WS
j + cjpS

∏{
1 − pR

∣
∣ xR

j > xS
j , j ∈ vars(R)

}
.

The derivative will be constant (that is, w(X) will be linear in xS) until xS
j reaches its

next breakpoint tj = min{xR
j | xR

j > xS
j , j ∈ vars(R)}. Define βt = min{(tj − xS

j)c′
j |

j ∈ vars(S)} to be the minimum cost to bring any xS
j to its next breakpoint.

Let w′ be the vector defined above (the gradient of w with respect to xS). Let β ′ be
the step size that the algorithm in Theorem 6 would compute given the linear cost w′.
That is, that it would compute in an iteration for constraint xS ∈ S given the CMIP-UB

instance (w′, {S}) and the current xS .
The algorithm here computes βt and β ′ as defined above, then takes the step size

β to be β = min(βt , β
′). This β is a valid lower bound on c̃X(S), because βt is the

minimum cost to bring any xS
j to its next breakpoint, while β ′ ≤ c̃′

xS (S) is a lower

bound on the cost to satisfy S without bringing any xS
j to a breakpoint. Thus, by

Theorem 1, this algorithm computes a Δ-approximation.

148 Algorithmica (2013) 66:113–152

The algorithm is as follows. It considers the constraints in any order. For each
constraint S, it does iterations for that S, with step size β defined above, until S is
satisfied.

Lemma 7 (Iterations) For each S ∈ C , the algorithm does at most | vars(S)|(Δ̂ + 2)

iterations for S.

Proof An iteration may cause some xS
j to reach its next breakpoint tj . By inspec-

tion of the breakpoints tj , each xS
j can cross at most Δ̂ breakpoints (one for each

constraint R on xj in the original instance). Thus, there are at most | vars(S)|Δ̂ such
iterations. In each remaining iteration the step size β equals the step size β ′ from the
algorithm in Theorem 6. Following the proof of Lemma 6 in Theorem 6, there are
at most 2| vars(S)| such iterations. (In each such iteration, either some variable xS

j

reaches its upper bound uj for the first time, or the constraint xS
j ∈ Sh is satisfied for

the current relaxation Sh of S. By inspection, Sh depends only on the current xS and
the constraint S, and not on the cost function w′. Thus, as in the proof of Lemma 6,
after an iteration for S where the current Sh is satisfied, in the next iteration, h will
be at least one larger. That can happen at most | vars(S)| times.) �

To complete the proof of Theorem 7, we prove that algorithm can be implemented
to take time O(NΔ̂ logΔ), or, if p = 1, time O(N logΔ).

As the algorithm does iterations for S, the algorithm maintains the data structures
described at the end of the proof of Theorem 6, with the following adjustments. When
some xS

j reaches its next breakpoint and w′
j increases, the algorithm

• raises xb
j to maintain the invariant xj = xb

j + τ/w′
j ;

• updates the derivative d to account for the change in the term aj /cj (if present in
the derivative), and

• updates the values for key j in the three heaps (where present).

By inspection of the proof of Theorem 6, these adjustments are enough to main-
tain the data structures correctly throughout all iterations for S. The updates
take O(logΔ) time per breakpoint. Thus, the total time for the adjustments is
O(

∑
S | vars(S)|Δ̂ logΔ), which is O(NΔ̂ logΔ).

To compute βt in each iteration, the algorithm does the following. As it is doing
iterations for a particular constraint S, recall that τ is the sum of the β’s for S so
far (from the proof of Theorem 6). The algorithm maintains a fourth heap containing
values {τ + (tj − xS

j)w′
j | j ∈ vars(S)} (the values in the definition of βt , plus τ).

Then βt is the minimum value in this heap, minus τ .
Then xS

j reaches a breakpoint (and w′
j changes) if and only if β = βt and key

j has minimum value in this heap. When that happens, the algorithm finds the next
breakpoint t ′j for j (as described in the next paragraph) and updates j ’s value in
the fourth heap. The total time spent maintaining the fourth heap is O(logΔ) per
breakpoint, O(

∑
S

∑
j∈vars(S) Δ̂ logΔ) = O(NΔ̂ logΔ).

The algorithm computes the breakpoints tj efficiently as follows. Throughout the
entire computation (not just the iterations for S), the algorithm maintains, for each j ,

Algorithmica (2013) 66:113–152 149

an array of j ’s variables in X, that is, {xR
j | R ∈ C, j ∈ vars(R)}, sorted by the vari-

ables’ current values (initially all 0). Then tj is the value of the first xR
j after xS

j in j ’s

list. When xS
j reaches its breakpoint tj (detected as described in the previous para-

graph), the algorithm updates the list order by swapping xS
j with the xR

j following it
in the list (the one with value tj). The next breakpoint is then the value of the variable
xR′
j that was after xR

j and is now after xS
j . The time spent computing breakpoints in

this way is proportional to the total number of swaps, which is proportional to the
total number of breakpoints, which is at most

∑
S

∑
j∈vars(S) Δ̂ = NΔ̂.

