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Abstract We consider a general framework in which a memoryless robot period-
ically explores all the nodes of a connected anonymous graph by following local
information available at each vertex. For each vertex v, the endpoints of all edges ad-
jacent to v are assigned unique labels within the range 1 to deg(v) (the degree of v).
The generic exploration strategy is implemented using a right-hand-rule transition
function: after entering vertex v via the edge labeled i, the robot proceeds with its
exploration, leaving via the edge having label [i mod deg(v)] + 1 at v.

A lot of attention has been given to the problem of labeling the graph so as to
achieve a periodic exploration having the minimum possible length π . It has recently
been proved (Czyzowicz et al., Proc. SIROCCO’09, 2009) that π ≤ 4 1

3n holds for all
graphs of n vertices. Herein, we provide a new labeling scheme which leads to shorter
exploration cycles, improving the general bound to π ≤ 4n − 2. This main result is
shown to be tight with respect to the class of labellings admitting certain connectivity
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properties. The labeling scheme is based on a new graph decomposition which may
be of independent interest.

Keywords Anonymous graph · Labeling · Exploration algorithm · Oblivious robots

1 Introduction

The problem of finding Eulerian cycles and Hamiltonian cycles is at the heart of graph
theory. In fact, many applications arise in different contexts. One of these can be
found in the field of graph exploration by means of a mobile entity. The entity might
be represented, for instance, by a software agent or a robot. The task of periodic
visiting of all vertices of a network is particularly useful in network maintenance,
where the status of every vertex has to be checked regularly. According to the imposed
model as well as to the robot capabilities, the problem may vary in its complexity.

1.1 Model Assumptions

We assume that the explored graph G = (V ,E) is simple, undirected, connected, and
anonymous, i.e., the vertices in the graph are neither labeled nor colored. However,
while visiting a vertex the robot can distinguish between its adjacent edges. This is
achieved by using a predefined local ordering of edges known as a local orientation,
which can be given in one of the following two ways:

– An implicit cyclic ordering, given at each node v ∈ V as a local cyclic ordering
of adjacent edges. This is encoded through a NextPort function which naturally
defines a transition operation known as the right-hand-rule (or basic walk [10]): a
robot entering vertex v by an adjacent edge e leaves this vertex by the next edge
adjacent to v in the specified cyclic order, NextPort(e). The local ordering of edges
is cyclic in the sense that successive applications of NextPort iterate through all of
the edges adjacent to v.

– An explicit port labeling, in which, for each vertex v ∈ V , there exist consecutive
integer labels (starting from 1), also called port numbers, preassigned to all the
edges adjacent to v, next to the endpoint v of each edge. Thus, each edge of the
graph is assigned two port numbers, one for each endpoint. The labels at node
v are always distinct and form the discrete interval [1,deg(v)], where deg(v) is
the degree of v in G. In such a setting, the natural definition of NextPort for port
number l at vertex v is NextPort(l) := [l mod deg(v)] + 1.

A robot, initially located at a generic vertex v, starts the exploration of G by travers-
ing the edge having label 1 at endpoint v. Once it has reached the other endpoint
of this edge, say u, it reads the associated label, say l, and enters to the neighbor-
ing vertex u of v. In order to keep on with the exploration, the robot now follows
the right-hand rule, leaving vertex u by the edge labeled NextPort(u). In doing so,
eventually the robot will re-enter port 1 at vertex v, and the traversal will proceed pe-
riodically from then on. We will say that the robot explores the graph if its route goes
through each vertex of the graph at least once; from now on, we will only consider
port labellings leading to valid explorations. It is known that all graphs admit a port
labeling leading to an exploration [6].
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1.2 Studied Parameter and Its Motivation

For a given port labeling, the exploration period π is defined as the total number of
steps made by the robot before returning to the initial port (or equivalently, as the
total number of arcs of the form (u, v), for {u,v} ∈ E, used during the exploration).
In this paper, we focus on finding labellings which lead to valid explorations of min-
imum possible period. This immediately leads to the natural definition of the graph
parameter π(G) known as the minimum exploration period of the graph.

The parameter π(G) obviously characterizes the best-case behavior of the basic
walk on G, but its studies have in fact some much stronger motivation:

– π(G) is the minimum possible exploration period for any oblivious robot (i.e.,
a robot which is not equipped with any state information which survives when
traversing an edge), even if the labeling of the graph is given using explicit port
numbers, and the choice of the next edge is not necessarily governed by the right-
hand-rule [5]. In other words, in the context of these studies, the basic walk is fully
representative of all oblivious exploration strategies.

