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Abstract In this paper, we consider the problem of representing planar graphs by
polygons whose sides touch. We show that at least six sides per polygon are necessary
by constructing a class of planar graphs that cannot be represented by pentagons. We
also show that the lower bound of six sides is matched by an upper bound of six sides
with a linear-time algorithm for representing any planar graph by touching hexagons.
Moreover, our algorithm produces convex polygons with edges having at most three
slopes and with all vertices lying on an O(n) × O(n) grid.
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Fig. 1 (a) A drawing of a planar graph. (b) We apportion the edges to the endpoints by cutting each edge
in half. (c) We then apportion the faces to form polygons

1 Introduction

For both theoretical and practical reasons, there is a large body of work considering
how to represent planar graphs as contact graphs, i.e., graphs whose vertices are
represented by geometrical objects with edges corresponding to two objects touching
in some specified fashion. Typical classes of objects might be curves, line segments
or isothetic rectangles. An early result is Koebe’s theorem [24], which shows that all
planar graphs can be represented by touching disks.

In this paper, we consider contact graphs whose objects are simple polygons, with
an edge occurring whenever two polygons have non-trivially overlapping sides. As
with treemaps [5], such representations are preferred in some contexts [6] over the
standard node-link representations for displaying relational information. Using ad-
jacency to represent a connection can be much more compelling, and cleaner, than
drawing a line segment between two nodes. For ordinary users, this representation
suggests the familiar metaphor of a geographical map.

It is clear that any graph represented this way must be planar. As noted by de Frays-
seix et al. [9], it is also easy to see that all planar graphs have such representations for
sufficiently general polygons. Starting with a straight-line planar drawing of a graph,
we can create a polygon for each vertex by taking the midpoints of all adjacent edges
and the centers of all neighboring faces. Note that the number of sides in each such
polygon is proportional to the degree of its vertex. Moreover, these polygons are not
necessarily convex; see Fig. 1.

It is desirable, for aesthetic, practical and cognitive reasons, to limit the complexity
of the polygons involved, where “complexity” here means the number of sides in the
polygon. Fewer sides, as well as wider angles in the polygons, make for simpler
and cleaner drawings. In related applications such as floor-planning [28], physical
constraints make polygons with very small angles or many sides undesirable. One is
then led to consider how simple such representations can be. How many sides do we
really need? Can we insist that the polygons be convex, perhaps with a lower bound
on the size of the angles or the edges? If limiting some of these parameters prevents
the drawing of all planar graphs, which ones can be drawn?

1.1 Our Contribution

This paper provides answers to some of these questions. Previously, it was known [16,
28] that triangulated planar graphs can be represented using non-convex octagons. On
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the other hand, it is not hard to see that one cannot use triangles (e.g., K5 minus one
edge cannot be represented with triangles [13]).

Our main result is showing that hexagons are necessary and sufficient for repre-
senting all planar graphs. For necessity we construct a class of graphs that cannot be
represented using five or fewer sides. For sufficiency, we prove the following:

Theorem 1 For any planar graph G on n vertices, we can construct in linear time on
an O(n) × O(n) grid a touching hexagons representation of G with convex regions.
Moreover, if the graph is a triangulation, the representation is also a tiling.

Note, if the input graph is not triangulated, there might be convex holes. We, in
fact, prove this theorem using two different methods. First, in Sects. 3 and 4, we de-
scribe a linear-time algorithm that produces a representation using convex hexagons
along with a linear-time compaction algorithm to reduce the initial exponential area
to an O(n) × O(n) integer grid. Second, in Sect. 5, we show how modifying Kant’s
algorithm for hexagonal grid drawings of 3-connected, 3-regular planar graphs [21]
produces a similar result by different means. In both variations, the drawings use at
most three slopes for the sides, for example, 1, 0 and −1.

1.2 Related Work

As remarked above, there is a rich literature related to various types of contact graphs.
There are many results considering curves and line segments as objects (cf. [17, 18]).
For closed shapes such as polygons, results are rarer, except for axis-aligned (or iso-
thetic) rectangles. In a sense, results on representing planar graphs as “contact sys-
tems” can be dated back to Koebe’s 1936 theorem [24] which states that any planar
graph can be represented as a contact graph of disks in the plane.

The focus of this paper is side-to-side contact of polygons. The algorithms of
He [16] and Liao et al. [28] produce contact graphs of this type for triangulated
graphs, with nodes represented by the union of at most two isothetic rectangles, thus
giving a polygonal representation by non-convex octagons.

We now turn to contact graphs using isothetic rectangles, which are often referred
to as rectangular layouts. This is the most extensively studied class of contact graphs,
due in part to its relation to application areas such as VLSI floor-planning [26, 35],
architectural design [31] and geographic information systems [12], but also due to
the mathematical ramifications and connections to other areas such as rectangle-of-
influence drawings [29] and proximity drawings [2, 20].

Graphs allowing rectangular layouts have been fully characterized [30, 33] with
linear algorithms for deciding if a rectangular layout is possible and, if so, construct-
ing one. The simplest formulation [6] notes that a graph has a rectangular layout if
and only if it has a planar embedding with no filled triangles. Thus, K4 has no rect-
angular layout. Buchsbaum et al. [6] also show, using results of Biedl et al. [4], that
graphs that admit rectangular layouts are precisely those that admit a weaker variation
of planar rectangle-of-influence drawings.

Rectangular layouts required to form a partition of a rectangle are known as rect-
angular duals. In a sense, these are “maximal” rectangular layouts; many of the re-
sults concerning rectangular layouts are built on results concerning rectangular duals.
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Graphs admitting rectangular duals have been characterized [15, 25, 27] and there are
linear-time algorithms [15, 23] for constructing them.

