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Abstract An edge dominating set in a graph G = (V, E) is a subset of the edges
D C E such that every edge in E is adjacent or equal to some edge in D. The
problem of finding an edge dominating set of minimum cardinality is NP-hard. We
present a faster exact exponential time algorithm for this problem. Our algorithm
uses O(1.3226") time and polynomial space. The algorithm combines an enumera-
tion approach of minimal vertex covers in the input graph with the branch and reduce
paradigm. Its time bound is obtained using the measure and conquer technique. The
algorithm is obtained by starting with a slower algorithm which is refined stepwisely.
In each of these refinement steps, the worst cases in the measure and conquer analysis
of the current algorithm are reconsidered and a new branching strategy is proposed
on one of these worst cases. In this way a series of algorithms appears, each one
slightly faster than the previous one, ending in the O(1.3226") time algorithm. For
each algorithm in the series, we also give a lower bound on its running time.

We also show that the related problems: minimum weight edge dominating set,
minimum maximal matching and minimum weight maximal matching can be solved
in 0(1.3226") time and polynomial space using modifications of the algorithm for
edge dominating set. In addition, we consider the matrix dominating set problem
which we solve in O (1.3226"*™) time and polynomial space for n x m matrices, and
the parametrised minimum weight maximal matching problem for which we obtain
an 0*(2.4179%) time and space algorithm.
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1 Introduction

Research on exponential time algorithms for finding exact solutions to NP-hard prob-
lems dates back to the sixties and seventies. Some natural problems such as indepen-
dent set [27, 30], colouring [20] and Hamiltonian circuit [15] have been studied for a
long time, while for other problems such as dominating set [9, 13, 28], treewidth [11]
and feedback vertex set [26] exact exponential algorithms with non-trivial running
times date from only recently.

There is renewed interest in these algorithms, also visible in a recent series of
surveys on the matter [10, 16, 29, 35, 36]. An important new technique is measure and
conquer [10, 13]. This technique allows us to derive better upper bounds on branch
and reduce algorithms by using non-standard measures of instance size. It reminds
us of the somewhat similar earlier approaches such as the approach of Kullmann to
prove upper bound on search trees for 3-SAT instances [19] or Eppstein’s quasiconvex
analysis of backtracking algorithms [6].

In this paper, we consider the minimum edge dominating set problem. This prob-
lem is identical to the problem of finding a minimum dominating set in a line graph.
While both the edge dominating set problem and the dominating set problem are NP-
hard [37], in some ways the problem restricted to line graphs is easier. For instance,
minimum dominating set is hard to approximate [7], while minimum edge domi-
nating set is constant-factor approximable [3]. Also from the parametrised point of
view, minimum dominating set most likely is not fixed parameter tractable (it is W[2]-
complete [4]), while minimum edge dominating set is fixed parameter tractable [8].
In the setting of exact exponential time algorithms, it also seems that the edge dom-
inating set problem is somewhat easier; the currently best known time bound for an
exact algorithm for minimum dominating set is O (1.4969") [32] (see also [13, 33,
34]), while in this paper we present an O (1.3226") time algorithm for minimum edge
dominating set.

The first exact algorithm for edge dominating set is from 2005 due to Randerath
and Schiermeyer [28] who gave an algorithm of time complexity O(1.4423™). Ra-
man et al. [25] gave an O (1.4423") algorithm and recently Fomin et al. [12] improved
this to O (1.4082").

In this paper we further investigate the idea of enumerating minimal vertex covers
in order to compute the minimum edge dominating set. Although this technique has
already been used frequently on this problem, we were able to formulate reduction
rules applied during the enumeration of the minimal vertex covers, which allow us to
create a faster algorithm. These reduction rules are derived from the manner in which
these vertex covers are used for solving the edge dominating set problem. Our first
algorithm already improves on the literature by using these reduction rules, but no
complicated techniques at all. The time bound for this algorithm is tightened consid-
erably more by analysing it with measure and conquer. Furthermore the measure and
conquer methodology allows us to create a series of improved algorithms for which
we can derive even smaller upper bounds on their running times.
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We also show that our ideas for minimum edge dominating set extend to minimum
maximal matching and matrix dominating set, and with some more modifications also
to minimum weight edge dominating set and minimum weight maximal matching.
A consequence of our results also solves a problem left open by Fernau in [8] and
gives an O*(2.4179%) time algorithm for the parametrised minimum weight maximal
matching problem.

We will first introduce some notation, concepts and the problems under study in
Sect. 2. Then, in Sect. 3, we will show how we use minimal vertex covers to obtain an
exact algorithm for the edge dominating set problem with a running time exponential
in the number of vertices, not edges. In Sect. 4 we improve upon this algorithm by
introducing reduction rules and a change in the branching strategy of the algorithm,
which we later analyse using measure and conquer in Sect. 5. In Sect. 6 we further
change the branching strategy of the algorithm and obtain an O (1.3226") time and
polynomial space algorithm. Finally in Sect. 7 we extend our results to weighted edge
domination problems.

2 Preliminaries

Let G = (V, E) be an n-node undirected simple graph. Let G[V’] be the subgraph of
G induced by a subset V' C V and let L(G) be the line graph of a graph G: L(G) =
(E,{{e1,e2} | Fpev v € e1 Av € e2}). Letbe N (v) the open neighbourhood of a vertex
v € V, N[v] be the closed neighbourhood of v € V (N[v] = N(v) U {v}), and, for a
vertex v € V', let Ny (v), Ny/[v] be the open, respectively closed, neighbourhoods of
vin G[V']. Ny/(V") is an extension of this notation to neighbourhoods of V" C V:
Ny (V") = (Uyeyr Ny (W\V”, Ny [V"] = J,ey» Ny’ [v]. For vertex v € V/ with
V' C V, we define the V’-degree of a vertex v to be the degree of v in G[V'].

A subset D C V is a dominating set in a graph G if for every vertex v € V there
exists a vertex w € D such that v € N[w]; we say that w dominates v in this case.
A minimum dominating set is a dominating set of minimum cardinality in a given
graph. The minimum edge dominating set problem is: given a graph G, find a mini-
mum dominating set in the line graph L (G). Equivalently, look for the smallest edge
dominating set: a subset D C E such that every edge e € E is dominated by an edge
f € D, where f dominates e if e and f have an end point in common. For an edge
weight function w : E — R>q the minimum weight edge dominating set problem is:
given a graph G, find an edge dominating set D of minimum total weight )", ,, w(e).

An independent set in a graph G is a subset / € V such that no two distinct ver-
tices v, w € [ are adjacent to each other and a vertex cover in G is a subset C C V
such that every edge e € E is incident to some vertex v € C. Notice that the comple-
ment of an independent set is a vertex cover and vice versa. A maximal independent
set is an independent set such that for each v € V\I, I U {v} is not an independent
set. The complement of a maximal independent set is a minimal vertex cover, i.e., a
vertex cover C such that for each v € C, C\{v} is not a vertex cover.

A matching in a graph G is subset M C E such that no two distinctedges e, f € M
have an end point in common. A maximum matching is a matching of maximum
cardinality, a maximal matching is a matching M such that for every e € E, M U {e}
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Algorithm 1 Simple Edge Dominating Set Algorithm
Input: a graph G = (V, E)
QOutput: a minimum edge dominating set in G

1: compute the set C of all minimal vertex covers in G

2: for all minimal vertex covers C € C do

3 let C; be the set of all isolated vertices in G[C]
4:  compute a minimum edge cover C’ in G[C\C;]
5
6

let D¢ be C’ plus an extra edge for each vertex in C; containing this vertex
: return the D¢ encountered of minimum cardinality

is not a matching, and a perfect matching is a matching M such that for every v € V
there exists an edge e € M incident to v. Finally, an edge cover is a subset C' C E
such that every vertex v € V is incident to an edge e € C’. Maximum matchings and
minimum weight perfect matchings can be computed in polynomial time [5]. As a
consequence an edge cover of minimum cardinality (minimum edge cover) can be
computed in polynomial time also by computing a maximum matching and adding
for each unmatched vertex an edge incident to it.

An interesting related problem is minimum maximal matching: given a graph G,
find a maximal matching of minimum cardinality. This is equivalent to the minimum
independent edge dominating set problem, where independence between edges is in-
terpreted in terms of the line graph. For this problem we also consider the weighted
variant minimum weight maximal matching: given a graph G, find a maximal match-
ing of minimum total weight.

