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Abstract Given a matrix A ∈ R
m×n (n vectors in m dimensions), and a positive

integer k < n, we consider the problem of selecting k column vectors from A such that
the volume of the parallelepiped they define is maximum over all possible choices.
We prove that there exists δ < 1 and c > 0 such that this problem is not approximable
within 2−ck for k = δn, unless P = NP.

Keywords Matrices · Volume · Complexity · Inapproximability

1 Introduction

Given a matrix A ∈ R
m×n, it is of practical importance to obtain the “significant

information” contained in A. It becomes especially important to have a compact rep-
resentation of A when A is large and has low numerical rank, as is typical of modern
data. Thus, in a broad sense, we are interested in concise representations of matrices.
Besides the tremendous practical impact of linear algebraic algorithms designed to
this aim, they also come up in different theoretical forms and paradigms. Specifically,
the formalization of “significant information” can be done in several ways and to a
great extent, it depends on how a matrix is interpreted.

In this paper, we view a matrix as a set of vectors (specifically, column vectors)
which are indivisible entities. Thus, the formalization of “significant information” is
essentially related to finding a subset of columns of the matrix which satisfies some
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certain spectral conditions or orthogonality requirements. From a purely combinato-
rial perspective, treating vectors as elements of a set, one can also view subset selec-
tion in matrices as a generalization of the usual subset selection problem where the
elements contain little or no information. To give a specific example, the well known
Set Cover problem asks for a smallest cardinality subset of a set system which cov-
ers a universal set. Likewise, the problem we are interested in essentially asks for a
small number of column vectors to “cover” the whole matrix. In this paper, we state a
measure of quality for this problem, namely the volume, and we prove an exponential
inapproximability result for the problem of selecting a maximum volume sub-matrix
of a matrix.

Several problems in matrix analysis require to construct a more concise version
of a matrix generally performed by a re-ordering of the columns [15], such that the
new smaller matrix is as good a representative of the original as possible. One of
the criteria that defines the quality of a subset of columns of a matrix is how well-
conditioned the sub-matrix that they define is. To motivate the discussion, consider
the set of three vectors{

e1 =
(

1
0

)
, e2 =

(
0
1

)
, u =

(√
1 − ε2

ε

)}
,

which are clearly dependent, and any two of which are a basis. Thus any pair can
serve to reconstruct all vectors. Suppose we choose e1, u as the basis, then e2 =
(1/ε)u − (

√
1 − ε2/ε)e1, and we have a numerical instability in this representation

as ε → 0. Such problems get more severe as the dimensionality of the space gets
large, and it is natural to ask the representatives to be “as far away from each other as
possible”. From this simple example, we see that two orthogonal vectors will capture
more information about a superset of columns than two that have an acute angle
between each other. Hence, in its generality, this vaguely stated problem can be stated
as finding a subset of columns with the maximum volume possible or equivalently
with the maximum determinant. A similar (but not equivalent) problem is to find a
subset with the maximum smallest singular value. Indeed, in one of the early works
studying Rank Revealing QR (RRQR) factorizations [21], while discussing different
options on how to choose a good sub-matrix, it was noted that it turns out that “the
selection of the sub-matrix with the maximum smallest singular value suggested in
[14] can be replaced by the selection of a sub-matrix with maximum determinant”,
which heuristically proposes to maximize the volume of the sub-matrix instead of
using more complicated functions. Several algorithms have been designed following
this intuition [3, 5–7, 9, 19, 21, 25]. The optimization problem of finding a maximum
volume sub-matrix of a matrix was only recently studied by Çivril and Magdon-
Ismail:

Definition 1 [8] Given a matrix A ∈ R
m×n of rank at least k, MAX-VOL is the

problem of finding a sub-matrix C ∈ R
m×k of A such that the volume of the k di-

mensional parallelepiped defined by the column vectors in C is maximum over all
possible choices.

Theorem 2 [8] MAX-VOL is NP-hard. Further, it is NP-hard to approximate to
within 2

√
2/3 + ε for arbitrarily small ε > 0.
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Since MAX-VOL is NP-hard, it is natural to ask for an algorithm to approximate
the maximum volume. The first thing one might try is a simple greedy algorithm for
approximating MAX-VOL:

Algorithm 1 Greedy
1: C ← ∅
2: while |C| < k do
3: Select the largest norm vector v ∈ A

4: Remove the projection of v from every element of A

5: C ← C ∪ v

6: end while

The analysis of the approximation ratio of this algorithm and a lower bound was
also provided in [8]. Specifically, let Vol(Gr) be the volume of the column vectors
chosen by Greedy and let Vol(Opt) be the optimum volume. Then, we have

Theorem 3 [8] Vol(Gr) ≥ 1
k! · Vol(Opt).

Theorem 4 [8] There exists an instance of MAX-VOL for which Vol(Gr) ≤
1

2k−1 (1 − ε) · Vol(Opt) for arbitrarily small ε > 0. Furthermore, this instance can
explicitly be constructed.

