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Abstract Combinatorial (or rule-based) methods for inferring haplotypes from geno-
types on a pedigree have been studied extensively in the recent literature. These meth-
ods generally try to reconstruct the haplotypes of each individual so that the total
number of recombinants is minimized in the pedigree. The problem is NP-hard, al-
though it is known that the number of recombinants in a practical dataset is usually
very small. In this paper, we consider the question of how to efficiently infer haplo-
types on a large pedigree when the number of recombinants is bounded by a small
constant, i.e. the so called k-recombinant haplotype configuration (k-RHC) problem.
We introduce a simple probabilistic model for k-RHC where the prior haplotype prob-
ability of a founder and the haplotype transmission probability from a parent to a
child are all assumed to follow the uniform distribution and k random recombination
events are assumed to have taken place uniformly and independently in the pedigree.
We present an O(mn logk+1 n) time algorithm for k-RHC on tree pedigrees without
mating loops, where m is the number of loci and n is the size of the input pedigree,
and prove that when 90 logn < m < n3, the algorithm can correctly find a feasible
haplotype configuration that obeys the Mendelian law of inheritance and requires no

more than k recombinants with probability 1−O(k2 log2 n
mn

+ 1
n2 ). The algorithm is ef-

ficient when k is of a moderate value and could thus be used to infer haplotypes from
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genotypes on large tree pedigrees efficiently in practice. We have implemented the
algorithm as a C++ program named TREE-k-RHC. The implementation incorporates
several ideas for dealing with missing data and data with a large number of recombi-
nants effectively. Our experimental results on both simulated and real datasets show
that TREE-k-RHC can reconstruct haplotypes with a high accuracy and is much faster
than the best combinatorial method in the literature.

Keywords Computational biology · Haplotype inference · Pedigree ·
Recombination · Combinatorial algorithm · Probabilistic model

1 Introduction

As more progress has been made in science and technology, scientists believe that
genetic factors should play a significant role in preventing, diagnosing and treating
important human diseases such as diabetes, cancer, stroke, heart disease, depression,
and asthma. With the discovery of genetic markers such as microsatellite DNA se-
quences and single nucleotide polymorphisms (SNPs), it is now possible to provide
a unique genetic map to establish connections between diseases and specific genetic
variations. One of the main objectives of the International HapMap Project launched
in October 2002 [27] is to discover the haplotype structure of human beings and ex-
amine the common haplotypes in different populations. This information will greatly
facilitate the mapping of many important disease-susceptibility genes. However, the
diploid structure of humans makes it very expensive to collect haplotype data directly.
Instead, genotype data are collected routinely. Since haplotype data are required (or
at least desirable) in many genetic analysis including linkage disequilibrium analy-
sis and disease association mapping, efficient and accurate computational methods
for the inference of haplotypes from genotypes, which is also commonly referred to
as phasing, have been extensively studied in the literature. A recent survey on these
methods can be found in [19].

The existing haplotyping algorithms can be classified as either statistical or com-
binatorial (or rule-based). Both paradigms can be applied to pedigree data, popula-
tion data, or pooled samples. In this paper, we are interested in pedigree data and
the combinatorial paradigm. Although many (statistical or combinatorial) algorithms
have been proposed for haplotype inference on pedigrees in the literature [19], they
are mostly effective for pedigrees of small to moderate sizes. For example, it took the
exact algorithm based on integer linear programming (ILP) in PedPhase 5 hours to
solve a pedigree with 29 individuals and 51 SNP loci [17, 18] on a standard PC. The
same data took the popular program SimWalk2 [26] based on a statistical approach
6 days. The well-known Lander-Green algorithm [15] based on the maximum likeli-
hood (ML) framework and its subsequent improvements [1, 12, 14] run in time linear
in the number of loci but exponential in the pedigree size [2, 19]. These algorithms
are thus limited to relatively small pedigrees.

With the advance in sequencing technology, larger and larger pedigrees are being
genotyped and scientists are becoming increasingly interested in haplotype inference
on large pedigrees. For example, in [2, 4], the inference was performed on pedigrees
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of sizes 368 and 1149, respectively. The existing haplotype inference methods either
are very slow (e.g. those based on ML or ILP) or have less than desirable accuracies
(e.g. the block extension heuristic algorithm in PedPhase) when the input pedigree
gets large. In fact, the question of how to efficiently and accurately infer haplotypes
from genotypes on large pedigrees is one of the challenges raised at the recently held
2008 Haplotype Conference [13].

In general, combinatorial methods for haplotype inference are faster (or intended
to be faster) than statistical methods that attempt to maximize the likelihood of the
haplotype solution [19]. To our knowledge, all combinatorial algorithms for haplotyp-
ing pedigree data aim at solving the minimum-recombinant haplotype configuration
(MRHC) problem [16–18, 25] where the goal is to find a haplotype solution requir-
ing the minimum number of recombinants (i.e. recombination events). The problem
is sensible since it is known that recombinants are rare in a typical human pedigree
[11]. This is especially true when the marker loci considered are from a same hap-
lotype block. For instance, the analysis performed in [17, 18] on a HapMap data
shows that the average number of recombinants per haplotype block of each chromo-
some on a (relatively small) pedigree is in fact close to 0 (although not exactly 0).
Thus, a minimum-recombinant solution is likely to be the true solution. Unfortu-
nately, MRHC is NP-hard [16]. It remains NP-hard even if the input pedigree is a tree
without mating loops [7, 22]. The ILP-based exact algorithm for MRHC in PedPhase
[19] works well for small pedigrees but its worst case running time is exponential in
both the number of loci and pedigree size. The heuristic algorithm in [25] runs for
days on a PC even for medium-sized datasets. Hence, recent work on MRHC has been
focused on the special case where the number of recombinants is zero, the so called
zero-recombinant haplotype configuration (ZRHC) problem [5, 16, 20, 21, 23, 28, 30,
31]. In particular, Li and Jiang [16] formulated ZRHC as a system of linear equations
over the field F(2) and devised an O(m3n3) time algorithm using Gaussian elimi-
nation, where m is the number of loci and n is the size of the input pedigree. Xiao
et al. [30, 31] improved the running time to O(mn2 + n3 log2 n log logn) by using a
compact system of linear equations, taking advantage of some special properties of a
pedigree graph, and the low-stretch spanning tree technique. The recent results in [5,
20, 21] presented linear (i.e. O(mn)) time algorithms for ZRHC on tree pedigrees
using different techniques. Note that tree pedigrees are very common in human pedi-
grees [2]. They also play important roles in the analysis of general complex pedigrees
[3, 29].

Since the number of recombinants in a real pedigree studied in a typical haplo-
typing instance (e.g. when a single haplotype block is considered) is usually very
small, a plausible approach to solving MRHC that could potentially be very efficient
in practice is to try to infer a haplotype configuration that requires at most k recombi-
nants in the input pedigree, where k is some fixed small constant. We will refer to this
parameterized problem as the k-recombinant haplotype configuration (k-RHC) prob-
lem. Although ZRHC (or 0-RHC) seems easy to solve [5, 20, 21, 30, 31], the general
k-RHC problem remains very hard to tackle. Observe that, we could obtain a trivial
algorithm for k-RHC with time complexity O((mn)k(mn2 + n3 log2 n log logn)) by
using the algorithm in [30, 31] for ZRHC and exhaustively enumerating the possible
locations of the k recombinants. This is because the k-RHC instance can be easily
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transformed into a ZRHC instance once the recombinant locations are known. Sim-
ilarly, one could obtain a trivial algorithm for k-RHC on tree pedigrees with time
complexity O((mn)k+1) by using the linear time algorithms in [5, 20, 21] for tree
ZRHC. We note in passing that the dynamic programming algorithm in [6] solves
MRHC on tree pedigrees in O(nm3k+12m) time when each parent-child pair is al-
lowed to have at most k recombinants. This algorithm is inefficient when the number
of loci exceeds 30 even if k is very small.

In this paper, we present an algorithm for k-RHC that is efficient in the average
sense. More precisely, we consider a simple probabilistic model for k-RHC where
the haplotypes of the founders (i.e. individuals without parents in the input pedigree)
are generated randomly from a uniform distribution, a uniform random haplotype of
each parent is passed to a child, and k uniform random recombinants are assumed
to have taken place independently in the pedigree. This model is a special case of
the general probabilistic model in the genetics literature (see e.g. [24]) where the
prior founder haplotype probabilities and haplotype transmission probabilities could
follow arbitrary distributions. In other words, our model is a primitive Mendelian
model. We present an O(mn logk+1 n) time algorithm for k-RHC on tree pedigrees,
and prove that when 90 logn < m < n3, the algorithm can correctly find a feasible
haplotype configuration that obeys the Mendelian law of inheritance and requires no

more than k recombinants with probability 1 − O(k2 log2 n
mn

+ 1
n2 ). (Note that this re-

sult does not imply that k-RHC is fixed-parameter tractable as defined in [8].) The
algorithm is fast when k is of a moderate value and could thus be used to infer hap-
lotypes from genotypes on large tree pedigrees in practice. We have implemented the
algorithm as a C++ program named TREE-k-RHC. The implementation incorporates
several effective ideas for dealing with missing data and data with an unexpectedly
large number of recombinants. Our preliminary experimental results on both simu-
lated and real datasets show that TREE-k-RHC can reconstruct haplotypes with a
high accuracy and speed. In fact, it runs more than 20 times faster than the ILP-based
exact algorithm in PedPhase [17, 18] and is more accurate than the heuristic algo-
rithm in PedPhase [16]. We expect that the speed up will grow quickly with m and n

as the worst-case time complexity of the ILP-based algorithm is at least (mn)k .
The crux of our algorithm is to formulate k-RHC as an ILP based on the system

of linear equations developed in [30, 31] (also in [21]). For each instance generated
by the probabilistic model, we try to identify small areas of the pedigree where a
recombinant might have occurred by comparing the linear (equality) constraints in
the ILP. Once the locations of all k recombinants are determined (or enumerated), the
instance is transformed to a tree ZRHC instance and solved in linear time by using
one of the algorithms in [5, 20, 21].