Another interesting related problem is matrix dominating set. In this problem, we
are given an n x m 0—1 matrix and we need to find a set of 1 entries of minimum
cardinality such that every 1 entry is on the same row or column as a selected 1-entry.
As noted in [37] this problem is equivalent to bipartite edge dominating set: a matrix
M that is an instance of matrix dominating set corresponds to the instance of bipartite
edge dominating set where there exist a vertex for each row and each column, and an
edge between a row vertex and a column vertex if and only if its corresponding entry
inMisal.

3 Using Minimal Vertex Covers

We start by first giving a simple exact algorithm for the edge dominating set problem.
This algorithm is based upon the following observation; see Algorithm 1.

Proposition 1 If D C E is an edge dominating set in G = (V, E), then C = {v €
V|3eep v € €} is a vertex coverin G.

Proof For each e € E, there is an edge f € D that dominates e, i.e., e and f have an
end point in common. This endpoint belongs to C and therefore C is a vertex cover. [J

Theorem 1 Algorithm 1 solves the minimum edge dominating set problem in
0(1.4423™) time.
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Proof We prove that the minimum size of an edge dominating set in G equals the
minimum cardinality of a set D¢ as computed by Algorithm 1 over all minimal vertex
covers C in G. From this the correctness follows.

If C is a minimal vertex cover, then D¢ is an edge dominating set, for if any edge
is not dominated then both endpoints are not in C which contradicts C being a vertex
cover. Therefore, the algorithm returns an edge dominating set. To see that it is of
minimum size, consider a minimum edge dominating set D in G. By Proposition 1,
its endpoints form a vertex cover C in G. From this vertex cover C, a minimum edge
dominating set can be reconstructed by computing a minimum edge cover in G[C].
The vertex cover C does not need to be minimal, but for any minimal vertex cover
C1 C C, the edges incident to a vertex v € C\C are all dominated by any choice of
edges incident to the vertices in C. Thus, D¢, constructed by Algorithm 1 from the
minimal vertex cover C; dominates the same edges as D. And, it is not larger than
D since the edge cover D¢, needs to cover only a subset of the vertices in C. Hence,
D¢, is a minimum edge dominating set.

The running time is derived from the Moon and Moser bound [22] on the number
of maximal independent sets, and hence minimal vertex covers in G: this number
is bounded by 3"/3 < 1.4423". Enumerating all minimal vertex covers can be done
with only polynomial delay [17, 21], therefore Algorithm 1 has a running time of
0(1.4423"). d

Following the notation of the proof, the smallest edge dominating set which con-
tains C C V as endpoints will be denoted by D¢ from now on.

By using a standard technique from [14], this also gives an algorithm for the min-
imum maximal matching problem.

Corollary 1 The minimum maximal matching problem can be solved by a modifica-
tion of Algorithm 1 in O (1.4423") time.

Proof Take the minimum edge dominating set computed by Algorithm 1. Let {u, v},
{v, w} be a pair of dominating edges incident to the same vertex v. By minimality
there cannot be another dominating edge incident to w (remove {v, w} for a smaller
edge dominating set). Also, there must be a vertex x adjacent to w without any in-
cident dominating edge, for otherwise the edge dominating set without {v, w} would
be a smaller edge dominating set. Hence, we can replace {v, w} by {w, x} obtaining
an edge dominating set with one pair of not independent dominating edges less and
repeating this process results in a minimum maximal matching. g

4 Exploiting Properties of Edge Dominating Sets

The 3"/3 upper bound on the number of minimal vertex covers in a graph G is tight;
consider the family of graphs consisting of / triangles: these graphs have 3/ vertices
and 3/ minimal vertex covers. However, from the perspective of computing a mini-
mum edge dominating set, this class of graphs is trivial: just pick an edge from each
triangle.

In this section we use properties of edge dominating sets in order to enumerate
fewer minimal vertex covers, avoiding situations of the type we just described, and in
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this way we introduce a faster algorithm than the simple algorithm of Sect. 3. These
modifications are very simple, yet powerful enough to already improve upon the algo-
rithm by Fomin et al. [12] which uses far more complicated techniques. First we will
introduce a reduction rule and secondly we will introduce a more efficient branching
strategy. Like Algorithm 1, the new algorithm enumerates a series of minimal vertex
covers, and computes for each of these minimal vertex covers C the smallest edge
dominating set D¢ that contains the vertices C in its set of endpoints. To this end,
it continuously keeps track of a partitioning of the vertices of G in three sets: a set
C of vertices that must become part of the minimal vertex cover, a set / of vertices
that may not become part of the minimal vertex cover (they are in the complementing
maximal independent set), and a set U of vertices, which we call the set of undecided
vertices. We denote such a state by the four-tuple (G, C, I, U).
We introduce the following rule:

Rule 1

if G[U] contains a connected component H which is a clique then
let G be the graph obtained from G by adding a new vertex v connected to all
vertices in H
C:=CUHU{v); U:=U\H
recursively solve the problem (G, C A, U ) and let D be the resulting edge dom-
inating set
if D contains two distinct edges {u, v}, {v, w} incident to v then
return (D\{{u, v}, {v, w}}) U {{u, w}}
return D\({{u, v}}, where {u, v} is the unique edge in D incident to v

A simpler rule can be used for clique components of size 1 or 2. Isolated vertices
in G[U] can be put into /. K, components in G[U] can be put into C if they have
no neighbours in C in G, and they can be contracted after which we put the resulting
vertex into C, otherwise.

Proof of Correctness After the recursive call the extra vertex v is incident to at least
one edgein D, since v € C. Also v is incident to at most two edges in D, for otherwise
two such edges can be replaced by the edge joining the other endpoints which gives
a smaller edge dominating set with C as a subset of the set of endpoints.

All clique edges in the original graph are dominated if at most one clique vertex
is not incident to a dominating edge. Therefore if D contains only one edge incident
to v, removing this edge results in an edge dominating set in the original graph with C
as a subset of its set of endpoints. Because D is of minimum cardinality (in G) and
the returned set is of cardinality one smaller it must also be of minimum cardinality
(in G): if it is not then adding the edge between the unique vertex of the clique that
is not an endpoint in the edge dominating set and D results in a smaller alternative
for D.

If D contains two edges incident to v, replacing these by the edge joining the other
endpoints also results in such an edge dominating set in the original graph. This edge
dominating set is also of minimal cardinality because adding any edge incident to v
gives an alternative for D. O
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Algorithm 2 Faster Edge Dominating Set Algorithm
Input: a graph G = (V, E)
QOutput: a minimum edge dominating set in G
I =0,C.=0,U .=V
if G[U] contains a connected component H which is a clique then
apply Rule 1
else if a vertex v of maximum degree in G[U] has U-degree at least three then
create two subproblems and solve each one recursively:
1: (G,CU Ny (v), I U{v}, U\Ny[v]) 2: (G,CU{v}, I,U\{v})

else
for all minimal vertex covers C on G[U] do
compute the candidate edge dominating set D &
return the smallest edge dominating set encountered

R e A A S ol S

._
4

If Rule 1 does not apply, Algorithm 2 picks any undecided vertex v € U of max-
imum degree in G[U] (maximum number of undecided neighbours in G). If v has
U-degree at least three we branch on this vertex generating two subproblems. In one
subproblem v is put in the independent set /; because no neighbour of v can also
be in the independent set I these neighbours (at least three) are all put in the vertex
cover C. In the other subproblem v is put the vertex cover C. We note that this may
result in the construction of vertex covers which are not minimal, but all minimal
vertex covers are enumerated in this way.

If v has U-degree smaller than three, G[U] is of maximum degree at most two
and due to Rule 1, G[U] does not contain a connected component that is a clique.
Therefore, G[U] now consists of a collection of paths on at least three vertices and
cycles on at least four vertices. In this case, Algorithm 2 enumerates all minimal
vertex covers on these paths and cycles.

For each resulting partition of V in an independent set I and a vertex cover C,
Algorithm 2 computes a candidate for the minimum edge dominating set D¢ in the
same way as Algorithm 1 and returns the candidate of minimum cardinality.

Theorem 2 Algorithm 2 solves the minimum edge dominating set problem in
0 (1.3803") time and polynomial space.

Proof Correctness of the algorithm follows directly from the proof of Theorem 1 and
the correctness of Rule 1.