Note that there is a gap between the proven approximation ratio and the lower
bound implied by the explicit example. The analysis yielding the ratio 1/k! is essen-
tially a product of k different mutually exclusive analyses related to each step of the
algorithm. However, it is not clear whether the overall contribution of these differ-
ent steps to the approximation ratio is actually better than their products. Indeed, the
lower bound of 1/2k−1 pertains to such a peculiar construction that we have conjec-
tured a 1/2k−1 approximation ratio for the greedy algorithm. Hence, in general, prov-
ing an exponential inapproximability for this problem is an important step towards
characterizing its approximability properties. It will show that the greedy algorithm
is almost the best one can hope for.

This work takes a step towards this goal and proves exponential inapproximability
for MAX-VOL via a gap preserving reduction from the well known Label-Cover
problem using the Parallel Repetition Theorem [26]. In doing so, we will establish
that the greedy algorithm is asymptotically optimal up to a logarithm in the exponent.
Specifically, we prove the following theorem:

Theorem 5 There exists δ < 1 and c > 0 such that the problem MAX-VOL is not
approximable within 2−ck for k = δn, unless P = NP.

Our reduction which can be used to prove inapproximability results for other ma-
trix approximation problems with different objective functions, may also be of inde-
pendent interest.
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1.1 Preliminaries and Notation

We introduce some preliminary notation and definitions. Let a matrix A be given in
column notation as: A = {v1, v2, . . . , vn}. The volume of A, Vol(A) can be recursively
defined as follows: if A contains one column, i.e. A = {v1}, then Vol(A) = ‖v‖2,
where ‖ · ‖2 is the Euclidean norm. If A has more than one column, Vol(A) =
‖v − π(A−{v})(v)‖2 · Vol(A − {v}) for any v ∈ A, where πX(v) is the projection
of v onto the space spanned by the column vectors of X. It is well known that
π(A−{v})(v) = AvA

+
v v, where Av is the matrix whose columns are the vectors in

A − {v}, and A+
v is the pseudo-inverse of Av (see for example [15]). Using this re-

cursive expression, we have

Vol(S) = Vol(A) = ‖v1‖2 ·
n−1∏
i=1

‖vi+1 − AiA
+
i vi+1‖2

where Ai = {v1 · · ·vi} for ≤ i ≤ n − 1.
We observe a simple fact about the “distance” of a vector to a subspace in the

following lemma, which will be useful in the final proof. Given two sets of vectors P

and Q = {q1, . . . , qm}, let d(q,P ) = ‖q − πP (q)‖2 denote the distance of q ∈ Q to
the space spanned by the vectors in P .

Lemma 6 (Union Lemma) Vol(P ∪ Q) ≤ Vol(P ) · ∏n
i=1 d(qi,P ).

Proof We argue by induction on m. For m = 1, Q has one element and the statement
trivially holds. Assume that it is true for n = k where Q = {q1, . . . , qk}. Then, for any
qk+1

Vol(P ∪ Q ∪ {qk+1}) = Vol(P ∪ Q) · d(qk+1,P ∪ Q)

≤(a) Vol(P ∪ Q) · d(qk+1,P )

≤(b) Vol(P ) ·
k∏

i=1

d(qi,P ) · d(qk+1,P )

= Vol(P ) ·
k+1∏
i=1

d(qi,P ).

(a) follows because d(q,A ∪ B) ≤ d(q,A) for any A, B and (b) follows by the in-
duction hypothesis. �

1.2 Related Work

The concept of volume has been closely related to matrix approximation and mainly
studied from a linear algebraic perspective. There are a few results revealing the rela-
tionship between the volume of a subset of columns of a matrix and its approximation.
In [11], the authors introduced volume sampling to find low-rank approximation to a
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matrix where one picks a subset of columns with probability proportional to the vol-
ume of the simplex they define. In volume sampling, one picks a subset of columns
S of size k with probability

PS = Vol(S)2∑
T :|T |=k Vol(T )2

,

where the summation in the denominator is over all subsets of size k. This sam-
pling provides an almost tight low-rank approximation of a matrix in Frobenius norm.
Improving this existence result, Deshpande and Vempala [12] provided an adaptive
randomized algorithm for the low-rank approximation problem, which includes a
sub-procedure that repetitively chooses a small number of columns by approximat-
ing volume sampling. This algorithm is essentially a greedy algorithm and can be
regarded as a randomized version of the greedy algorithm we have analyzed for
MAX-VOL [8]. They show that, if P̃S is the probability that this algorithm chooses a
subset of columns S of size k, then

P̃S ≤ k! · PS. (1)

Thus, not only is sampling larger volume columns good, but approximately sampling
columns with large volume can prove useful for matrix approximation. A natural
question is to ask what happens when one finds a set of columns with the largest vol-
ume (deterministic), which is our problem MAX-VOL. Note that, the last expression
(1) is reminiscent of the approximation ratio we have proved for MAX-VOL in [8],
but its analysis relies on a linear algebraic identity whereas the result in [8] is derived
via combinatorial means. MAX-VOL and volume sampling seem to be related, but
they have different characteristics. MAX-VOL is proven to be intractable by using
complexity theoretic tools, whereas according to a recent result by Deshpande and
Rademacher [10], volume sampling can be exactly implemented in polynomial time.
This work together with [10] reveals the fact that, although one can exactly sample
the columns of a matrix with probability proportional to their volumes, identifying a
subset with the maximum volume is hard.