– the value of π(G), expressed in relation to the number of nodes n, exposes certain
interesting structural properties of the graph. For example, we have that π(G) =
n if and only if G is Hamiltonian, and for a Hamiltonian graph an appropriate
labeling can be defined so as to direct ports 1 and 2 of all nodes along the edges of
the Hamiltonian cycle (Fig. 1a). Moreover, it is also known that π(G) < 2n for all
graphs admitting a spanning tree T such that G \ T has no isolated vertices [5].

Periodic graph exploration requires that the robot has to visit every vertex infinitely
many times in a periodic manner. In practice, we do not require the cycle to touch
each vertex exactly once but only that all the vertices are touched. In this setting,
every connected graph admits an exploration cycle. In fact, one may consider, for
instance, the cycle determined by the visit of a spanning tree of the input graph.
In this case, the period would be of length 2n as each edge of the spanning tree is
traversed twice in one cycle. However, the difficulty resides in encoding somehow
the cycle only by means of an appropriate labeling scheme (see for instance [3] for
recent studies on this matter). Encoding the spanning tree is not always possible. Also
in the example shown in Fig. 1 it is not clear whether there exists a labeling scheme to
allow a robot to follow the cycle determined by the spanning tree by means of a fixed
rule. Actually, in [5] a lower bound of 2.8n for the length of an exploration cycle

Fig. 1 Exploration cycles obtained for different labellings: (a) a labeling leading to a Hamiltonian cycle,
(b) another exemplary labeling
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within an additive factor has been provided when the robot is oblivious, i.e. it has no
capabilities rather than to follow one specific rule based on the local orientation such
as the right-hand-rule.

1.3 Related Work

Periodic graph exploration problems have been studied in a wide variety of con-
texts; we confine ourselves to a brief survey of directly related results in the model of
anonymous undirected graphs with local port labels, and robots are deterministic and
equipped with no memory (or a very small number of bits of memory).

When no assumptions are made about the port labeling, it is a well-established
fact [1] that no oblivious robot can explore all graphs. In [14], the impossibility result
was extended to a finite team of robots, showing that they cannot explore all planar
cubic graphs. This result is improved in [4], where the authors introduce a powerful
tool, called the Jumping Automaton for Graphs (JAG). A JAG is a finite team of
finite automata that permanently cooperate and that can use teleportation to move
from their current location to the location of any other automaton. However, even
JAGs cannot explore all graphs. The proof that a robot requires at least n states (and
thus �(logn) bits of state memory) to explore all graphs of order n can be found
in [7]. On the other hand, by a seminal result of Reingold [13], a robot equipped
with �(logn) memory can perform a deterministic exploration of any graph, and the
resulting exploration period is thus polynomial with respect to n. In [8], the authors
investigate the graph exploration capability with respect to the memory size provided
to a robot. Another way of assisting exploration is described in [2], where it is shown
that an appropriate pre-coloring of the graph using 3 colors always allows a robot
with constant memory to successfully complete the exploration.

A natural problem consists in manually setting up the local orientation of the port
numbers in order to allow an oblivious robot to efficiently explore the input graph.
This line of study, which is also pursued herein, was introduced in [6]. That paper
provided the first constructions of port labellings leading to short exploration periods
for an oblivious robot, showing that for any graph on n nodes, we have π(G) ≤ 10n.
Recently, by applying a clever graph decomposition technique in order to build an
appropriate exploration cycle, [5] have improved this bound to π(G) ≤ 4 1

3n. They
have also shown a strong worst-case lower bound: for arbitrarily large values of n,
there exist n-node graphs Gn such that π(Gn) ≥ 2.8n − O(1).

