
Algorithmica (2012) 64:623–642
DOI 10.1007/s00453-012-9616-8

Black-Box Search by Unbiased Variation

Per Kristian Lehre · Carsten Witt

Received: 21 December 2010 / Accepted: 31 January 2012 / Published online: 9 February 2012
© Springer Science+Business Media, LLC 2012

Abstract The complexity theory for black-box algorithms, introduced by Droste,
Jansen, and Wegener (Theory Comput. Syst. 39:525–544, 2006), describes common
limits on the efficiency of a broad class of randomised search heuristics. There is an
obvious trade-off between the generality of the black-box model and the strength of
the bounds that can be proven in such a model. In particular, the original black-box
model provides for well-known benchmark problems relatively small lower bounds,
which seem unrealistic in certain cases and are typically not met by popular search
heuristics.

In this paper, we introduce a more restricted black-box model for optimisation of
pseudo-Boolean functions which we claim captures the working principles of many
randomised search heuristics including simulated annealing, evolutionary algorithms,
randomised local search, and others. The key concept worked out is an unbiased vari-
ation operator. Considering this class of algorithms, significantly better lower bounds
on the black-box complexity are proved, amongst them an �(n logn) bound for func-
tions with unique optimum. Moreover, a simple unimodal function and plateau func-
tions are considered. We show that a simple (1 + 1) EA is able to match the runtime
bounds in several cases.

Keywords Runtime analysis · Black-box complexity

This work is based on earlier work in [21].
P.K. Lehre was supported by EPSRC under grant no. EP/D052785/1, and Deutsche
Forschungsgemeinschaft (DFG) under grant no. WI 3552/1-1.
C. Witt was supported by Deutsche Forschungsgemeinschaft (DFG) under grant no. WI 3552/1-1.

P.K. Lehre (�)
School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road,
Nottingham NG8 1BB, UK
e-mail: PerKristian.Lehre@nottingham.ac.uk

C. Witt
Technical University of Denmark, Kgs. Lyngby, Denmark
e-mail: cfw@imm.dtu.dk

mailto:PerKristian.Lehre@nottingham.ac.uk
mailto:cfw@imm.dtu.dk

624 Algorithmica (2012) 64:623–642

1 Introduction

The theory of randomised search heuristics has advanced significantly over the last
years. In particular, there exist now rigorous results giving the runtime of canoni-
cal search heuristics, like the (1 + 1) EA, on combinatorial optimisation problems
[25]. Ideally, these theoretical advances will guide practitioners in their application
of search heuristics. However, it is still unclear to what degree the theoretical results
that have been obtained for the canonical search heuristics can inform the usage of
the numerous, and often more complex, search heuristics that are applied in practice.
While there is an ongoing effort in extending runtime analysis to the more complex
search heuristics, this often requires development of new mathematical techniques.

To advance the theoretical understanding of search heuristics, it would be desir-
able to develop a computational complexity theory of search heuristics. The basis of
such a theory would be a computational model that captures the inherent limitations
of search heuristics. The results would be a classification of problems according to
the time required to solve the problems in the model. Such a theory has already been
introduced for local search problems [17]. The goal in local search problems is to
find any solution that is locally optimal with regards to the cost function and a neigh-
bourhood structure over the solution set. Here, we are interested in global search
problems, i.e. where the goal is to find any globally optimal solution.

Droste et al. introduced a model for global optimisation called the black-box model
[8]. The framework considers search heuristics, called black-box algorithms, that op-
timise functions over some finite domain S. The black-box algorithms are limited by
the amount of information that is given about the function to be optimised. To ob-
tain the function value of any element in S, the algorithm needs to make one oracle
query. In this framework, lower bounds on the number of queries required for opti-
misation can be obtained. An advantage of the black-box model is its generality. The
model covers any realistic search heuristic. Despite this generality, the lower bounds
in the model are in some cases close or equal to the corresponding upper bounds
that hold for particular search heuristics. For example, it is shown that the needle-in-
the-haystack and trap problems are hard problems, having black-box complexity of
(2n + 1)/2 [8].

However, the black-box model also has some disadvantages. For example, a poly-
nomial black-box complexity of the NP-hard MAX-CLIQUE problem [8] can be
shown as follows. A candidate solution is any subset of the vertices. If the vertices in
a candidate solution S form a clique, then the objective value of S is the cardinality
of S, otherwise the candidate solution is infeasible and the objective value is set to 0.
Assume that u and v are nodes in the graph. If these nodes are connected, then the
candidate solution {u,v} corresponds to a clique of size two. Otherwise, the candi-
date solution is infeasible, and the objective value is 0. Hence, a black-box algorithm
can determine all the edges in a graph of n nodes by making

(
n
2

)
queries to the ora-

cle, one query for each pair of nodes. Once the graph instance is known, the optimal
solution can be computed offline without further oracle queries. Similar black-box
algorithms that uncover the instance can be devised for other NP-hard problems. One
cannot expect a realistic search heuristic to solve all instances of an NP-hard prob-
lem in polynomial time. Such results exposes two weaknesses: the lower bounds in

Algorithmica (2012) 64:623–642 625

the model are often obtained by black-box algorithms that do not resemble any ran-
domised search heuristic. Secondly, the model is too unrestricted with respect to the
amount of resources disposable to the algorithm. Black-box algorithms can spend
unlimited time in-between queries to do computation.

In order to define a more realistic black-box model, one should consider addi-
tional restrictions. Droste et al. suggested to limit the available storage space avail-
able to the black-box algorithm [8], but did not prove any lower bounds in the space
restricted scenario. Memory-restricted black-box algorithms can be surprisingly effi-
cient. Doerr and Winzen recently proved that even with memory restriction one, the
black-box complexity of the ONEMAX function class is at most 2n. Further related
work was done by Teytaud and coauthors [10, 30, 31]. Teytaud and Gelly [30] derive
lower bounds on the runtime of a broad class of comparison-based randomised search
heuristics including evolutionary algorithms and variants of particle swarm optimisa-
tion using the decision trees implicitly built by such algorithms. Improvements can
be obtained by taking into account the VC-dimension of the level sets induced by
the fitness function (Fourniér and Teytaud [10]). Finally, Teytaud, Gelly and Mary
[31] investigate a concept called “isotropy” in continuous search spaces, which can
be considered analogous to the so-called unbiased mutations studied in this paper. To
the best of our knowledge, our model for the first time integrates unbiased mutations
and comparison-based algorithms.

The remaining of this paper is organised as follows. Section 3 introduces the new
black-box model along with a description of the unbiased variation operators. Sec-
tion 4 provides the first lower bound in the model for a simple, unimodal problem.
Then, in Sect. 5, we consider a function class that contains a plateau. Finally, in
Sect. 6, we prove lower bounds that hold for any function with a single, global opti-
mum. The paper is concluded in Sect. 7.