The rest of the paper is organized as follows. In Sect. 2, we present an ILP for-
mulation of k-RHC based on the system of linear equations introduced in [30, 31].
Section 3 reviews some graph data structures and constraint generation techniques
from [30, 31] that can be used to make the ILP more compact. We present the effi-
cient algorithm for k-RHC on tree pedigrees and analyze its success probability in
Sect. 4. In Sect. 5, we describe the implementation of this algorithm. The experimen-
tal results are discussed in Sect. 6.
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2 An Integer Linear Program for k-RHC

In this section, we formulate k-RHC as an ILP based on the system of linear equations
in [30, 31] for solving ZRHC. All the definitions are the same as in [30, 31] except
for the definition of the h-variables. Throughout this paper, n denotes the number
of the individuals (or members) in the input pedigree and m the number of marker
loci. Without loss of generality, suppose that each allele in the given genotypes is
numbered numerically as 1 or 2 (i.e. the markers are assumed to be bi-allelic, which
makes the hardest case for MRHC [16]), and the pedigree is free of genotype errors
(i.e. the two alleles at each locus of a child can always be obtained from its respective
parents). Hence, we can represent the genotype of member j as a ternary vector �gj

as follows: gj [i] = 0 if locus i of member j is homozygous with both alleles being
1’s, gj [i] = 1 if the locus is homozygous with both alleles being 2’s, and gj [i] = 2
otherwise (i.e. the locus is heterozygous). For any heterozygous locus i of member j ,
we use a binary variable pj [i] to denote the phase at the locus as follows: pj [i] = 0
if allele 1 is paternal, and pj [i] = 1 otherwise. When the locus is homozygous, the
variable is set to gj [i] for some technical reasons (so that the equations below in-
volving pj [i] will hold). Hence, the vector �pj describes the paternal and maternal
haplotypes of member j . Observe that the vectors �p1, . . . , �pn represent a complete
haplotype configuration of the pedigree. Also, for technical reasons, define a vec-
tor �wj for each member j such that wj [i] = 0 if its i-th locus is homozygous and
wj [i] = 1 otherwise.

Suppose that member jr is a parent of member j . We introduce an auxiliary binary
variable hjr ,j [i] to indicate which allele of jr is passed to j at locus i. If jr gives its
paternal allele to j at locus i, then hjr ,j [i] = 0; otherwise hjr ,j [i] = 1. Suppose that
j is a non-founder member with its father and mother being j1 and j2, respectively.
We can define two linear (constraint) equations over the field F(2) to describe the
inheritance of paternal and maternal haplotypes at j on locus i respectively:

{
pj1[i] + hj1,j [i] · wj1[i] = pj [i]
pj2[i] + hj2,j [i] · wj2[i] = pj [i] + wj [i].

(1)

Denoting �dj1,j = �0 and �dj2,j = �wj , the above equations can be unified into a single
equation as:

�pjr [i] + hjr ,j [i] · �wjr [i] = �pj [i] + �djr ,j [i] (r = 1,2). (2)

If there are no recombinants in the pedigree, hjr ,j [i] = c (which is some constant)
for all i. Conversely, if hjr ,j [i] �= hjr ,j [i + 1], there must be a recombinant from
member jr to member j between locus i and locus i + 1. Formally, we can express
the k-RHC problem as an ILP:
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∑
for all parent-child pairs (jr , j)

m−1∑
i=1

∣∣hjr ,j [i] − hjr ,j [i + 1]∣∣ ≤ k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pl[i] + hl,j [i] · wl[i] = pj [i] + dl,j [i] 1 ≤ i ≤ m, 1 ≤ j, l ≤ n,

l is a parent of j

pj [i] = gj [i] 1 ≤ i ≤ m, 1 ≤ j ≤ n, gj [i] �= 2

wj [i] = 1 1 ≤ i ≤ m, 1 ≤ j ≤ n, gj [i] = 2

wj [i] = 0 1 ≤ i ≤ m, 1 ≤ j ≤ n, gj [i] �= 2

dl,j [i] = wj [i] 1 ≤ i ≤ m, 1 ≤ j, l ≤ n,

l is the mother of j

dl,j [i] = 0 1 ≤ i ≤ m, 1 ≤ j, l ≤ n,

l is the father of j

(3)

where gj [i],wj [i], dl,j [i] are all constants depending on the input genotypes, and
pj [i], hl,j [i] are the unknowns. Again, the equality constraints are defined over F(2)

whereas the (only) inequality constraint is defined over all integers. Note that, the
number of p-variables is exactly mn and the number of h-variables is at most 2mn.
This ILP is different from the ILP for MRHC used in [17, 18] which is not based
on the system of linear equations. Observe that for any member j , if j or any of its
parents are homozygous at locus i, then pj [i] is fixed based on (3). Such p-variables
are called pre-determined.

3 Some Graph Structures and a Compact ILP in h-Variables

As in [30, 31], the above ILP can be transformed to one concerning only the
h-variables. This is not surprising because the h-variables completely describes the
inheritance relationship in the pedigree, including the locations of recombinants. In
this section, we review some useful graph structures and the generation of a suffi-
cient set of equality constraints on h-variables introduced in [30, 31]. Again, all the
definitions are the same as in [30, 31] except for the definition of the h-variables.

3.1 The Pedigree Graph and Locus Graphs

In [30, 31], the input pedigree is transformed into a pedigree graph by connecting
each parent directly to his children. See Fig. 1(B) for an example. Although the edges
in the pedigree graph representing the inheritance relationship between a parent and
a child are directed, we consider them as undirected when dealing with linear con-
straints. Thus, these edges will sometimes be thought of as directed but other times
as undirected according to the context.

Clearly, such a pedigree graph G = (V ,E) may be cyclic due to mating loops or
multiple children shared by a pair of parents. Let T (G) be any spanning tree on G.
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Fig. 1 A An example pedigree with genotype data. Here, the alleles at a locus are ordered according to
their id numbers instead of phase (which is unknown). B The pedigree graph with a spanning tree. The tree
edges are highlighted. Observe that the pedigree graph has a cycle of length 4 although the given pedigree
is a tree. C The locus graphs. The left graph is for the first locus, which has a cycle, while the right graph
is for the second locus. The locus forests are highlighted

T (G) partitions the edge set E into two subsets: the tree edges and the non-tree edges
(or cross edges). Let EX denote the set of cross edges. Since |E| ≤ 2n and the number
of edges in T (G) is n − 1, we have |EX| ≤ n + 1. Figure 1(B) gives an example of
the tree edges and the cross edges.

For any fixed locus i, the value wl[i] can be viewed as the weight of each edge
(l, j) ∈ E, where l is a parent of j . We construct the i-th locus graph Gi as the
subgraph of G induced by the edges with weight 1. Formally, Gi = (V ,Ei), where
Ei = {(l, j)| l is a parent of j ,wl[i] = 1}. The i-th locus graph Gi induces a sub-
graph of the spanning tree T (G). Since the subgraph is a forest, it will be referred to
as the i-th locus forest and denoted by T (Gi). Figure 1(C) shows the locus graphs
and the locus forests of the given pedigree. The locus graphs can be used to identify
some implicit constraints on the h-variables as follows. First, for any edge (l, j) ∈ E,
define hl,j [i] = hj,l[i] and �dl,j = �dj,l .

Lemma 1 [30, 31] For any path P = j0, . . . , jt in locus graph Gi connecting vertices
j0 and jt , we have

pj0[i] + pjt [i] +
t−1∑
r=0

(
hjr ,jr+1[i] + djr ,jr+1[i]

) = 0. (4)

Corollary 2 [30, 31] For any cycle C = j0, . . . , jt , j0 in Gi , there exists a binary con-
stant b defined as b = ∑t

r=0 djr ,jr+1 mod t+1[i] such that
∑t

r=0 hjr ,jr+1 mod t+1 [i] = b.

Corollary 3 [30, 31] Suppose that P = j0, . . . , jt is a path in Gi connecting ver-
tices j0 and jt , and the variables pj0[i] and pjt [i] are pre-determined. There ex-
ists a binary constant b defined as b = pj0 [i] + pjt [i] + ∑t−1

r=0 djr ,jr+1 [i] such that∑t−1
r=0 hjr ,jr+1 [i] = b.

3.2 Linear Equality Constraints on the h-Variables

As in [30, 31], we generate a sufficient set of linear equality constraints on the
h-variables by considering each edge in a locus graph. Such a set of constraints will
guarantee a feasible solution to the ILP in (3). Note that since the edges broken (i.e.
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deleted) in a locus graph involve pre-determined p-variables, we do not have to intro-
duce constraints to cover them. The constraints can be classified into two categories
with respect to the spanning tree T (G): constraints for cross edges and constraints
for tree edges.

Cross Edge Constraints Adding a cross edge e to the spanning tree T (G) yields a
cycle C in the pedigree graph G. Suppose the edge e exists in the i-th locus graph
Gi , and consider two cases of the cycle C with respect to Gi .