Let P(l) be the number of maximal independent sets on a path and C(/) be the
number of maximal independent sets on a cycle on [ vertices. For each vertex in a
maximal independent set / in a path, the next vertex in / must be at distance two or
three; hence:

Py=1 PQ=2 PGB =2 V4:PO)=P(1—2)+P(—3)
1>3:P(l)<p" where Bistherootof 1 =82+ and B <1.33

The latter follows by induction after noting that it holds for [ € {3, 4, 5}.
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For cycles on [ < 6 vertices, a simple enumeration gives C (/). For [ > 7 consider
an arbitrary vertex v on a cycle on / vertices. If v is in a maximal independent set /,
then neither of its neighbours are, leaving P (I — 3) possibilities. If v & I, then one or
both of its neighbours are in /. Each of the cases where one neighbour is in I leaves
P (I —6) possibilities because by maximality of I the neighbour of the neighbour of v
that is not in / must belong to /. In the case that both neighbours are in / five vertices
are fixed leaving P (I — 5) possibilities. Hence:

cC4)=2 Cc)=5 C)=5 Vi>7:C)y=PU-3)+PU-5)+2P(—-6)

Let u be the number of undecided vertices in our problem instance (initially u = n),
and S(u) be the number of subproblems generated to solve an instance with |U| = u.
We have:

S(u — 1)+ S(u —4) branch on a vertex of U-degree at least three

PDOSwu—1) enumerate minimal vertex covers in a path
Su) < on [ vertices
CHSw—1) enumerate minimal vertex covers in a cycle

on [ vertices

Because of the branching on a vertex of degree three S(u) < o, where « is the
solution to 1 = o~ 4+ «~*. For the enumeration of minimal vertex covers in paths
Su) < B'Sw —1) < pla*~! < o, because B < «. And also for the enumeration
of minimal vertex covers in cycles S(u) < o, since the solution to y* = C([)y*~!
converges to y =  when [ — 0o and reaches its maximum on / > 4 when [/ = 5;
here y < 1.379 < o < 1.3803. The worst case over these three possibilities gives
S(u) < a* which results in the running time of O (poly(n)a™) or O (1.3803%).

The collection of minimal vertex covers constructed is not being stored, the
enumeration search tree is traversed, therefore the algorithm uses only polynomial
space.

Remark 1 We cannot improve Algorithm 2 by putting more paths or cycles in the
polynomial part of the algorithm (assuming P ## NP). This is because one can show
that the following problem is NP-hard. Given a graph G = (V, E) and a set of marked
vertices C, find a minimum edge dominating D set in G that satisfied the following
two properties:

e all marked vertices are an endpoint of an edge in D.
e G[V \ C] (this is G[U] in our algorithms) is a collection of paths on at most three
vertices.

Consider a SAT instance on variables xi, xp, ..., x, and clauses ¢y, c2, ..., Cn.
We can safely assume that all variables x; occur at least once as a positive literal and
at least once as a negative literal.

Introduce a marked vertex (a vertex in C) for each clause. We will connect this
clause vertex to gadgets representing the variables; this is done such that the edge
between the gadget and this clause vertex will be selected in the minimum edge dom-
inating if and only if the corresponding literal is 7rue. Notice that because the clause
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vertex is marked it must be an endpoint of at least one edge in the required minimum
edge dominating set.

Next, introduce a marked vertex (a vertex in C) incident to two edges for each vari-
able. One of both edges must be selected since the variable vertex is a marked vertex,
and which one is selected represents whether the variable is set to True or False. If the
variable occurs only once as a positive or only once as a negative literal, we directly
connect the corresponding edge to the vertex representing the corresponding clauses.
Otherwise, we let the edge be incident to the middle vertex of an unmarked path on
three vertices; these are the only unmarked vertices in our construction and these are
of length at most tree as claimed. Each of the two endpoints of this path will be con-
nected to a new marked vertex v; and v,. These vertices v; and v, are both incident
to one more edge which other endpoint we will assign soon. Suppose that the path
is connected to the True edge of a variable vertex while this variable is set to True.
In this case, the edges of the path are dominated by the selected edge of the variable
vertex, and it is always optimal to pick the second edge (with so far unassigned other
endpoint) of vy and v,. If the current variable x; occurs twice as a positive literal, we
can now connect v and v, to the corresponding clause vertices. Otherwise, we can
add more of these path gadgets to increase the number of occurrences to any positive
number. We repeat the same construction for the negative literals of the variable, and
for all variables.

Since all marked vertices that are not clause vertices are non-adjacent, any mini-
mum edge dominating set that contains all marked vertices as endpoints uses at least
|C| —m edges. It is not hard to see that such an minimum edge dominating set of size
|C| — m exists if and only if the corresponding SAT instance is satisfiable.

In this NP-hardness proof, the paths on three vertices can easily be replaced by
cycles on four vertices.

5 Measure and Conquer

When we branch on a vertex of large degree in G[U], not only will it be removed
from U, it will also reduce the degrees of its neighbours in G[U] in one branch, and
it will reduce the degrees of the vertices at distance two in G[U] in the other. Since
we can deal with vertices of U-degree at most two (collections of paths and cycles in
G[U]) in less time than we need for vertices of U-degree three or four, this reduction
of the degrees means additional progress for the algorithm. In this section we show
how we can keep track of this additional progress by using the measure and conquer
technique [10, 13]. In combination with a slightly changed branching strategy on
paths and cycles in G[U] this leads to an improved time bound.

We first modify the enumeration of minimal vertex covers on paths and cycles:
Algorithm 3 no longer enumerates all minimal vertex covers, but instead branches
on the third vertex v of a path on at least four vertices and applies Rule 1. In one
branch, v is put in the independent set resulting in the removal of four vertices: v,
its neighbours, and the remaining isolated vertex. In the other branch, v is put in the
vertex cover resulting in the removal of three vertices: v and the first two vertices
of the path, since they now form a 2-clique in G[U]. Using this branching strategy
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Algorithm 3 Third Edge Dominating Set Algorithm
Input: a graph G = (V, E)
QOutput: a minimum edge dominating set in G
I =0,C.=0,U .=V
if G[U] contains a connected component H which is a clique then
apply Rule 1
else if a vertex v of maximum degree in G[U] has U-degree at least three
or G[U] contains a connected component H which is acycle on/ > 5 vertices,
v € H then
create two subproblems and solve each one recursively:
1: (G,CUNy (v), I U{v}, U\Ny[v]) 2: (G, CU{v}, I, U\{v})
7: else if G[U] contains a connected component which is cycle on four vertices
then
8:  Let vy, va, v3, v4 be the vertices along the cycle and recursively solve the sub-
problems:
9: 1: (G, C U {vy, v3}, I U{va, v4}, U\{v1, v2, v3, v4})
2: (G, CU{vz, v4}, I U{vy, v3}, U\{v1, v2, v3, v4})
10: else if G[U] contains a connected component which is a path on [ > 4 vertices
then
11:  Let vy, va, v3, v4 be the vertices at an end of the path and recursively solve the
subproblems:
12: 1: (G, C U {vy, v4}, I U{vy, v3}, U\{v1, v2, 13, v4})
2: (G, C U{vs}, I, U\{v3})
13: else if G[U] contains a connected component which is a path on three vertices
then
14:  Let v be the middle vertex and recursively solve the subproblems:
15: 1: (G,CU Ny (v), I U{v}, U\Ny[v])
2: (G, CU{v}, 1 UNy(v), U\Nylv])
{Now: U =0, CU I =V}
16: else
17:  compute the candidate edge dominating set D¢
18: return the smallest edge dominating set encountered

BNz

on paths, we break cycles on at least five vertices by branching in two subproblems:
pick any vertex v and put v in the vertex cover or put v in the independent set and
its neighbours in the vertex cover. Finally, we still enumerate all minimal vertex cov-
ers on remaining paths on three vertices or cycles on four vertices. This results in
Algorithm 3.

We estimate the number of subproblems generated by branching on paths and
cycles:

Lemma 1 For Algorithm 3 and | > 4:

1. A cycle component C; in G[U] generates a maximum of 4'/% subproblems.
2. A path component Py in G[U] generates a maximum of 4/=D/6 subproblems.
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Notice that we can repeatedly encounter these cycles and paths, and hence these
numbers are multiplied. Therefore we need exact bounds on the number of subprob-
lems generated in this way.