2 Preliminaries

The following notation is used. For any integer n ≥ 1, [n] denotes the set of integers
{1, . . . , n}. The Hamming-distance between two bitstrings x, y ∈ {0,1}n is defined by
H(x,y) := ∑n

i=1(xi ⊕ yi), where xi denotes the value of the i-th bit in x, and ⊕ is
the exclusive or-operation. We consider maximisation of pseudo-Boolean functions
f : {0,1}n → R. In the context of pseudo-Boolean optimisation by randomised
search heuristics, the set {0,1}n is called the search space, and its elements are called
either bitstrings or search points. The LO-value of a bitstring x is

∑n
i=1

∏i
j=1 xj ,

while the LZ-value of x is
∑n

i=1
∏i

j=1(1−xj). Informally, the LO-value is the length
of the longest prefix of 1-bits in the bitstring, while the LZ-value is the length of the
longest prefix of 0-bits in the bitstring. We let X ∼ p signify that X is a random vari-
able with distribution p. An event E is said to occur with overwhelming probability
(w.o.p.) with respect to a parameter n if Pr(E) = 1 − e−�(n).

We assume that the reader is familiar with the theory of randomised search heuris-
tics (see e.g., [25]). We will frequently refer to an evolutionary algorithm called the
(μ + λ) EA [7, 15, 34]. The parameters μ and λ are positive integers. It optimises
any pseudo-Boolean function f : {0,1}n → R through a sequence of so-called gen-
erations. In each generation, the algorithm evaluates the f -value of λ new search

626 Algorithmica (2012) 64:623–642

points. Each new search point to evaluate is chosen uniformly at random among the
μ search points with highest f -value from the most recent generation, and flipping
each bit independently with probability 1/n. The simple randomised search heuris-
tic Random Local Search (RLS) [23] is defined as the (1 + 1) EA, except that new
search points are obtained by flipping one bit chosen uniformly at random. Note that
the (μ + λ) EA considered here uses mutation only.

3 A Refined Black-Box Model

We now present the refined black-box model that is obtained by imposing two addi-
tional restrictions in the old black-box model. We start with a preliminary informal
description and motivation.

Firstly, we restrict the queries that can be made by the algorithm. The initial query
is a bitstring chosen uniformly at random. Every subsequent query must be made for
a search point that is obtained by applying a variation operator to one or more of
the previously queried search points. We formalise variation operators as conditional
probability distributions over the search space. Given k search points x1, . . . , xk ,
a variation operator p produces a search point y with probability p(y | x1, . . . , xk).
Unbiased black-box algorithms are restricted to so-called unbiased variation opera-
tors which will be defined in Sect. 3.2. The algorithm is allowed to select a different
variation operator in each iteration, as long as the variation operators are statistically
independent. More precisely, for any pair of variation operators p1 and p2 used by
the algorithm, we require that for all bitstrings u,v, x1, . . . , xk, y1, . . . , yk ,

Pr
(
X = u ∧ Y = v | X ∼ p1(· | x1, . . . , xk) ∧ Y ∼ p2(· | y1, . . . , yk)

)

= Pr
(
X = u | X ∼ p1(· | x1, . . . , xk)

) · Pr
(
Y = v | Y ∼ p2(· | y1, . . . , yk)

)
.

Secondly, we put an additional restriction on the information that is available
to the algorithm by preventing the algorithm from observing the bit values of the
search points that are queried. Hence, the only information that can be exploited
by the algorithm is the sequence of function values obtained when making queries
to the black-box, and not the search points themselves. Note that without this re-
striction, any black-box algorithm could be simulated as follows: For each query x

made by the unrestricted algorithm, the restricted algorithm would solve the sub-
problem corresponding of minimising the Hamming distance to search point x. This
sub-problem could be solved analogously to how the (1 + 1) EA optimises the func-
tion ONEMAX(x) := ∑n

i=1 xi [7], except that the optimum is chosen to be the desired
search point to visit. This simulation would lead to an expected overhead factor of
O(n logn) function evaluations.

We now turn our considerations into a formal definition of a refined black-box
model, as stated in Algorithm 1. Let us first pick up the unrestricted black-box model
[8] for optimisation of pseudo-Boolean functions f : {0,1}n → R. The black-box
algorithm A is given a class of pseudo-Boolean functions F . An adversary selects
a function f from this class and presents it to the algorithm as a black-box. At this
point, the only information available to the algorithm about the function f is that it

Algorithmica (2012) 64:623–642 627

Algorithm 1 Unbiased black-box algorithm
1: t ← 0.
2: Choose x(t) uniformly at random from {0,1}n.
3: repeat
4: t ← t + 1.
5: Compute f (x(t − 1)).
6: I (t) ← (f (x(0)), . . . , f (x(t − 1))).
7: Depending on I (t), choose a probability distribution ps on {0, . . . , t − 1}.
8: Randomly choose an index j according to ps .
9: Depending on I (t), choose an unbiased variation operator pv(· | x(j)).

10: Randomly choose a bitstring x(t) according to pv .
11: until termination condition met.

belongs to function class F . The black-box algorithm can now start to query an oracle
for the function values of any search points. The runtime TA,f of the algorithm on
function f is the number of function queries on f until the algorithm queries the
function value of an optimal search point for the first time. The runtime TA,F on the
class of functions is defined as the maximum runtime over the class of functions. In
the unbiased black-box model, queries of new search points must be made according
to Algorithm 1. I.e., the initial search point is chosen uniformly at random by an
oracle, and subsequent search points are obtained by asking the oracle to apply a
given unbiased variation operator to a previously queried search point.

The unbiased black-box complexity of a function class F is the minimum worst
case runtime TA,F among all unbiased black-box algorithms A satisfying the frame-
work of Algorithm 1. Hence, any upper bound on the worst case of a particular unbi-
ased black-box algorithm, also implies the same upper bound on the unbiased black-
box complexity. To prove a lower bound on the unbiased black-box complexity, it is
necessary to prove that the lower bound holds for any unbiased black-box algorithm.
Note that since unbiased black-box algorithms are a special case of black-box algo-
rithms, all the lower bounds that hold for the unrestricted black-box model by Droste
et al. [8] also hold for the unbiased black-box model.

3.1 Comparison with the Classical, Unrestricted Model

Introducing unbiasedness to black-box models has important consequences compared
to the unrestricted model from [8]. The latter one includes trivial algorithms that only
query a specific bitstring, which may be the optimum of a given function (such as the
all-ones bitstring for the ONEMAX function). In general, the unrestricted black-box
complexity of a class of functions F is trivially bounded by |F | since the black-box
algorithm can query the optima from all functions within the class.

For this reason, Droste et al. [8] generalise the classical example functions
to classes of functions where the respective optimum can be any point in the
search space. As an example, the class ONEMAX∗ consisting of the 2n functions
ONEMAXa(x) = n − H(x,a) for any bitstring a ∈ {0,1}n is considered and the sur-
prisingly low black-box complexity �(n/ logn) has been proved (see [1] for the up-
per bound O(n/ logn)).

628 Algorithmica (2012) 64:623–642

In the unbiased black-box model, algorithms that query a specific search point and
then stop are not possible. Here it makes perfect sense to study the unbiased black-
box complexity of a particular function. In fact, due to the unbiasedness, the unbiased
black-box complexity is the same for every function from the class ONEMAX∗.