An interesting variation to this problem was proposed in [11], where the robot is
equipped with few extra memory bits; we will denote the exploration periods in such a
model by πc . In [11] it is shown how to obtain an exploration period πc(G) ≤ 4n−2,
regardless of the starting vertex of the robot. The obtained bound has since been im-
proved in [9] to πc(G) < 3.75n − 2 by exploiting some particular graph properties,
still allowing only constant memory. The constant memory model was also addressed
in [5] and the bound was further improved to πc(G) < 3.5n − 2 by using a combina-
tion of the properties from [9] and the new decomposition technique also used in [9]
for the oblivious case. Interestingly enough, apart from the relation πc(Gn) ≥ 2n − 2
which clearly holds whenever Gn is a tree on n nodes, there are to date no known
non-trivial lower bounds on the worst case value of parameter πc .
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1.4 Our Results

The central result of this paper is to establish an improved bound on the minimum
exploration period of any graph G on n nodes, namely, π(G) ≤ 4n − 2. The proof is
constructive, and we also show that a port labeling which guarantees an exploration
period of at most 4n − 2 for the basic walk can be computed in polynomial time in
a centralized setting. The result is obtained by applying a new graph decomposition
technique which may be of interest in its own right, and a completely new analysis.
Our labeling preserves a structural property first introduced in [5]: the set of edges
which are traversed twice (in opposite directions) during one exploration period is a
connected spanning subgraph of G. We present an example showing that the worst-
case analysis of our approach is tight, and that our approach is the best possible when
restricted to the class of explorations having the stated structural property.

1.5 Outline

The next section introduces some notation. Section 3 describes the structural proper-
ties defined in [5] which we use in order to construct a suitable graph decomposition.
The main proofs are given in Sect. 4. Section 4.1 provides lemmata which character-
ize the decomposition that we introduce, while Sect. 4.2 formally describes the cor-
responding algorithmic procedure. Further properties of the labellings are discussed
in Sect. 5. Section 5.1 describes a modification of our construction, leading to a poly-
nomial time algorithm for computing an appropriate labeling. Section 5.2 shows that
for some graphs, the proposed construction is the best possible with respect to the
applied graph decomposition. Final remarks are given in Sect. 6.

2 Preliminaries and Notation

Before describing how the labeling scheme is set up for a graph exploration, we
introduce some notation. For a graph or multigraph H , we will denote by V (H)

its vertex set, by E(H) its edge multiset, and by |E(H)| the number of its edges
(including multiple edges). The number of edges adjacent in H to a vertex v ∈ V (H)

is denoted by degH (v). The notation 2e denotes 2 copies of an edge e; the notation
2H denotes a multigraph with vertex set V (H) and each edge e ∈ E(H) replaced
by 2e. An edge e ∈ H is called double if 2e belongs to H , and single otherwise.
Throughout the paper we will never consider multigraphs with more than two parallel
edges.

Let G = (V ,E) be a connected simple graph, with |V | = n. Any labeling scheme
for G uniquely determines an exploration cycle, understood as a sequence of directed
edges traversed in a single period of the exploration, i.e., a sequence in which the
directed edge (u, v) corresponds to a transition of the robot from some node u to
another node v, where {u,v} ∈ E. The corresponding exploration multigraph H is
defined as the undirected submultigraph of 2G given by the edges of G traversed
by the robot during one exploration cycle (each edge is included as it is traversed,
possibly twice if it is traversed in both directions). Let H2 be the spanning subgraph
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of H consisting of its double edges only, and let H1 = H \ H2. A vertex v ∈ V is
called saturated in H with respect to G if degH (v) = deg2G(v).

In the next section, we show how to build the exploration multigraph H by keeping
H2 as small as possible, so as not to allow the robot to traverse too many edges twice.

3 The Graph Decomposition

In order to provide the new construction of the exploration multigraph H , we need
to briefly discuss some of the structural properties of exploration multigraphs. The
following simple observation holds (cf. e.g. [5] for a more detailed discussion).

Proposition 1 [5] Any exploration multigraph H ⊆ 2G has the following proper-
ties:

A. For each vertex v ∈ V , degH (v) is even.
B. Each vertex v ∈ V having degH1

(v) = 0 is saturated in H with respect to G.

The converse of the above proposition does not hold in general, but one more
additional property can also be formulated.

C. H2 is connected.

Then, the following structural theorem has recently been shown.

Theorem 1 [5] Any multigraph H ⊆ 2G fulfilling properties A, B, and C is a valid ex-
ploration multigraph, i.e. induces an exploration cycle on G of length at most |E(H)|.

We can thus concentrate on defining a multigraph which satisfies properties A,
B, and C. To achieve this, in graph G we select an arbitrary spanning tree T0. Let
G′ = G \T0. Then, in multigraph 2G′ we find a spanning (not necessarily connected)
submultigraph H ′ satisfying properties analogous to A and B:

A′. For each vertex v ∈ V , degH ′(v) is even.
B′. Each vertex v ∈ V having degH ′

1
(v) = 0 is saturated in H ′ with respect to G′.