This concludes the proof for the general case.
When p = 1, note that in this case the product in the equation for c′

j is

1 if xS
j = maxR xR

j and 0 otherwise. So each constraint S has at most one
breakpoint per variable, and the total time for the adjustments above reduces to
O(

∑
S | vars(S)| logΔ) = O(N logΔ). As in the proof of Theorem 6, the remain-

ing operations also take O(N logΔ) time.
This concludes the proof of the theorem. �

Acknowledgements The authors gratefully acknowledge Marek Chrobak for useful discussions, and
two anonymous reviewers for careful and constructive reviews that helped improve the presentation.

This work was partially supported by National Science Foundation (NSF) grants CNS-0626912 and
CCF-0729071.

Appendix

Proof of Observation 1 (reduction to canonical form) Here is the reduction: Let
(c,U, C) be any instance of SUBMODULAR-COST COVERING. Construct its canonical form
(c, C′) as follows. First, assume without loss of generality that minUj = 0 for each j .
(If not, let �j = minUj , then apply the translation x ↔ x′ + � to the cost and feasible
region: rewrite the cost c(x) as c′(x′) = c(x′ + �); rewrite each constraint “x ∈ S” as
“x′ ∈ S − �”; replace each domain Uj by U ′

j = Uj − �j .)
Next, define μj (x) = max{α ∈ Uj | α ≤ xj } (that is, μ(x) is x with each coor-

dinate lowered into Uj). For each constraint S in C , put a corresponding constraint
“μ(x) ∈ S” in C′. The new constraint is closed upwards and closed under limit be-
cause S is and μ is non-decreasing. It is not hard to verify that any solution x to the
canonical instance (c, C′) gives a corresponding solution μ(x) to the original instance
(c,U, C), and that this reduction preserves Δ-approximation. �

References

1. Albers, S.: On generalized connection caching. Theory Comput. Syst. 35(3), 251–267 (2002)
2. Bansal, N., Buchbinder, N., Naor, J.S.: A primal-dual randomized algorithm for weighted paging. In:

The Forty-third IEEE Symposium on Foundations of Computer Science, pp. 507–517 (2007)
3. Bansal, N., Buchbinder, N., Naor, J.S.: Randomized competitive algorithms for generalized caching.

In: The Fourtieth ACM Symposium on Theory of Computing, pp. 235–244 (2008)
4. Bar-Yehuda, R.: One for the price of two: A unified approach for approximating covering problems.

Algorithmica 27(2), 131–144 (2000)

150 Algorithmica (2013) 66:113–152

5. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the Weighted Vertex Cover
problem. J. Algorithms 2(2), 198–203 (1981)

6. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem.
Ann. Discrete Math. 25(27–46), 50 (1985)

7. Bar-Yehuda, R., Rawitz, D.: Efficient algorithms for integer programs with two variables per con-
straint. Algorithmica 29(4), 595–609 (2001)

8. Bar-Yehuda, R., Rawitz, D.: On the equivalence between the primal-dual schema and the local-ratio
technique. SIAM J. Discrete Math. 19(3), 762–797 (2005)

9. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: a unified framework for approxima-
tion algorithms. ACM Comput. Surv. 36(4), 422–463 (2004)

10. Bertsimas, D., Vohra, R.: Rounding algorithms for covering problems. Math. Program. 80(1), 63–89
(1998)

11. Borodin, A., Cashman, D., Magen, A.: How well can primal-dual and local-ratio algorithms perform?
In: The Thirty-Second International Colloquium on Automata, Languages and Programming (2005)

12. Borodin, A., Cashman, D., Magen, A.: How well can primal-dual and local-ratio algorithms perform?
ACM Trans. Algorithms 7(3), 29 (2011).