Goreinov and Tyrtyshnikov [16] provided explicit statements of how MAX-VOL,
in particular, is related to low-rank approximations in the following theorem:

Theorem 7 [16] Suppose that A is an m × n block matrix of the form

A =
(

A11 A12
A21 A22

)

where A11 is nonsingular, k × k, whose volume is at least μ−1 times the maximum
volume among all k × k sub-matrices. Then 1

‖A22 − A21A
−1
11 A12‖∞ ≤ (k + 1)μσk+1(A).

1‖B‖∞ denotes the maximum modulus of the entries of a matrix B .
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This theorem implies that if one has a good approximation to the maximum vol-
ume k × k sub-matrix, then the rows and columns corresponding to this sub-matrix
can be used to obtain a good approximation to the entire matrix in the ∞-norm. If
σk+1(A) is small for some small k, then this yields a low-rank approximation to A.
Goreinov et al. [17] also proves a similar result to Theorem 7.

Pan [24] unifies the main approaches developed for finding RRQR factorizations
by defining the concept of local maximum volume and then gives a theorem relating
it to the quality of approximation.

Definition 8 [24] Let A ∈ R
m×n and C be a sub-matrix of A formed by any

k columns of A. Vol(C)(�= 0) is said to be local μ-maximum volume in A, if
μVol(C) ≥ Vol(C′) for any C′ that is obtained by replacing one column of C by
a column of A which is not in C.

Theorem 9 [24] For a matrix A ∈ R
n×n, an integer k (1 ≤ k < n) and μ ≥ 1, let

Π ∈ R
n×n be a permutation matrix such that the first k columns of AΠ is a local

μ-maximum in A. Then, for the QR factorization

AΠ = Q

(
R11 R12

0 R22

)
,

we have

σmin(R11) ≥ (
1/

√
k(n − k)μ2 + 1

)
σk(A)

and

σ1(R22) ≤
√

k(n − k)μ2 + 1σk+1(A).

We note that, MAX-VOL asks for a stronger property of the set of vectors to be
chosen, i.e. it asks for a “good” set of vectors in a global sense rather than only re-
quiring local optimality. Obviously, a solution to MAX-VOL provides a set of vectors
with local maximum volume.

Independently of our work, there are some results in computational geometry
which are related to the ability to construct large simplices embedded in V-polytopes.
Essentially, the problem we consider is a more general version of finding a large
simplex in a V-polytope, where the vertices of the polytope are the column vectors.
The results in this area are similar to ours in spirit but using different techniques
[18, 22, 23]. The most relevant work to ours is that of Koutis [22], which shows expo-
nential inapproximability for finding a large simplex in a V-polytope. Koutis provides
a reduction from set packing using an inapproximability result of [20], whereas our
reduction is directly from the Label Cover problem.

2 The Label-Cover Problem

Our reduction will be from the Label Cover problem. Label Cover combinatorially
captures the expressive power of a 2-prover 1-round proof system for the problem
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Max-3SAT(5). Specifically, there exists a reduction from Max-3SAT(5) to Label
Cover, so that using the well known parallel repetition technique for the specified
proof system yields a new k-fold Label Cover instance. For simplicity, we prefer to
state our reduction from Label Cover and for the sake of completeness, we provide a
canonical reduction from Max-3SAT(5) to Label Cover.

Max-3SAT(5) is defined as follows: Given a set of 5n/3 variables and n clauses in
conjunctive normal form where each clause contains three distinct variables and each
variable appears in exactly five clauses, find an assignment of variables such that it
maximizes the fraction of satisfied clauses. The following result is well known [1, 2]:

Theorem 10 There is a constant ε > 0, such that it is NP-hard to distinguish between
the instances of Max-3SAT(5) having optimal value 1 and optimal value at most
(1 − ε).

Although this result was proved for general 3CNF formulas, without the require-
ment that each variable appears exactly 5 times, there is a standard reduction from
Max-3SAT to Max-3SAT(5) [13], which only results in a difference in the constant ε.

A Label Cover instance L is defined as follows:

L = (G(V,W,E), (ΣV ,ΣW),Π)

where

– G(V,W,E) is a regular bipartite graph with vertex sets V and W , and the edge
set E.

– ΣV and ΣW are the label sets associated with V and W , respectively.
– Π is the collection of constraints on the edge set, where the constraint on an edge

e is defined as a function Πe : ΣV → ΣW .