Another view of rectangular layouts arises in VLSI floor-planning, where a rect-
angle is partitioned into rectilinear regions so that region adjacencies correspond to a
given planar graph. It is natural to try to minimize the complexities of the resulting
regions. The best known results are due to He [16] and Liao et al. [28] who show
that regions need not have more than 8 sides. Both of these algorithms run in O(n)

time and produce layouts on an O(n) × O(n) integer grid where n is the number of
vertices.

Rectilinear cartograms can be defined as rectilinear contact graphs for vertex-
weighted planar graphs, where the area of a rectilinear region must be proportional
to the weight of its corresponding node. Even with this extra condition, de Berg et
al. [3] show that rectilinear cartograms can always be constructed in O(n logn) time,
using regions having at most 40 sides. The resulting regions, however, are highly
non-convex and can have poor aspect ratio. Recently, Alam et al. [1] describe lower
bounds and matching constructive algorithms that minimize the complexity of the
polygons in point-contact and side-contact representations of subclasses of vertex-
weighted planar graphs.

An upper bound of six for the minimum number of sides in a touching polygon
representation of planar graphs (without weights) can be obtained from the vertex-to-
side triangle contact graphs of de Fraysseix et al. [9], although this is not discussed
in that paper. The top edge of each triangle can be converted into a raised 3-segment
polyline, clipping the tips of the triangles touching it from above, thereby turning
the triangles into side-touching hexagons. This approach might prove difficult for
generating hexagonal representations as it involves computing the amounts by which
each triangle may be raised so as to become a hexagon without changing any of the
adjacencies. Moreover, the nature of such an algorithm would produce many “holes,”
potentially making such drawings less appealing, or requiring further modifications.
Gonçalves et al. [14] describe a similar approach after presenting an algorithm to
create primal-dual triangle contact representations, where each node and face are
represented as triangles.

1.3 Preliminaries

Touching Hexagons Graph Representation Throughout this paper, we assume we
are dealing with a connected planar graph G = (V ,E). We would like to construct
a set of closed simple polygons R whose interiors are pairwise disjoint, along with
an isomorphism R : V → R, such that for any two vertices u,v ∈ V , the boundaries
of R(u) and R(v) overlap non-trivially if and only if {u,v} ∈ E. For simplicity,
we adopt a convention of the cartogram community and define the complexity of a
polygonal region as the number of sides it has. We call the set of all graphs having
such a representation where each polygon in R has complexity 6 touching hexagons
graphs.

Canonical Labeling Our algorithms begin by first computing a planar embedding
of the input graph G = (V ,E) and using that to obtain a canonical labeling of the
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vertices. A planar embedding of a graph is simply a clockwise order of the neighbors
of each vertex in the graph. Obtaining a planar embedding can be done in linear
time using the algorithm by Hopcroft and Tarjan [19]. The canonical labeling or
order of the vertices of a planar graph was defined by de Fraysseix et al. [11] in the
context of straight-line drawings of planar graphs on an integer grid of size O(n) ×
O(n). While the first algorithm for computing canonical orders required O(n logn)

time [10], Chrobak and Payne [7] have shown that this can be done in O(n) time.
In this section we review the canonical labeling of a planar graph as defined by de

Fraysseix et al. [10]. Let G = (V ,E) be a fully triangulated planar graph embedded in
the plane with exterior face u,v,w. A canonical labeling of the vertices v0 = u,v1 =
v, v2, . . . , vn−1 = w is one that meets the following criteria for every 2 < i < n:

1. The subgraph Gi−1 ⊆ G induced by v0, v1, . . . , vi−1 is 2-connected, and the
boundary of its outer face is a cycle Ci−1 containing the edge (u, v);

2. The vertex vi is in the exterior face of Gi−1, and its neighbors in Gi−1 form an (at
least 2-element) subinterval of the path Ci−1 − (u, v).

The canonical labeling of a planar graph G allows for the incremental placement
of the vertices of G on a grid of size O(n) × O(n) so that when the edges are drawn
as straight-line segments there are no crossings in the drawing. The two criteria that
define a canonical labeling are crucial for the region creation step of our algorithm.

Kant generalized the definition for triconnected graphs, partitioning the vertices
into sets V1 to VK that can be either singleton vertices or chains of vertices [22].

2 Lower Bound of Six Sides

In this section we show that at least six sides per polygon are sometimes needed in a
touching polygons representation of a planar graph. We begin by constructing a class
of planar graphs that cannot be represented by four-sided polygons and then extend
the argument to show that the class also cannot be represented by five-sided polygons.

2.1 Four Sides Are not Enough

Consider the fully triangulated graph Gk in Fig. 2(a). It has three nodes on the outer
face A,B and C, and contains a chain of nodes 1, . . . , k which are all adjacent to A

and B . Consecutive nodes in the chain, i and i + 1, are also adjacent. The remain-
ing nodes of Gk are degree-3 nodes li and ri inside the triangles �(A, i, i + 1) and
�(B, i, i + 1).

Theorem 2 For k ≥ 33, there does not exist a touching polygons representation for
Gk in which all regions have complexity four or less.

Proof Assume, for the sake of contradiction, that we are given a touching polygons
drawing for Gk in which all regions have complexity four or less. Without loss of
generality, we assume that the drawing has an embedding that corresponds to the one
shown in Fig. 2(a). Let QA, QB and QC denote the quadrilaterals representing nodes
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Fig. 2 (a) The graph Gk that provides the counterexample. (b) A pair of subsequent fair quadrilaterals
adjacent to the same sides of QA and QB . (c) Illustration for Observation 2 shows one of three possible
cases for two touching regions

A, B and C, and let Qi denote the quadrilateral representing node i. Once again,
without loss of generality, let QA lie in the left corner, QB in the right corner and QC

at the top of the drawing.
We start with an observation.