Note also that the unbiased model is restricted to pseudo-Boolean optimisation
and excludes certain search heuristics. More details are given in the following sub-
sections.

3.2 Unbiased Variation Operators

To capture the essential characteristics of the variation operators that are used by
common randomised search heuristics, we put some restrictions on the probability
distribution of the variation operators. Firstly, one can limit the number k of search
points that are used to produce the new search point. The number k determines the ar-
ity of the variation operator. Here, we will only consider unary variation operators, i.e.
when k = 1. Furthermore, we will impose the following two unbiasedness-conditions
on the operators:

(1) ∀x, y, z, p(y | x1, . . . , xk) = p(y ⊕ z | x1 ⊕ z, . . . , xk ⊕ z),
(2) ∀x, y,σ, p(y | x1, . . . , xk) = p(σb(y) | σb(x1), . . . , σb(xk)),

and for any permutation σ over [n], σb is an associated permutation over the bitstrings
defined as

σb(x1x2 · · ·xn) := xσ(1)xσ(2) · · ·xσ(n).

Variation operators that satisfy the first condition are called ⊕-invariant, while
variation operators that satisfy the second condition are called σ -invariant. In this pa-
per, an unbiased variation operator is defined as a variation operator that satisfies both
conditions, i.e. an ⊕-σ -invariant operator. Note that this is a special case of the frame-
work by Rowe, Vose and Wright [28], who study invariance from a group-theoretical
point of view. In a follow-up work to the conference version of this paper [21], Rowe
and Vose suggest how unbiasedness-conditions can be generalised to arbitrary search
spaces [27].

We claim that the two conditions are natural. Firstly, as we will discuss further
in Sect. 3.3, the variation operators used by common randomised search heuristics,
including adaptive variation operators, are typically ⊕-σ -invariant. Secondly, the two
conditions on the variation operators can also be motivated by practical concerns. In
applications, the set of bitstrings typically encode the variable settings of candidate
solutions, and is rarely the optimisation domain per se. Hence, the encoding from
variable setting to bit value, and from variable to bitstring position, can be arbitrary.
For example, in an optimisation domain involving a binary temperature parameter,
whether the user encodes “high temperature” as 0 or as 1, or decides to encode the
temperature variable by the first instead of the last variable in the bitstring, should not
influence the behaviour of a search heuristic.

Droste and Wiesmann recommended that all search points that are within the same
distance of the originating search point should have the same probability of being
produced [9]. This unbiasedness criterion, which we call Hamming-invariance, can
be formalised as follows:

Algorithmica (2012) 64:623–642 629

(3) ∀x, y, z, H(x, y) = H(x, z) =⇒ p(y | x) = p(z | x),

where H(x,y) denotes the Hamming distance between x and y. We now show that
these criteria are related.

Proposition 1 Every unary variation operator that is ⊕-σ -invariant is also Ham-
ming-invariant.

Proof Assume that p is an ⊕-σ -invariant variation operator. Let x, y,u and v be
any search points such that H(x,y) = H(u,v) =: d . Given these assumptions, we
will prove that p(y | x) = p(v | u) holds. There must exist a permutation σ such that
σ(y ⊕ x) = v ⊕ u. We then have

p(y | x) = p
(
y ⊕ x | 0n

) = p
(
σ(y ⊕ x) | 0n

)

= p
(
v ⊕ u | 0n

) = p(v | u).

By setting u = x, it is clear that p is Hamming-invariant. �

When referring to unbiased black-box algorithms in the following, we mean any
algorithm that follows the framework of Algorithm 1. In particular, by unary, unbi-
ased black-box algorithms, we mean such algorithms that only use statistically inde-
pendent, unary, unbiased variation operators.

3.3 Examples of Unbiased Black-Box Algorithms

The class of unary, unbiased black-box algorithms is general, and contains many
well-known randomised search heuristics. For example, simulated annealing [19],
random local search (RLS) [23], (μ + λ) EA [7, 15, 34], and many other population-
based EAs that do not use the crossover operator are unbiased black-box algorithms.
These algorithms often use the single-bit mutation or bit-wise mutation as variation
operators.

The single-bit mutation operator is perhaps one of the simplest variation operators,
and has been used in simulated annealing, RLS, and other local search heuristics. It
modifies a bitstring by flipping one uniformly chosen bit position. This is clearly an
unbiased variation operator.

In contrast, evolutionary algorithms typically use the bit-wise mutation operator.
For any pair of bitstrings x, y ∈ {0,1}n, the operator generates bitstring x from bit-
string y with probability p

H(x,y)
mut (1 − pmut)

n−H(x,y), i.e., the new bitstring x is ob-
tained by independently flipping each bit in y with a probability pmut, called the mu-
tation rate. It is straightforward to see that the bit-wise mutation operator is a unary
unbiased variation operator for any mutation rate pmut. The most common parameter
setting is pmut = 1/n, but alternative mutation rates have been studied. Some of the
hypermutation operators used in Artificial Immune Systems (AIS) (see [35] for recent
theoretical results), are bit-wise mutation operators with pmut chosen as a function of
the objective value f of the parent individual. For example, the mutation rate has been
set reciprocal to f , as in [2], or exponentially decreasing in f , as in the CLONALG
and Opt-aiNet algorithms. As a side note, the related rank-based mutation operator

630 Algorithmica (2012) 64:623–642

chooses pmut as a function of the rank of the parent individual [26]. Another hyper-
mutation operator used in AIS chooses pmut proportional to the Hamming-distance to
the closest optimal solution. All these variants of the bit-wise mutation operator are
unbiased variation operators. However, the latter of these operators cannot be used in
the black-box scenario because the Hamming-distance to the set of optimal solutions
is generally not available.

Some randomised search heuristics use variation operators that are not unbiased.
The contiguous hypermutation operator used in AIS randomly selects an interval of
consecutive bit positions, and flip each bit in this interval independently with some
probability. In the position-dependant mutation operator, the bit-flipping probabil-
ity varies according to the bit position [3]. These two operators are not σ -invariant.
In the asymmetric mutation operator, the probability of flipping a given bit position
depends on the number of bit positions that take the same value [16, 23]. This varia-
tion operator is not ⊕-invariant. A few search heuristics use variation operators that
are not statistically independent. For example, the sequences of bit-flips made by
quasirandom mutation operators are partly deterministic [5]. A memory mechanism
is employed so that the partly deterministic sequences share some properties with
truly random bit-flipping sequences.

Finally, the restriction to unary operators excludes some randomised search heuris-
tics. In particular, the model does not cover EAs that use crossover. Many of the
commonly used diversity mechanisms are excluded. Also, estimation of distribution
algorithms [20], ant colony optimisation [6] and particle swarm optimisation [18] are
not covered by the model.