A labeling is an assignment to the vertices of the graph, σ : {V → ΣV }∪{W → ΣW }.
It is said to satisfy an edge e = (v,w) if Πe(σ(v)) = σ(w). The Label Cover problem
asks for an assignment σ such that the fraction of the satisfied edges is maximum.

A standard reduction from Max-3SAT(5) to Label Cover reveals that

Theorem 11 There is a constant ε′ > 0, such that it is NP-hard to distinguish be-
tween the instances of Label Cover having optimal value 1 and optimal value at most
(1 − ε′).

In order to amplify the gap, one can define a new Label Cover instance for which
the vertex set is essentially a set Cartesian product of the original one. This instance,
as follows, captures a standard 2-prover 1-round protocol with parallel repetition ap-
plied � times. We first note that for a given set S = {s1, . . . , sn}, S� consists of all
�-tuples of the form (si1 , . . . , si� ) where sij ∈ S and ij runs over {1, . . . , n} for � ≥
j ≥ 1. Given the original Label Cover instance L = (G(V,W,E), (ΣV ,ΣW),Π)

reduced from Max-3SAT(5), let

L� = (G�(V �,W�,E�),Σ�
V ,Σ�

W ,Π�),
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where V �, W�, Σ�
V and Σ�

W are the � times Cartesian products of the sets V , W , ΣV

and ΣW , respectively as defined above. Let

– E� consist of all edges of the form e = (v,w) where v = (vi1, . . . , vi�) and w =
(wi1, . . . ,wi�) satisfying (vij ,wij ) ∈ E and for all � ≥ j ≥ 1.

– Π� be the collection of constraints on the edge set E�. The constraint on an
edge e = (v,w) where v = (vi1, . . . , vi�) and w = (wi1, . . . ,wi�) is a function
Π�

e : Σ�
V → Σ�

W which is essentially an �-tuple constraint (Π�
e1

, . . .Π�
e�

), where
Π�

ej
= Π(vij

,wij
) for � ≥ j ≥ 1.

A labeling σ of the vertices V � and W� is said to satisfy an edge e = (v,w) where
v = (vi1, . . . , vi�) and w = (wi1 , . . . ,wi�), if Π�

e (σ (v)) = σ(w). Note that this re-
quirement is equal to Π(vij

,wij
)(σ (vij )) = σ(wij ) for all � ≥ j ≥ 1. It is easy to

see that, in this new Label Cover instance, |V | = (5n/3)�, |W | = n�, |E| = (5n)�,
|Σ�

V | = 7� and |Σ�
W | = 2�; the degrees of the vertices in V and W is 3� and 5�,

respectively. The following theorem is a well known result by Raz [26]:

Theorem 12 There is an absolute constant α > 0, such that it is NP-hard to distin-
guish between the case that OPT(L�) = 1 and OPT(L�) ≤ 2−α�.

3 Exponential Inapproximability of MAX-VOL

3.1 The Basic Gadget

At the heart of our analysis is a set of vectors with a special property. We will use
a set of vectors (composed of binary entries for simplicity of construction) such that
any two of them have large dot-product. We will also require that the dot product of
a vector and the binary complement of any other vector is large. More specifically,
we need these dot products be proportional to the Euclidean norms squared of the
vectors.

Given a vector v = (v1 . . . vm) where vi ∈ {0,1} for m ≥ i ≥ 1, we denote the
binary complement of v by v = (v1 . . . vm) where vi = 1 if vi = 0, and vi = 0 other-
wise. We begin with the following lemma:

Lemma 13 For m ≥ 2, there exists a set of vectors B = {b1, . . . , b2m−1} of dimension
2m with binary entries such that the following three conditions hold:

1. ‖bi‖2 = 2(m−1)/2 for 2m − 1 ≥ i ≥ 1.
2. bi · bj = 2m−2 for 2m − 1 ≥ i > j ≥ 1.
3. bi · bj = 2m−2 for 2m − 1 ≥ i > j ≥ 1.

Proof Consider the Hadamard matrix H of dimension 2m×2m with entries −1 and 1,
constructed recursively by Sylvester’s method. Let B be the (2m − 1) × 2m matrix
consisting of the rows of H for which we replace −1’s with 0’s, excluding the all 1’s
row. We claim that the rows of B satisfy the requirements. Indeed, by the properties
of Hadamard matrices, each row of B has exactly 2m−1 1’s which satisfies the first
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requirement. Note also that, for m ≥ 2, two distinct rows of H (excluding the all
1’s vector) have exactly 2m−2 element-wise dot-products of the following four types:
1 · 1, 1 · (−1), (−1) · 1, (−1) · (−1). Considering the construction of B , we have that
the dot-product of any two of its rows is 2m−2 since all the products in H involving
−1 vanishes for B . Similarly the dot-product of a row with the binary complement
of another row is 2m−2 by symmetry. Thus, the second and the third requirement also
hold. �

3.2 The Reduction

Lemma 13 guarantees the existence of a set of binary vectors B = {b1, . . . , b2�} of
dimension 2�+1 such that the following three conditions hold:

1. ‖bi‖2 = 2�/2 for 2� ≥ i ≥ 1.
2. bi · bj = 2�−1 for 2� ≥ i > j ≥ 1.
3. bi · bj = 2�−1 for 2� ≥ i > j ≥ 1.