Observation 1 Any corner of a quadrilateral can be adjacent to at most two disjoint
quadrilaterals that (non-trivially) touch one of its sides. Since there are c = 8 corners
of QA and QB , we have at most 16 quadrilaterals of the chain Q1, . . . ,Qk that are
adjacent to corners of QA and/or QB .

We now consider the quadrilaterals that are not adjacent to any of these corners.
Let Qi be a quadrilateral that is not adjacent to any of the corners of the polygonal

chains A1,A2,A3,A4 and B1,B2,B3,B4. Two of its corners are adjacent to the same
side Ap of QA and the other two are adjacent to the same side Bq of QB , 1 ≤ p,
q ≤ 4. We call such a quadrilateral a fair quadrilateral.

Lemma 1 For k ≥ 33, in any touching quadrilaterals representation of Gk there
exists a pair of fair quadrilaterals Qi and Qi+1 that are adjacent to the same sides
of QA and QB .

Proof We can partition the set of fair quadrilaterals into 16 equivalence classes Cp,q ,
1 ≤ p,q ≤ 4, that denote the sets of fair quadrilaterals that are adjacent to the same
sides of QA and QB . The equivalence class Cp,q denotes that the pairs of sides
(Ap,Bq) are used.

Observe that if Qi is in an equivalence class C and Qi+1 is not fair, then since
Qi+1 must be adjacent to a corner, Qi+2 cannot be in the equivalence class C. Thus,
when we sweep through the chain of quadrilaterals Q1, . . . ,Qk , we simultaneously
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proceed through the equivalence classes. By the pigeonhole principle, if there are at
least 17 fair quadrilaterals, then at least two of them must be in the same equivalence
class. Combining that with the fact that there are at most 16 quadrilaterals that are
not fair completes our proof. �

Before continuing with the proof of Theorem 2, we include the following obser-
vation, partially illustrated in Fig. 2(c):

Observation 2 If there are two regions R,S touching in some nontrivial interval
I = (a, b) then at a, there is a corner of R or S. The same holds for corner b.

Using Observation 2, we see that each interval that is shared by two adjacent poly-
gons ends at two of the corners of the two polygons. Now, let (Qi,Qi+1) be a pair
of fair same-sided quadrilaterals, touching sides Ap and Bq . Since Qi is fair, the
two corners associated with the adjacency of QA must belong to Qi and the other
two corners of Qi are associated with the adjacency with QB . The same applies
for Qi+1. Since Qi and Qi+1 have to be adjacent, the two sides next to each other
touch. From Observation 2, at least two corners of Qi or Qi+1 are involved in the
adjacency. For reference, label these two corners as c1 and c2. The quadrilateral Qli ,
corresponding to node li , must touch quadrilaterals QA, Qi and Qi+1. If c1 (or c2)
were also associated with an adjacency to QA then Qli could not be adjacent to all
three quadrilaterals simultaneously. Therefore, c1 and c2 must correspond to adjacen-
cies with QB . A similar argument for Qri shows that neither c1 nor c2 can correspond
to adjacencies with QB either. However, this is a contradiction as all four corners of
both quadrilaterals are either associated with the adjacency with QA or with QB . �

2.2 Five Sides Are not Enough

If we allow the regions to be pentagons, we must sharpen the argument a little more.

Lemma 2 For k ≥ 71, in any touching pentagons representation for Gk , there exists
a triple of fair pentagons Pi,Pi+1,Pi+2 adjacent to the same sides of PA and PB .

Proof We prove this along the same lines as the proof for Lemma 1. As before, we
can see that for a total of 10 corners, at most 20 pentagons of the inner chain are
not fair. The number of equivalence classes of pentagons with sides solely on the
same side of PA and PB is at most 5 × 5 = 25. Recall that pentagons belonging
to the same equivalence class are sequential. Since we aim now for triples and not
just for pairs, using the pigeonhole principle, if we have more than 2 × 25 = 50 fair
pentagons at least three must belong to the same equivalence class. Therefore, as long
as k > 20 + 50 = 70, there exists a triple of fair same-sided pentagons. �

Theorem 3 For k ≥ 71, there does not exist a touching polygons representation for
Gk in which all regions have complexity five or less.

Proof From Lemma 2, let (Pi,Pi+1,Pi+2) be a triple of fair same-sided pentagons,
touching sides Ap and Bq . From Observation 2, we know that each interval that is
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shared by two polygons ends at two of the corners of the two polygons. Consequently,
four of the five corners for Pi , Pi+1 and Pi+2 are adjacent to Ap or Bp . Since Pi and
Pi+1 have to be adjacent, the two sides next to each other touch. However, since there
exist the polygonal regions representing ri and li , as before, the interval where Pi and
Pi+1 touch is disjoint from the regions PA and PB . As each region can have at most
five corners, four of which are adjacent to either PA or PB , from Observation 2 we
know that one corner from the adjacency with Pi and Pi+1 belongs to Pi and one
belongs to Pi+1. Similarly, we know that the adjacencies of ri+1 and li+1 imply that
one corner of the adjacency of Pi+1 and Pi+2 belongs to Pi+1 and the other belongs
to Pi+2. Due to planarity, we also know that Pi and Pi+2 lie on opposite sides of
Pi+1. As these corners cannot be adjacent to PA or PB , we see that Pi+1 must have
six distinct corners, two adjacent to PA, two to PB , one to Pi and one to Pi+2, a
contradiction. �

Note that six-sided polygons are indeed sufficient to represent the graph in
Fig. 2(a). In particular, for fair polygons Pi and Pi+1, we can use three segments
on the lower side of Pi , while the upper side of Pi+1 consists of only one segment
completely overlapping the middle of the three segments from the lower side of Pi.