4 Simple Unimodal Functions

We consider the unimodal function LEADINGONES(x) = ∑n
i=1

∏i
j=1 xj as an initial

example. (The function ONEMAX is covered by the results in Sect. 6.) The expected
runtime of the (1 + 1) EA on this function is �(n2) [7], which seems optimal among
commonly analysed EAs. Increasing either the offspring or parent population sizes
does not reduce the runtime. For (μ + 1) EA, the runtime is �(n2 + μn logn) [34],
and for (1 + λ) EA, the runtime is �(n2 + λn) [15]. In fact, Sudholt showed that a
variant of the (1 + 1) EA is optimal on LEADINGONES among a class of algorithms
called mutation-based EAs [29].

We now show that the runtime of the (1 + 1) EA on LEADINGONES is asymp-
totically optimal in the unbiased black-box model. We define the potential of the
algorithm at time step t as the largest number of leading 1- or 0-bits obtained so far.
The number of 0-bits must be considered because flipping every bit in a bitstring with
i leading 0-bits will produce a bitstring with i leading 1-bits. The increase of the po-
tential will be studied using drift analysis [12, 13]. We use the following variant of
the polynomial drift theorem due to [14].

Theorem 1 ([14]) Let {X(t)}t≥0 be a sequence of random variables with bounded
support and let T be the stopping time defined by T := min{t | X(1) +· · ·+X(t) ≥ g}
for a given g > 0. If E[T] exists and E[X(i) | T ≥ i] ≤ u for i ∈ N, then E[T] ≥ g/u.

Algorithmica (2012) 64:623–642 631

To lower bound the drift, it is helpful to proceed as in the analysis of (1 + 1) EA
on LEADINGONES [7], i.e., to first prove that the substring after the first 0-bit in a
given time step is uniformly distributed. We will prove a more general statement that
will also be used in Sect. 5. For notational convenience, subsets of [n] and bitstrings
of length n will be used interchangeably, i.e., the bitstring x ∈ {0,1}n is associated
with the subset {i ∈ [n] | xi = 1}.

Lemma 1 For any t ≥ 0, let X(t) = {x(0), x(1), . . . , x(t)} be the search points vis-
ited by any unary, unbiased black-box algorithm until iteration t when optimising
function f . If there exists a subset of indices z ⊆ [n] such that

∀y ⊆ z, ∀x ∈ X(t) f (x ⊕ y) = f (x),

then the bits {xi(t) | i ∈ z} are independent and uniformly distributed.

Proof We first prove the claim that for all t ≥ 0, b ∈ {0,1}, and i ∈ z it holds that
Pr(xi(t) = b) = 1/2. The proof is by induction over the time step t . The initial search
point is sampled uniformly at random, so the claim holds for t = 0. Assume that
the claim holds for t = t0 ≥ 0. The function value profile I (t0) does not depend on
any of the bits in position i in the previously visited search points. The choice of
search point x(j) the algorithm makes is therefore independent of these bits. By
the induction hypothesis, search point x(j) has a bit value of b in position i with
probability p := 1/2. Letting r be the probability that the variation operator flips bit
position i, we have Pr(xi(t0 + 1) = b) = p(1 − r) + (1 − p)r = 1/2. By induction,
the claim now holds for all t .

We now prove the lemma by induction over the time t . The lemma holds for time
step t = 0. Assume that the lemma holds for t = t0 ≥ 0. Let U ∈ {0,1}n be a random
vector where the elements Ui,1 ≤ i ≤ n, take the value Ui = 1 if bit position i flipped
in step t0, and Ui = 0 otherwise. Then for all bitstrings y ∈ {0,1}n,

Pr

(∧

i∈z

xi(t0 + 1) = yi

)
=

∑

u∈{0,1}n
Pr(U = u)Pr

(∧

i∈z

xi(t0) = yi ⊕ ui

)
,

which by the induction hypothesis (more precisely, the statement about indepen-
dence) equals

∑

u∈{0,1}n
Pr(U = u)

∏

i∈z

Pr
(
xi(t0) = yi ⊕ ui

) = 2−|z| =
∏

i∈z

Pr
(
xi(t0 + 1) = yi

)
,

where the last equality follows from the claim above. This proves the independence
at time t0 + 1, and, therefore, the induction step. �

Theorem 2 The expected runtime of any unary, unbiased black-box algorithm on
LEADINGONES is �(n2).

Proof Recall that the potential of the algorithm at time step t is defined as k :=
max0≤j≤t {LO(x(j)), LZ(x(j))}, where LO and LZ are defined in Sect. 2.

632 Algorithmica (2012) 64:623–642

We first prove the claim that w.o.p., the potential of the algorithm will at some time
be in the interval between n/2 and 3n/4, before the optimum has been found. Since
the initial search point is uniform, the probability of initialising with at least k leading
ones or least k leading zeros is at most 2 · 2−k = 2−k+1. Hence, with probability
1 − 2−n/2+1, the initial search point will have potential less than n/2. Let integer
i be the number of 0-bits in the interval from n/2 and 3n/4 in the bitstring that
the algorithm selects next. By Lemma 1 with the index set z := [n/2 + 1, n], and
a Chernoff bound, there is a constant δ > 0 such that w.o.p., this integer satisfies
(1 − δ)n/8 < i < (1 + δ)n/8. In order to increase the LO-value from less than n/2 to
at least 3n/4, it is necessary to flip every 0-bit in the interval from n/2 to 3n/4 and
no other bits. We optimistically assume that exactly i bits are flipped in this interval.
However due to the unbiasedness condition, every choice of i among n/4 bits to flip
is equally likely. The probability that only the 0-bits are flipped is therefore at most
(
n/4
i

)−1 ≤ (4i/n)i ≤ ((1 + δ)/2)(1−δ)n/8. An analogous argumentation applies if i

denotes the number of 1-bits in the interval, such that also the LZ-value is bounded
by 3n/4 with overwhelming probability. The claim therefore holds.

We will apply drift analysis according to the potential k of the algorithm, only
counting the steps starting from a potential in the interval n/2 ≤ k < 3n/4. In order
to find the optimum, the potential must be increased by at least n/4. We now inspect
the probability of increasing the best-so-far LO-value from k to some larger value,
noting that an analogous argument holds for the LZ-value. Assume that the selected
search point has r ≥ 1 0-bits in the first k+1 bit positions. In order to increase the LO-
value, it is necessary to flip all these 0-bits, and none of the 1-bits within this interval.
The unbiased mutation operator has to flip a uniform subset of {1, . . . , k +1} of some
size s. If s < r then the best-so-far LO-value cannot be increased. Otherwise, we
model the process of selecting the subset as consecutively and without replacement
drawing from an urn containing a ball for each of the bit positions 1, . . . , k + 1. If a
position is 1, the corresponding ball is white, otherwise it is red. In order to flip only
the 0-bits, it is necessary to draw in the first r trials all the r red balls. The probability
of this event is less than

r

k + 1
· r − 1

k
· · · 2

k − r + 2
· 1

k − r + 1
≤ 1

k + 1
.

By a union bound, the probability of increasing the LO-value or the LZ-value, hence
the probability of increasing the potential, is at most 2/(k + 1).