Proof (1) Let P’'(I), C'(I) be the number of subproblems generated by Algorithm 3
when dealing with a path or cycle on [ vertices, respectively. Derive the values of
P’(l) and C’(I) for I <4 directly and consider the following recurrence relation:

P(H=P2)=C@3)=1 PB3)=P@d=C@=2
Vi=s: P'()=P'(1-3)+P (-4 CO=PI-1)+P(1-3)

Let y be the solution to 1 =y 3 4+ y~*. For [ > 4, P'(l) < y! follows by induction
after noting that it holds for / € {4, 5, 6, 7}. For [ > 10 we have:

l
C'O <y y =y 4y = (y\’/y—l + y—3> <@/

using the fact that \/y =1 + y =3 is decreasing and smaller than 4!/¢ if / > 10. Direct
computation shows that for [ < 10: C’(I) < 41/6,
(2) For [ > 8, yl/ =D g decreasing and smaller than 41/6 therefore:

P'() < yz — (yZ/(H))I_l < (41/6y-1
For4 <l <7: P'(l) < 4d=D/6 by direct computation. O

These estimates are tight: when Algorithm 3 branches on a C¢ component in G[U]
(I = 6), we indeed generate 4 = 4/ subproblems.

For the measure and conquer analysis we need a weight function w : N — [0, 1]
assigning weights w(d) to vertices of degree d in G[U]. Instead of counting the
number of undecided vertices to measure the progress of our algorithm, we will now
use their total weight k =) ., w(degg((v)) as a measure of complexity. This is
justified by the fact that if we can show that our algorithm runs in O () time using
weight function w, it will also run in O(«") time, since for any problem instance
k<n.

Theorem 3 Algorithm 3 solves the minimum edge dominating set problem in
0 (1.3323") time and polynomial space.

Proof Let w : N — [0, 1] be the weight function assigning weight w(degg;(v)) to
vertices v € G[U]. The algorithm removes all vertices of U-degree zero, therefore
w(0) =0. Let Aw(i) = w(i) — w(@ — 1). Vertices with a larger U-degree should be
given a larger weight, hence we demand: V,,>1 Aw(n) > 0. Furthermore we impose
non-restricting steepness inequalities: V,,>1 Aw(n) > Aw(n + 1).

Consider an instance where the algorithm branches on a vertex v of maximum U -
degree d > 3 with r; neighbours of degree i in G[U] (d = Zf-l: 1 7i)- If v is put in the
vertex cover, it is removed from U and the U-degrees of all its neighbours in G[U]
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are decreased by one. If v is placed in the independent set then Ny [v] is removed
from U, and the total sum of the degrees of the remaining vertices is reduced by at
least d»; here d is a lower bound on the number of edges between Ny [v] and vertices
at distance two from v in G[U]:

d
dy = (Z(i — 1)ri) mod 2 except when d =r3 =3 then: dp =2
i=1

This follows from a parity argument: there must be an edge in G[U] with only one
endpoint in Ny[v] if 1 = Zflzl(i — D)rj (mod 2). Also Ny[v] cannot be a clique
by Rule 1, hence if d = r4 there must be at least two edges in G[U] with only one
endpoint in Ny [v].

Altogether we conclude that the algorithm recurses on two instances which are
reduced Ajugep and A, in the measured complexity:

d d
Nindep =w(d) + Y _riw(@i) + daAw(d) Ay =w(d) + Y _riAw(i)

i=1 i=1

Let S(k) be the number of subproblems generated to solve a problem of measured

complexity k. For all d > 3 and (d = Zf-l: 1 i) we have a recurrence relation of the
form:

Stk) < Stk — Aindep) + Sk —Ay)

We define g (w) to be the functional mapping a weight function to the solution of this
entire set of recurrence relations.

By Lemma 1, an [-cycle or [-path generates a maximum of 4!/, respectively
40=1/6 " subproblems. An [-cycle has a measured complexity of at least [ - w(2)
and a path on / vertices has a measured complexity of at least (I — 1) - w(2), since
Aw(1) > Aw(2) and hence 2w(1) > w(2). Therefore, in an instance where the ver-
tices in cycle components and path components on at least four vertices in G[U] have
measured complexity k’; the removal of these vertices from U by Algorithm 3 results
in a maximum of 4%/6w(2) subproblems.

We now look for the optimal weight function w : N — [0, 1], satisfying the re-
strictions, such that the following maximum over the worst case behaviours of the
different branch cases is minimum. We distinguish between the case where the max-
imum U-degree is three or more, the case where cycles and paths on at least four
vertices are removed from G[U], and the case where a path on three vertices is re-
moved from G[U].

k
Sk) < min max{q(w), 41/6w@ 21/(’”(2)+2w(]))}
— \w:N—=[0,1]
By setting from some large enough integer p > 3: V;>,w(i) = 1 we obtain a finite

problem with the recurrence relations for 3 <d < p+ 1 and d = Zle ri. In this
finite problem all recurrences with d > p + 1 are dominated by those withd = p 4 1.
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Fig. 1 Lower bound graphs 1 2

As a result we have obtained a quasiconvex program [6]. Solving this numerically,
we obtain the optimal weights and a solution o < 1.3323:

w(1)=0.750724  w(2) =0.914953 V=3 w(i) =1

Therefore an instance of measured complexity k generates less than 1.3323% subprob-
lems, leading to the upper bound on the running time of O (1.3323"). Since we do not
store any subproblems, but just traverse an enumeration tree, we use only polynomial
space. O

Since measure and conquer analyses only provide upper bounds on the running
time of an algorithm, it is useful to consider lower bounds also.

Proposition 2 The worst case running time of Algorithm 3 is €2(1.3160™).

Proof Consider the class of graphs consisting of [ disjoint copies of Graph 1, in
Fig. 1. On each individual copy, Algorithm 3 can branch on the leftmost vertex result-
ing in two subproblems: one where this entire copy is removed from U and one where
a path of length three remains in G[U]. This leads to a total of three subproblems for
each copy of the graph. Therefore Algorithm 3 generates 3/ = 3"/ > 1.3160" sub-
problems on this class of graphs. This proves the €2 (1.3160") lower bound. g

6 Improving the Worst Cases

It is often a good idea to reconsider the quasiconvex program obtained from a measure
and conquer analysis. The quasiconvex function optimised in the proof of Theorem 3
equals the maximum over the solutions to a series of recurrence relations: one for
each subcase considered. The solution to this quasiconvex program is an optimal
point x € R”. In x, or any other feasible point in R”, some of the solutions to the
individual recurrence relations are tight to the maximum. If one slightly varies the
weights at this optimum x, the solutions to these tight recurrence relations increase
(by optimality of x). If we now change our algorithm in such a way that it handles
such a tight subcase in a more efficient way, the corresponding recurrence relation
changes: its solution becomes smaller. In this case we can move out of x to a new
optimum, with a necessarily smaller maximum over the solutions of the recurrence
relations. This results in a smaller upper bound on the running time. This idea was
first introduced in [33] for the design of algorithms for minimum dominating set
and was named design by measure and conquer. This technique will be used in this
section to obtain a series of algorithms that improve upon Algorithm 3.

The quasiconvex program associated with Algorithm 3 (see the proof of Theo-
rem 3) gives the following tight worst cases:
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1. d=3,r=2,r3=1,1.e., we have a vertex of maximum U -degree three, with two
neighbours in G[U] of U-degree two and one neighbour in G[U] of U-degree
three.

2. d =3,r3 = 3: we have a vertex of maximum U-degree three, with three neigh-
bours in G[U] of U-degree three.

3. aconnected component in G[U] is a path on three vertices.

We can improve upon the first two cases, while improving upon the third seems hard
(see Remark 1). Consider the first case. In this case, v is a vertex of maximum U -
degree where the algorithm branches on. It has degree three with two neighbours
uy,ur € U of U-degree two and one neighbour u3z € U of U-degree three. In our
analysis of Sect. 5, we had a lower bound d> on the number of edges between Ny [v]
and the vertices and distance two from v; for this case we had d» = 0. We can now
consider two subcases.

In the first subcase v, u1, up and u3 form a connected component in G[U], iso-
morphic to Subgraph 1 in Fig. 2. Algorithm 3 branches on v. We modity this now, by
instead branching on one of the U-degree two vertices, e.g., u1. In both subproblems
that are obtained after branching on u 1, the vertices of the subgraph that remain in U
form a clique in G[U], and so are dealt with by Rule 1. Therefore the entire subgraph
disappears from G[U] after one branching step and application of Rule 1, while pre-
viously, we had a path on three vertices remaining in G[U] in one subproblem that
required another branching step.

In the second subcase u1, up and/or u3 are adjacent to vertices in U\{v, uy, uz, us}.
If we branch on v, then these vertices will have their U-degrees reduced by one in
one branch, implying a larger progress than estimated in Sect. 5: by a parity argument
we can use dr = 2 as a new lower bound on the number of edges between Ny [v] and
the rest of G[U].