The final multigraph H is given as H = H ′ ∪ 2T0, thus 2T0 ⊆ H2. It is clear that
H satisfies properties A, B, C, and that |E(H)| = |E(H ′)| + 2(n − 1). Note that the
construction of H ′ can be performed independently for each connected component
of G′; throughout the rest of the discussion, w.l.o.g. we assume that G′ is connected.
Hence, in order to obtain an exploration cycle with period π(G) ≤ 4n−2, we confine
ourselves to constructing an appropriate submultigraph H ′ ⊆ 2G′ with |E(H ′)| ≤ 2n.
So, it remains to show the following theorem, which constitutes the main result of our
paper.

Theorem 2 For any connected graph G′ with vertex set V , |V | = n, there exists a
multigraph H ′ ⊆ 2G′ such that |E(H ′)| ≤ 2n, and H ′ satisfies properties A′ and B ′.
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4 Proof of Theorem 2

Let T be a rooted spanning tree in G′ with root r . We will call a vertex v ∈ V tree-
saturated in T if degT (v) = degG′(v). For a tree T , let s(T ) denote the number of
tree-saturated vertices in T , and let sh(T ), for 0 ≤ h < n, be the number of tree-
saturated vertices in T at height (i.e. distance in tree T from root r to the vertex) not
greater than h. The vertex adjacent to v on the path in T leading from v to root r will
be called the parent p(v), while the edge connecting these two vertices will be called
the parent edge pe(v) = {p(v), v}. For convenience of notation, we will occasionally
augment the edge set of tree T by the fictional parent edge of the root pe(r).

Consider the following partial order on rooted spanning trees in graph G′. We will
say that Ta < Tb if one of the following conditions is fulfilled.

1. s(Ta) < s(Tb),
2. s(Ta) = s(Tb), and for some h, 0 ≤ h < n, we have ∀0≤l<h sl(Ta) = sl(Tb) and

sh(Ta) > sh(Tb).

Now, multigraph H ′ can be determined by the following algorithm:

Algorithm 1: Computing multigraph H ′

1. Let T be a minimal spanning tree in G′ with respect to order (<).
2. Let S be a subgraph in G′ \ T , whose connected components are stars, such that

for each v ∈ V either v is tree-saturated in T or degS (v) > 0.
3. Find a submultigraph H ′ ⊆ S ∪ 2T fulfilling properties A′ and B′, such that

|E(H ′)| ≤ 2n, and return it as output.

We have to show that all the steps of the above algorithm are well defined. Step (1)

requires no comment. For step (2), notice that graph S is well defined because any
graph admits a subgraph which is a set of stars, touching all non-isolated vertices;
for graph G′ \ T , the only isolated vertices are those which were tree-saturated in T .
Before we proceed to describe the procedure to be used in step (3), we first need to
show some structural lemmata.

4.1 Properties of Graph S

Let S be an arbitrary star which is a connected component of S with vertex set
{v1, . . . , vk}. Whenever k ≥ 3 (i.e. when S is not a single edge) we assume that v1
is the center of the star. Note that none of the vertices vi can be tree-saturated in T .

Lemma 1 Assume that k ≥ 3. Then for any vi , 1 < i ≤ k, if p(vi) is tree-saturated
in T , then vi lies on the path in T from v1 to root r .

Proof Suppose that, to the contrary, p(vi) is tree-saturated in T and, that vi does not
lie on the path from v1 to root r . We have two cases.

1. Center v1 lies on the path from vi to root r (Fig. 2a). Then, consider the tree
T ∗ = T ∪ {v1, vi} \ pe(vi). T ∗ is a valid spanning tree in G′; moreover, s(T ∗) <

s(T ) (since vertex p(vi) is no longer tree-saturated in T ∗ and no new vertices are
tree-saturated), a contradiction with the minimality of T .
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Fig. 2 Arrangements of a star center with respect to saturated vertices (solid edges belong to the tree,
dashed edges belong to a star; a cross denotes a saturated vertex, a double circle denotes the star center)

Fig. 3 Arrangements of two saturated parents for a star (solid edges belong to the tree, dashed edges
belong to a star; a cross denotes a saturated vertex, a shaded circle denotes a possible saturated vertex,
while a double circle denotes the star center)

2. Vertices v1 and vi lie on paths to root r , neither of which is contained in the other
(Fig. 2b). Then we obtain a contradiction by defining tree T ∗ in the same way as
in the previously considered case. �

Lemma 2 Assume that k ≥ 3. Then there can exist at most one vi , 1 ≤ i ≤ k, such
that p(vi) is tree-saturated in T .