Considering an increase of the LO-value, it is important to note that the search
point produced in iteration t may contain one or more 1-bits after position k + 1.
The consecutive 1-bits in position k + 2 and on-wards in the search point produced
in iteration t are called free-riders [7]. Analogously, there may be free-riders when
increasing the LZ-value. Let random variable Y (t) denote the number of free-riders
(either ones or zeros, depending on the value of k + 1) in iteration t . Since the prob-
ability of increasing the potential has been bounded by 2/(k + 1), the drift of the
potential in each step is bounded from above by �(t) ≤ (2/k + 1)(1 + E[Y (t)]). Ap-
plying Lemma 1 with the index set z := [k + 2, n] gives E[Y (t)] ≤ ∑∞

i=1 2−i ≤ 1
no matter if the free-rider are ones or zeros. Altogether, �(t) ≤ 4/(k + 1). Let T

Algorithmica (2012) 64:623–642 633

denote the time until the potential has increased to n. The polynomial drift theorem
(Theorem 1) now implies that E[T] ≥ (n/4)/�(t) = (k + 1)n/16 = �(n2). �

Note that the complexity of LEADINGONES in the unrestricted black-box model
(where, as justified in Sect. 3.1, a generalised class of functions is analysed) is
bounded above by n/2 − o(n) [8]. This illustrates that the complexity of a func-
tion class can be significantly higher in the unbiased black-box model than in the
unrestricted black-box model.

5 Enforcing Expected Runtimes

We are interested in problem classes where the unbiased black-box complexity de-
pends on some parameter of the problem. More specifically, is there a class of func-
tions F = {fi | i ∈ Z}, such that the unbiased black-box complexity of the functions
fm in the class F increases with the problem parameter m, e.g. as �(2m)?

In the case of the (1 + 1) EA, it is known that the runtime can depend on the
size of so-called plateaus. A plateau is a contiguous region of the search space where
the fitness function is constant. Plateaus are common in combinatorial optimisation
problems. For example, on certain inputs to the maximum matching problem, the
(1 + 1) EA has to traverse a plateau of size n to make an improvement [11]. This is
accounted for by an �(n2) factor in the expected runtime. Another example is the
NEEDLE function where the whole search space except for the optimum is a plateau.
Here the expected runtime of the (1 + 1) EA is �(2n).

We are aiming at generalising this result to black-box algorithms with unary unbi-
ased variation. Moreover, we want to enforce expected running times that are of order
2m for a parameter m. To achieve this, we pick up the general idea of the NEEDLE

function in [7], but modify the “plateau”. For any m, where 1 ≤ m ≤ n, define

OM-NEEDLEm(x) :=
n−m∑

i=1

xi +
n∏

i=1

xi .

Hence, the plateau corresponds to the last m bit positions which do not influence
the function value, except at the optimal search point 1n. For m = 1, we obtain the
easy ONEMAX function, and for m = n, we obtain the hard NEEDLE function. The
following result shows that the hardness of OM-NEEDLEm depends on the problem
parameter m.

Theorem 3 For 0 ≤ m ≤ n, the expected runtime of any unary, unbiased black-box
algorithm on OM-NEEDLEm is at least 2m−2. Furthermore, the probability that
the optimum is found within 2m(1−ε) iterations for any ε,0 < ε < 1, is no more
than 2−εm.

Proof The time T to find the optimum is bounded from below by the time T ′ until
all the last m bits are 1-bits. The time is analysed as if the algorithm was presented
with the function f (x) = ∑n−m

i=1 xi instead of OM-NEEDLEm. This function differs

634 Algorithmica (2012) 64:623–642

from OM-NEEDLEm only on the optimal search point 1n. The distribution of T ′ will
therefore be the same for f and OM-NEEDLEm.

Lemma 1 now applies for the function f and the set of indices z = [n−m+ 1, n].
The probability that the search point visited in any given iteration has 1m as suffix
is 2−m. By union bound, the probability that this suffix is obtained before iteration
t ≥ 0 is no more than t · 2−m. In particular, the probability that the runtime is shorter
than 2m−1 is less than 1/2, so the expected runtime is at least 2m−2. Furthermore,
the probability that the optimum has been found within 2m(1−ε) iterations is no more
than 2−εm. �

We supplement an upper bound.

Theorem 4 There exists a unary, unbiased black-box algorithm whose expected run-
time on OM-NEEDLEm is O((n/m) · 2m + n logn).

Proof We show that the well-known algorithm random local search (RLS) [23] has
the stated expected runtime. For the purpose of the analysis, we assume that the al-
gorithm optimises the function f (x) = ∑n−m

i=1 xi , but still consider the first point of
time such that 1n is sampled. Note that f only differs from OM-NEEDLEm on the
optimal search point 1n. Hence this change in the analysis will not have any impact
on the runtime distribution of the algorithm.

During a first phase, the algorithm will be able to increase the function value by
gaining 1-bits in the first n − m positions. By a coupon collector argument [22], the
expected time of this phase is O(n logn).

In a second phase, the function value of the current search point is n − m, and the
algorithm will only accept a new search point if it was obtained by flipping one of
the m bits in the suffix. We call such steps good. The analysis follows the ideas in
Sect. 3 in [33]. Since we consider the function f , all the search points on the form
1n−mx,x ∈ {0,1}m, have function value n−m. Hence, the Markov chain correspond-
ing to the suffix is ergodic with the uniform distribution as stationary distribution.
This means that if we consider the Markov process X(t) ∈ [0,m], where X(t) denotes
the number of 1-bits in the suffix, then each state i ∈ [0,m] has stationary distribu-
tion π(i) = (

m
i

) · 2−m. For i, j ∈ [0,m], let Tij be the first hitting time from state i

to state j , and p(i, j) the transition probability from state i to state j . By the funda-
mental theorem of ergodic Markov chains [22], E[Tii] = 1/π(i). Hence, by the law
of total probability,

p(j + 1, j) · E[Tj,j+1] ≤ E[Tj+1,j+1] = 1

π(j + 1)
= 2m

(
m

j+1

) .

The optimisation time T is bounded from above by the sum of the hitting times Tj,j+1

for 0 ≤ j ≤ n − 1. Hence,

E[T] ≤ (n/m)

m−1∑

j=0

E[Tj,j+1] ≤ (n/m)

m−1∑

j=0

2m

p(j + 1, j)
(

m
j+1

) ,

Algorithmica (2012) 64:623–642 635

where the n/m factor accounts for the waiting time for a good step. By noting that
p(j + 1, j) = (j + 1)/m, the denominators can be simplified as

(
m

j + 1

)
· j + 1

m
=

(
m − 1

j

)
.

Since the binomial coefficient takes its smallest value for j = 0 and j = m − 1 and
its second-smallest one for j = 1 (and j = m − 2), we have

m−1∑

j=0

1
(
m−1

j

) ≤ 1
(
m−1

0

) + 1
(
m−1
m−1

) +
m−2∑

j=1

1
(
m−1

1

) ≤ 2 + m − 2

m − 1
≤ 3.