Thus we modify the algorithm and split this case in two subcases in the measure
and conquer analysis. The optimum of the resulting quasiconvex program proves an
upper bound on the running time of O(1.3315") for this modified algorithm.

Arguments, similar to the argument given above for the case d =3, =2,r3 =1
can be given in a large number of other cases as well. This leads to a series of im-
provement steps, and a series of algorithms: each algorithm slightly improves upon
the previous. We give the other improvements on the algorithms in a more schematic
manner. Listed in the order in which they appear as worst cases in the improvement
series, we introduce the following set of alternative branching strategies to Algo-
rithm 3. The numbering corresponds to the subgraphs of G[U] drawn in Fig. 2. We
refer to the vertex on which the previous algorithm could branch as v (leftmost vertex
in the Fig. 2), and we denote the reductions in measured complexity of the subprob-
lems generated by the alternative branching strategy by A1, Ay, .... Ateach subcase,
we either increase the current lower bound d; on the number of edges between Ny [v]
and the rest of G[U], or find other means of increasing the lower bound on the total
reductions in measure when branching (A;,4ep and A,.). See Table 1 for the upper
bounds on the running times of the individual algorithms in the series.

1. d =3,rp, =2,r3 = 1. See introductory example. The subcase tight to d» = 0 is
handled more efficiently by branching on a U-degree two vertex. This results in
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The leftmost vertex in every subgraph corresponds to a vertex we could branch on in Algorithm 3 and grey
vertices represent more efficient alternatives. If multiple vertices are grey, simultaneously branch on these
vertices generating four or eight subproblems. Crossed vertices represent vertices branched on directly
hereafter, but only in the subproblems where this induces extra 1, 2 or 3-cliques. Sometimes small path

components remain in a subproblem; these are immediately branched upon also.

Unfinished edges always connect to vertices outside the drawn subgraph, and there are no other edges in

G[U] between vertices with at least one drawn endpoint. Dashed edges are optional.

Fig. 2 More efficient branching strategies on possible subgraphs of G[U]

Table 1 Bounds on the running times of the algorithms in the improvement series

Strategies ~ None 1 12 1-3 1-4 1-5 1-7 1-8 1-9
o™ 1.3323  1.3315 1.3296 1.3280 1.3265 1.3248 1.3240 1.3228 1.3226
Q(x") 1.3160  1.2968  1.2968 1.2968 1.2968  1.2753 1.2753 1.2753 1.2753

A1 = Ar =2w(3) 4+ 2w(2). All other subcases have at least two edges with only
one endpoint in Ny [v], thus: d» = 2.

. d=13,r=1,r3 =2. If there is a unique edge in G[U] with only one endpoint
u in Ny[v], then u has U-degree three. Branch on u and apply Rule 1 to any 3-
clique remaining in G[U]. Because the other vertex incident to this unique edge
has weight at least w(1), and when its U-degree is reduced by one this reduces its
weight by at least Aw(3), we derive A1 =3w(3) + w2) + w(l), Ay =3w(@3) +
w(2) + Aw(3). For the other subcases with d = 3,r, = 1, r3 = 2 the number of
edges from Ny [v] to the rest of G[U] is at least 3 by a parity argument. Hence,
we can now use dr = 3 for these cases.

. d =3,rp =3. Similar to Case 2: Ay = w@3) + 3w®2) + w(l), Ay = w@?3) +
3w(2) + Aw(3). For the remaining subcases, we have that d, = 3.
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4. d=3,rp=2,r3 = 1. Case 1 reappears; consider four more subcases representing
dy=2.

(a) Both edges with only one endpoint in Ny [v] are incident to the same vertex
u € Ny (v). Branch on u and apply Rule 1 if possible; this is similar to Cases 2
and 3. A1 =2w(3) + 2w ) + 2w (1), Ay =2w3) + 2w(2) + 2Aw(3).

Let u, w € Ny (v) be incident to the edges with only one endpoint in Ny [v] such

that u has U-degree two and w has U -degree three.

(b) Both edges in G[U] with only one endpoint in Ny [v] are incident to the same
vertex x ¢ Ny (v). Branch on x, and if it is put in the vertex cover also branch
on v. Because paths on two vertices are removed from G[U]: A1 = Ay =
Az =2w3) +3w(2).

(c) If the vertex outside of Ny[v] adjacent to w in G[U] has U-degree one,
branch on w. This represents a different case of the quasiconvex program:
d=3,ri=rn=r3=1.

(d) If the vertex x ¢ Ny[v] that is adjacent to w in G[U], has U-degree
two or three, branch simultaneously on x and u. A; = 2w(3) + 3w(2) +
min(w(2), 2w(l)), Az = Az =2w3) + 3w2) + w() + Aw3), A4 =
2w(3) +3w(2) + 2Aw(3). For A| we use the minimum extra reduction over
the subcase where two edges with one endpoint in Ny [v] are incident to the
same vertex or to two different vertices outside Ny [v].

For all other subcases with d = 3, r, =2, r3 = 1 we now have d, = 4.

5. d =3,r; = 3. Because of Rule 1: d» = 2. In Sect. 7 we discuss variants of our
algorithm for which we do not have a reduction rule dealing with this subcase.
Therefore we consider the subcase with d» = 0 as if the reduction rule was not
in our algorithm: remove it using two subproblems by branching on any vertex.
A=Ay =4w(3).

The rest of this case is identical to Subcases 4(b—d), with A = Ay = A3z =
4w(3) + w(2) in Subcase (b), and A = 4w(3) + w(2) + min(w(2), 2w(1l)),
Ay =A3=4wB) + w®@) + w(l) + Aw3), Ay =4wB) + w2) + 2Aw(3) in
Subcase (d). For all remaining subcases set d» = 4.

6. d =3,rp =1,r3 =2. As we handled Case 2 earlier, we have d» = 3. Suppose
that the U-degree two neighbour of v is adjacent to another neighbour of v in
G[U]. See Case 7 when this extra condition does not apply. Let 7' be the 3-clique
(triangle) in G[U] containing v.

(a) A vertex u # v in G[U] is a neighbour of two vertices in Ny (v). Branch on
the neighbour of v incident to two edges with one endpoint in Ny [v]. In the
subproblem where u is not removed also branch on u. A; =3w(3) +2w(2) +
w(l), Ay = Az =3w3) +2w2) + Aw(3).

(b) In G[U] a vertex u € T has a U-degree one neighbour: branch on u.

(c) In the remaining subcase branch on both vertices in Ny (T). A1 =3w(3) +
2w(2) + min(w(2) + w(1), 3w (1)), Ay =3w@B) +2w2) + 2w(l) + Aw(3),
Az =3w3) +2w®2) + w(l) + 2Aw3), Aq =3w3) + 2w?2) + 3Aw(3).
Notice that since G[U] is simple, the minimum in the formula for A; does
not need to consider w(3): not all edges with only one endpoint drawn in
Fig. 2 can be incident to the same vertex.
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7. d =3, =1,r3 =2, again d» = 3 as we handled Case 2 earlier. Because of
Case 6 suppose that the U-degree two neighbour of v is not adjacent to another
neighbour of v in G[U]. Let T be the 3-clique in G[U] withv € T.

(a) If any vertex in Ny (T) has U-degree one, branch on its neighbour in 7.

(b) If any vertex in Ny (T') has U-degree three, we proceed to Case 8, where we
let v be the vertex in 7 that is a neighbour to this U-degree three vertex. This
case is illustrated in Fig. 2, Case 8 (not Case 7).

For all other subcases Ny (T') consists of vertices of U-degree two.

(c) A vertex in u € U is adjacent to two vertices in 7. Branch on the vertex in
T not adjacent to u. A1 =3w(3) +2w2) + Aw(3), Ax =3w3) + w(2) +
Aw(2).

(d) Two vertices in U adjacent to T are adjacent to each other. Branch on a vertex
u € T adjacent to one of these two vertices. When « is put in the vertex cover
branch on the other vertex adjacent to one of these two vertices. A; = Ay =
3wB3) +2w?2) + Aw2), A3 =2w3) +2w2) + Aw3) + Aw(2).

(e) The U-degree two neighbour of v is adjacent to a neighbour of a vertex in T
in G[U]. Notice that this case is isomorphic to Subcase (d) as the triangle T’
is adjacent to three degree two vertices, two of which from a 4-cycle with T'.
Hence, this case can be dealt with similarly.

(f) Left is the subcase where no vertices in U neighbouring T are adjacent:
branch on v.