B can be constructed in time O(22�). In our reduction, � will be a constant (to be
exactly determined later) inversely proportional to α which is the constant in Raz’
Theorem. Hence, one can construct B in constant time. For the sake of simplicity of
our argument, we normalize the vectors in B , which then clearly satisfies

1. ‖bi‖2 = 1 for 2� ≥ i ≥ 1.
2. bi · bj = 1/2 for 2� ≥ i > j ≥ 1.
3. bi · bj = 1/2 for 2� ≥ i > j ≥ 1.

Given a Max-3SAT(5) instance and the reduction described in the previous sec-
tion, we will define a column vector for each vertex-label pair in L�, making
(35n/3)� + (2n)� vectors in total. (Note that |V �| = (5n/3)�, |W�| = n�, Σ�

V =
{1, . . . ,7�} and Σ�

W = {1, . . .2�}.) Each vector will be composed of |E�| = (5n)�

“blocks” which are either vectors from the set B or the zero vector according to the
adjacency information. More specifically, let Av,i be the vector for the vertex label
pair v ∈ V � and i ∈ Σ�

V . Similarly let Aw,j be the vector for the pair w ∈ W and
j ∈ Σ�

W . Both of these vectors are (5n)�2�+1 dimensional. The block of Av,i corre-
sponding to an edge e ∈ E� is denoted by Av,i(e). The block of Aw,j corresponding
to an edge e ∈ E� is denoted by Aw,j (e). We define

Av,i(e) =

⎧⎪⎨
⎪⎩

bΠ�
e (i)

3�/2
if e is incident to v,

−→
0 if e is not incident to v,

Aw,j (e) =

⎧⎪⎨
⎪⎩

bj

5�/2
if e is incident to w,

−→
0 if e is not incident to w.

In order to show how our reduction works, we present a part of a simple bipartite
graph in Fig. 1 with all the edges drawn between two pairs of nodes, and the cor-
responding (row) vectors computed by the reduction in Fig. 2. Note that Av,i has
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Fig. 1 A part of a simple
bipartite graph representing a
Label-Cover instance

Fig. 2 The resulting (row) vectors in MAX-VOL instance computed from the graph in Fig. 1 by our
reduction

exactly 3� non-zero blocks, and Aw,j has 5� non-zero blocks. Hence, according to
the definition above, their Euclidean norm is 1. The column vector set for the MAX-
VOL instance is defined as

A ∈ R
M×N = {Av,i |v ∈ V �, i ∈ Σ�

V } ∪ {Aw,j |w ∈ W�, j ∈ Σ�
W }.

Note that M = (5n)�2�+1 and N = (35n/3)� + (2n)�, both having polynomial size
in n for constant �. From an intuitive point of view, we define mutually orthogonal
subspaces for each edge, and then we “spread” the Euclidean norm of each vector
to the subspaces corresponding to the edges incident to the vertex corresponding
to the vector. A crucial observation for this construction is that, vectors Av1,i1 and
Av2,i2 are orthogonal to each other for all v1, v2 ∈ V �, and i1, i2 ∈ Σ�

V , since there
are no edges between the vertices in V �. The same result holds for the vertices in W�.
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From now on, this fact will be used frequently without explicit reference. We set the
number of column vectors k to be chosen in the MAX-VOL instance to |V �|+|W�| =
(5n/3)� + n�. Note that k is a constant fraction of N , the total number of columns,
i.e. there exists a constant δ < 1 such that k = δN .

3.3 Analysis

We start with the completeness of the reduction:

Theorem 14 If the Label Cover instance L� has a labeling that satisfies all the edges,
then in the MAX-VOL instance, there exist k column vectors with volume 1.

Proof We show that there are at least k orthogonal vectors. For an edge e = (v,w),
let i ∈ Σ�

V and j ∈ Σ�
W be the labeling of v and w assigned by the optimal labeling

which satisfies all the edges. Then, in the MAX-VOL instance the dot product of the
vectors Av,i and Aw,j is

Av,i · Aw,j =
∑
e∈E�

Av,i(e) · Aw,j (e) = bΠ�
e (i) · bj = bj · bj = 0. (2)

This is due to the fact that the labeling satisfies e, i.e. bΠ�
e (i) = bj . Since all the

edges are satisfied, and there exists a vector from each vertex corresponding to the
optimal labeling satisfying (2), we have |V �| + |W�| orthogonal vectors, i.e. we have
k orthogonal vectors. �

Before proving the soundness of the reduction, which will prove hardness of ap-
proximation, we first give the intuition for the argument. According to our construc-
tion of the MAX-VOL instance, there is a set of vectors corresponding to each node
in V � and W�. The set of vectors defined for a specific node has high pair-wise dot
products whereas a vector from a node v1 ∈ V � and another from v2 in V � are orthog-
onal to each other. The same goes for the vectors defined for W�. Hence, if vectors
are chosen from the same set corresponding to a single node, the total volume will
decrease exponentially with respect to the number of such vectors. Let us call these
vectors duplicates in V � and W�. The more intricate part of the analysis is due to
the dot products between the vectors defined for V � and W�, which is enforced to
be non-zero by the unsatisfied edges in the Label-Cover instance. We will show that,
in case the Label-Cover instance has few satisfied edges, any k vectors chosen in
the MAX-VOL instance should satisfy the following: either the number of duplicates
in V � and W� is large enough so that the total volume is small, or the dot products
between V � and W� leads to a small volume.

Theorem 15 There exist absolute constants α and c such that, if the Label Cover
instance L� does not have any labeling that satisfies more than 2−α� of the edges,
then the volume of any k vectors in the MAX-VOL instance is at most 2−ck .

Proof Let V � = {v1, . . . , v(5n/3)�} and W� = {w1, . . . ,wn�}. Let Av be the vec-

tors corresponding to the vertex v ∈ V �: Av = {Av,i |i ∈ Σ�
V }. Similarly, let Aw =
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{Aw,j |j ∈ Σ�
W } for w ∈ W�. Let AV � be the set of all vectors corresponding to the

nodes in V �, and AW� be the set of all vectors corresponding to the nodes in W�, i.e.

AV � =
(5n/3)�⋃

i=1

Avi
, AW� =

n�⋃
i=1

Awi
.

For a set of vectors C of size k, let Cu = C ∩ Au for all u ∈ {V � ∪ W�}, CV � =
C ∩AV � and CW� = C ∩AW� . Let V �(C) and W�(C) be the set of vectors for which
C “selects” at least one vector from V � and W�, respectively.

V �(C) = {v ∈ V �|Cv �= ∅}, W�(C) = {w ∈ W�|C(Aw) �= ∅}.
For ease of notation, we let kVC

= |CV � |, kWC
= |CW� |, dVC

= kVC
−|V �(C)|, dWC

=
kWC

− |W�(C)|. Note that kVC
and kWC

denote how many vectors are chosen by
C from V � and W�, respectively. Whereas dVC

and dWC
are the total number of

duplicates in CV � and CW� , respectively. The following lemma relates the number of
duplicates on one side with its volume.

Lemma 16 Vol(CV �) ≤ (
√

3/2)dVC and Vol(CW�) ≤ (
√

3/2)dWC .

Proof Let P be the set of |V �(C)| elements which contains exactly one vector of the
form Av,i for each v ∈ V �(C). In words, we consider the vectors of C corresponding
to the nodes in the Label-Cover instance minus all the duplicates. For the duplicate
vector Av,j , we have Av,i · Av,j = 1/2. Hence, d(Av,j ,P ) ≤ d(Av,j ,Av,i) = √

3/2.
By the definition of dVC

and by the Union Lemma, we get Vol(CV �) ≤ (
√

3/2)dVC .
The argument for Vol(CW�) is similar. �

Let the constant c = 1/(3 · 5�+1). Recall that, our reduction will require � to be
inversely proportional to α in Raz’ Theorem. Hence, although having an exponential
dependence on α, c is a constant. We will show that Theorem 15 holds for this value
of c; we will prove that Vol(C) ≤ 2−ck for any set C of k vectors. To this aim, we
argue by contradiction. The next lemma roughly states that if the volume of C is
large enough, then its vectors are almost equally distributed among the nodes of the
Label-Cover instance. This condition will in turn imply a small volume completing
our argument.

Claim 17 If Vol(C) ≥ 2−ck for c = 1/(3 · 5�+1), then

(1 − ε1)(5n/3)� < kVC
< (1 + ε1)(5n/3)�, (3)

(1 − ε2)n
� < kWC

< (1 + ε2)n
�, (4)

where ε1 = 1
3�+1 ((3/5)� + (3/5)2�) and ε2 = 1

3�+1 ((3/5)� + 1).

Proof First, we note that Vol(C) ≤ Vol(CV �) since all the vectors in the MAX-VOL
instance have unit norm. Similarly, Vol(C) ≤ Vol(CW�). Thus, by the premise of the
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claim, we have Vol(CV �) ≥ 2−ck and Vol(CW�) ≥ 2−ck . By Lemma 16, we get

(
√

3/2)dVC = 2dVC
(−1+log 3/2) ≥ Vol(CV �) ≥ 2−ck

which implies dVC
≤ ck/(1 − log 3/2) < 5ck since log 3 < 1.6. The analysis for dWC

along exactly the same lines also yields dWC
< 5ck. Noting the expressions for c

and k, and following the definitions, we obtain

kVC
= |V �(C)| + dVC

< |V �| + 5ck

= (5n/3)� + 1

3 · 5�
((5n/3)� + n�)

= (1 + ε1)(5n/3)�.