Thus, the expected duration of the second phase is O((n/m) · 2m).
The theorem now follows by adding the expected times of the two phases. �

6 General Functions

In the previous sections, we provided bounds on particular pseudo-Boolean functions
that are commonly considered in the runtime analysis of randomised search heuris-
tics. In this section, we focus on finding lower bounds that hold for any function. Such
bounds are only interesting when we consider functions that correspond to realistic
optimisation problems, as trivial functions like constant functions can be optimised
with a single function evaluation. We therefore focus on functions that have a unique
global optimum.

It is of interest to compare the lower bounds in the black-box models with those
bounds that have been obtained for specific EAs. Wegener proved a lower bound of
�(n logn) for the (1+1) EA on any function with a unique optimum [32]. This bound
is significantly larger than the �(n/ logn) bound that holds for the generalisation
ONEMAX∗ of the ONEMAX problem mentioned in Sect. 3.1. Given this discrepancy,
one can ask whether there is room to design better EAs which overcome the n logn

barrier, or whether the black-box bound is too loose. Jansen et al. provided evidence
that there is little room for improvement by showing that any EA that uses uniform
initialisation, selection and bit-wise mutation with probability 1/n needs �(n logn)

function evaluations to optimise functions with a unique optimum [15].
In the following, we will generalise this result further, showing that the n logn-

barrier for functions of a unique optimum even holds for the wider class of unary,
unbiased black-box algorithms. The idea behind the proof is to show that the proba-
bility of making an improving step reduces as the algorithm approaches the optimum.
To implement this idea, we will apply Theorem 5. This is a lower-bound analogue to
a technique which is called expected multiplicative weight decrease in the evolution-
ary computation literature [24]. Theorem 5 will be proved using the polynomial drift
theorem (Theorem 1), and the following simple lemma.

Lemma 2 Let X be any random variable, and k any real number. If it holds that
Pr(X < k) > 0, then E[X] ≥ E[X | X < k].

636 Algorithmica (2012) 64:623–642

Proof Define p := Pr(X < k) and μk := E[X | X < k]. The lemma clearly holds
when p = 1, so we consider the case where 0 < p < 1. If E[X] is positive infinite,
then the theorem clearly holds because μk < k. If E[X] is negative infinite, then so is
μk by the law of total probability. Finally, for finite E[X], we have by the law of total
probability

E[X] = (1 − p) · E[X | X ≥ k] + p · μk

≥ (1 − p) · k + p · μk

> (1 − p) · μk + p · μk

= E[X | X < k]. �

Theorem 5 (Multiplicative Drift, Lower Bound) Let S ⊆ R be a finite set of positive
numbers with minimum 1. Let {X(t)}t≥0 be a sequence of random variables over S,
satisfying X(t+1) ≤ X(t) for any t ≥ 0, and let smin ≥ 1. Let T be the random first
point in time t ≥ 0 for which X(t) ≤ smin. If there exist positive reals β < 1 and δ ≤ 1
such that for all s > smin and all t ≥ 0 with Pr(X(t) = s) > 0 it holds that

1. E[X(t) − X(t+1) | X(t) = s] ≤ δs,
2. Pr(X(t) − X(t+1) ≥ βs | X(t) = s) ≤ βδ/ ln s,

then for all s0 ∈ S with Pr(X(0) = s0) > 0,

E
[
T | X(0) = s0

] ≥ ln(s0) − ln(smin)

δ
· 1 − β

1 + β
.

Proof The proof generalises the proof of Theorem 1 in [5]. The random variable
T is non-negative. Hence, if the expectation of T does not exist, then it is positive
infinite and the theorem holds. We condition on the event T > t , but we omit stating
this event in the expectations for notational convenience. We define the stochastic
process Y (t) := ln(X(t)) (note that X(t) ≥ 1), and apply Theorem 1 with respect to
the random variables

�t+1(s) := (
Y (t) − Y (t+1) | X(t) = s

) =
(

ln

(
s

X(t+1)

)
| X(t) = s

)
.

We consider the time until X(t) ≤ smin if X(0) = s0, and therefore set the first param-
eter in Theorem 1 to g := ln(s0/smin). To obtain the desired bound, we set the second
parameter of Theorem 1 to u := δ(β + 1)/(1 − β).

By the law of total probability, the expectation of �t+1(s) can be expressed as

Pr
(
s − X(t+1) ≥ βs

) · E
[
�t+1(s) | s − X(t+1) ≥ βs

]

+ Pr
(
s − X(t+1) < βs

) · E
[
�t+1(s) | s − X(t+1) < βs

]
. (1)

By applying the second condition from the theorem, the first term in (1) can be
bounded from above by βδ

ln s
· ln s = βδ. The logarithmic function is concave. Hence,

Algorithmica (2012) 64:623–642 637

by Jensen’s inequality, the second term in (1) is at most

ln

(
E

[
s

X(t+1)
| s − X(t+1) < βs ∧ X(t) = s

])

= ln

(
1 + E

[
s − X(t+1)

X(t+1)
| s − X(t+1) < βs ∧ X(t) = s

])
.

By using the inequality ln(1 + x) ≤ x and the conditions X(t+1) ≥ (1 − β)s and
X(t+1) ≤ X(t), this simplifies to

E
[

s − X(t+1)

X(t+1)
| s − X(t+1) < βs ∧ X(t) = s

]

< E
[
s − X(t+1)

(1 − β)s
| s − X(t+1) < βs ∧ X(t) = s

]
.

By Lemma 2 and the first condition from the theorem, it follows that the second term
in (1) is at most

E
[
s − X(t+1)

(1 − β)s
| X(t) = s

]
≤ δ

1 − β
.

Altogether, we obtain E[�t+1(s)] ≤ (β +1/(1−β))δ ≤ ((β +1)/(1−β))δ. From
Theorem 1, it now follows that

E
[
T | X(0) = s0

] ≥ 1

δ
· 1 − β

1 + β
· ln

(
s0

smin

)
. �

We have seen in the proof of Theorem 2 that it is helpful to model the application
of an unbiased variation operator as a classical urn experiment. We take a closer look
at this model now. Assume that the black-box algorithm chooses a search point x

that has m 0-bits and that the variation operator creates a new search point x′ by
flipping r bits in x. This corresponds to drawing r balls without replacement from an
urn containing m red balls and n − m white balls. The number of red balls Z in the
sample, i.e., the number of flipped 0-bits, is a hypergeometrically distributed random
variable with expectation rm/n. If the optimal search point is 1n, then the change in
Hamming-distance to the optimum can be expressed as H(x,1n) − H(x′,1n) = Z −
(r − Z) = 2Z − r . So the shortest distance from the sampled points to the optimum
can only decrease if Z > r/2. Hence, in order to apply Theorem 5, it will be helpful to
have an estimate of the expectation of a hypergeometric random variable, conditional
on the event that this variable takes at least a certain value.

Lemma 3 Let Z be a hypergeometrically distributed random variable with parame-
ters n (number of balls), r (number of samples) and m (number of red balls), then for
all k,0 ≤ k ≤ r , E[Z | Z ≥ k] ≤ k + (r − k)(m − k)/(n − k).