Together with Case 6 this allows us to add an additional 2(Aw(2) — Aw(3)) to

Aindep for d = 3,rp = 1,r3 = 2. This is because the only remaining subcase is

Subcase 7(f) where putting v in the independent set gives at least two vertices

of U-degree two whose U-degree is reduced, in contrast to the original analysis,

where we did not have the U-degrees of these vertices specified.

8. d =3,r3 =3 with d, = 4 since we handled Case 5 earlier. We consider many
subcases.

If not all vertices neighbouring the triangle 7' containing v in G[U] are dif-
ferent, or they are adjacent to each other, then we again give alternative ways of
branching. These specific cases are shown visually as Case 8 in Fig. 2: the first
picture corresponds to a vertex being adjacent to two vertices of T'; the other pic-
tures on the top row correspond to 7" having two neighbours of degree two; and
the pictures on the bottom row represent neighbourhoods of 7" with at most one
degree two vertex. We will not explicitly state the recurrences representing these
cases: they can be derived easily in a way similar to the above analysis.

We assume all three vertices that are neighbours of T to be different and non-
adjacent.

(a) Again if any U-degree one vertex is a neighbour of a vertex u € T, branch
on u.

(b) Otherwise, if at most one of the vertices adjacent to 7 in G[U] has degree
two, branch on all three vertices neighbouring 7' in G[U] simultaneously. In
the worst case, one vertex has degree two resulting in:

A1 =5w3)+w2)+min(w3)+w2), w3)+2w(l),2w2)+w(l), w2)+
3w(l), 5w(l)), Az = Az = 5w(3) + w(2) + min(w(2) + w(l),3w(l)) +
2Aw3), Aq =5w3) + w2) + w() + 4Aw3), As =5w3) + w2) +
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minw2), w2) + 2w(1),4w?2)) + Aw(3), Ag = A7 =5w(3) + w(2) +

2w(l) +3Aw3), Ag =5w3) + w2) +5Aw(3).

The first four reductions correspond to the degree two vertex being put in the

independent set and the last four reductions correspond to it being put in the

vertex cover.
The only case that remains is the case where two vertices adjacent to 7 have
degree two, and we can assume that these are not adjacent to v. Similar to the
previous case, we add an additional 2(Aw(2) — Aw(3)) to Ajugep in the recurrence
representing branching on v since at least two vertices at distance two from v now
have degree two. We remark that this improved case remains a worst case in the
quasiconvex program.

9. d =4,rq4 =4.1If all vertices in Ny[v] are pairwise adjacent we have a clique that
can be filtered out by Rule 1. It can also be removed using three subproblems by
branching on any two vertices: A1 = Ay = Az =5w(4).

If there are two edges in G[U] with only one endpoint in Ny[v] then
we branch on both vertices in Ny[v] incident to these edges. Ay = Sw(4) +
min(w(2),2w(1)), Ao = Az =5w@) + w(l) + Aw4), Ay =5w@) +2Aw(4).
This results in d» = 4 for all other subcases.

Algorithm 4 Let Algorithm 4 be the modification of Algorithm 3 using all the alter-
native branching strategies discussed above and illustrated in Fig. 2.

Theorem 4 Algorithm 4 solves the minimum edge dominating set problem in
0 (1.3226") time and polynomial space.

Proof Reconsider the quasiconvex program used to prove the running time of The-
orem 3 and modify the values of A, as justified by the above case analysis. This
gives:

d
Aindep = w(d) + ) _riw(i) + drAw(d)
i=1
200wQR) — Aw@?B)) ifd=3,m=1,rn=2
+ ord=r3=3
0 otherwise

d
dy = |:<Z(i - 1)r,-> mod 2}
i=1

4 ifd=3,rp,=2,r3=1 (Cases 1 and4)

2 ifd=3,rp=1,r3=2 (Case2;also6,7)
+132 ifd=r=3 (Case 3)

2 ifd=r;=3 (Case 5; also 8)

4 ifd=rs=4 (Case 9)
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Furthermore, we add additional recurrences corresponding to the alternative branch-
ing strategies for all the subcases listed above. In order to keep the problem finite, set
w(i) =1 for i > p for some p > 4 (see Remark 2).

The solution to this modified quasiconvex program gives a running time of
0(1.3226") for Algorithm 4 using weights:

w(1)=0.779307  w(2)=0.920664  w(3)=0.997121 V=4 w(i)=1

The modified algorithm uses only polynomial space for the same reason as in Theo-
rem 3. =

Remark 2 1f we would have set w(i) = 1 for all i > 3 as in the proof of Theorem 3
the recurrence relation for d = r4 = 4 becomes independent of the weight function w:
w(i) for i < 3 does not occur in its formulas. The solution to this recurrence relation
is close to @ = 1.3247 and is independent of w. Hence, w(3) needs to be variable in
order to get any solution below 1.3247.

As a consequence we also obtained the following results (see Sect. 2 and Corol-
lary 1):

Corollary 2 The minimum maximal matching problem can be solved by a modifica-
tion of Algorithm 4 in O (1.3226") time and polynomial space.

Corollary 3 The matrix dominating set problem can be solved by modification of
Algorithm 4 in 0(1.3226"1™) time and polynomial space on n x m matrices.

For the matrix dominating set problem a slightly simpler algorithm would suffice
since there cannot be any odd cycles in a bipartite graph; removing isolated vertices
and 2-cliques from G[U] by a reduction rule would suffice.

We note that the previous fastest algorithm for matrix dominating set by Fomin
et al. is faster than the algorithm for minimum edge dominating set on which it was
based [12]. Fomin et al. obtain this improvement by noticing that a bipartite graph
contains less that 3"/3 minimal vertex covers. We cannot use this improvement here,
because our approach does not use a subroutine that enumerates all minimal vertex
covers.

The proof of the lower bound on the running time of Algorithm 3 is no longer valid
after introducing the first alternative branching strategy. We prove different lower
bounds for the algorithms in the improvement series (also see Table 1):

Proposition 3 The worst case running time of the i-th algorithm in the improvement
series is 2(1.2968") if i <4 and 2(1.2753") if i > 5.

Proof If i <4, consider the class of graphs consisting of / disjoint copies of Graph 2
in Fig. 1. In this case, the i-th algorithm in the series can branch on the rightmost
grey vertex v. When v is put in the independent set, we are left with Subgraph 1
of Fig. 2 in G[U] which generates two subproblems. When v is put in the vertex
cover, the algorithm can branch on the leftmost grey vertex. This results in either a
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path on three vertices (two subproblems) or a cycle of length six (four subproblems)
remaining in G[U]. Altogether this leads to a total of eight subproblems for each
copy consisting of eight vertices. Since 8! = 8"/% > 1.2968", these algorithms run in
time €2(1.2968").

If i > 5, then the i-th algorithm in the series uses alternative branching strategies
1 up to i > 5. In this case, the previous lower bound is no longer valid since the al-
gorithm can no longer branch on the grey vertices: an alternative is introduced by
alternative branching strategy 5. Now consider Graph 3 of Fig. 1 in which the algo-
rithm can branch on one of the grey vertices. In the subproblem where this vertex is
put in the independent set a star shaped graph remains in G[U] which generates two
subproblems by branching on its centre vertex. In the other subproblem the algorithm
can branch on the other grey vertex resulting a cycle of length six in G[U] or the re-
moval of this copy of the graph from U. This gives a total sum of seven subproblems
on a graph on eight vertices. Since 7/ = 7"/8 > 1.2753", these algorithms run in time
©(1.2753"). 0

Remark 3 Considering more subcases and deriving more alternative branching strate-
gies could further reduce the running time of the algorithm. But if we continue in the
above fashion, we cannot improve beyond O (1.3214"). This is because, if we branch
on a vertex of maximum degree d, then the number of edges d> between Ny [v] and
the rest of G[U] is bounded from above by dr < Zle(i — Dr;. If we solve our
quasiconvex program using these maximum values for d, while discarding the extra
reductions imposed by alternative branching strategies 7 and 8 (these are dominated
by increasing d»), we obtain the running time bound of O(1.3214"). This makes
further subcase analyses almost not worth the effort.

The lower bound of €2(1.2753") would remain valid for these further improved
algorithms. This is the case because d> is maximal for the vertices we branch on in
the second part of the proof of Proposition 3: non of their neighbours are neighbours
of each other.