Case 1: The cycle exists in Gi . We introduce a constraint along the cycle as in Corol-
lary 2. This constraint is called a cycle constraint. The set of such cycle constraints
for edge e in all locus graphs is denoted by CC(e), i.e.

CC(e) = {(b, e) | b is associated with the cycle in T (Gi) ∪ {e}, 1 ≤ i ≤ m}.
The set of cycle constraints for all cross edges is denoted by CC = ⊎

e∈EX CC(e).

Case 2: Some of the edges of the cycle do not exist in Gi . This means that the cycle
C is broken into several disjoint paths in Gi by the pre-determined vertices. Since e

exists in Gi , exactly one of these paths, denoted as P , contains e. Observe that both
endpoints of P are pre-determined and thus Corollary 3 could give us a constraint
concerning the h-variables along the path. Such a constraint will be called a path
constraint. The set of such path constraints for e in all locus graphs Gi is denoted by
CP(e), i.e.

CP(e) =
{

(l, j, b, e)

∣∣∣∣∣ in T (Gi) ∪ {e}, b is associated with the path containing e

connecting two pre-determined vertices l and j , 1 ≤ i ≤ m

}
.

The set of path constraints for all cross edges is denoted by CP = ⊎
e∈EX CP(e).

Tree Edge Constraints By Corollary 3, there is an implicit constraint concerning the
h-variables along each path between two pre-determined vertices in the same con-
nected component of T (Gi). Therefore, for each connected component T of T (Gi),
we arbitrarily pick a pre-determined vertex in the component as the seed vertex, and
generate a constraint for the unique path in T (Gi) between the seed and each of the
other pre-determined vertices in the component, as in Corollary 3. Such a constraint
will be called a tree constraint.

To conform with the notation of path constraints and for the convenience of pre-
sentation, we arbitrarily pick a tree edge denoted as e0, and write the set of tree
constraints at all loci as

CT =

⎧⎪⎨
⎪⎩(l, j, b, e0)

∣∣∣∣∣∣∣
in a connected component of T (Gi) with seed l, b is

associated with the path connecting vertices l and a

predetermined vertex j , 1 ≤ i ≤ m

⎫⎪⎬
⎪⎭ .

Define C = CC ∪CP ∪CT. The subset of all the constraints in C generated in locus
graph Gi will be denoted as Ci . The next two lemmas are easy to prove.
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Lemma 4 [30, 31] |C| = |CC| + |CP| + |CT| = O(mn).

Lemma 5 None of the constraints in CP ∪ CT are defined on a path that begins or
ends at a founder.

Proof A constraint may only begin or end at a pre-determined vertex. A founder is
pre-determined at locus i if and only if it is homozygous at i. When it is homozygous,
all its children are pre-determined at locus i and thus disconnected from the founder
in locus graph Gi . In other words, the founder would be an isolated vertex in Gi and
not involved in any constraint in Ci . �

As in [30, 31], we can prove that C forms a sufficient set of constraints, i.e. any
solution in terms of the h-variables satisfying all these constraints would imply a
feasible solution in terms of both the h- and p-variables satisfying (3). The proof
is very similar to the corresponding proof in [30, 31] and therefore omitted. The
following lemma hence follows.

Lemma 6 The k-RHC problem can be expressed as the following ILP:

∑
for all edges (jr , j)
plus all the linear

equality constraints in C

m−1∑
i=1

∣∣hjr ,j [i] − hjr ,j [i + 1]∣∣ ≤ k.
(5)

4 An O(mn logk+1 n) Time Algorithm for k-RHC on Tree Pedigrees

As mentioned before, the basic idea of our algorithm is to locate all the k recombi-
nants first. Once we know the locations of all the recombinants, we can define the
relationship between h-variables at consecutive loci corresponding to the same edge
in the pedigree graph. For example, if there is a recombinant between locus i and
locus i + 1 on edge (u, v), hu,v[i] = hu,v[i + 1] + 1. If such a recombinant does
not exist, hu,v[i] = hu,v[i + 1]. In this way, all the h-variables at different loci cor-
responding to the same edge can be represented by a single h-variable in the ILP
of (5), and the k-RHC ILP is effectively reduced to a ZRHC instance which can be
solved by the linear-time algorithm in [21]. Hence, the challenge here is how to lo-
cate the recombinants without exhaustively enumerating all the possibilities in the
entire pedigree. The key idea is that we compare the constraints of C (as well as some
additional constraints involving one or two h-variables to be constructed in the next
two subsections) at different loci to see if they imply the necessity of a recombinants.
For example, suppose that we have a constraint along path P = j0, . . . , jt at locus i

and another constraint along the same path P at locus l (l > i). By Corollary 3, we
have

∑t−1
r=0 hjr ,jr+1[i] = bi and

∑t−1
r=0 hjr ,jr+1 [l] = bl . If bi �= bl , there is at least one

pair of h-variables, say hjr ,jr+1[i] and hjr ,jr+1[l], that do not have the same value.
This would suggest a recombinant on the edge (jr , jr+1) between the loci i and l.
Consider the collection of the markers between of loci i and l of each member on
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the path P as the region where this recombinant could occur. The size of the region
is (t + 1)(l − i + 1). If the region is not very large, it contains at most one recombi-
nant with a high probability (since k is a constant). Thus, we could enumerate all the
possible locations of this recombinant in the region to locate it exactly.

Before we give the algorithm, we need some notations to describe a random in-
stance of k-RHC. For each founder j , we use the random variable qj,1[i] to represent
j ’s maternal allele at locus i and qj,2[i] to represent j ’s paternal allele at locus i.
These q-variables are independent and they collectively represent the founder hap-
lotypes. Random h-variables are used to represent the random inheritance. Although
h-variables concerning different edges in the pedigree are independent, the h-variable
concerning the same edge are not. The latter variables are related by the random re-
combinants. For convenience, we call the edges in the pedigree graph incident to the
founders the founder edges. The other edges are called the non-founder edges. In the
following subsections, we will show that we can determine many h-variable values
(or summations of their values) on these two kinds of edges separately. These deter-
mined h-variables and summations will be used as additional constraints besides C to
aid the search for the locations of recombinants.

4.1 Determining h-Variables on Non-founder Edges

For each founder j and locus i, the phase pj [i] is only determined by the random
founder allele variables qj,1[i] and qj,2[i]. The p-variables of non-founders are deter-
mined by both the q-variables and h-variables. When the h-variables are fixed, each
phase pj [i] of a non-founder is only determined by two random q-variables qf,s[i]
and qg,t [i]. In other words, the paternal allele of member j at locus i is inherited
from qf,s[i] and its maternal allele is from qg,t [i]. If (f, s) = (g, t), the two alleles
of j at locus i are inherited from the same allele of some founder (see Fig. 2(B)).
In this case, the locus i of member j is homozygous no matter what qf,s[i], qg,t [i]
are. We say that member j is pre-homozygous at locus i. If (f, s) �= (g, t), the two
alleles of member j at locus i are inherited from different alleles of the founders (see
Fig. 2(A)). Then the locus i of member j can be homozygous or heterozygous with
equal probability. We say that member j is pre-heterozygous at locus i.

Clearly, for a tree pedigree, all its members are pre-heterozygous at every locus.
Using this property, the next lemma shows that the phases of many loci are pre-
determined around non-founder edges in a random k-RHC instance and thus we can
determine the h-variable values on many non-founder edges.

Fig. 2 A Member j is
pre-heterozygous and its alleles
are inherited from different
alleles of the founders.
B Member j is pre-homozygous
and its alleles are inherited from
the same allele of some founder



Algorithmica (2012) 62:951–981 961

Fig. 3 The transmission of
founder alleles

Lemma 7 Consider a random instance of k-RHC on a tree pedigree. If (u, v) is a
non-founder edge in the pedigree graph with u being the parent, then the probability
for u to be heterozygous at locus i and both u and v to be pre-determined at locus i

(and thus hu,v[i] to be determined) is at least 1/8.

Proof Since all loci are pre-heterozygous, we assume that pu[i] is determined by
two different random founder allele variables q1[i] and q2[i] when all the h-variables
are fixed. See Fig. 3. Since u is not a founder, it has a parent x. Similarly, px[i] is
determined by variables q1[i] and q3[i]. Since the pedigree is a tree, q3[i] is different
from q1[i] and q2[i]. Without loss of the generality, we assume that u passes allele
q2[i] to v (according to the h-variables). Hence, pv[i] is determined by q2[i] and
another different variable q4[i]. The probability that the locus i is heterozygous at u

and homozygous at both x and v is

Pr (gx[i] �= 2, gu[i] = 2, gv[i] �= 2)

= Pr (q3[i] = q1[i], q1[i] �= q2[i], q4[i] = q2[i])
= Pr (q3[i] = q1[i])Pr (q1[i] �= q2[i])Pr (q4[i] = q2[i])
= 1

8
.