Proof Let random variable S be the number of samples needed to obtain k red balls
assuming that Z ≥ k, and let Y be the number of additional red balls obtained in the

638 Algorithmica (2012) 64:623–642

remaining r −S samples. Then Y is a hypergeometrically distributed random variable
with parameters n − S, r − S, and m − k. By the law of total probability, it holds that

E[Z | Z ≥ k] = k +
r∑

s=k

Pr(S = s)E[Y | S = s] (2)

= k +
r∑

s=k

Pr(S = s)
(r − s)(m − k)

n − s
. (3)

The derivative of the function f (s) := (r − s)/(n − s) is

f ′(s) = 1

n − s

(
r − s

n − s
− 1

)
.

Hence, f ′(s) ≤ 0 whenever 0 ≤ r ≤ n and s ≥ 0. This implies that the function f is
non-increasing in s, and we can simplify the right hand side of (3) by fixing s = k,

E[Z | Z ≥ k] ≤ k + (r − k)(m − k)

n − k

r∑

s=k

Pr(S = s),

from which the lemma follows. �

We also need upper bounds on the tail of the hypergeometric distribution. The
following result due to Chvátal [4] is an analogue to the Chernoff bounds for the
binomial distribution.

Lemma 4 ([4]) If X is a hypergeometrically distributed random variable with pa-
rameters n (number of balls), m (number of red balls), and r (number of samples),
then Pr(X ≥ E[X] + rδ) ≤ exp(−2δ2r), where E[X] = rm

n
.

We now state the main result of this section.

Theorem 6 The expected runtime of any unary, unbiased black-box algorithm on
any pseudo-Boolean function with a single global optimum is �(n logn).

Proof Without loss of generality, assume that the search point 1n is the single global
optimum. The potential P (t) of the algorithm in a given iteration t is defined as the
shortest Hamming-distance from any previously sampled search point to this opti-
mum. Flipping every bit in a search point with s 0-bits clearly creates a search point
with n − s 0-bits. It therefore simplifies the analysis to assume that every time the
algorithm applies a variation operator to a bitstring, it also applies the same variation
operator to the complementary bitstring. The potential is now bounded to the interval
[0, n/2], and the optimum has not been found before the potential has reached the
value 0.

We call a run typical if the potential does not decrease below n/10 without first
reaching the interval [n/10, n/5). We claim that a run is typical with overwhelmingly

Algorithmica (2012) 64:623–642 639

high probability, and that the expected runtime of a typical run is �(n logn). If both
claims are correct, then the theorem follows by the law of total probability.

We bound the runtime of typical runs using Theorem 5 with respect to the process
{P (t)}t≥0. Clearly, the process is monotonically decreasing and has bounded support.
We only account for the time interval from some point in time t0 when the potential
is P (t0) = s0 ∈ (n/10, n/5], to the first point in time when the potential is below
smin := �(50/β)(ln(2/βδ) + ln lnn)�, where β ∈ (0,1) is an arbitrary constant. If the
two conditions of Theorem 5 hold for the parameters δ := 200/n, β , smin, and s0,
then the expected runtime of a typical run is �(n logn).

We verify the second condition of Theorem 5 first. Assume that P (t) = s, where
s ∈ (smin, n/5) because the run is typical. Consider first the case where the number of
0-bits in the selected search point is m ∈ [s, n/2]. Let r ≥ 1 be the number of bits that
were flipped by the variation operator. The number of 0-bits that are flipped by the
variation operator in iteration t is a hypergeometrically distributed random variable
Z(t) with parameters n (number of balls), m (number of red balls), and r (number of
samples). The reduction in potential can now be expressed as max{Z(t) − (r −Z(t))−
(m − s),0}. The potential can therefore only reduce when

Z(t) >
r + m − s

2
=: k. (4)

We claim that k ≥ E[Z(t)] + r/10, where E[Z(t)] = rm/n. The claim is true when
m ∈ [s,4n/10], because r/2 ≥ rm/n + r/10, and m − s ≥ 0. The claim is also
true when m ∈ (4n/10, n/2], because r/2 ≥ rm/n, and m − s ≥ n/5 ≥ r/5. So, by
Lemma 4, the probability p(s, r,m) of reducing the potential when flipping r bits in
a search point with m 0-bits satisfies

p(s, r,m) ≤ Pr

(
Z(t) ≥ E

[
Z(t)

] + r

10

)
≤ exp

(
− r

50

)
. (5)

We now claim that (5) also holds in the case when m ∈ (n/2, n − s] because of the
following symmetry argument. The process of creating a new search point by flipping
r bits can be divided into two steps. An intermediate search point is first created by
flipping all bits. Then, the final search point is obtained by flipping n − r bits. The
intermediate search point will have m′ := n − m ∈ [s, n/2] 0-bits with probability 1.
Inequality (5) therefore applies to the intermediate search point, and the claim holds.

In order to reduce the potential by at least sβ 0-bits, it is necessary to flip r ≥ βs ≥
βsmin bit positions. The probability that this occurs from a bitstring with m 0-bits, or
from the complementary bitstring with n − m 0-bits is by the union bound no more
than

p(s, r,m) + p(s, r, n − m) ≤ 2 exp

(
−βsmin

50

)
≤ βδ

lnn
≤ βδ

ln s
,

and the second condition of Theorem 5 holds.
We now verify the first condition. It is necessary to flip at least r ≥ m − s bits

to obtain a search point with less than s 0-bits from a search point with m 0-bits.
Equation (4) implies the upper bound m − k ≤ s, which when used together with

640 Algorithmica (2012) 64:623–642

Lemma 3 means that the expected reduction in potential conditional on the event
Z(t) > k can be bounded from above as

E
[
2Z(t) − 2k | Z(t) > k

] ≤ 2(r − k)(m − k)

n − k
≤ 2(r − k)s

n − k
≤ 2rs

n
.

The last inequality is valid, because the function f (k) = (r −k)/(n−k) is decreasing
in k, as shown in the proof of Lemma 3. Hence, by the law of total probability,
the unconditional expected decrease in potential by the selected bitstring, and its
complement, is no more than

(
p(s, r,m) + p(s, r, n − m)

) · 2rs

n
≤ 4rs

ner/50
≤ 4rs

n(1 + r/50)
≤ 200s

n
= δs. (6)

The first condition of Theorem 5 is therefore satisfied.
Finally, we prove the claim that w.o.p., the potential will at some point in time

be in the interval [n/10, n/5]. By a Chernoff bound, the initial potential is w.o.p. in
the interval (n/5, n/2] because the initial search point and its complement are chosen
uniformly at random.