7 Weighted Edge Domination

Now let us consider the weighted variants of minimum edge dominating set and mini-
mum maximal matching. Proposition 1 still applies when considering these weighted
problems, while other properties exploited by our algorithm need more careful con-
sideration. In this section, we introduce modifications of the algorithm of the previous
section that solve these weighted problems with the same upper bound on running
time. For both variants, we need a slightly different approach.

7.1 Minimum Weight Edge Dominating Set

Let us first look at the polynomial part of the algorithm at the leaves of the search tree.
In the unweighted case it is sufficient to compute a minimum edge cover in G[C],
but this does not extend to the weighted case; using edges between a vertex in the

independent set / and a vertex in the vertex cover C possibly leads to a smaller total

@ Springer



Algorithmica (2012) 64:535-563 555

weight. To deal with this we notice that the minimum weight edge cover problem is
solvable in polynomial (cubic) time [23] by using matching techniques.

First consider the minimum weight generalised edge cover problem: in a graph G
cover a specified subset of the vertices C € V by a set of edges of minimum total
weight. This problem is solvable in cubic time too [24] in the following way [8].
Create the graph G’ with vertex set C U {v}, where v is a new vertex. The edges of G’
are the edges of G[C] to which we add an edge {u, v} for all u € C with degree zero
in G[C] or for which u has an edge in G whose weight is smaller than the weight
of each edge incident to u in G[C]. The weight of a new edge {u, v} will be the
minimum weight of all edges incident to # in G.

Fernau [8] used this to prove the following proposition that we will need for our
algorithms. We give the proof for completeness.

Proposition 4 (Fernau [8]) The minimum weight generalised edge cover in G has
weight equal to the minimum of the weights of the edge covers in G[C] and G'.

Proof The minimum weight generalised edge cover in G has weight equal to the
minimum weight edge cover in G[C] or G’ depending on whether edges with end-
points in V\C are used. This will equal the one with smallest weight, since if no
edges incident to a vertex in V\C are used in the minimum weight generalised edge
cover in G then the minimum weight edge cover in G’ will have greater weight than
the one in G[C] (more needs to be covered). Equivalently, if some of these edges
are used, then we obtain a solution with smaller weight by using them and hence the
minimum weight edge cover in G[C] will have larger weight than the one in G'. [

We now consider Rule 1. Rule 1 no longer applies to the weighted case, and cannot
be easily adapted to this case, as it is not possible to assign weights to the new edges it
introduces such that we obtain an equivalent instance. However, in the case of cliques
of size at most three, the following modified rules can be used:

Rule 2 Put isolated vertices in G[U] in the independent set /.

Rule 3

if G[U] contains a connected component H which is a clique of size two or three
then

let e be an edge of minimum weight in H

let G be G with a new vertex v connected by edges of weight w (e) to all vertices

in H

C:=CUHU{v},U:=U\H

recursively solve the problem (G,C,1,U) and let D be the resulting edge dom-

inating set

if D contains two distinct edges f, g incident to v then

return (D\{f,g}) U {e}
return D\{f}, where f is the unique edge in D incident to v

Notice that for 2-cliques we can equivalently contract its edge and connect the
newly obtained vertex by an edge with weight equal to the contracted edge’s weight
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to a new vertex. This new vertex does not need to be covered by the generalised edge
cover.

Proof of Correctness Rule 2 is correct, because all edges incident to an isolated ver-
tex in G[U] have their other endpoint in C and hence will be dominated by an edge
incident to this endpoint.

Observe that the edges of the clique H in Rule 3 are dominated in G if at most one
vertex in H is not incident to a dominating edge. Thus if one edge in D is incident
to v, the returned set is an edge dominating set in G. If two edges {u, v}, {v, w} in D
are incident to v, then e is incident to # or w, because H consists of no more than
three vertices. Therefore, as the returned set contains e, we have that it is an edge
dominating set in G also.

The returned set is of total weight (3_ ;. @(d)) — w(e) and therefore it has min-
imum weight. This is because if there is an edge dominating set D’ in G of smaller
weight then we can add an edge ¢ with weight w(e) to D’ obtaining a minimum
weight edge dominating set in G of smaller total weight than D. Here, ¢’ is the edge
joining the one vertex in H not incident to an edge in D’ with v, or any edge incident
to v if no such vertex exists. g

Algorithm 5 Let Algorithm 5 be obtained from Algorithm 4 by replacing Rule 1 by
Rules 2 and 3.

Theorem 5 Algorithm 5 solves the minimum weight edge dominating set problem in
0 (1.3226") time and polynomial space.

Proof Correctness follows in exactly the same way as in Theorem 2, based on Theo-
rem 1 and the correctness of the Rules 2 and 3.

The running time is dominated by the exponential number of subproblems gen-
erated, because for each partitioning of V in a minimal vertex cover and a maximal
independent set, the algorithm computes the minimum weight edge dominating set
containing the vertex cover in its set of endpoints in polynomial time. The only differ-
ence in the number of subproblems generated compared to Theorem 4 is the removal
of cliques of size four and larger by a reduction rule. We have considered these sub-
cases, which are removed by Rule 1 but not by Rules 2 and 3, in the list of alternative
branching strategies of Sect. 6. Therefore the upper bound on the running time in the
proof of Theorem 4 remains valid for our modified algorithm. U

7.2 Minimum Weight Maximal Matching

We have given modified versions of Algorithm 4 for both the minimum maximal
matching problem, and the minimum weight edge dominating set problem. These
modifications cannot be combined to construct an algorithm for the minimum weight
maximal matching problem (minimum weight independent edge dominating set
problem) since the transformation of Corollary 1 does not preserve edge weights.
However, for a minimal vertex cover C in a graph G we can construct the min-
imum weight maximal matching containing C in its set of endpoints. To this end
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Algorithm 6 Algorithm for Minimum Weight Generalised Independent Edge Cover

Input: a graph G = (V, E) and a subset of its vertices C C V
Output: a minimum weight generalised independent edge cover of C in G if one
exists
1: if G has an odd number of vertices then
2 add anew vertex vto G (v &€ C)
3: forallv,w e V\C,v # w do
4:  add a new edge between v and w to G with zero weight
5: if there exists a minimum weight perfect matching P in G then
6: return P with all edges between vertices not in C removed
7: return false

we consider the minimum weight generalised independent edge cover problem: in a
graph G cover a specified subset of the vertices C C V by a set of edges of minimum
total weight such that no two edges are incident to the same vertex.

Proposition 5 Algorithm 6 solves the minimum weight generalised independent edge
cover problem in polynomial time.

Proof The returned edge set is a generalised independent edge cover of C in G since
it is a matching and it contains all vertices in C in its set of endpoints.

Consider any generalised independent edge cover D of C in G. We notice that we
can extend D to a perfect matching P’ in G with the added edges and the possibly
added vertex v because all vertices not incident to an edge in D are adjacent as they
are not in C, and there are an even number of vertices as we add v if this was not the
case. This perfect matching P’ has the same total weight as D since the added edges
all have zero weight.

The returned generalised independent edge cover has the same weight as the com-
puted perfect matching P. Because P is of minimum total weight, and all generalised
independent edge covers of C in G can be transformed into a matching of equal total
weight by using the above construction, the returned set is a minimal weight gen-
eralised independent edge cover of C in G. False is only returned if no generalised
independent edge cover of C exists in G. 0

Now we again only have to consider our reduction rule:

Rule 4

if G[U] contains a connected component H which is a clique then
let G be G with a new vertex v connected by edges of zero weight to all vertices
in H
C:=CUH;I:=1U{};U:=U\H
recursively solve the problem (G, C’, I , U ) and let D be the resulting edge dom-
inating set
if D contains an edge e incident to v then
return D\{e}
return D
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Proof of Correctness In a clique a maximum of one vertex is allowed not to be inci-
dent to a dominating edge. Since all vertices in H are put in C, and in C at most one
edge can be incident to v, the returned edge set is an independent edge dominating
set. This returned independent edge dominating set has the same total weight as D.
Therefore it is of minimal total weight: if an independent edge dominating set of
smaller weight would exist, a minimum weight maximal matching in G with smaller
weight than D can be constructed. g

Algorithm 7 Let Algorithm 7 be obtained from Algorithm 4 by replacing Rule 1 by
Rule 4.

Theorem 6 Algorithm 7 solves the minimum weight maximal matching problem in
0 (1.3226") time and polynomial space.