3 Touching Hexagons Representation

In this section, we present a linear-time algorithm that takes as input a planar graph
G = (V ,E) and produces a representation of G in which all regions are convex
hexagons. This algorithm and the fact that every touching hexagons graph is nec-
essarily planar proves that the class of planar graphs is equivalent to the class of
touching hexagons graphs.

3.1 Algorithm Overview

We assume that the input graph G = (V ,E) is a fully triangulated planar graph with
|V | = n vertices. If the graph is planar but not fully triangulated, we can augment
it to a fully triangulated graph with the help of dummy vertices and edges, run the
algorithm below and remove the polygons that correspond to dummy vertices.

Traditionally, planar graphs are augmented to fully triangulated graphs by adding
edges to each non-triangular face. Were we to take this approach, however, when we
remove the dummy edges we would have to perturb the resulting space partition to
remove polygonal adjacencies. As this is difficult to do, we convert our input graph to
a fully triangulated one by adding one additional vertex to each face and connecting
it to all vertices in that face. The above approach works if the input graph is bicon-
nected. Singly-connected graphs must first be augmented to biconnected graphs as
follows. Consider any articulation vertex v, and let u and w be consecutive neighbors
of v in separate biconnected components. Add a new vertex z and the edges (z, u) and
(z,w). Iterating for every articulation point biconnects G and results in an embed-
ding in which each face is bounded by a simple cycle. Since determining articulation
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Fig. 3 Incremental construction of the touching hexagons representation of a graph. Shaded vertices on
the bottom row and shaded regions on the top row are processed at each step. In general, the region defined
at step i is carved at distance 2−i from the active front on the top. Note that the top row forms a horizontal
line at all times

points and adding vertices and edges to faces can be done in linear time, the augmen-
tation step incurs only a linear amount of additional time to the main algorithm and
adds at most a linear number of vertices and edges to the original graph.

The algorithm has two main phases. The first phase computes the canonical la-
beling. In the second phase we create regions with slopes 0, 1, −1 out of an initial
isosceles right-angle triangle, by processing vertices in the canonical order. Each time
a new vertex is processed, a new region is carved out of one or more already existing
regions. At the end of the second phase of the algorithm we have a right-angle isosce-
les triangle that has been partitioned into exactly n = |V | convex regions, each with
at most 6 sides. We show that creating and maintaining the regions requires linear
time in the size of the input graph. We illustrate the algorithm with an example; see
Fig. 3.

3.2 Region Creation

In this section we describe the n-step incremental process of inserting new regions in
the order given by the canonical labeling, where n = |V |. The regions will be carved
out of an initial triangle with coordinates (0,0), (−1,1), (1,1). The process begins by
the creation of R0, R1, and R2, which correspond to the first three vertices, v0, v1, v2;
see Fig. 3(a). Note that the first three vertices in the canonical order form a triangular
face in G and hence must be represented as mutually touching regions.

At step i of this process, where 2 < i < n, region Ri will be carved out from the
current set of regions. Define a region as “active” at step i if it corresponds to a vertex
that has not yet been connected to all its neighbors. An invariant of the algorithm is
that all active regions are non-trivially tangent to the top side of the initial triangle,
which we refer to as the “active front.”

By criterion 2 of the canonical labeling and the active regions invariant, the cur-
rent node vi is connected to two or more consecutive vertices on the outer face of
Gi−1 and consecutive regions on the active front. Let va and vb be the leftmost and
rightmost neighbors of vi on the outer face with corresponding (active front) faces Ra

and Rb . The new region Ri is defined to be an isosceles trapezoid formed by carving
a horizontal line segment that is at distance 1/2i from the active front and intersects
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Fig. 4 There are a ten possible
region shapes, falling into three
categories: 2 opening, 4 static,
and 4 closing. The arrows
indicate carvings from one
region to another

the right side of Ra and the left side of Rb . The left (respectively, right) side of the
trapezoid has slope −1 (respectively, +1). If the right side of Ra has slope +1, a
portion of its region is necessarily carved out by Ri . The same applies if the left side
of Rb has slope −1. The regions between Ra and Rb have their upper segment carved
and no longer being tangential to the active front are removed from the set of active
regions. In addition, Ri is added to the list of active regions. In Fig. 3(d), for example,
both R0 and R1 have appropriate slopes and so are not carved and R2, R3, and R4 are
all removed from the active front.

Note, that if dGi
(vi) = 2, then the length of the horizontal segment is 0 and the

shape is an isosceles triangle. In this case, the geometry is such that exactly one of
Ra or Rb must necessarily be carved. See Figs. 3(a–c).

Lemma 3 The above algorithm produces convex regions with at most 6 sides.

Proof The convexity of the regions is obvious from the fact that regions are cre-
ated by a (linear) partitioning cut of a previous convex shape. Note that the above
algorithm leads to the creation of at most ten different types of regions; see Fig. 4.
Each region has a horizontal top segment, a horizontal bottom segment (possibly of
length 0), and sides with slopes −1 or 1. Moreover, each region can be characterized
as either opening (the first two in top row), static (the next four in the middle row),
or closing (the last four in the bottom row), depending on the angles of the two sides
connecting it to the top horizontal segment. At each iteration, each new region Ri is
an opening region. In the new region’s creation, all affected regions except for Ra

and Rb are carved with a horizontal line segment lying just below the top segment
thus having no effect on the shapes of these regions and removing them from the ac-
tive front. Consequently, the only new region shapes possible stem from cutting Ra

and Rb when necessary with a slope −1 or +1 line respectively. As the lower vertex
formed by each cut is at least half the distance to the active front from the previous
vertices (those not on the active front), the only possible shapes are those shown in
Fig. 4. Observe that closing regions cannot be carved at all.