In order to reduce the potential from the interval [n/2, n/5) to the interval
[0, n/10) in one iteration, it is clearly necessary to flip r ≥ n/10 bits. Furthermore,
following the derivation of (4), it is necessary that the number Z(t) of 0-bits flipped is
strictly larger than k′ := (r +n/10)/2. If the selected search point has m ∈ [n/5, n/2]
0-bits, then k′ ≥ rm/n + n/20 ≥ E[Z(t)] + r/20. By Lemma 4, it then holds that
Pr(Z(t) > k′) = e−�(r), and this bound can be extended to all m ∈ [n/5,4n/5] due to
the symmetry argument above. By a union bound, the probability that the potential
is reduced below n/10 by flipping r ≥ n/10 bits in the selected search point or the
complementary search point is less than 2 Pr(Z(t) > k′) = e−�(n). The claim about
the probability of typical runs therefore holds, and the theorem follows. �

7 Conclusions

This paper takes a step forward in building a unified theory of randomised search
heuristics. We have defined a new black-box model that captures essential aspects
of randomised search heuristics. The new model covers many of the common search
heuristics, including simulated annealing and EAs commonly considered in theoreti-
cal studies. We have proved upper and lower bounds on the runtime of several com-
monly considered pseudo-Boolean functions. For some functions, the lower bounds
coincide with the upper bounds for the (1 + 1) EA, implying that this simple EA is
asymptotically optimal on the function class. It is shown that any search heuristic in
the model needs �(n logn) function evaluations to optimise functions with a unique
optimum. Also, it is shown that a function with a plateau can pose a difficulty for any
black-box search heuristic in the model.

This work can be extended in several ways. Firstly, it is interesting to consider
more problem classes than those considered here. Secondly, the analysis should be
extended to variation operators with greater arity than one. Finally, alternative black-
box models could be defined that cover ant colony optimisation, particle swarm opti-
misation, and estimation of distribution algorithms.

Algorithmica (2012) 64:623–642 641

References

1. Anil, G., Wiegand, R.P.: Black-box search by elimination of fitness functions. In: Proceedings of the
10th International Workshop on Foundations of Genetic Algorithms (FOGA’09), pp. 67–78. ACM
Press, New York (2009)

2. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the leadingones
problem. In: Proceedings of the 11th international conference on Parallel Problem Solving from Na-
ture (PPSN’10), pp. 1–10. Springer, Berlin (2010)

3. Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for problems with unknown solution
lengths. In: Proceedings of the 11th International Workshop on Foundations of Genetic Algorithms
(FOGA’11), pp. 173–180. ACM, New York (2011)

4. Chvátal, V.: The tail of the hypergeometric distribution. Discrete Math. 25(3), 285–287 (1979)
5. Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algorithms. In: Proceedings of the 12th

Annual Conference on Genetic and Evolutionary Computation (GECCO’10), pp. 1457–1464. ACM,
New York (2010)

6. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
7. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) Evolutionary Algorithm. Theor.

Comput. Sci. 276, 51–81 (2002)
8. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-

box optimization. Theory Comput. Syst. 39(4), 525–544 (2006)
9. Droste, S., Wiesmann, D.: Metric based evolutionary algorithms. In: Proceedings of Genetic Program-

ming, European Conference. LNCS, vol. 1802, pp. 29–43. Springer, Berlin (2000)
10. Fournier, H., Teytaud, O.: Lower bounds for comparison based evolution strategies using VC-

dimension and sign patterns. Algorithmica 59, 387–408 (2011)
11. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Proceedings

of the 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS’03), pp. 415–
426 (2003)

12. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Adv.
Appl. Probab. 13(3), 502–525 (1982)

13. He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms.
Natural Computing, 3(1) (2004)

14. Jägersküpper, J.: Algorithmic analysis of a basic evolutionary algorithm for continuous optimization.
Theor. Comput. Sci. 39(3), 329–347 (2007)

15. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolutionary
algorithms. Evol. Comput. 13(4), 413–440 (2005)

16. Jansen, T., Sudholt, D.: Analysis of an asymmetric mutation operator. Evol. Comput. 18, 1–26 (2010)
17. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci.

37(1), 79–100 (1988)
18. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Mateo (2001)
19. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598),

671–680 (1983)
20. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary

Computation. Kluwer Academic, Dordrecht (2002)
21. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. In: Proceedings of the 12th Annual

Conference on Genetic and Evolutionary Computation (GECCO’10), pp. 1441–1448. ACM, New
York (2010)

22. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
23. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum span-

ning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)
24. Neumann, F., Witt, C.: Ant colony optimization and the minimum spanning tree problem. In: Pro-

ceedings of Learning and Intelligent Optimization (LION’08), pp. 153–166 (2008)
25. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and

Their Computational Complexity, 1st edn. Springer, New York (2010)
26. Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation—combining ex-

ploration and exploitation. In: Proceedings of the 10th IEEE Congress on Evolutionary Computation
(CEC’09), pp. 1455–1462. IEEE, New York (2009)

27. Rowe, J.E., Vose, M.D.: Unbiased black box search algorithms. In: Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation (GECCO’11), pp. 2035–2042. ACM, New
York (2011)

642 Algorithmica (2012) 64:623–642

28. Rowe, J.E., Vose, M.D., Wright, A.H.: Neighborhood graphs and symmetric genetic operators. In:
Proceedings of the 9th International Workshop on Foundations of Genetic Algorithms (FOGA’07).
LNCS, vol. 4436, pp. 110–122 (2007)

29. Sudholt, D.: General lower bounds for the running time of evolutionary algorithms. In: Proceedings of
the 11th International Conference on Parallel Problem Solving from Nature (PPSN’10), pp. 124–133.
Springer, Berlin (2010)

30. Teytaud, O., Gelly, S.: General lower bounds for evolutionary algorithms. In: Proceedings of the 9th
International Conference on Parallel Problem Solving from Nature (PPSN’06). LNCS, vol. 4193, pp.
21–31. Springer, Berlin (2006)

31. Teytaud, O., Gelly, S., Mary, J.: On the ultimate convergence rates for isotropic algorithms and the
best choices among various forms of isotropy. In: Proceedings of the 9th International Conference
on Parallel Problem Solving from Nature (PPSN’06). LNCS, vol. 4193, pp. 32–41. Springer, Berlin
(2006)

32. Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-Boolean functions. In:
Sarker, R., Mohammadian, M., Yao, X. (eds.) Evolutionary Optimization, pp. 349–369. Kluwer Aca-
demic, Dordrecht (2002)

33. Wegener, I., Witt, C.: On the optimization of monotone polynomials by simple randomized search
heuristics. Comb. Probab. Comput. 14(1), 225–247 (2005)

34. Witt, C.: Runtime analysis of the (μ + 1) EA on simple pseudo-Boolean functions. Evol. Comput.
14(1), 65–86 (2006)

35. Zarges, C.: Theoretical foundations of artificial immune systems. PhD thesis, Technische Universität
Dortmund (2011)

	Black-Box Search by Unbiased Variation
	Abstract
	Introduction
	Preliminaries
	A Refined Black-Box Model
	Comparison with the Classical, Unrestricted Model
	Unbiased Variation Operators
	Examples of Unbiased Black-Box Algorithms

	Simple Unimodal Functions
	Enforcing Expected Runtimes
	General Functions
	Conclusions
	References