Proof Suppose that, to the contrary, there are two vertices vi and vj , i 
= j , such
that p(vi) and p(vj ) are tree-saturated (note that we do not necessarily assume that
p(vi) 
= p(vj )). Once again, we need to consider two cases.

1. The parent p(v1) of the center of the star is tree-saturated (i.e. we can put i = 1;
Fig. 3a). Then by Lemma 1, vj lies on the path in T leading from v1 to root r .
Then, consider the tree T ∗ = T ∪ {v1, vj } \ pe(v1). T ∗ is a valid spanning tree
in G′. We now have s(T ∗) ≤ s(T ), since vertex p(v1) is no longer tree-saturated
in T ∗, vertex vj may have become tree-saturated, while the tree-saturation of the
other vertices does not change. However, if s(T ∗) = s(T ), then vj must be tree-
saturated in T ∗, so denoting by h the height of vj in T (equivalently T ∗) we
have ∀0≤l<h sl(T

∗) = sl(T ) and sh(T
∗) > sh(T ). Thus, we obtain that T ∗ < T , a

contradiction with the minimality of T .
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2. The parents p(vi) and p(vj ), for some i, j > 1, are tree-saturated (Fig. 3b). Then
by Lemma 1, both vi and vj lie on the path in T leading from v1 to root r ; without
loss of generality we can assume that vj is closer than vi to root r . Then, consider
the tree T ∗ = T ∪ {v1, vj } \ pe(vi). T ∗ is a valid spanning tree in G′, and using
the same arguments as in the previous case we obtain that T ∗ < T , a contradiction
with the minimality of T . �

Lemma 3 Let S be a two-vertex star component consisting of vertices v1, v2, at
heights h1 and h2 in tree T , respectively. If p(v1) and p(v2) are both tree-saturated,
then |h1 − h2| ≤ 1.

Proof Without loss of generality let h1 ≤ h2. Suppose that p(v1) and p(v2) are both
tree-saturated, and that h1 < h2 − 1. Similarly to the proof of Lemma 1, let T ∗ =
T ∪ {v1, v2} \ pe(v2). It is clear that in T ∗ vertex p(v2) (at level h2 − 1) is no longer
tree-saturated, vertex v1 (at level h1 < h2 − 1) may possibly become tree-saturated,
while the tree-saturation of the remaining vertices does not change. Hence T ∗ < T , a
contradiction with the minimality of T . �

4.2 Construction of Multigraph H ′

We now describe the routine used in Step (3) of Algorithm 1 to construct submulti-
graph H ′ ⊆ S ∪ 2T by iteratively adding edges. As it will be proven by the next
lemma, the construction of H ′ preserves Properties A′ and B′. Taking into account
Lemma 3, we can write E(S) = E(S)+ ∪ ⋃n

h=1 E(S)h,h ∪ ⋃n
h=1 E(S)h,h−1, where

E(S)+ denotes the set of edges belonging to stars of more than 2 vertices, E(S)h,h

is the set of edges of two-vertex stars with both vertices at height h in tree T , and
finally E(S)h,h−1 is the set of edges of two-vertex stars with one vertex at height
h and the other at height h − 1 in tree T . Likewise, since T is a tree, we can write
E(2T ) = ⋃n

h=1 E(2T )h,h−1, where E(2T )h,h−1 contains edges connecting a vertex
at height h with a vertex at height h − 1 in tree T .

We start by putting E(H ′) = E(S)+. Then, for all levels h ∈ (n,n − 1, . . . ,1),
considered in decreasing order, we choose which edges from E(S)h,h, E(S)h,h−1
and E(2T )h,h−1 to add to E(H ′):
(a) Add all edges from E(S)h,h ∪ E(S)h,h−1 to E(H ′).
(b) For each vertex v at level h, add to E(H ′) a subset of the two copies of edge

pe(v) from E(2T )h,h−1 so that the degree of v is even in H ′. When an even
number of edges is required, 2 edges should be used if v is tree-saturated or p(v)

is tree-saturated, and 0 edges should be used otherwise.
(c) Successively consider all edges {v1, v2} ∈ E(S)h,h ∪ E(S)h,h−1 which were

added in step (a). If both vertex v1 and vertex v2 are currently of even degree
in H ′, and both p(v1) and p(v2) are tree-saturated, then remove from E(H ′)
edge {v1, v2}.

