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Abstract We consider the facility location problem with submodular penalties
(FLPSP), introduced by Hayrapetyan et al. (Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 933–942, 2005), who
presented a 2.50-approximation algorithm that is non-combinatorial because this al-
gorithm has to solve the LP-relaxation of an integer program with exponential number
of variables. The only known polynomial algorithm for this exponential LP is via the
ellipsoid algorithm as the corresponding separation problem for its dual program can
be solved in polynomial time. By exploring the properties of the submodular function,
we offer a primal-dual 3-approximation combinatorial algorithm for this problem.

Keywords Facility location problem · Approximation algorithm · Submodular
function

1 Introduction

Facility location problems have been extensively investigated since the early 1960s.
These problems are usually NP-hard, implying that no polynomial-time exact algo-
rithm is expected to exist unless P = NP. Consequently, most of the research has
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been focusing on designing approximation algorithms with good performance. Gen-
erally speaking, exisiting approaches for designing approximation algorithms for fa-
cility location problems can be divided into three categories, namely, LP-rounding
techniques, local search heuristics, and primal-dual method. The first technique can
result in non-combinatorial algorithms, while the last two techniques are usually com-
binatorial in nature. These approaches can also be mixed or combined with other
techniques to yield better approximation algorithms.

One of the most basic facility location problems is the metric uncapacitated fa-
cility location problem (UFLP): Given a set of facility sites and a set of clients, we
want to decide which facilities to open and how to assign the clients to the open fa-
cilities such that the total cost of opening facilities and assigning clients to the open
facilities is minimized. Many approximation algorithms exist for this problem. The
algorithms by Shmoys et al. [16], Chudak and Shmoys [7], and Sviridenko [17] are
all based on LP-rounding technique. The algorithm of Korupolu et al. [14] is based
on local search heuristic technique. The algorithm of Jain and Vazirani [12] is based
on primal-dual technique. Moreover, these approaches can be mixed or combined
with other skills such as greedy augmentation, cost scaling and dual-fitting [13, 15]
to yield better approximation algorithms. So far, the best approximation ratio for the
UFLP is 1.50 due to Byrka and Aardal [3]. Their algorithm is based on LP-rounding
approach integrated with greedy and dual-fitting. In addition, Guha and Khuller [10]
proved that the best approximation ratio is at least 1.463 unless P = NP.

Many variants of the basic UFLP have appeared in the literature (e.g., [1, 2, 8,
18, 21–23] and the references therein). We are particularly interested in one of the
variants, namely, the facility location problem with penalties (FLPWP), which is the
same as the UFLP except that not all clients are required to be connected to a facility
and any unconnected client j incurs a penalty cost pj . The objective is to minimize
the total opening, connecting and penalizing cost. This problem was first studied by
Charikar et al. [5], who gave a 3-approximation primal-dual (and hence combinato-
rial) algorithm. Later, Xu and Xu improved the ratio to (2 + 2/e) and 1.8526 using
LP-rounding and primal-dual with greedy adding technique respectively [19, 20].

The main focus of this work is an extension of the above problem, called the
facility location problem with submodular penalties (FLPSP), first introduced by
Hayrapetyan et al. [11]. The FLPSP extends the above FLPWP by assuming that the
penalty cost is a monotone increasing submodular function h(·) defined on clients
set D. A function f (·) is submodular if it is defined on a finite set V , satisfying

f (X ∪ Y) + f (X ∩ Y) ≤ f (X) + f (Y ), X,Y ⊆ V.

Function f is monotone increasing if f (X) ≤ f (Y ) for any X ⊆ Y , where X,Y ⊆ V .
They presented an (1 + γ )-approximation algorithm where γ is the approximation
factor of an LP-based approximation algorithm for the corresponding UFLP, resulting
in a 2.50-approximation algorithm for the FLPSP as the best known ratio of LP-based
approximation algorithms for the UFLP is 1.50 [3]. However, their algorithm is non-
combinatorial because it has to solve the LP-relaxation of an integer program with
exponential number of variables. The only known algorithm for this exponential LP
is via the ellipsoid algorithm as the corresponding separation problem for its dual
program can be solved in polynomial time. Later, Chudak and Nagano [6] offered a
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more efficient (still non-combinatorial) approximation algorithm with slightly worse
approximation ratio of (1 + ε)(1 + γ ). Their algorithm is based on an equivalent
compact convex relaxation for the FLPSP. They proposed efficient non-combinatorial
algorithms to solve this convex relaxation by using non-smooth convex optimization
technique. We continue this line of research to offer a primal-dual 3-approximation
combinatorial algorithm for the FLPSP by exploring the properties of submodular
function.