�

3.3 Running Time

The above algorithm can be implemented in linear time. We provide here a simple
description; further details can be found in [8].

Note that both a planar embedding [19] and a canonical labeling of the embed-
ding [7] for a planar graph can be computed in linear time. The remainder of the al-
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Fig. 5 An example of a capped binary tree. (a) The original graph. (b) The hexagonal representation
(not drawn to scale to conserve space). (c) The corresponding capped binary tree with shaded nodes
representing cap nodes and dashed lines representing capped sets. The nesting of all capped sets is
(1,3, (4, (5,7, (8,10),11),12,14),15,17). We draw our binary tree upwards with the root at the bottom
to correlate better with the hexagonal drawing algorithm

gorithm’s time is spent in creating and maintaining the regions. Recall that each new
region is created by carving out an area from a set of other regions in the outer face.
The creation of each region can be done in constant (amortized) time by charging the
process to the regions that are carved. Thus, we only need to bound the number of
times a region can be modified. As can be seen from the acyclic hierarchy of regions
in Fig. 4, there is a limited set of possible shapes that a region can take as it is carved.
Including the final horizontal cut removing the region from the outer face, each re-
gion can be modified, and hence charged, at most three times. Noting that each region
corresponds to a unique node, we obtain the following lemma:

Lemma 4 For any planar graph G on n vertices, we can construct in linear time a
touching hexagons representation of G with convex regions. Moreover, if the graph is
a triangulation, the representation is also a tiling.

4 Compaction Algorithm for Quadratic Area

The algorithm given in Sect. 3.2 provides a touching hexagons representation of any
planar graph. The incremental process carves out polygons within an ever smaller
band of active front, therefore in practice the drawing is highly skewed, leading to
exponential area. In this section we describe a compaction algorithm to get a drawing
on an O(n) × O(n) grid.

When looking at the vertices and edges created in the algorithm for touching
hexagons, if the horizontal edges are ignored, then the resulting graph is a “binary”
tree, in the sense that each vertex has a degree of no more than 2. See Fig. 5. From this
observation, we can generalize the compaction problem to the tree drawing routine
described below.

We start with some definitions. Order the nodes according to their inorder traver-
sal. A cap set is an ordered subset of the nodes such that
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1. The first (resp. last) node has exactly one child, the left (resp. right) child.
2. All other nodes are leaf nodes, with the addition that for the outermost cap the first

and last nodes are also leaf nodes.
3. The ordering of nodes in the cap set follows the same inorder traversal ordering.
4. Any two cap sets are non-overlapping. However, one may be nested in another, in

the sense that if one set C goes from node a to node b and is contained in a second
set C′ then there exist two consecutive nodes i, j in C′ such that i < a < b < j .

Define a capped binary tree as a binary tree where every node either has two chil-
dren (proper) or is assigned to a specific cap set. For convenience, we often refer to
individual cap nodes in a cap set or to cap node pairs (u, v) of neighboring (consec-
utive) cap nodes in a cap set.

Figure 5 illustrates the correlation to the hexagons created by the algorithm in
Sect. 3.2 and provides an example of a capped binary tree, where the nodes in the
tree represent the vertices formed in the drawing (not the hexagon faces), the edges
are precisely the (non-horizontal) edges of the drawing, and each cap set is a maximal
connected component of vertices and horizontal edges of the drawing.

The capped binary tree drawing problem is to take a capped binary tree and draw
it on an integer grid such that 1) there are no edge crossings except at common end-
points; 2) each right (resp. left) edge is drawn with a slope of +1 (resp. −1); and 3)
all nodes in a cap set are drawn with the same y-coordinate such that they can be
connected by a horizontal line segment without crossing any other edges (except at
the nodes in the set).

Before proving that we can draw capped binary trees on an n/2 × n/2 grid, where
n is the number of nodes in the tree, we first present a divide-and-conquer compaction
algorithm to accomplish this. The algorithm is inspired by the layered tree drawing
algorithm [34] with the additional aforementioned constraints.

Let GT 6G be the graph derived from the touching hexagons algorithm, formed by
taking the vertices as the intersections of the regions and the edges as (portions of)
the sides of the regions connecting the vertices; see Fig. 5(c) where the edges are both
the solid and dashed lines. Let GT be the corresponding capped binary tree, formed
by removing the horizontal edges. Our compaction algorithm, described in detail
below, proceeds by incrementally removing and placing a subset of the leaf nodes
from a subtree Gc initially set to GT . For each of the leaf nodes of Gc removed, the
resulting placement requires the node to be connected to all of its child nodes (if any)
in the original tree GT and also might require adjusting the position of one of its
subtrees. Our process works by only adjusting the horizontal positions of any node,
thus preserving a subtree’s vertical position. For performance reasons, we actually
delay the horizontal shifting by merely recording the shift needed for a subtree in its
root. The shifts are then propagated through the tree in a final post-processing stage.
Initially, the x and y positions as well as the horizontal shift of every node is set to 0.