Note that when the locus i of u is heterozygous and loci i of x and v are homozygous,
the edge (u, v) exists in the locus graph i. By Lemma 1, hu,v[i] can be determined
by pu[i] and pv[i] with probability at least 1/8. �

4.2 Determining h-Variables on Founder Edges

Without loss of generality, we assume that each founder has at least two children
(otherwise recombinants on the edge between the founder and its only child cannot
be detected and in fact are unnecessary). For a founder x, if it is homozygous at
locus i, all the h-variables concerning locus i and founder edges incident on x will
not appear in any constraints. If it is heterozygous at locus i, its phase will not be pre-
determined for it has no parents. So, we cannot determine the h-variables on founder
edges directly like in Lemma 7. However, we can determine the summation of any
pair of h-variables concerning the same founder.
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Lemma 8 Consider a random instance of k-RHC on a tree pedigree. If x is a founder
with children u and v, then the probability for a locus i to be heterozygous at x but
pre-determined at u and v (and thus the summation hx,u[i] + hx,v[i] to be deter-
mined) is at least 1/8.

Proof Denote the random alleles of x at locus i as q1[i] and q2[i]. Suppose that u has
alleles q1[i] and q3[i]. Let us first assume that u and v do not share the same parents.
Without loss of generality, suppose that v has alleles q1[i] and q4[i]. (The lemma
trivially holds if v inherits a different allele than q1 from x.) Thus, the probability
that the locus i is heterozygous at x but homozygous at both u and v is

Pr (gx[i] = 2, gu[i] �= 2, gv[i] �= 2)

= Pr (q1[i] �= q2[i], q1[i] = q3[i], q1[i] = q4[i])
= Pr (q1[i] = q2[i])Pr (q1[i] �= q3[i])Pr (q1[i] = q4[i])
= 1

8
.

Again, by Lemma 1 we can determine hx,u[i] + hx,v[i] with probability at least 1/8.
Next, let us assume that u and v share the same parents (e.g. members x and y).

Suppose that y has alleles q3[i] and q4[i]. If y is homozygous at locus i, both pu[i]
and pv[i] are pre-determined. So, the probability that we can determine hx,u[i] +
hx,v[i] is

Pr
(
gx[i] = 2, gy[i] �= 2

)
= Pr (q1[i] �= q2[i], q3[i] = q4[i])
= Pr (q1[i] �= q2[i])Pr (q3[i] = q4[i])
= 1

4
.

Combining both cases, the lemma follows. �

Now we are ready to describe how to locate the recombinants. We divide the loci
of each member (which could be a haplotype block) into m

a logn
disjoint segments of

size a logn each, where a is a constant to be decided later on, and treat the interior
and boundary segments differently. (The boundary segments are the two segments at
the end.) It turns out that the boundary segments are much tougher to deal with.

4.3 Locating Recombinants in the Interior Locus Segments

Since we can determine each h-variable with probability 1/8 for every non-founder
edge, we can determine at least one h-variable in each segment with high probability
for each non-founder edge (see Fig. 4). If there is at most one recombinant in any
two consecutive segments associated with the same non-founder edge, we can locate
such a recombinant in a small region of size O(logn) by comparing the determined
h-variables of both segments. If the values of two neighboring determined h-variables
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Fig. 4 Determining recombinants on founder and non-founder edges. The figure also illustrates two con-
secutive non-founder edge regions each of which is expected to contain a determined h-variable and
two consecutive founder edge regions each of which is expected to contain a determined summation
of h-variables. Each of these pairs of regions contains a recombinant sandwiched by the determined
h-variables or summations

are equal, there is no recombinant between the loci of the h-variables (since there is
at most one recombinant between the loci). Otherwise, there exists one. Similarly,
we can locate recombinants associated with the founder edges. Suppose that u is a
founder and v1, . . . , vl are its children. Because we can determine hu,vs [i] + hu,vt [i]
for each pair of children vs and vt at locus i with probability at least 1/8, we can
determine at least one summation hu,vs + hu,vt in each segment with high probabil-
ity. If the values of two neighboring determined summations are equal, there is no
recombinant between the associated loci. Otherwise, there exists one. The details of
the location algorithm are given in algorithm LOCATE-INTERIOR-RECOMBINANTS

as shown in Fig. 5.

Lemma 9 The procedure LOCATE-INTERIOR-RECOMBINANTS can locate each re-
combinant from an interior locus segment in a small region of size at most 4a logn

correctly with probability at least 1 − k2 9a logn
(m−1)n

− 2nm
a logn

( 7
8 )a logn.

Proof Call each pair of segments of the two end vertices of a non-founder edge con-
cerning the same loci a non-founder edge region (see Fig. 4). Since we can determine
the h-variable at each locus of a non-founder edge independently with probability at
least 1/8 according to Lemma 7, we can determine at least one h-variable in a non-
founder edge region with probability at least 1 − ( 7

8 )a logn. Assume that there are n1

non-founder edges in the pedigree graph, and thus n1m
a logn

non-founder edge regions.
By union bound, we can determine at least one h-variable in each non-founder edge
region with probability at least 1 − n1m

a logn
( 7

8 )a logn. So, the number of loci between
two neighboring determined h-variables are at most 2a logn. If there is at most one
recombinant in any two adjacent non-founder edge regions on the same edge, there
exist at most one recombinant between any two neighboring determined h-variables
(with high probability). For any two neighboring determined h-variables with differ-
ent values, there should be a recombinant between them and we can locate it in a
region of size at most 2a logn since size of a non-founder edge region is a logn.
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Procedure: LOCATE-INTERIOR-RECOMBINANTS

Input: A tree pedigree with genotype information gj [i].
Output: Some small regions R1, . . . ,Rk1 that have recombinants.
1. k1 = 0.
2. for each non-founder edge in a locus graph Gi

3. if the p-variables of its end vertices are pre-determined then
determine its corresponding h-variable.

4. for each non-founder edge (u, v)

5. for each pair of neighboring determined variables hu,v[i1] and hu,v[i2]
6. if hu,v[i1] �= hu,v[i2] then
7. There exists a recombinant between loci i1 and i2 on the edge (u, v).
8. k1 = k1 + 1. Output this region Rk1 = [u,v, i1, i2]
9. else
10. for i1 ≤ i ≤ i2 do hu,v[i] = hu,v[i1].
11. for each founder u with children v1, . . . , vl

12. for each pair of children vj and vj+1 and locus i

13. if gu[i] = 2 and pvj
[i] and pvj+1 [i] are pre-determined then

14. Calculate the summation hu,vj
[i] + hu,vj+1 [i].

15. for each pair of children vj and vj+1
16. for each pair of neighboring determined summations on loci i1 and i2
17. if hu,vj

[i1] + hu,vj+1 [i1] �= hu,vj
[i2] + hu,vj+1 [i2] then

18. There exists a recombinant between loci i1 and i2
on edge (u, vj ) or edge (u, vj+1).

19. k1 = k1 + 1. Output this region Rk1 = [u,vj , vj+1, i1, i2]
20. else
21. for i1 ≤ i ≤ i2 do hu,vj

[i] + hu,vj+1 [i] = hu,vj
[i1] + hu,vj+1 [i1].

Fig. 5 The procedure for locating recombinants in the interior locus segments

Now we consider founder edges. Assume that founder u has l children v1, . . . , vl .
For any pair of children vj and vj+1, we can determine the summation hu,vj

[i] +
hu,vj+1[i] at locus i with probability at least 1/8 according to Lemma 8. Let us re-
gard the segments of u,vj , vj+1 concerning a same set of loci a founder edge region
(see Fig. 4). With probability at least 1 − ( 7

8 )a logn, there is at least one locus i in
a founder edge region such that the summation hu,vj

[i] + hu,vj+1[i] is determined.
Suppose that there are n2 founder edges in the pedigree graph. There are at most
n2 − 1 pairs of children of the form (vj , vj+1) in the whole pedigree. Thus, we have
at most (n2−1)m

a logn
founder edge regions. By union bound, we can determine at least one

summation of two h-variables in each founder edge region with probability at least
1− (n2−1)m

a logn
( 7

8 )a logn. So, the number of loci between any two neighboring determined
summation of h-variables is at most 2a logn. If there is at most one recombinant in
any two adjacent founder edge regions concerning the same pair of children, there
is at most one recombinant between two neighboring determined h-variables (with
high probability). For any two neighboring determined summations of h-variables
with different values, there should be a recombinant between them, and we can lo-
cate it in a region of size at most 4a logn since the size of a founder edge region is
2a logn.

For any two specific recombinants r1 and r2, if r1 is in a non-founder edge re-
gion, then there are three scenarios for them to be in two adjacent non-founder
edge regions. One case is that r2 is in the upper adjacent non-founder edge re-
gion, the second case is that r2 is in the same non-founder edge region, and the
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third case is that r2 is in the lower adjacent non-founder edge region. Since the
size of a non-founder edge region is a logn, the probability that r2 is located in
a non-founder edge adjacent (or identical) to r1 is 3a logn

(m−1)n
. When r1 is on founder

edge (u, vj ), there are six founder edge regions for r2 to be located to be adja-
cent to r1. Three of them are on edges (u, vj−1) and (u, vj ), and the other three
on edges (u, vj ) and (u, vj+1). So, the probability that r1 and r2 are located in ad-

jacent (or the same) founder edge regions is 9a logn
(m−1)n

. In summary, the probability
for two specific recombinants to be in two adjacent founder edge regions (or non-
founder edge regions) is at most 9a logn

(m−1)n
. By union bound, the probability for any

two recombinants not to be in any two consecutive founder edge regions (or non-
founder edge regions) is at least 1 − k2 9a logn

(m−1)n
. Thus, procedure LOCATE-INTERIOR-

RECOMBINANTS can locate each recombinant in a small region of size at most
4a logn with probability at least 1 − k2 9a logn

(m−1)n
− (n2−1)m

a logn
( 7

8 )a logn − n1m
a logn

( 7
8 )a logn.