(d) For each vertex v at level h affected by changes in step (c), remove from E(H ′)
one of the two copies of edge pe(v) so that the degree of v is even in H ′.

To show that graph H ′ fulfills properties A′ and B′ it suffices to prove the follow-
ing lemma.
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Lemma 4 For each vertex v ∈ V , degH ′(v) is even. Moreover, if degH ′
1
(v) = 0, then

v is tree-saturated and degH ′
2
(v) = deg2T (v).

Proof For each height h, the degree of all vertices at height h in H ′ is always even
after completion of steps (b) and (d) for height h, and is never changed afterwards.
(For the root r at height h = 0, the degree must be even by the Handshaking lemma).
Consequently, the degree of all vertices in H ′ is even.

If degH ′
1
(v) = 0, then since all edges of stars with more than two vertices appear

in E(H ′
1), v can only be adjacent to a 2-vertex star or tree-saturated in T . The former

case is impossible, since by definition of steps (c) and (d) either the edge of the
2-vertex star, or pe(v) belongs to E(H ′

1). In the latter case, the definition of steps
(a)-(d) is such that each edge of tree T adjacent to a tree-saturated vertex appears
either in 1 or 2 copies in E(H ′) = E(H ′

1) ∪ E(H ′
2), hence if degH ′

1
(v) = 0, then

clearly degH ′
2
(v) = deg2T (v). �

The relation |E(H ′)| ≤ 2n will now be shown using a local cost-based argument.
First, we will assign costs c to vertices and edges of T as follows.

1. For each edge e ∈ E(T ), cost c(e) ∈ {0,1,2} is set as the number of times edge e

appears in multigraph H ′.
2. For each vertex v ∈ V , we set cost c(v) ∈ {0,1} by considering the following

cases:
(a) if v is tree-saturated in T , then c(v) = 0,
(b) if v belongs to a 2-vertex star from S , then c(v) = 1 if pe(v) appears in H ′ at

most once, and c(v) = 0 otherwise,
(c) if v belongs to a star from S having at least 3 vertices, then c(v) = 0 if p(v)

is tree-saturated, and c(v) = 1 otherwise.

Lemma 5 For the cost assignment c we have
∑

x∈E(T )∪V c(x) ≥ |E(H ′)| = |E(H ′ ∩
2T )| + |E(H ′ ∩ S)|.

Proof Indeed, we have
∑

x∈E(T ) c(x) = |E(H ′ ∩ 2T )| by definition of the costs of
edges. Next, notice that |E(H ′ ∩ S)| can be redistributed over the costs of vertices
as follows (note that the stars are vertex-disjoint). For a k-vertex star, with k > 2, we
pay for k − 1 edges by assigning a cost of 1 to all vertices of the star, except perhaps
one vertex v for which p(v) is tree-saturated (by Lemma 2 there can be at most one
such vertex for each star). For an edge of a 2-vertex star which appears in H ′, we
pay for the edge using the cost assigned to at least one of its end-vertices having cost
1; an end-vertex with such cost must exist by the construction of steps (c)–(d) of the
algorithm. �

Lemma 6 For each vertex v ∈ V , c(v) + c(pe(v)) ≤ 2.

Proof Since c(v) ≤ 1, the claim is clearly true if c(pe(v)) < 2. If c(pe(v)) = 2, then
edge pe(v) appears twice in H ′, hence by the construction of steps (a)–(d) of the
algorithm it is clear that vertex v or vertex p(v) is tree-saturated. In either case, we
have c(v) = 0 by the definition of costs, which completes the proof. �



36 Algorithmica (2012) 63:26–38

Combining Lemmata 5 and 6, summing over all vertices, immediately gives the
sought bound, |E(H ′)| ≤ 2n, which completes the proof of Theorem 2.

5 Construction of the Labeling

Recalling from Sect. 3 that |E(H)| = |E(H ′)|+2(n−1), we can rephrase Theorem 2
in the original language of graph exploration.

Theorem 3 For any graph G of size n there exists a port labeling leading to an
exploration period π ≤ 4n − 2.

It is natural to ask about the runtime of the procedure required to obtain a labeling
with such an exploration period, and about the tightness of the obtained bound; we
address these questions in the following subsections.