Before proceeding with the details of the algorithm, we clarify precisely those leaf
nodes that are removed and placed at each iteration. Define the active front node set
F of Gc as the maximum subset of leaf nodes of Gc, such that a cap node is in F

if and only if all the nodes in its cap set are also in F . The initial active front is
precisely those vertices at the upper edge of the outer triangular region. For example,
in Figure 5(c), this would be the set (1,3,15,17).
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1. For each node v in the active front node set F of Gc,
a) if v is a leaf in GT , we do nothing (v remains at (0,0)).
b) if v has one subtree in GT and if it is to the right, extend a slope +1 line from

the root of this right subtree by 1 unit down and left to get the position of v. If
it instead has a left child, extend a slope −1 line, down and right.

c) if v has two subtrees in GT , shift the right subtree horizontally so that the two
subtrees have a “separation”1 of either distance 1 or 2, and the slope −1 (resp.
+1) line from the root of the left (resp. right) subtree meet at a grid point, the
assigned point for v. Record the shift used at the root of the right tree.

2. For each cap set C in the front, set h to be the maximum of the absolute values of
y coordinates of the cap nodes in C. For every cap node v ∈ C,
a) if v is a leaf node in GT , set y(v) = −h;
b) otherwise, by construction, node v must have only one subtree. If it is to the

right, extend the slope +1 line from the root of the subtree till it intersects with
the line y = −h, and record the coordinates of the intersection point as the
coordinates for v. If it is to the left, extend the slope −1 line instead.

3. Delete F and its connecting edges from GC , renaming the resulting tree GC . If
Gc is not empty, go to Step 1.

4. Propagate the horizontal shifts from each node to its subtree via a pre-order traver-
sal starting at the root of GT to obtain a final integer grid position for each node.

This algorithm yields a drawing of the GT 6G on a grid. In [8], we present a detailed
technical execution of this algorithm on the graph from Fig. 5. Because the algorithm
processes entire cap sets at a time, because Step 2 places all nodes in the same cap
set at the same (lowest) height, and because it only shifts nodes horizontally, all cap
nodes are drawn at the same vertical position. Further, because the algorithm also only
connects the tree edges using line segments with slope ±1 and applies any horizontal
shifts to the entire subtree via the final propagation step, all tree edges are drawn with
slopes ±1. Consequently, the drawing produced by this algorithm is a valid capped
binary tree drawing.

We also need to show that the grid size used is reasonable. To bound the area, we
must first elaborate on the compaction step (Step c) that combines two trees such that
their separation is either distance 1 or 2. This separation is not between the two roots
of the subtrees but between the closest two nodes. In essence, we wish to compact
the two subtrees as close as possible. For clarity and simplicity, we present here a
simple linear-time compaction algorithm leading to an overall quadratic performance.
Using only doubly-connected circular linked lists, it is not difficult to improve the
performance to an amortized constant time yielding the necessary linear-time bound.
The details of the improved version can be found in [8].

Figure 6 illustrates the process. We initially place the two subtrees to be merged at
a sufficient distance apart. For each y-value in the grid, we determine the difference
between the rightmost node in the left subtree and the leftmost node in the right
subtree (if either subtree does not have such a node, we take the difference to be
infinite). Let m be the smallest such difference. We shift the right subtree horizontally

1We elaborate on what separation entails shortly.
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Fig. 6 An example of
compacting two subtrees
together during Step 1c. (a) The
two subtrees at an initial
separation, highlighting cap
nodes whose neighbors are in a
different subtree. (b) The
resulting tree after merging,
with new cap node pairs

m − 1 or m − 2 units so that the root of the two subtrees meet at a grid point. Clearly
this can be done in linear time.

The observation needed for the faster version is that the minimum difference must
occur at specific cap nodes, whose neighboring cap node is in the opposite subtree.
Maintaining only this set of potential cap nodes can be achieved via linked lists and
by zipping up neighboring cap nodes during the merge process from the root to the
leaf nodes of the subtrees.

Lemma 5 Given any capped binary tree T , we can compute in linear time a capped
binary tree drawing of T on an (n − 1) × (n − 1)/2 grid.

Proof The linear-time algorithm comes directly from the above discussion and the
improved constant amortized time compaction step. However, it still remains to prove
that the resulting drawing is sufficiently compact. We do this by inductively analyzing
the separation between neighboring cap nodes, which are “joined” during the process
described above. This proof is reminiscent of the one given by Kant [21].

For every cap node pair (u, v), consecutive nodes in a cap set, let its interior cap
set Ci be the cap set (if one exists) whose first node is the next cap node in the inorder
traversal of T from u. Note that from the definition of the nesting of cap sets, the last
node in Ci would be the last cap node before v. If no such set exists, then let Ci be
{lca(u, v)}, where lca(u, v) represents the least common ancestor of u and v. If u

has a child node, it must be a left child and if v has a child node, it must be a right
child. Since any subtree necessarily has at least one cap node (a leaf of that subtree),
this lca is also the only node in the inorder traversal between u and v. We refer to u

and v as the exterior cap nodes of Ci . Observe that the interior cap set will have its
y-coordinate value closer to the root in the final drawing. For example, in Fig. 5(c),
the cap node pair (4,12) has the interior cap set {5,7,11}, whereas the cap node pair
(12,14) has as the interior cap set the lca {13}.

Our proof uses the following inductive claim. After every iteration of our algo-
rithm, for any subtree T ′ and any cap node pair (u, v) in T ′ that is part of a cap set
whose exterior cap nodes are not also in T ′ or is the outermost cap set, the (horizon-
tal) distance between (u, v) is no more than twice the number of cap node pairs in
the inorder traversal of T ′, inclusive of the pair (u, v).