Since the number of edges in the pedigree graph is at most 2n, the probability is at
least 1 − k2 9a logn

(m−1)n
− 2nm

a logn
( 7

8 )a logn. �

4.4 Locating Recombinants in the Boundary Locus Segments

For a non-founder (or founder) edge (u, v), suppose that is is the smallest locus such
that hu,v[is] (or a summation containing hu,v[is]) can be determined and it is the
largest such locus. By Lemma 9, each recombinant between loci is and it on edge
(u, v) is located in a small region of size at most 4a logn. But the lemma does not
show how to decide if there exists a recombinant between loci 1 and is or one be-
tween loci it and m. We call these two regions, which are typically contained in the
boundary segments, the boundary regions of edge (u, v). In this subsection, we will
show how to locate recombinants from the boundary regions in small regions of size
O(logn).

For convenience, define the length of a constraint as the number of h-variables in
it. First, we give an upper bound on the maximum length of any constraint in the set
C = CC ∪ CP ∪ CT.

Lemma 10 For any constant b, the length of every constraint in the set C is less than

b logn with probability 1 − 2mn2( 1
2 )

1
4 b logn.

Proof For any two vertices u and v in the spanning tree T , there exists a unique
path between u and v on the spanning tree. We consider the vertices on this path and
assign each vertex a label as follows. All the vertices whose parents are not on this
path are labeled 1. For each remaining vertex, its label is 1 plus the larger label of its
parents (if both are on the path).

Let L include the vertices that have no children on the path. We partition the
rest of the vertices into disjoint sets according to their labels. Vertices with label t

are put in set Ft . See Fig. 6. If this path belongs to a connected component of the
locus forest T (Gi), all the vertices that are not in set L are heterozygous. If a vertex
is heterozygous, it will pass alleles 1 and 2 to the next generation randomly with
equal probability. Thus, each of its children is also heterozygous with probability 1

2 .
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Fig. 6 An example path in a
spanning forest. The figure
illustrates a connected
component of some spanning
forest. The highlighted edges
represent the path between
vertices 2 and 6. For this path,
L = {3,6}, F1 = {2,5},
F2 = {4}

Notice that any two random h-variables on different edges are independent from each
other. When all the vertices in set Ft−1 are heterozygous, all the vertices in set Ft are
heterozygous with probability 1

2 independently. From symmetry it is easy to see that
a vertex in set F1 is heterozygous with probability 1

2 . Since the pedigree is a tree, the
vertices in F1 do not have any common ancestors. In other words, they do not share
any common q-variables. So, the vertices in F1 are heterozygous with probability 1

2
independently. Suppose that there are l vertices on the path and s vertices in the set L.
It is easy to prove that s ≤ (l + 1)/2. Thus, the probability that such a path between
u and v exists in T (Gi) is

Pr (there exists a path of length l)

= Pr
(
gFt [i] = 2,1 ≤ t ≤ f

)
= Pr

(
gF1[i] = 2

)
Pr

(
gF2[i] = 2 | gF1[i] = 2

) · · ·
Pr

(
gFj

[i] = 2 | gFt [i] = 2,1 ≤ t ≤ f − 1
)

=
(

1

2

)l−s

≤
(

1

2

)(l−1)/2

.

Here, f denotes the largest label assigned and gFt [i] = 2 denotes the event that all
the vertices in set Ft are heterozygous at locus i. There are at most n2 different
paths in the spanning tree T . By union bound, the length of a path between any two
vertices in each connected component of T (Gi) is less than l with probability at least
1 − mn2( 1

2 )(l−1)/2. Thus, with probability 1 − mn2( 1
2 )(l−1)/2, the length of each tree

constraint in set CT is less than l, the length of each path constraint in set CP is less
than 2l +1, and the length of each cycle constraint in set CC is less than l +1. Setting
l = 1

2b logn − 1 concludes the proof of the lemma. �

Now we give the basic idea of locating recombinants in the boundary regions.
Let us consider two adjacent loci i − 1 and i. Suppose that all the h-variables at lo-
cus i have already been determined. In other words, for the h-variables concerning
non-founder edges, their values are known, and for the h-variables corresponding
to founder edges, we know the summation of any pair of h-variables concerning
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edges incident on the same founder vertex. Note that for a founder u with children
v1, . . . , vl , the summation hu,vs [i] + hu,vt [i] for any pair of children vs, vt (s < t)
can be calculated using

∑t−1
j=s(hu,vj

[i] + hu,vj+1[i]). If there is no recombinant be-
tween loci i − 1 and i, all the h-variables at locus i − 1 will be the same as those
at locus i. So, we can set hu,v[i − 1] = hu,v[i] for each non-founder edge (u, v) and
hu,vj

[i − 1] + hx,vj+1[i − 1] = hu,vj
[i] + hu,vj+1[i] for each founder u with children

v1, . . . , vl , and then check if all the constraints in the set Ci−1 (i.e. all the constraints
in C generated in locus graph Gi−1) hold. Note that by Lemma 5, each constraint in
Ci−1 contains an even number of founder edges incident on the same founder. So, the
validity of each constraint in Ci−1 can be determined. If any constraint is unsatisfied,
there is at least one recombinant on this constraint (path) between loci i − 1 and i.
Since each constraint contains fewer than b logn h-variables by Lemma 10, it can be
regarded as a small region. Thus, each constraint contains no more than one recom-
binant with high probability. If all the constraints hold, there are no recombinants
between these two loci. Otherwise, we can locate each recombinant in a region of
size b logn (i.e. some unsatisfied constraint in Ci−1). By iterating this towards locus
1 and locus m separately, we can locate all boundary recombinants.

A pseudocode for locating boundary recombinants, called LOCATE-BOUNDARY-
RECOMBINANTS, is given in Fig. 7. It assumes that the procedure LOCATE-
INTERIOR-RECOMBINANTS has been run to locate all recombinants in the inte-
rior regions. Once all the recombinants have been located, LOCATE-BOUNDARY-
RECOMBINANTS in fact returns a feasible (final) solution in terms of the p-variables.

Figure 8 gives the details of our main algorithm TREE k-RHC. It first calls a sim-
ple preprocessing procedure as shown in Fig. 9 to set up the constraints and then
the procedures LOCATE-BOUNDARY-RECOMBINANTS and LOCATE-INTERIOR-
RECOMBINANTS to locate the recombinants and construct a feasible solution. Be-
fore we analyze the performance of algorithm TREE k-RHC, we prove two lemmas.
An h-variable is called active if it appears in some constraints in C . Otherwise, it is
inactive. Clearly, the values of inactive h-variables have no impact on the constraints.

Lemma 11 For any edge (u, v) and set of 2a logn consecutive loci i + 1,

i + 2, . . . , i + 2a logn, at least one of hu,v[i + 1], . . . , hu,v[i + 2a logn] is active
with probability at least 1 − 2nm

a logn
( 7

8 )a logn.

Proof It follows from the proof of Lemma 9 that each non-founder edge region has
at least one determined h-variable and each founder edge region has at least one
determined summation of two h-variables with probability at least 1− 2nm

a logn
( 7

8 )a logn.
Each such determined hu,v[i] or hu,v[i] + hu,v′ [i] suggests an active h-variable at
locus i. �

The next lemma shows that we can focus on active h-variables when trying to
locate the recombinants.

Lemma 12 For each edge (u, v), if hu,v[i1] �= hu,v[i2] and all the h-variables hu,v[i]
(i1 < i < i2) are inactive, then there is a recombinant between loci i1 and i2 on edge
(u, v). Moreover, any two consecutive loci in this interval would be a feasible location
for this recombinant.
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Procedure: LOCATE-BOUNDARY-RECOMBINANTS(i1, i2, r1, . . . , rk1 )

Input: Two loci i1 < i2 such that all the recombinants between loci i1 + 1
and i2 − 1 have been located and the h-variables determined;
the determined recombinant locations r1, . . . , rk1 .

Output: A feasible assignment of all recombinant locations and the p-variables.
1. l1 = 0, l2 = 0.
2. for each non-founder edge (u, v)

3. hu,v[i1] = hu,v[i1 + 1]; hu,v[i2] = hu,v[i2 − 1].
4. for each founder u with children v1, . . . , vs and j = 1, . . . , s − 1
5. hu,vj

[i1] + hu,vj+1 [i1] = hu,vj
[i1 + 1] + hu,vj+1 [i1 + 1].

6. hu,vj
[i2] + hu,vj+1 [i2] = hu,vj

[i2 − 1] + hu,vj+1 [i2 − 1].
7. for each constraint c in set Ci1
8. If c is unsatisfied then
9. l1 = l1 + 1.
10. There is a recombinant between loci i1 and i1 + 1 on c.
10. Denote this region as Rk1+l1 .
11. for each constraint c in set Ci2
12. If constraint c is unsatisfied then
13. l2 = l2 + 1.
14. There is a recombinant between loci i2 and i2 − 1 on c.

Denote this region as Rk1+l1+l2 .
15. for each possible assignment of recombinant

locations (rk1+1, . . . , rk1+l1+l2 ) ∈ (Rk1+1, . . . ,Rk1+l1+l2 )

16. if the number of distinct recombinants is larger than k then return.
17. if any two recombinants are derived from the same constraint then continue.
18. for 1 ≤ j ≤ l1
19. If rk1+j is identical to any ri (k1 < i < k1 + j) then continue
20. If rk1+j is on a non-founder edge (u, v) then
21. hu,v[i1] = hu,v[i1 + 1] + 1.
22. If rk1+j is on a founder edge (u, vj ),
22. where u is a founder with children v1, . . . , vs , then
23. hu,vj−1 [i1] + hu,vj

[i1] = hu,vj−1 [i1 + 1] + hu,vj
[i1 + 1] + 1.