5.1 Runtime of the Labeling Procedure

Whereas the construction of the appropriate cycle can always be performed using
Algorithm 1 (in finite time), this does not necessarily mean that a solution can be
found in polynomial time. The problem consists in computing an appropriate span-
ning tree, minimal in the sense of order (<), in step (1). In general, finding a spanning
tree having a minimum number of saturated vertices is already NP-hard. (The proof
of this observation proceeds by reduction from the problem of finding a Hamiltonian
path in a 3-regular graph: a 3-regular graph has a spanning tree without saturated
vertices if and only if it admits a Hamiltonian path.)

In order to obtain polynomial time complexity, we apply a slight modification of
step (1): instead of requiring tree T to be minimal, we only require that Lemmata 1, 2
and 3 hold for this tree. If there appears a contradiction in the proof of either lemmata,
we replace tree T by tree T ∗, using the modifications shown in Fig. 2 for Lemma 1.
For Lemma 2, we use the replacement from Fig. 3a, while instead of the replacement
from Fig. 3b, define tree T ∗ by putting T ∗ = T ∪{v1, vj }∪{v1, vi}\(pe(v1)∪pe(vi))

as shown in Fig. 4. For Lemma 3, we simply perform the operations described in the
proof. We make the following observations:

– The modification for Lemma 1 decreases the value of parameter s(T ).
– The modifications for Lemma 2 and Lemma 3 either decrease the value of param-

eter s(T ), or decrease the value of parameter
∑

0≤l<n(l · sl(T )).

The initial value of parameter s(T ) is at most n; clearly, the modification process
stops when s(T ) = 0. Next, since we have

∑
0≤l<n(l · sl(T )) < n2, then this param-

eter may only be decreased less than n2 times for a given value of s(T ). Overall,
the total number of tree modifications is less than n3. This guarantees polynomial
runtime of the whole algorithm.

Theorem 4 There exists a polynomial time algorithm which, given a graph G, deter-
mines a port labeling leading to an exploration period π ≤ 4n − 2.
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Fig. 4 Alternative replacement
for the case from Fig. 3b, used
to guarantee polynomial
runtime. Tree T ∗ is defined as
T ∗ = T ∪ {v1, vj } ∪ {v1, vi } \
(pe(v1) ∪ pe(vi ))

Fig. 5 Examples of graphs
G = K2,l

5.2 Tightness of the Bound

In this section, we show that there actually exist instances for which the length of the
computed exploration cycle by means of our approach is 4n − O(1). Consider the
following property of multigraph H2, obtained by a slight modification of property C,
which is also satisfied by our construction.

D. H2 spans vertex set V , i.e. for all v ∈ V , degH2
(v) > 0.

We make the following claim, which is partially complementary to Theorem 1.

Theorem 5 For all values of n ≥ 3, there exists a graph G of order n, such that
any exploration multigraph H ⊆ 2G fulfilling properties A, B, and D, has |E(H)| ≥
4n − 8 edges.

Proof Consider the complete bipartite graph G = K2,l on n = l + 2 vertices, for
any l ≥ 1 (see Fig. 5). By property D, for each of the l vertices v ∈ V such that
degG(v) = 2, we have degH2

(v) > 0, hence degH1
(v) ≤ 1. Taking into account prop-

erty A we obtain degH1
(v) = 0, and so by property B, v is saturated in H2. This

means that H = 2G, and so |E(H)| = 2|E(G)| = 4n − 8. �

6 Conclusion

We have considered the problem of periodic graph exploration by means of an obliv-
ious robot. The robot must explore all the nodes of a connected anonymous graph by
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following local information available at each vertex, properly initialized. The prob-
lem requires the robot to visit every vertex infinitely many times in a periodic manner.
This can be considered as a relaxation of the Hamiltonian cycle problem since it is
not required that the exploration cycle touches each vertex exactly once but only that
all the vertices are touched.

We have shown that by applying a special construction of a spanning tree, dedi-
cated to the considered exploration problem, it is possible to find in polynomial time
an exploration cycle of length at most 4n − 2. Moreover, we have shown that the
obtained bound on the exploration period is sometimes tight up to an additive factor.
The best known existing lower bound on the length of an exploration cycle is within
an additive factor of 2.8n [5]. However, obtaining cycles significantly shorter than
4n would require some completely new insight; in particular, the construction would
need to avoid the condition imposed on the double-edge subgraph of multigraph H

(property D in Theorem 5).
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