We present our algorithm and its analysis in Sects. 2 and 3 respectively, followed
by some concluding remarks in Sect. 4.

2 The Primal-Dual Algorithm

In the FLPSP, we are given a set of facilities F , and a set of clients D. Each facility
has an open cost fi , and a connection cost cij for assigning client j to facility i.
There is also a monotone increasing submodular function h(·) defined on the clients
set D, which serves as the penalty function for any set of clients S ⊆ D that are not
connected to any open facility. Moreover, we assume that h(·) is given by an oracle
which returns h(S) for any given S ⊆ D. Our objective is to choose a facility set
F̄ ⊆ F to open and a client set S̃ ⊆ D to be penalized such that all the clients in
D\S̃ are connected to the open facilities in F̄ , and the total cost of opening facilities,
connecting clients to open facilities and penalizing unconnected clients is minimized.
Finally, we assume that the connection cost cij ’s satisfy symmetry and the triangle
inequality, that is, the metric version.

This problem can be formulated as the following integer program:

min
∑

i∈F,j∈D

cij xij +
∑

i∈F

fiyi +
∑

S⊆D

h(S)zS

s.t.
∑

i∈F

xij +
∑

S⊆D:j∈S

zS ≥ 1, ∀j ∈ D,

xij ≤ yi, ∀i ∈ F, j ∈ D, (2.1)

xij ∈ {0,1}, ∀i ∈ F, j ∈ D,

yi ∈ {0,1}, ∀i ∈ F,

zS ∈ {0,1}, ∀S ⊆ D.

Variable yi indicates whether facility i is open or not, xij indicates whether client j

is connected to facility i or not, and zS indicates whether the set S ⊆ D is penalized or
not. The first constraint states that a client is either connected to a facility or contained
in some subset of D that is not connected. The second constraint states that if a client
is connected to a facility, then this facility must be open. Relaxing the integrality
constraints, we obtain the relaxation program (2.2) and its dual program (2.3)

min
∑

i∈F,j∈D

cij xij +
∑

i∈F

fiyi +
∑

S⊆D

h(S)zS
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s.t.
∑

i∈F

xij +
∑

S⊆D:j∈S

zS ≥ 1, ∀j ∈ D,

xij ≤ yi, ∀i ∈ F, j ∈ D, (2.2)

xij ≥ 0, ∀i ∈ F, j ∈ D,

yi ≥ 0, ∀i ∈ F,

zS ≥ 0, ∀S ⊆ D.

max
∑

j∈D

αj

s.t. αj ≤ cij + βij , ∀i ∈ F, j ∈ D,
∑

j∈S

αj ≤ h(S), ∀S ⊆ D, (2.3)

∑

j∈D

βij ≤ fi, ∀i ∈ F,

αj ≥ 0, ∀j ∈ D,

βij ≥ 0, ∀i ∈ F, j ∈ D.

Intuitively, the first and the third constraints in (2.3) suggest that variable αj being
viewed as a budget that j is willing to pay for getting connected to a facility. Part of
the budget pays for the connection cost and the rest pays for the facility open cost.
The second constraints imply that any budget collection is less than the corresponding
penalty collection cost. If some clients’ budget collection equals to the corresponding
penalty collection cost, these clients tend to pay the joint penalties.

Similar to the approach of Jain and Vazirani [12], we present a primal-dual algo-
rithm for the FLPSP, which consists of two phases. In the first phase, we construct
a dual feasible solution, leading to a primal feasible solution. But this solution may
have redundancies, which needs to be purified in the second phase.

Algorithm 2.1 (The primal-dual algorithm)

Phase 1: Constructing a dual feasible solution. We introduce a notion of time t ,
and start the algorithm at time t = 0. Initially, all dual variables are set to 0. All
facilities are closed and all clients are unfrozen. Let S̃ denote the set of penalized
clients, and set S̃ := ∅. We increase the dual variables αj ’s for all unfrozen clients
j ∈ D uniformly at unit rate t . The algorithm declares an edge (i, j) tight if αj = cij .
Henceforth, such an edge satisfies αj = cij +βij as βij will be increased at the same
rate as αj . Keep increasing time t until there is no unfrozen client. As time increases,
the following events may occur:
Event 1. Facility i is temporarily open if

∑
j∈D βij = fi . In this case, freeze those

unfrozen clients j ∈ D with βij > 0 and connect them to facility i, which is called
the connecting witness for j .
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Event 2. If αj = cij for temporarily open facility i and unfrozen client j , then freeze
j and connect it to i, which is also called the connecting witness for j .
Event 3. If

∑
j∈S αj = h(S) for some set S, then freeze those unfrozen clients in S

and set S̃ := S̃ ∪ S. Any client contained in S̃ is said to be a penalized client.
When all clients are frozen, the first phase terminates. If several events occur simul-
taneously, the algorithm executes them in an arbitrary order.