If this claim holds, then the drawing is on an (n − 1) × (n − 1)/2 grid because the
final drawing is a single tree with one row of cap nodes at the top whose width cannot
exceed twice the number of cap node pairs in the tree. To bound the number of cap
node pairs, notice that the graph formed by the binary tree edges combined with the
horizontal (capping) edges forms a 3-regular graph, excluding the root and leftmost
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Fig. 7 Example of the merging of two subtrees during successive cap node pairs for (a) a single lca node
and (u, v) and (b) (u′, v′) and (u, v). (c) A simple drawing of a capped binary tree highlighting both the
normal grid (horizontal/vertical lines) and the rotated, space-efficient, grid (diagonal lines)

and rightmost vertices which have degree two. Since this graph has (3n− 3)/2 edges
and n − 1 of the edges are tree edges, that leaves exactly (n − 1)/2 horizontal edges.
Each horizontal edge corresponds to a unique cap node pair. The height follows from
the ±1 slope of the non-horizontal edges.

Initially, every node is in its own subtree so the claim holds. Inspecting the algo-
rithm reveals that the only place where the claim could change is in Step 1c where
two subtrees T1 and T2 are merged. In addition, since the trees are simply shifted to
merge, the only possible change is due to the introduction of new cap node pairs, a
cap node from each subtree is aligned with its neighbor in the other tree. In fact, since
the merging process zips nested cap sets in succession, we are only concerned with
the final width of the last cap pair merged. We again prove this by induction on the
zipping process.

We claim that the width of the cap node pair (u, v) merged is no more than twice
the number of cap node pairs in its inorder traversal from u to v. Let (u, v) be the first
cap node pair merged. Since the interior cap set of (u, v) is simply r , which is the
only node in the inorder traversal between u and v, the resulting width at this stage is
at most 2; see Fig. 7(a). Thus, our claim holds after the first merged cap node pair.

We now progress inductively. Let (u, v) be the next cap node pair merged with
width �, (u′, v′) be the previous pair, and C be the interior cap set of (u, v). Notice
that (u′, v′) ∈ C. By induction, we know that the entire width �′ of C is no more than
twice the number of cap node pairs in the inorder traversal from the first to last cap
nodes in C. In addition, since u has no right subtree and v has no left subtree, the next
cap node in the inorder traversal is the first cap node in C and the last in the traversal
is the last cap node in C. Therefore, we know that the number of cap node pairs in
the inorder traversal from u to v is the same as the number for C plus one, the one
for (u, v). Therefore, we need only to prove that � ≤ �′ + 2.

Let a and b be the first and last cap node in C; see Fig. 7(b). By the definition of a
capped binary tree, we know that a and b each have only one child, a left and a right
respectively. In addition, by Step 2 we know that one of the two child nodes is only
one unit above its parent. Without loss of generality assume it is the left child of a.
This means that the node is also one unit to the left of a. Node u is a descendant of
this left child but from the definition of the capped binary tree, u can be found by
traversing successive right children only. Therefore, the path from this left child to u

follows a straight line of slope +1. This follows parallel with the line from b through
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its right child. The (horizontal) distance from u to this line is exactly �′ + 2. Since the
path from this right child to v follows left children only (if any), the distance from u

to v is � ≤ �′ + 2. This completes our proof. �

For a clearer understanding and better symmetry with the construction technique
used in Sect. 3, we used edges with slopes ±1 and 0. As Fig. 7(c) illustrates, by using
a grid that is rotated 45◦ producing tree edges that are drawn rectilinear and capped
edges drawn with slope −1, we can improve the area bound slightly.

Corollary 1 Given any capped binary tree T , we can compute in linear time a (ro-
tated) capped binary tree drawing of T on an (n − 1)/2 × (n − 1)/2 grid.

Since the initial construction step does not need to create the hexagons explicitly,
that step can be used simply to determine the combinatorial representation of the
capped binary tree. This prevents any issues with numerical precision and represen-
tation. Combining Lemmas 4 and 5 yields our first proof for Theorem 1.

5 Another Hexagonal Representation Using O(n) × O(n) Area

In this section, we present an alternative approach to proving Theorem 1. This ap-
proach is based on Kant’s algorithm for hexagonal grid drawings of 3-connected,
3-regular planar graphs [21]. Although the modification needed is direct, we feel that
our previous approach is a more intuitive and constructive technique that yields better
fundamental insight into the nature of the problem.

In Kant’s algorithm the drawing is obtained by looking at the dual graph and pro-
cessing its vertices in the canonical order. In the final drawing, however, there are
two non-convex faces, separated by an edge not drawn as a straight-line segment. We
address these problems by adding some extra vertices in a pre-processing step. Once
the dual of this augmented graph is embedded, the faces corresponding to the extra
vertices can be removed to yield the desired O(n) × O(n) grid drawing.

Let H = (V ,E) be a 3-connected, 3-regular planar graph. Note that the dual D(H)

is fully triangulated, as each face in the dual corresponds to exactly one vertex in H .
So, for f faces in H , we have f vertices in D(H). We first compute a canonical
ordering on the vertices of D(H) as defined by de Fraysseix et al. [9]. Let v1, . . . , vf

be the vertices in D(H) in this canonical order.
Kant’s algorithm now constructs a drawing for H on the hexagonal grid such

that all edges but one have slopes 0◦, 60◦ or −60◦, with the one edge with bends
lying on the outer face. The typical structure of those drawings is shown in Fig. 8(a).
Although we focus our description using the hexagonal grid, to place the nodes on
the rectilinear grid, the corresponding slopes are 0◦, 90◦ and −45◦.