24. hu,vj
[i1] + hu,vj+1 [i1] = hu,vj

[i1 + 1] + hu,vj+1 [i1 + 1] + 1.
25. for 1 ≤ j ≤ l2
26. If rk1+j is identical to any ri (k1 < i < k1 + j) then continue
27. If rk1+l1+j is on a non-founder edge (u, v) then
28. hu,v[i2] = hu,v[i2 − 1] + 1.
29. If rk1+l1+j is on a founder edge (u, vj ),

where u is a founder with children v1, . . . , vs , then
30. hu,vj−1 [i2] + hu,vj

[i2] = hu,vj−1 [i2 − 1] + hu,vj
[i2 − 1] + 1.

31. hu,vj
[i2] + hu,vj+1 [i2] = hu,vj

[i2 − 1] + hu,vj+1 [i2 − 1] + 1.
32. if i1 ≤ 1 and i2 ≥ m then
33. Translate the ILP in (5) into a tree ZRHC instance taking

into account the recombinants (r1, . . . , rk1+l1+l2 ).
34. Solve the instance using the linear-time algorithm in [21].
35. Output the recombinants (r1, . . . , rk1+l1+l2 ) and the p-variables. stop.
36. elseif i1 ≤ 1 and i2 < m then
37. LOCATE-BOUNDARY-RECOMBINANTS(0, i2 + 1, r1, . . . , rk1+l1+l2 ).
38. elseif i1 > 1 and i2 ≥ m then
39. LOCATE-BOUNDARY-RECOMBINANTS(i1 − 1,m + 1, r1, . . . , rk1+l1+l2 ).
40. else
41. LOCATE-BOUNDARY-RECOMBINANTS(i1 − 1, i2 + 1, r1, . . . , rk1+l1+l2 ).

Fig. 7 The procedure for locating recombinants in the boundary regions. For convenience, we define
C0 = Cm+1 = ∅. For the simplicity of presentation, here we enumerate all new recombinants together. But
in our real implementation, we actually enumerate a recombinant at a time and then update the correspond-
ing h-variables’ values. This guarantees that the same recombinant will not be enumerated twice
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Algorithm: TREE k-RHC
Input: A tree pedigree G = (V ,E) with genotype information gj [i]; parameter k.
Output: Recombinant locations and haplotype information pj [i].
1. GENERATE-CONSTRAINTS.
2. LOCATE-INTERIOR-RECOMBINANTS.
3. for each edge (u, v)

4. Find the smallest locus i with hu,v[i]
(or some summation hu,v[i] + hu,v′ [i]) determined. Let su,v = i.

5. Find the largest locus i with hu,v[i]
(or some summation hu,v[i] + hu,v′ [i]) determined. Let tu,v = i.

6. Let s = max su,v , t = min tu,v .
7. if k1 = 0 then
8. LOCATE-BOUNDARY-RECOMBINANTS(s − 1, t + 1).
9. else
10. for each assignment of recombinant locations (r1, r2, . . . , rk1 ) ∈ (R1, . . . ,Rk1 )

11. for 1 ≤ j ≤ k1
12. if Rj = [u,v, i1, i3] where (u, v) is a non-founder edge,

and rj is between loci i2 and i2 + 1 then
13. hu,v[i] = hu,v[i1] for each 1 ≤ i ≤ i2.
14. hu,v[i] = hu,v[i3] for each i2 + 1 ≤ i ≤ i3.
15. if Rj = [u,v1, v2, i1, i3] where (u, v1) and (u, v2) are two adjacent founder edges,

and rj is between loci i2 and i2 + 1 then
16. hu,v1 [i] + hu,v2 [i] = hu,v1 [i1] + hu,v2 [i1] for each i1 ≤ i ≤ i2.
17. hu,v1 [i] + hu,v2 [i] = hu,v1 [i3] + hu,v2 [i3] for each i2 + 1 ≤ i ≤ i3.
18. for s ≤ i ≤ t

19. Check all the constraints in set Ci .
20. if any constraint is unsatisfied then break the loop.
21. LOCATE-BOUNDARY-RECOMBINANTS(s − 1, t + 1,R1, . . . ,Rk1 ).

Fig. 8 The main algorithm for solving k-RHC on tree pedigrees

Procedure: GENERATE-CONSTRAINTS

Input: A tree pedigree graph G = (V ,E) with genotype information gj [i].
Output: T (G), Gi , T (Gi), and the constraint set C.
1. Construct an arbitrary spanning tree T (G) on G.
2. for each locus i

3. Generate the locus graph Gi .
4. Generate the locus spanning forest T (Gi).
5. Identify the pre-determined p-variables at locus i.
6. Generate the constraints C = CC ∪ CP ∪ CT.

Fig. 9 The preprocessing procedure

Proof Since the variables hu,v[i] (i1 < i < i2) are inactive, their values do not af-
fect the validity of any constraint. In other words, they are totally “free”. Hence,
a recombinant can be located anywhere among them without affecting feasibility by
Lemma 6. Because hu,v[i1] �= hu,v[i2], there exist an odd number of recombinants
between loci i1 and i2. Since we are generally interested in solutions with the fewest
recombinants, we may assume that only one recombinant exists. �

To prove that the algorithm TREE k-RHC finds a feasible solution in
O(mn logk+1 n) time with high probability, we need only show that all the recombi-
nants can be located in the correct regions with high probability.
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Theorem 13 For any a > 0, b > 0 and m > 2a logn, the algorithm TREE k-RHC
solves the probabilistic k-RHC problem on tree pedigrees in time
O(mn logn(max{4a, b} logn)k) with probability at least 1 − k2 9a logn

(m−1)n
−

2nm
a logn

( 7
8 )a logn − 2mn2( 1

2 )
1
4 b logn − k(k − 1)

2ab log2 n
(m−1)n

.

Proof By Lemma 9, all recombinants in the interior segments are located correctly
by procedure LOCATE-INTERIOR-RECOMBINANTS with high probability. So, we
need only prove that procedure LOCATE-BOUNDARY-RECOMBINANTS can locate
all the remaining recombinants correctly. By symmetry, we will consider only the
upper boundary segments below. Note that the top locus is locus 1. As in algorithm
TREE k-RHC, for each non-founder (or founder) edge (u, v), the smallest locus i

with hu,v[i] (or some summation containing hu,v[i], respectively) determined is de-
noted as su,v . The largest locus i with hu,v[i] (or some summation containing hu,v[i],
respectively) determined is denoted as tu,v . Let s = max su,v and t = min tu,v . Recall
that a segment contains a logn loci. When m > 2a logn, the loci of each member
is divided into at least two segments. So it is easy to see that s ≤ a logn < t . Since
all the recombinants on edge (u, v) between loci su,v and tu,v have been correctly
located by procedure LOCATE-INTERIOR-RECOMBINANTS, we may assume that all
the h-variables associated with the edge (u, v) between loci su,v and tu,v have been
correctly determined.

Consider a recombinant rf between loci l and l +1 on edge (u, v), where l < su,v .
Suppose that i is the largest locus above l (i.e. i ≤ l) such that hu,v[i] is active.
Similarly, let hu,v[j ] (j ≥ l + 1) be the nearest active h-variable below rf . Thus,
hu,v[i] �= hu,v[j ], and we will prove that this recombinant will be located correctly by
our algorithm by induction on i. Let us call the above hu,v[i] an affected variable. We
also say that the recombinant rf is observed at the above locus i and observable on
any constraint that contains hu,v[i]. Clearly, it follows from these definitions that each
recombinant affects a unique variable and is observed at a unique locus. Assume that
all the recombinants observed between loci i + 1 and s have been located correctly
in the entire pedigree. We want to show that the recombinant rf is correctly located.

Suppose that hu,v[i] is contained in some constraint c that contains only one af-
fected variable. In other words, hu,v[i] is the unique affected variable in c. Because
all the recombinants observed between loci i + 1 and s are located correctly, there
is a feasible solution consistent with the h-variable values and summations deter-
mined up to locus i + 1 with the following properties: (i) the h-variables that appear
in constraint c have the same values (or give rise to the same summations) as their
counterparts at locus i + 1 except hu,v[i] and (ii) the constraint c is satisfied. Note
that although there may still exist unidentified recombinants below locus i + 1 at this
point, they should cause no problem to the existence of such a feasible solution be-
cause they do not affect any (active) h-variables below locus i. Since the procedure
LOCATE-BOUNDARY-RECOMBINANTS first copies the h-variable values (or sum-
mations) at locus i + 1 to locus i, it is easy to see that the constraint c is not satisfied
by these copied values and summations, and rf would be located correctly. We de-
note as Af the event that rf does not have any affected variable hu,v[i] which is the
unique affected variable in any constraint, when all the recombinants between loci
i + 1 and s are located correctly. In other words, Af represents the event that we
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do not observe recombinant rf when all the recombinants between loci i + 1 and s

are located correctly. So, the probability that LOCATE-BOUNDARY-RECOMBINANTS

works correctly is P = 1−Pr(A1 ∪A2 ∪· · ·∪Ak−k1). By symmetry and union bound,
P ≥ 1 − (k − k1)Pr(Af ) ≥ 1 − k Pr(Af ).