Phase 2: Opening facilities. Let F ′ be the set of temporarily open facilities. We
choose set S̃ at the end of Phase 1 to be the set of unconnected clients. We say
facilities i and i′ (i, i′ ∈ F ′) are dependent if there exists some client j ∈ D such
that both βij > 0 and βi′j > 0. We choose a maximal independent subset F̄ ⊆ F ′ to
open. Connect each client in D\S̃ to an open facility that is closest to it.

Let SOL be the solution of Algorithm 2.1, whose cost consists of facility cost FSOL,
connection cost CSOL, and penalty cost PSOL.

3 Analysis

First, we will show that our algorithm is a well-defined polynomial time combinato-
rial algorithm. This claim follows from Lemmas 3.1 and 3.2 below.

Lemma 3.1 Consider any time t̃ at which one of the three events of Phase 1 in
Algorithm 2.1 occurs. Then we can find the next closest time t∗ such that one of the
three events occurs again in polynomial time.

Proof Let D̃ be the set of frozen clients and F̃ be the set of temporarily open facilities
at time t̃ . Now we consider the following three possibilities.

Case 1. Event 1 occurs at the next closest time t∗1 . One can show that t∗1 =
min

i∈F\F̃ {t∗1i}, where t∗1i is the root of the following equation with respect to t

∑

j∈D̃

βij +
∑

j∈D\D̃
max{t − cij , 0} = fi, i ∈ F \ F̃ .

Evidently t∗1 can be found in polynomial time by comparing t∗1i for all i ∈ F \ F̃

as long as each t∗1i can be found in polynomial time. For the latter, sort the costs
{cij : j ∈ D \ D̃} in a nondecreasing order, generating at most |D \ D̃| + 1 intervals
along [0,∞). Then t∗1i can be found by exhausting all these (polynomial number of)
intervals.

Case 2. Event 2 occurs at the next closest time t∗2 = min
i∈F̃ ,j∈D\D̃{cij }.

Case 3. Event 3 occurs at the next closest time t∗3 . In Algorithm 2.1, we always
maintain the following inequality from time t̃ to t∗3

∑

j∈S\D̃
t +

∑

j∈S∩D̃

αj ≤ h(S), ∀S ⊆ D, (3.1)
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which implies that

t ≤ h(S) − ∑
j∈S∩D̃

αj

|S\D̃| , ∀S ⊆ D : S\D̃ = ∅. (3.2)

Then we can calculate the time t∗3 by the following formula

t∗3 = min
S⊆D:S\D̃=∅

h(S) − ∑
j∈S∩D̃

αj

|S\D̃| . (3.3)

The last problem is the minimization of a ratio of a submodular function and a modu-
lar function, and it can be solved in polynomial time by a combinatorial algorithm [9].

Setting t∗ = min{t∗1 , t∗2 , t∗3 } concludes the proof. �

Lemma 3.2 At any time t of Phase 1 in Algorithm 2.1, the set S̃ always satisfies the
following property

∑

j∈S̃

αj (t) = h(S̃),

where αj (t) is the value of the budget of client j at time t , and increases with time t

until client j is frozen.

Proof Let S1 and S2 be two arbitrary sets such that

∑

j∈S1

αj (t1) = h(S1)

at time t1 and
∑

j∈S2

αj (t2) = h(S2)

at time t2 (≥ t1). Since client j ∈ S1 is frozen at time t1, we have αj (t) = αj (t1) for
any t ≥ t1, j ∈ S1.

To prove this lemma, we only need to show that

∑

j∈S1∪S2

αj (t2) = h(S1 ∪ S2).

From Algorithm 2.1 and the submodularity of h(·), we have

∑

j∈S1∪S2

αj (t2) +
∑

j∈S1∩S2

αj (t2) =
∑

j∈S1

αj (t1) +
∑

j∈S2

αj (t2)

= h(S1) + h(S2)

≥ h(S1 ∪ S2) + h(S1 ∩ S2). (3.4)
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Moreover, in Algorithm 2.1, we always maintain
∑

j∈S1∪S2

αj (t2) ≤ h(S1 ∪ S2),
∑

j∈S1∩S2

αj (t2) ≤ h(S1 ∩ S2). (3.5)

It follows from (3.4) and (3.5) that
∑

j∈S1∪S2

αj (t2) +
∑

j∈S1∩S2

αj (t2) = h(S1 ∪ S2) + h(S1 ∩ S2),

implying that
∑

j∈S1∪S2

αj (t2) = h(S1 ∪ S2).