13. Buchbinder, N., Naor, J.S.: Online primal-dual algorithms for covering and packing problems. In:
The Thirteenth European Symposium on Algorithms. Lecture Notes in Computer Science, vol. 3669,
pp. 689–701 (2005)

14. Buchbinder, N., Naor, J.S.: Online primal-dual algorithms for covering and packing problems. Math.
Oper. Res. 34(2), 270–286 (2009)

15. Cao, P., Irani, S.: Cost-aware www proxy caching algorithms. In: The 1997 USENIX Symposium on
Internet Technology and Systems, pp. 193–206 (1997)

16. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated
network design and covering problems. In: The Eleventh ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 106–115 (2000)

17. Chrobak, M., Karloff, H., Payne, T., Vishwanathan, S.: New results on server problems. SIAM J.
Discrete Math. 4(2), 172–181 (1991)

18. Chudak, F.A., Nagano, K.: Efficient solutions to relaxations of combinatorial problems with sub-
modular penalties via the Lovász extension and non-smooth convex optimization. In: The Eighteenth
ACM-SIAM Symposium on Discrete Algorithms, pp. 79–88 (2007)

19. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4, 233–235 (1979)
20. Cohen, E., Kaplan, H., Zwick, U.: Connection caching. In: The Thirty-First ACM Symposium on

Theory of Computing, pp. 612–621 (1999)
21. Cohen, E., Kaplan, H., Zwick, U.: Connection caching under various models of communication. In:

The Twelfth ACM Symposium on Parallel Algorithms and Architectures, pp. 54–63 (2000)
22. Cohen, E., Kaplan, H., Zwick, U.: Connection caching: Model and algorithms. J. Comput. Syst. Sci.

67(1), 92–126 (2003)
23. Dilley, J., Arlitt, M., Perret, S.: Enhancement and validation of Squid’s cache replacement policy. In:

Fourth International Web Caching Workshop (1999)
24. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162, 439–

485 (2005)
25. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive paging

algorithms. J. Algorithms 12, 685–699 (1991)
26. Gonzales, T. (ed.): Approximation Algorithms and Metaheuristics (Greedy Methods). Taylor & Fran-

cis, London (2007)
27. Hall, N.G., Hochbaum, D.S.: A fast approximation algorithm for the multicovering problem. Discrete

Appl. Math. 15(1), 35–40 (1986)
28. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: Approximating independent sets in sparse and

bounded-degree graphs. In: The Twenty-Sixth ACM Symposium on Theory of Computing, pp. 439–
448 (1994)

29. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: Approximating independent sets in sparse and
bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)

30. Halperin, E.: Improved approximation algorithm for the Vertex Cover problem in graphs and hyper-
graphs. SIAM J. Comput. 31(5), 1608–1623 (2002)

31. Hȧstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
32. Hayrapetyan, A., Swamy, C., Tardos, E.: Network design for information networks. In: The Sixteenth

ACM-SIAM Symposium on Discrete Algorithms, pp. 933–942 (2005)

Algorithmica (2013) 66:113–152 151

33. Hochbaum, D.S.: Approximation algorithms for the Set Covering and Vertex Cover problems. SIAM
J. Comput. 11, 555–556 (1982)

34. Hochbaum, D.S.: Efficient bounds for the Stable Set, Vertex Cover, and Set Packing problems. Dis-
crete Appl. Math. 6, 243–254 (1983)

35. Hochbaum, D.S.: Approximation Algorithms for NP-hard Problems. PWS Publishing, Boston (1996)
36. Iwata, S., Nagano, K.: Submodular function minimization under covering constraints. In: The Fiftieth

IEEE Symposium on Foundations of Computer Science, pp. 671–680 (2009)
37. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: The Fifth ACM Sympo-

sium on Theory of Computing, pp. 38–49 (1973)
38. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3),

256–278 (1974)
39. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica

3, 77–119 (1988)
40. Khot, S., Regev, O.: Vertex Cover might be hard to approximate to within 2-ε. J. Comput. Syst. Sci.

74, 335–349 (2008)
41. Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing integer programs.

J. Comput. Syst. Sci. 71(4), 495–505 (2005)
42. Koufogiannakis, C., Young, N.E.: Distributed and parallel algorithms for weighted vertex cover and

other covering problems. In: The Twenty-Eighth ACM Symposium on Principles of Distributed Com-
puting, pp. 171–179 (2009)

43. Koufogiannakis, C., Young, N.E.: Distributed fractional packing and maximum weighted b-matching
via tail-recursive duality. In: The Twenty-Third International Symposium on Distributed Computing,
pp. 221–238 (2009)

44. Koufogiannakis, C., Young, N.E.: Greedy δ-approximation algorithm for covering with arbitrary con-
straints and submodular cost. In: The Thirty-Sixth International Colloquium on Automata, Languages,
and Programming. Lecture Notes in Computer Science, vol. 5555, pp. 634–652 (2009)

45. Koufogiannakis, C., Young, N.E.: Distributed algorithms for covering, packing and maximum
weighted matching. Distrib. Comput. 24, 45–63 (2011)

46. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: The Seventeenth ACM-
SIAM Symposium on Discrete Algorithm, pp. 980–989 (2006)