The algorithm incrementally constructs the drawing by adding the faces of H in
reverse order of the canonical order of the corresponding vertices in D(H). We let
wi be the vertices of H . Let face Fi correspond to vertex vi in D(H). The algorithm
starts with a triangular region for the face Ff that corresponds to vertex vf . The
vertex wx that is adjacent to Ff , F1 and F2 is placed at the bottom. Let wy and wz
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Fig. 8 (a) Polygonal structure obtained from Kant’s algorithm. (b) Graph G augmented by vertices x, y

and z together with its dual which serves as the input graph for Kant’s algorithm

be the neighbors of wx in Ff . These three vertices form the corners of the first face
Ff . (wx,wz) and (wx,wy) are drawn upward with equal lengths and slopes −√

3
and

√
3, respectively. All the edges on the path between wy and wz along Ff are

drawn horizontally between the two vertices. From this first triangle, all other faces
are added in reverse canonical order to the upper boundary of the drawing region. If
a face is completed by only one vertex wi , this vertex is placed appropriately above
the upper boundary such that it can be connected by two edges with slopes −√

3 and√
3, respectively. If the face is completed by a path, then the two end segments of the

path have slopes −√
3 and

√
3, while the other edges are horizontal. The construction

ends when w1 is inserted, corresponding to the outer face F1. Note that there is an
edge between w1 and wx , which is drawn using some bends. This edge is adjacent to
the faces F1 (the outer face) and F2.

From this construction, we can observe that the angles at faces Ff , . . . ,F3 have
size ≤ 180◦ as the first two edges do not enter the vertex from above, and the last
edge leaves the vertex upwards. Hence, we have the following result.

Lemma 6 The faces Ff , . . . ,F3 are convex, and as the slopes of the edges are ±√
3

or 0, they are drawn with at most six sides.

This property is exactly what we are aiming for, as the vertices of our input graph
G should be represented by convex regions of at most six sides. Unfortunately, Kant’s
algorithm creates two non-convex faces F1 and F2 separated by an edge which is
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not drawn as a line segment. Furthermore, the face Ff is drawn as large as all the
remaining faces F3, . . . ,Ff −1 together.

Kant gave an area estimate for the result of his algorithm which is the same for
both hexagonal and rectilinear grids. A corollary of Kant’s algorithm is the following:

Corollary 2 For a given 3-connected, 3-regular planar graph H of n vertices, H −
wx can be drawn within an area of (n/2 − 1) × (n/2 − 1).

To apply Kant’s result to the problem of constructing a touching hexagons repre-
sentation, we enlarge the embedded input graph G so that the dual of the resulting
graph G′ can be drawn using Kant’s algorithm in such a way that the original vertices
of G correspond to the faces F3, . . . ,Ff −1.

We add 3 vertices corresponding to faces F1,F2 and Ff in Kant’s algorithm. Since
G is fully triangulated, let a, b and c be the vertices at the outer face of G in clockwise
order. We add the vertices x, y and z in the outer face and connect to G so that z

corresponds to the outer face F1, y to F2, and x to Ff . First, we add x and connect it
to a, b and c such that b and c are still in the outer face. Then we add y and connect
it to x, b and c such that b is still in the outer face. Finally, we add z and connect it to
x, y and b such that x, y and z now form the outer face; see Fig. 8(b).

Since the vertices x, y and z are on the outer face, we can choose which one is
first, second and last in the canonical order. We then apply Kant’s algorithm with the
canonical order v1 = z, v2 = y and vf = x. After construction, we remove the regions
corresponding to vertices x, y and z, yielding a hexagonal representation of G.

Given any (connected) planar graph G, we can make it fully triangulated using the
technique described in Sect. 3.1. We can then remove the added vertices and edges.
Since Kant’s algorithm runs in linear time, and our emendations can be done in linear
time, we get another proof for Theorem 1. We again use at most three slopes for each
representation with sides having slopes ±√

3 or 0 (or 0, +∞ and −1).
For a triangulated input graph G = (V ,E), we have n vertices and, by Euler’s

formula, 2n − 4 faces. Since we enhanced our graph to n + 3 vertices, we have f =
2n + 2 faces. Those faces are the vertices in the dual D(G) which is the input to
Kant’s algorithm. His area estimation gives an area of (f/2 − 1) × (f/2 − 1) for
f vertices when we coalesce the faces F1,F2 and Ff into a single outer face by
removing the corresponding vertices and edges. Thus, we get an area bound of n × n

using exactly the same argument as Kant [21].

6 Conclusion and Future Work

Thomassen [32] had shown that not all planar graphs can be represented by touching
pentagons, where the external boundary of the figure is also a pentagon and there are
no holes. Our results are more general, as we do not insist on the external boundary
being a pentagon or on there being no holes between pentagons. It is possible to de-
rive algorithms for convex hexagonal representations for general planar graphs from
several earlier papers, e.g., de Fraysseix et al. [9], Thomassen [32], and Kant [21].
However, these do not immediately lead to algorithmic solutions to the problem of
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computing a graph representation with convex low-complexity touching polygons.
To the best of our knowledge, this problem has never been formally considered.

In this paper, we presented several results about touching k-sided graphs. We
showed that, for general planar graphs, six sides are necessary and sufficient, and
that the algorithm for creating a touching hexagons representation can be modified to
yield an O(n) × O(n) drawing area. Finally, we discussed a different algorithm for
general planar graphs which yields a similar drawing area.

Several interesting related problems are open. What is the complexity of deciding
whether a given planar graph can be represented by touching triangles, quadrilaterals,
or pentagons? In the context of rectilinear cartograms, the vertex-weighted problem
has been carefully studied. However, the same problem without the rectilinear con-
straint has received less attention. Finally, it would be interesting to characterize the
subclasses of planar graphs that allow for touching triangles, touching quadrilaterals,
and touching pentagons representations.
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