Similarly,

kWC
= |W�(C)| + dWC

< |W�| + 5ck

= n� + 1

3 · 5�
((5n/3)� + n�)

= (1 + ε2)n
�

which proves the right hand sides of (3) and (4). Noting that kVC
+ kWC

= k =
(5n/3)� + n�, we get

kVC
= k − kWC

> (5n/3)� + n� − (1 + ε2)n
�

= (5n/3)� − 1

3�+1
((3n/5)� + n�)

= (1 − ε1)(5n/3)�

and

kWC
= k − kVC

> (5n/3)� + n� − (1 + ε1)(5n/3)�

= n� − 1

3�+1
((3n/5)� + n�)

= (1 − ε2)n
�

which proves the left hand sides. �

Claim 17 ensures that if the volume of a set of k vectors exceeds 2−ck , then some
certain concentration result should hold, namely (3) and (4). We will now show that,
these equations imply Vol(C) < 2−ck which is our contradiction.

Without loss of generality, let V �(C) = {v1, . . . , vq}, W�(C) = {w1, . . . ,wp}.
Note that these sets contain the nodes of the Label-Cover instance from which C

“selects” at least one vector. Let Q = {Av1,i1, . . . ,Avq,iq } where Avs,is ∈ Cvs for
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s = 1, . . . , q . Let P = {Aw1,j1 , . . . ,Awp,jp } where Avs,is ∈ Cvs for s = 1, . . . , p. By
definition,

q = kVC
− dVC

> (1 − 2ε1)(5n/3)�, p = kWC
− dWC

> (1 − 2ε2)n
�.

In words, the set of nodes from which C selects at least one vector essentially covers
V � and W�. These vectors are all orthogonal. From this point of view, V �(C)) and
W�(C)) play an important role in our argument. Since C “covers” V � and W� and
since the Label-Cover instance has many unsatisfied edges, it means that the dot
products of many vectors in CV � with many vectors in CW� will be large. This will
lead to small volume. Hence, we are essentially interested in the number of unsatisfied
edges between V �(C) and W�(C). Since there are at most 2−α� satisfied edges in the
Label-Cover instance, and there are exactly 3� edges incident to a node in V �, the
number of unsatisfied edges incident to V �(C) is greater than (1 − 2ε1 − 2−α�)(5n)�.
Similarly, the number of unsatisfied edges incident to W�(C) is greater than (1 −
2ε2 − 2−α�)(5n)�. Thus, the number of unsatisfied edges whose end points are in
V �(C) and W�(C), is greater than (1 − 2ε1 − 2ε2 − 2−α�+1)(5n)�.

We now give an upper bound for the distance of the vectors in Q to P , namely
‖Avs,is − πP (Avs,is )‖2 for each Avs,is ∈ Q. To this end, we define the set N(Avs,is ) =
{Cw|e = (Avs,is ,w) is unsatisfied}. Note that the vectors in different sets are mutually
orthogonal, and by the reduction we have

Avs,is · Aw,j =
∑
e∈E�

Avs,is (e) · Aw,j (e) = bΠ�
e (i) · bj = 1

2 · 3�/2 · 5�/2

for Aw,j ∈ N(Avs,is ) since e = (Avs,is ,Aw,j ) is unsatisfied. Thus, by the Pythagoras
Theorem, we obtain

d(Avs,is , P ) = ‖Avs,is − πP (Avs,is )‖2 <

(
1 − |N(Avs,is )|

4 · 3� · 5�

) 1
2

.

Using the Union Lemma, we get

Vol(P ∪ Q) ≤ Vol(P ) ·
q∏

s=1

d(Avs,is , P )

< Vol(P ) ·
q∏

s=1

(
1 − |N(Avs,is )|

4 · 3� · 5�

) 1
2

.

The product in the last expression is maximized when all the factors are equal to
each other. We also previously showed that

∑q

s=1 |N(Avs,is )| > (1 − 2ε1 − 2ε2 −
2−α�+1)(5n)� and that q , the number of distinct nodes hit in V � satisfies, q > (1 −
2ε1)(5n/3)�. Hence, we obtain

Vol(P ∪ Q) < Vol(P ) ·
q∏

s=1

(
1 −

∑q

s=1 |N(Avs,is )|
q · 4 · 3� · 5�

) 1
2
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< Vol(P ) ·
q∏

s=1

(
1 − (1 − 2ε1 − 2ε2 − 2−α�+1)(5n)�

(5n/3)� · 4 · 3� · 5�

) 1
2

= Vol(P ) ·
(

1 − (1 − 2ε1 − 2ε2 − 2−α�+1)

4 · 5�

) q
2

< Vol(P ) ·
(

1 − (1 − 2ε1 − 2ε2 − 2−α�+1)

4 · 5�

) (1−2ε1)(5n/3)�

2

.