47. Lotker, Z., Patt-Shamir, B., Rawitz, D.: Rent, lease or buy: Randomized algorithms for multislope ski
rental. In: The Twenty-Fifth Symposium on Theoretical Aspects of Computer Science, pp. 503–514
(2008)

48. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13(4), 383–390
(1975)

49. McGeoch, L.A., Sleator, D.D.: A strongly competitive randomized paging algorithm. Algorithmica
6(1), 816–825 (1991)

50. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm for the Vertex Cover
problem. Acta Inform. 22, 115–123 (1985)

51. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. In:
The Twelfth Conference on Integer Programming and Combinatorial Optimization, pp. 240–251
(2007)

52. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math.
Program. 118(2), 237–251 (2009)

53. Papadimitriou, C.H., Yannakakis, M.: Linear programming without the matrix. In: The Twenty-Fifth
ACM Symposium on Theory of Computing, pp. 121–129 (1993)

54. Pritchard, D.: Approximability of sparse integer programs. In: The Seventeenth European Symposium
on Algorithms. Lecture Notes in Computer Science, vol. 5757, pp. 83–94 (2009)

55. Pritchard, D., Chakrabarty, D.: Approximability of sparse integer programs. Algorithmica 61(1), 75–
93 (2011)

56. Raghavan, P., Snir, M.: Memory versus randomization in on-line algorithms. IBM J. Res. Dev. 38(6),
683–707 (1994)

57. Ravi, R., Sinha, A.: Hedging uncertainty: Approximation algorithms for stochastic optimization prob-
lems. Math. Program. 108(1), 97–114 (2006)

58. Shmoys, D., Swamy, C.: Stochastic optimization is (almost) as easy as deterministic optimization. In:
The Forty-Fifth IEEE Symposium on Foundations of Computer Science, pp. 228–237 (2004)

59. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM
28(2), 202–208 (1985)

152 Algorithmica (2013) 66:113–152

60. Srinivasan, A.: Improved approximation guarantees for packing and covering integer programs. SIAM
J. Comput. 29, 648–670 (1999)

61. Srinivasan, A.: New approaches to covering and packing problems. In: The Twelfth ACM-SIAM
Symposium on Discrete Algorithms, pp. 567–576 (2001)

62. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)
63. Young, N.E.: On-line caching as cache size varies. In: The Second ACM-SIAM Symposium on Dis-

crete Algorithms, pp. 241–250 (1991)
64. Young, N.E.: The k-server dual and loose competitiveness for paging. Algorithmica 11, 525–541

(1994)
65. Young, N.E.: On-line file caching. In: The Twelfth ACM-SIAM Symposium on Discrete Algorithms,

pp. 82–86 (1998)
66. Young, N.E.: On-line file caching. Algorithmica 33(3), 371–383 (2002)

	Greedy Delta-Approximation Algorithm for Covering with Arbitrary Constraints and Submodular Cost
	Abstract
	Introduction and Summary
	A Greedy Algorithm for Submodular-Cost Covering (Sect. 2)
	Fast Implementations (Sect. 7)
	Related Work: Delta-Approximation Algorithms for Classical Covering Problems (Top Half of Fig. 1)
	Online Covering, Paging, and Caching (Sect. 3)
	Related Work: Randomized Online Algorithms
	Relation to Local-Ratio and Primal-Dual Methods (Sect. 6)
	Related Work: Hardness Results, Log-Approximation Algorithms
	Related Work: Distributed and Parallel Algorithms
	Organization

	Greedy Algorithm for Submodular-Cost Covering (Algorithm 2)
	Choosing the Step Size beta

	Online Covering, Paging, and Caching
	Remark: On k/(k-h+1)-Competitiveness
	Covering Constraint Generality; Upgradable Online Problems
	Http File-Segment Requests
	Upgradable Caching
	Flexibility in Tuning the Algorithm

	Stateless Online Algorithm and Randomized Generalization of Algorithm 2
	Proof of Claim
	Most General Randomized Algorithm
	Proof of Claim

	Relation to Local-Ratio Method
	Local-Ratio for {0,1} Variable Domains
	Local Ratio for More General Domains
	Local-ratio for Submodular-Cost Covering

	Relation to Primal-Dual Method; Local Valid Inequalities
	First Relaxation
	Linear-Cost Covering Reduces to Set Cover
	Second Relaxation, via Set Cover
	Dual of Set-Cover Relaxation
	Valid Local Inequalities; the "Price of Locality"

	Fast Implementations for Special Cases of Submodular-Cost Covering
	Linear-Time Implementations for Facility Location, Set Cover, and Vertex Cover
	Nearly Linear-Time Implementation for CMIP-UB
	Intuition

	Two-Stage (Probabilistic) Submodular-Cost Covering
	Facility-Location Example

	Acknowledgements
	Appendix
	References