Because hu,v[i] is active, it is contained in at least one constraint c. If c does
not reveal rf , there must be other recombinants that are also observable on c. Thus,
Pr(Af ) ≤ (k − 1)Pr(rf ′ is observable on c), where rf ′ denotes any recombinant dif-
ferent from rf . Let Qi denote the set of all founder allele q-variables at locus i and
Hi the set of all h-variables at locus i. Then,

Pr(rf ′ is observable on constraint c)

=
∑

Hi,Qi

Pr(Hi,Qi) · Pr(rf ′ is observable on constraint c | Hi,Qi).

When Hi and Qi are fixed, constraint c is also fixed, but the recombinant rf ′ has
equal probability to be at any location in the pedigree. By Lemma 10, constraint
c has at most b logn h-variables. By Lemmas 11 and 12, each recombinant must
be at most 2a logn loci away from a constraint where it is observable. So, there
are at most 2ab log2 n possible locations where the recombinant rf ′ can be located
and remain observable on constraint c. Thus, Pr(rf ′ is observable on constraint c |
Hi,Qi) ≤ 2ab log2 n

(m−1)n
, and

P ≥ 1 − k Pr(Af )

≥ 1 − k(k − 1)
∑

Hi,Qi

Pr(Hi,Qi)
2ab log2 n

(m − 1)n

= 1 − k(k − 1)
2ab log2 n

(m − 1)n
.

Combining Lemmas 9 and 10, algorithm TREE k-RHC correctly locates the re-
combinants and returns a feasible solution with probability at least 1 − k2 9a logn

(m−1)n
−

2nm
a logn

( 7
8 )a logn − 2mn2( 1

2 )
1
4 b logn − k(k − 1)

2ab log2 n
(m−1)n

.
Now we analyze the time complexity of the algorithm. Each recombinant is first

located in a region of size at most max{4a, b} logn in the procedures LOCATE-
INTERIOR-RECOMBINANTS and LOCATE-BOUNDARY-RECOMBINANTS. The ex-
act locations of these recombinants are then exhaustively enumerated in procedure
LOCATE-BOUNDARY-RECOMBINANTS and TREE k-RHC, which generate alto-
gether (max{4a, b} logn)k combinations. By Lemma 4, there are O(mn) constraints.
Since each constraint has at most b logn h-variables, we can check if each of them
is satisfied in O(mn logn) time. For a founder vertex u with children v1, . . . , vl ,
we only keep track of summations of the form hu,vj

[i] + hu,vj+1[i] at a locus i in
procedure LOCATE-BOUNDARY-RECOMBINANTS. But when we move on to locus
i − 1, we may need summations of the form hu,vj

[i] + hu,vl
[i] (it could be use-

ful in step 19 of TREE k-RHC). We can quickly obtain such summations when
needed by setting temporarily hu,v1[i] = 0 and calculating all the other h-variable
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hu,vj
[i] according to the summations hu,vj

[i] + hu,vj+1[i]. Then we can obtain any
summation hu,vj

[i] + hu,vl
[i] in constant time. It is easy to see that such com-

putation takes O(n) time for each locus in the whole pedigree and thus O(mn)

time for all loci. Since the algorithm in [21] finds a feasible solution of ZRHC on
tree pedigrees in O(mn) time, the total running time of algorithm TREE k-RHC is
O(mn logn(max{4a, b} logn)k). �

Corollary 14 When 90 logn < m < n3, TREE k-RHC solves the probabilistic
k-RHC problem on tree pedigrees in time O(mn logk+1 n) with probability 1 −
O(k2 log2 n

mn
+ 1

n2 ).

Proof Let a = 6
log 8/7 and b = 28

log 2 , where the log function is to the base e. Then 1 −
k2 9a logn

(m−1)n
− 2nm

a logn
( 7

8 )a logn −2mn2( 1
2 )

1
4 b logn −k(k −1)

2ab(logn)2

(m−1)n
= 1−O(k2 log2 n

mn
+

1
n2 ), and O(mn logn(max{4a, b} logn)k) = O(mn(logn)k+1). Since we also need
m > 2a logn in the proof of Theorem 13, m > 90 logn. �

5 Some Implementation Issues

The above algorithm TREE k-RHC is originally based on the simple probabilistic
model where the founder haplotypes, haplotype transmission and recombinants are
all assumed to follow the uniform distribution. Moreover, it assumes that the markers
are bi-allelic and contain no missing alleles. To deal with real data that may not satisfy
these assumptions, we need carefully resolve the following issues.

Missing Data In practice, some alleles may be missing due to the imperfectness of
genotyping technologies. Here, we simply omit the constraints described in Sect. 3.2
that involve missing alleles and proceed to infer the h-variables. Some missing alle-
les can be imputed uniquely using the solved h-variables and the constraints, while
the remaining ones can be enumerated. Once the missing alleles of a member are
enumerated, more missing alleles of other members could be determined using the
constraints. In our experiments, we only had to enumerate the alleles at a few loci
(about 4 to 8 loci) of a very small number of members (about 2 to 4 members) in the
input pedigree.

Multi-Allelic Markers We can extend the construction of the linear equations in
Sect. 2 to work for multi-allelic data. Suppose that member jr is a parent of mem-
ber j . For each locus i, we define pj [i] = 0 if the allele at locus i of j with the larger
ID is located on j ’s paternal haplotype, and pj [i] = 1 otherwise. It is easy to prove
that there always exists a linear equation of the form c1 · pjr [i] + c2 · hjr ,j [i] + c3 ·
pj [i] + c4 = 0 over the field F(2) to describe the inheritance from jr to j at locus i.
Here the definition of p-variable is a little bit different from that in Sect. 2. We can
enumerate all 16 possible cases of (c1, c2, c3, c4) and find one that agrees with the
inheritance on all 8 possible combinations of pjr [i],pj [i] and hjr ,j [i]. The same
strategy can be used to construct the constraints in Sect. 3.2.
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Bounded Breadth-First-Search A straightforward implementation of the algorithm
TREE k-RHC using (for example) breadth-first-search (BFS) may not be very effi-
cient when the number of the recombinants becomes very large, because the product
of the areas of all regions containing recombinants increases exponentially. So, when
k becomes large (e.g. 10 in our experiments), we could switch to a bounded BFS
strategy to speed up the search. The basic idea is that we keep only B nodes during
BFS that incur the smallest number of recombinants before exploring the next level
of the search, for some appropriately chosen B . Clearly, a smaller B would allow the
program to run faster, but perhaps with less accuracy. In our experiments on real data,
we found that setting B = 20 worked very well.

6 Preliminary Experimental Results

The above implemented C++ program will simply be named TREE-k-RHC, which
is available to the public upon request to either of the authors. To evaluate the per-
formance of TREE-k-RHC, we compare it with both the ILP-based exact algorithm
(called ILP) and fast heuristic algorithm (called BE) in PedPhase [16–18] on simu-
lated genotype data in terms of accuracy and efficiency using two different pedigree
structures. ILP is known to be the best combinatorial program for haplotype infer-
ence on pedigrees in the literature [19]. The comparison shows that TREE-k-RHC is
comparable to ILP in terms of accuracy but much faster than ILP on large data. On
the other hand, TREE-k-RHC is comparable to BE in terms of speed but much more
accurate. We further compare the performance of TREE-k-RHC, ILP and an EM al-
gorithm from [10] on a real dataset that consists of 12 multi-generation pedigrees
studied in [10]. The results show that TREE-k-RHC is able to discover almost all the
common haplotypes (i.e. haplotypes with frequencies at least 5%) that were inferred
by the EM algorithm and ILP. These results are discussed in more detail below.

6.1 Comparing TREE-k-RHC, BE and ILP on Simulated Data

Two real tree human pedigrees from the literature [20] are considered. One has 29
members as shown in Fig. 10(a) and the other 52 members as shown in Fig. 10(b).

Fig. 10 The pedigree structures used in the simulation
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Table 1 Speeds and numbers of recombinants of TREE-k-RHC, BE and ILP on simulated data. The
first column indicates the combination of parameters: the size of the pedigree, the number of loci in each
member and the number of recombinants used to generate the genotype data, respectively. The time was
measured on a desktop PC with P4 3 GHz CPU and 512 M memory running Windows operating system