To simplify, let t = 4·5�

(1−2ε1−2ε2−2−α�+1)
. For � ≥ 1, we have

ε1 = 1

3�+1

(
(3/5)� + (3/5)2�

)
≤ 1

32

(
(3/5) + (3/5)2

)
< 3/20.

Noting that log e ≥ 10/7, we obtain log e · (1 − 2ε1) ≥ 10/7 · 7/10 = 1. Then, we get

Vol(P ∪ Q) < Vol(P ) ·
(

1 − 1

t

)t · (1−2ε1)(5n/3)�

2t

≤ e− (1−2ε1)(5n/3)�

2t

= 2− log e· (1−2ε1)(5n/3)�

2t

≤ 2− (5n/3)�

2t ,

where e is the base of the natural logarithm. In the second inequality, we have used
the fact that Vol(P ) ≤ 1 and (1 − 1

t
)t ≤ e−1 for t > 1.

We will now provide an upper bound for t to further simplify the last expression.
To this aim, let �′ be the smallest integer such that 2−α�′+1 ≤ 11/27. Taking loga-

rithms and rearranging, it is easy to see that �′ = � log ( 54
11 )

α
�. Note also that for � ≥ 2,

we have 2ε1 < 1/27 and 2ε2 < 3/27. Then, for � = �′, we get

t = 4 · 5�

(1 − 2ε1 − 2ε2 − 2−α�+1)
<

4 · 5�

(1 − 1
27 − 3

27 − 11
27 )

= 4 · 5�

(4/9)
= 9 · 5�.

Since k = (5n/3)� + n�, we also have

n� = k/(1 + (5/3)�) > k/(5/3)�+1,

which yields

Vol(P ∪ Q) < 2
− (5n/3)�

9·5� = 2
− n�

3�+2 < 2
− k

3·5�+1 = 2−ck,

which is our contradiction. Thus, the volume of a set of k vectors in a negative in-
stance of MAX-VOL cannot exceed 2−ck for c = 1

3·5�+1 . �
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We have shown that

– if the optimal value of the Label Cover instance is 1, then the optimal value of the
MAX-VOL instance is 1.

– if the optimal value of the �-fold Label Cover instance is less than 2−α�, then the
optimal value of the MAX-VOL instance is less than 2−ck .

By the combination of Theorem 10 and Theorem 12, we know that there exists a gap
producing reduction from SAT to �-fold Label Cover with parameters 1 and 2−α�.
This means that there is a polynomial time reduction from SAT to MAX-VOL such
that, given a formula φ

– if φ is satisfiable , then OPT(MAX-VOL) = 1.
– if φ is not satisfiable , then OPT(MAX-VOL) < 2−ck .

Thus, unless P = NP, MAX-VOL is inapproximable within 2−ck for some constant
c > 0.

4 Discussion

Our reduction heavily relies on Raz’ Parallel Repetition Theorem [26]. Indeed, it
doesn’t seem possible to get an exponential inapproximability result without parallel
repetition. But, since the degrees of the vertices in the Label-Cover instance exponen-
tially increases with respect to the number of repetitions, our constant c depends on
the constant α in Raz’ result. It might be possible to improve this constant by making
use of more sophisticated parallel repetition theorems, but we did not proceed so far.
Indeed, the exact analysis is irrelevant as the constant will be too small in all cases.
Overall, the strength of our result is directly related to the underlying theorems for
the inapproximability of Label-Cover.

Another way of getting a stronger hardness result is to find a more sophisticated
reduction. In our MAX-VOL instance, the subspaces “reserved” for each edge in
the Label-Cover instance are orthogonal to each other. This dramatically simplifies
the analysis, yielding perfect completeness, i.e. volume 1 in MAX-VOL. It might
be possible to construct a MAX-VOL instance for which these subspaces have some
pair-wise angle, so that we sacrifice the perfect completeness, but at the same time
get a much smaller soundness. This would improve the inapproximability result.

The obvious open problem is whether the inapproximability can be strengthened
to 2−k+1. Recall that this is the lower bound for the greedy algorithm for MAX-
VOL. Considering the multiplicative nature of the problem yielding a very small
approximation ratio for the obvious greedy algorithm, a significant improvement of
the upper bound would be expected to provide asymptotically better approximations
in the exponent. This suggests that the inherent hardness of MAX-VOL might be
very close to the performance of the greedy algorithm. However, with the techniques
we have used, it is not possible to break the dependence of c on the constant in the
parallel repetition theorems.

We would finally like to point out that the reduction and the analysis provided
in this paper might be a good starting point for studying hardness of other matrix
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approximation problems in general (e.g. [4, 11]) for which no technique related to
the PCP theorem have been used. Such an extension to other matrix approximation
problems is not trivial. Indeed, computing the volume is already difficult although
purely geometric intuition is used. Relating this to other linear algebraic functions
(e.g. singular values) which continuously depend on the entries will put even more
strain on the analysis.
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