Proof 1dentical to Theorem 5 using Proposition 5 and the proof of correctness of
Rule 4. O

7.3 Parametrised Minimum Weight Maximal Matching

The results from Sect. 7.2 also solve a question raised by Fernau [8] for the
parametrised version of this problem. He asks whether vertex cover structures can
be exploited to obtain efficient parametrised algorithms for this problem. We com-
bine Algorithm 6 with the parametrised algorithm from [12]. This gives us the fastest
known algorithm for this problem: Algorithm 8. The algorithm uses the global appli-
cation of width parameters approach of [12], which combines a branching approach
with pathwidth based techniques.

The parameterised minimum weight maximal matching is defined: given a graph
G and a parameter k, find a minimum weight maximal matching in G of weight
at most k. In order to compare weights to the parameter, it is required that for every
input edge e: w(e) > 1. Alternatively one could ask for the minimum weight maximal
matching if it consists of at most k edges.

First we need some basic results on pathwidth, path decompositions and dynamic
programming. For the definitions of these concepts see for example [2, 18]. We start
with the following result due to Fomin et al. [12].

Lemma 2 (Fomin et al. [12]) If in any node of the branching tree of Algorithm 8,
G[U] has maximum degree two, then the pathwidth of G is bounded by |C| + 2 and
a path decomposition of this width can be found in polynomial time.

Proof Let C, I, U be the partitioning of the vertices of G in a node of the branching
tree. G[U] has maximum degree two; therefore it has a path decomposition of width
at most two. Because [ is an independent set, and non of the neighbours of the vertices
in [ are in U, the pathwidth of G[U U I] equals the pathwidth of G[U]. Such a path
decomposition of GIU U I]: (X1, X2, ..., X;) of width at most two can be computed
in polynomial time. Now add C to every X; to obtain a path decomposition of G of
width at most |C| + 2. O
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Algorithm 8 Algorithm for Parametrised Minimum Weight Maximal Matching
Input: a graph G = (V, E) and a parameter k
Output: a minimum weight maximal matching of weight at most k in G if one exists
1: 1:=0,C:=0,U .=V
2: if |C| > 2k then
3:  return false
else if |C| < 0.8036k and G[U] is of maximum degree two then
compute the minimum weight maximal matching M in G by dynamic pro-
gramming over a path decomposition of G by using Lemmas 2 and 3
6 stop the algorithm: do not backtrack!
7. return M if it is of total weight at most k or false otherwise
8
9

AN

: else if a vertex v of maximum degree in G[U] has U-degree at least two then

create two subproblems and solve each one recursively:

10: 1: (G,CUNy(v), I U{v}, U\Ny[v]) 2: (G, CU{v}, I, U\{v})

11: else

12:  exhaustively apply Rule 4 {this results in: U = @}

13:  Let M be a minimum weight generalised independent edge cover of (G, C)
(Algorithm 6)

14:  return M if it is of total weight at most k or false otherwise

Lemma 3 Given a graph G and a path decomposition (X1, X2, ..., X;) of G of
width at most p, the minimum weight maximal matching of G can be found in
0*(3P)! time and space.

Proof We only sketch the proof, which uses standard dynamic programming tech-
niques for tree and path decompositions. (E.g., compare with [1, 2, 31].) In O(n)
time, we can transform the path decomposition into a nice path decomposition,
see [18]. This is a path decomposition with » = O(n), and for each i > 2, there is
aveVwith X; =X; 1U{v}or X;_1=X; U{v}. Now, foreachi, 1 <i <r, let
Vi=X1U---UX;,and let G; = G[V;] be the subgraph of G, induced by V;. A par-
tial solution in G; is a set of edges F' C EN (V; x V;), such that for each v € V; — X;,
either v is an endpoint of an edge in F, or all the neighbours of v are endpoints of
edges in F. An extension of a partial solution F is a maximal matching obtained by
adding edges not in G; to F.

Each vertex v in X; has a state with respect to partial solution F: state A if v is
endpoint of an edge in F; state B if v is not endpoint of an edge in F and v has a
neighbour in V; — X; that is not endpoint of an edge in F, and state C otherwise.
When a vertex v € X; has state B then an extension of F' must include an edge
with v as endpoint. The characteristic of a partial solution F is the collection of
states for all v € X;, so there are at most 37T! states for each X;. It can be shown
that partial solutions with the same characteristic are equivalent, in the sense that
an extension of one also gives an extension of the other; the same edges are added.

"Here we use the O* notation which suppresses not only constant but all polynomial parts of the running
time.
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The algorithm thus tabulates for each characteristic the minimum weight of a partial
solution F with that characteristic. Simple but tedious case analysis shows that we
can compute, for each i, 1 <i <r, in O*(37) time this table for X;, given the table
for X;_1. Inspection of the table for X, gives the answer: take the minimum value
over all characteristics without state B vertices, and without adjacent vertices both
with state C. O

Now we can prove the following running time for Algorithm 8 in a way similar
to [12].

Theorem 7 Algorithm 8§ solves the parametrised minimum weight maximal matching
problem in O*(2.4179%) time and space.

Proof Correctness is trivial if a path decomposition is constructed by the algorithm:
it then ignores any branching done and outputs a minimum weight maximal match-
ing of G if it is of small enough weight. If no path decomposition is constructed the
algorithm considers all minimal vertex covers of size at most 2k. If a maximal match-
ing is returned, it is of minimum weight for the same reason as in Theorem 6. If no
maximal matching is computed, then |C| > 2k for all minimal vertex covers C in G,
and because V.cgw(e) > 1 any maximal matching is of weight at least k.

Let S(k) be the number of subproblems generated to solve a problem with pa-
rameter k, and let « = 0.4018. If we branch on a vertex of U-degree at least
three, the behaviour of the algorithm corresponds to the recurrence relation S(k) <
Sk — %) + Stk — 1%). This is because the algorithm stops if |C| > 2k and |C| in-
creases by one in one branch and by at least three in the other. Solving the recurrence
relation leads to a running time of this part of the algorithm of O*(2.1480%).

Now suppose that during the execution of the algorithm a path decomposition of
width p is computed. This happens when the maximum degree in G[U] first be-
comes at most two. Then a minimum weight maximal matching in G is computed
in 0*(3I€h) < 0*(3%) < 0*(2.4179%) time. This leads to a total running time of
0*(2.1480% +2.4178%) = 0*(2.4179%).

If no path decomposition is computed, we have that |C| > 2ak in every branch
in which the maximum degree in G[U] first becomes at most two. Hereafter, the
algorithm performs a series of branchings on degree two vertices according to the
recurrence relation S(k) < S(k — %) + S(k — 1) (|C] increases by one or two). This
recurrence relation solves to O*(2.6180%). When the maximum degree in G[U] be-
comes one, the minimum weight maximal matching for this branch is computed in
polynomial time. In the first branching steps until |C| > 2k, the algorithm branches
on vertices of degree at least three generating at most 2.1480%% subproblems with
parameter at most k — ak. Hereafter, it branches on other vertices solving these sub-
problems in time at most 2.61 g0k —ak, Together, this leads to a total running time of
0*(2.1480%%2.6180F~k) = 0*(2.4179%).

Notice that o was chosen in such a way that 2.1480%2.6180F—«k = 320k, O
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8 Conclusion and Further Research

We have presented O(1.3226") time and polynomial space algorithms for mini-
mum edge dominating set, minimum weight edge dominating set, minimum max-
imal matching (minimum independent edge dominating set), and minimum weight
maximal matching. These algorithms are obtained by using a vertex cover struc-
ture on the input graph, special branching strategies and reduction rules applied to
simple instances and the iterative improvement of a measure and conquer analysis.
We have also created an O (1.3226" 1) algorithm for matrix dominating set and an
0*(2.4179%) algorithm for parametrised minimum weight maximal matching.

It would be interesting to see if there are more related problems, for example min-
imum (weight) total edge dominating set, to which similar methods can be applied.
This is not straightforward as in this total domination problem, every dominating
edge does not dominate itself and thus needs to share an endpoint with another dom-
inating edge. This makes it appear hard to design algorithms in which the total edge
dominating set is based on a matching for this problem.

We note that our algorithms have their running times expressed in the number
of vertices n in the input graph G, instead of the number of edge m in G. As an
interesting research topic, we mention the analysis and design of exact algorithms
for edge domination (and other problems), where we focus on the running time as
function of the number of edges m. See the discussion about complexity parameters
in [35].

We realise that the upper bounds on the running times proved using measure and
conquer are not tight. Therefore we also derived lower bounds. It is an interesting
question what the exact worst case behaviour of our algorithms is. We know of no
method that can derive such exact worst case behaviour systematically, but if this is
possible it would be very interesting to see whether this results in a similarly iterative
improvement methodology.

Open Access  This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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