�

Secondly, we will bound FSOL and CSOL in the next two lemmas. Let us denote
the neighborhood of facility i ∈ F as follows

Ni := {j | βij > 0}.
From the construction of F̄ , we have

Ni ∩ Ni′ = ∅, for all i, i′ ∈ F̄ . (3.6)

It follows from Algorithm 2.1 that

Lemma 3.3

FSOL =
∑

i∈F̄

fi =
∑

i∈F̄

∑

j∈Ni

βij .

For any client j ∈ D \ S̃, let i(j) be the connecting witness for j . Denote DF̄ :=⋃
i∈F̄ Ni , D1 := {j | i(j) ∈ F̄ , j /∈ DF̄ ∪ S̃}, and D2 := D \ (DF̄ ∪ D1 ∪ S̃). The

connection cost of SOL is bounded in the following lemma.

Lemma 3.4

CSOL ≤
∑

i∈F̄

∑

j∈Ni\S̃
cij +

∑

j∈D1

αj + 3
∑

j∈D2

αj .

Proof For any client j ∈ D \ S̃, consider the following three possibilities.
Case 1. j ∈ DF̄ \ S̃. There exists i ∈ F̄ such that j ∈ Ni and j /∈ DF̄ \Ni . Connect

j to facility i with connection cost cij .
Case 2. j ∈ D1. Since i(j) ∈ F̄ . Connect j to i(j) with connection cost

ci(j)j = αj .
Case 3. j ∈ D2. Since i(j) /∈ F̄ , there exists a facility i ∈ F̄ and a client j ′ such

that βi(j)j ′ > 0 and βij ′ > 0. Connect j to i. Let t1 and t2 be the times at which facil-
ities i(j) and i′ are temporarily open respectively. Since βi(j)j ′ > 0 and βij ′ > 0, we



198 Algorithmica (2012) 63:191–200

have αj ′ ≥ ci(j)j ′ and αj ′ ≥ cij ′ . Client j ′ is frozen earlier than min{t1, t2}, implying
that αj ′ ≤ min{t1, t2}. Since facility i(j) is a connecting witness for j , we obtain that
αj ≥ t1. Consequently, αj ≥ αj ′ . From the triangle inequality, we have that

cij ≤ cij ′ + ci(j)j ′ + ci(j)j ≤ 3αj .

Summarizing the three cases above concludes the proof. �

Finally, we are ready to present our main result.

Theorem 3.1 Algorithm 2.1 is a 3-approximation combinatorial algorithm for the
FLPSP.

Proof It follows from (3.6) and Lemmas 3.3–3.4 that the cost of SOL is at most

cost(SOL) = FSOL + CSOL + PSOL

≤
∑

i∈F̄

∑

j∈Ni

βij +
∑

i∈F̄

∑

j∈Ni\S̃
cij +

∑

j∈D1

αj + 3
∑

j∈D2

αj +
∑

j∈S̃

αj

≤
∑

j∈DF̄ \S̃
αj +

∑

j∈D1

αj + 3
∑

j∈D2

αj + 2
∑

j∈S̃

αj

≤ 3
∑

j∈D

αj . �

4 Concluding Remarks

In this paper, we offer a primal-dual 3-approximation combinatorial algorithm for the
FLPSP by exploring the properties of submodular functions. There are two interesting
questions for future research.

Chariker and Guha [4] present a greedy augmentation procedure for the UFLP.
They bound the cost of the solution after running the greedy augmentation procedure
in terms of the cost of the initial solution and an arbitrary solution. It is natural to
consider the following algorithm for the FLPSP (cf. [15, 20]).

Algorithm 4.1

1. Scale the opening costs of all facilities by a factor of δ (> 0) and then apply
Algorithm 2.1 to obtain solution SOL1.

2. Run the greedy augmentation procedure on SOL1 and return solution SOL2.

Currently we do not know how to bound the cost of SOL1 in terms of those of
the initial solution and an arbitrary solution of FLPSP. Therefore, how to analyze
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the performance guarantee of Algorithm 4.1 is an open question. One can obtain the
following inequality from the proof of Theorem 3.1,

2FSOL + CSOL + PSOL ≤ 3
∑

j∈D

αj ,

which may be useful to analyze the performance guarantee of Algorithm 4.1.
Another question is to further improve the approximation ratio for the FLPSP

using other techniques such as dual-fitting (cf. [13]).
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