Parameters Missing TREE-k-RHC BE ILP

rate Time (s) # Recom- Time (s) # Recom- Time(s) # Recom-

binants binants binants

(29,60,10) 0.00 0.307 9.6 0.117 48.5 3.722 9.6

0.05 0.302 9.7 0.125 119.0 4.772 9.6

0.10 0.293 9.6 0.125 154.0 5.595 9.6

0.15 0.355 9.9 0.125 197.5 6.616 9.7

0.20 0.478 9.9 0.125 212.5 11.639 9.7

(29,90,20) 0.00 0.444 18.5 0.133 80.0 11.115 18.3

0.05 0.429 18.3 0.148 175.0 14.572 18.3

0.10 0.425 18.5 0.141 250.0 16.741 18.3

0.15 0.453 18.7 0.148 314.0 17.706 18.3

0.20 0.678 19.2 0.179 359.5 23.293 18.5

(29,90,10) 0.00 0.431 9.7 0.125 99.5 8.009 9.7

0.05 0.412 9.7 0.133 173.0 10.027 9.7

0.10 0.400 9.9 0.133 236.5 10.993 9.7

0.15 0.398 9.8 0.148 311.0 12.828 9.7

0.20 0.406 9.9 0.133 362.0 14.364 9.7

(29,60,2) 0.00 0.302 2.0 0.117 9.5 3.203 2.0

0.05 0.292 2.0 0.117 84.0 4.044 2.0

0.10 0.280 2.0 0.117 123.5 4.544 2.0

0.15 0.277 2.0 0.117 169.0 5.213 2.1

0.20 0.348 2.1 0.117 226.5 5.750 2.1

(52,60,10) 0.00 1.070 9.1 0.133 12.0 9.643 9.1

0.05 1.036 9.1 0.141 117.5 12.797 9.1

0.10 1.042 9.1 0.125 213.5 14.626 9.5

0.15 1.181 9.3 0.125 312.5 16.230 9.5

0.20 1.356 9.0 0.125 384.5 18.086 9.6

On each of these pedigrees, bi-allelic genotype data are generated randomly follow-
ing the simple probabilistic model with various numbers of loci, missing rates and
number of recombinants. For each configuration, 100 random replicates are used
and the average speed and performance of each program on these replicates are as-
sessed. The results in Table 1 demonstrate that TREE-k-RHC is more than 20 times
faster than ILP and about 10 times slower than BE. Moreover, it yields solutions
with much fewer recombinants than BE and similar numbers of recombinants as ILP.
(Although ILP is supposed to be an exact algorithm, its actual implementation uses
heuristics to speed up as well.) Note that the speed up over ILP should grow quickly
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Table 1 (Continued)

Parameters Missing TREE-k-RHC BE ILP

rate Time (s) # Recom- Time (s) # Recom- Time(s) # Recom-

binants binants binants

(52,90,20) 0.00 1.566 18.5 0.157 107.0 21.581 18.2

0.05 1.530 18.6 0.344 262.0 27.822 18.3

0.10 1.510 18.3 0.148 365.0 32.136 18.6

0.15 1.647 18.6 0.141 492.0 35.598 18.5

0.20 1.946 18.5 0.164 608.0 40.470 18.3

(52,50,10) 0.00 0.925 8.9 0.133 23.0 6.922 8.9

0.05 0.927 8.9 0.133 108.5 9.362 8.9

0.10 1.041 8.9 0.125 194.5 10.526 8.9

0.15 1.641 9.1 0.125 239.0 11.878 9.1

0.20 3.554 9.1 0.125 329.0 13.336 8.9

(52,80,15) 0.00 1.390 13.3 0.149 60.0 16.529 13.3

0.05 1.345 13.3 0.141 187.0 21.293 13.3

0.10 1.333 13.5 0.141 352.5 25.148 13.2

0.15 1.350 13.5 0.171 462.5 27.467 13.3

0.20 1.760 13.6 0.156 561.5 30.141 13.3

(52,80,20) 0.00 1.404 17.5 0.148 102.0 17.999 17.5

0.05 1.353 17.6 0.148 260.0 23.138 17.7

0.10 1.363 17.8 0.141 390.0 26.812 17.7

0.15 1.494 17.9 0.164 478.0 29.471 17.7

0.20 1.721 18.5 0.164 550.5 37.973 17.5

(52,95,15) 0.00 1.649 13.5 0.157 83.5 23.880 13.5

0.05 1.582 13.7 0.148 228.5 31.519 13.8

0.10 1.517 13.7 0.156 403.0 36.617 13.8

0.15 1.480 13.9 0.156 544.5 44.405 14.2

0.20 1.548 14.0 0.164 619.5 52.325 14.6

with m and n as the worst-case time complexity of the ILP-based algorithm is at
least (mn)k .

For accuracy, we calculate the percentage of loci whose phases are correctly in-
ferred and the percentage of missing alleles correctly imputed by the programs. As
shown in Table 2, TREE-k-RHC and ILP have comparable accuracies. Both pro-
grams are able to infer phases correctly in more than 96% of the cases and impute
missing alleles correctly in more than 90% of the cases. Interestingly, although BE
requires a lot of extra recombinants on these data, it can somehow infer the phase and
missing allele information correctly in more than 86% and 70%, respectively, of the
cases.
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Table 2 The percentage of loci with correctly inferred phases and the percentage of missing alleles cor-
rectly imputed by TREE-k-RHC, BE and ILP on simulated data. Again, the first column indicates the
pedigree size, the number of loci and the number of recombinants

Parameters Missing TREE-k-RHC BE ILP

rate Phase Missing Phase Missing Phase Missing

allele allele allele

(29,60,10) 0.00 0.994 NA 0.974 NA 0.994 NA

0.05 0.992 0.956 0.944 0.754 0.993 0.958

0.10 0.989 0.949 0.926 0.790 0.988 0.944

0.15 0.983 0.935 0.903 0.756 0.983 0.937

0.20 0.977 0.924 0.893 0.748 0.978 0.929

(29,90,20) 0.00 0.992 NA 0.967 NA 0.990 NA

0.05 0.990 0.947 0.944 0.758 0.987 0.947

0.10 0.986 0.931 0.917 0.738 0.982 0.942

0.15 0.980 0.928 0.888 0.730 0.977 0.934

0.20 0.974 0.914 0.874 0.732 0.973 0.925

(29,90,10) 0.00 0.992 NA 0.972 NA 0.995 NA

0.05 0.989 0.947 0.942 0.754 0.989 0.950

0.10 0.985 0.941 0.910 0.738 0.986 0.947

0.15 0.980 0.931 0.892 0.730 0.984 0.943

0.20 0.975 0.924 0.865 0.712 0.978 0.934

(29,60,2) 0.00 0.999 NA 0.998 NA 0.999 NA

0.05 0.997 0.965 0.966 0.766 0.998 0.967

0.10 0.995 0.958 0.960 0.780 0.995 0.956

0.15 0.990 0.944 0.915 0.754 0.991 0.949

0.20 0.984 0.936 0.874 0.708 0.986 0.937

(52,60,10) 0.00 0.995 NA 0.990 NA 0.996 NA

0.05 0.991 0.938 0.962 0.769 0.992 0.938

0.10 0.986 0.925 0.939 0.768 0.988 0.933

0.15 0.978 0.915 0.899 0.742 0.983 0.926

0.20 0.972 0.907 0.899 0.742 0.983 0.926

(52,90,20) 0.00 0.990 NA 0.980 NA 0.991 NA

0.05 0.986 0.931 0.944 0.754 0.987 0.932

0.10 0.981 0.923 0.921 0.754 0.983 0.927

0.15 0.974 0.910 0.896 0.740 0.977 0.919

0.20 0.968 0.903 0.873 0.722 0.972 0.914

(52,50,10) 0.00 0.995 NA 0.988 NA 0.996 NA

0.05 0.990 0.939 0.965 0.771 0.990 0.938

0.10 0.985 0.926 0.928 0.750 0.986 0.930

0.15 0.979 0.918 0.903 0.724 0.981 0.923

0.20 0.973 0.910 0.878 0.720 0.975 0.914
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Table 2 (Continued)

Parameters Missing TREE-k-RHC BE ILP

rate Phase Missing Phase Missing Phase Missing

allele allele allele

(52,80,15) 0.00 0.993 NA 0.984 NA 0.993 NA

0.05 0.989 0.936 0.965 0.792 0.989 0.937

0.10 0.985 0.929 0.922 0.762 0.984 0.932

0.15 0.979 0.918 0.897 0.740 0.979 0.926

0.20 0.971 0.909 0.875 0.727 0.973 0.917

(52,80,20) 0.00 0.990 NA 0.977 NA 0.991 NA

0.05 0.985 0.923 0.937 0.765 0.986 0.933

0.10 0.981 0.920 0.912 0.742 0.983 0.928

0.15 0.974 0.908 0.892 0.740 0.978 0.923

0.20 0.963 0.967 0.900 0.873 0.971 0.913

(52,95,15) 0.00 0.992 NA 0.982 NA 0.994 NA

0.05 0.988 0.927 0.948 0.782 0.989 0.933

0.10 0.982 0.919 0.923 0.764 0.984 0.928

0.15 0.977 0.914 0.897 0.752 0.979 0.922

0.20 0.969 0.904 0.879 0.740 0.974 0.915

6.2 Comparing TREE-k-RHC, ILP and an EM Algorithm on a Real Dataset

Gabriel et al. [10] reported results on a large scale SNP haplotype block partition and
haplotype frequency estimation project. Their original dataset consists of 4 popula-
tions and 54 autosomal regions, each with an average size of 250 kbps, spanning a
total of 13.4 Mbps (about 0.4%) of the human genome. Haplotype blocks were de-
fined using the normalized linkage disequilibrium parameter D′. Within each block,
haplotypes and their frequencies were calculated via an EM algorithm designed by
Excoffier and Slatkin [9]. One of the populations (the European population) con-
tains pedigrees and was used in our study. There are totally 93 members in the Eu-
ropean population, separated into 12 multi-generation pedigrees (each with 7 to 8
members). The genotyped regions are distributed among all the 22 autosomes and
each autosome contains 1 to 10 regions. We downloaded the SNP genotype data
and pedigree structures from Whitehead/MIT Center for Genome Research web-
site (http://www-genome.wi.mit.edu/mpg/hapmap/hapstruc.html), and obtained the
results of the EM algorithm and ILP concerning common haplotypes and their fre-
quencies in the European population as given in [17, 18].

We focus on chromosome 3 as in [17, 18]. There are four regions in the chromo-
some 3 data and each region is partitioned into 1 to 4 blocks as in [10]. The physical
length and partitioned block information of each region from [10] are summarized
in Table 3. Since TREE-k-RHC does not work well with a very small number of loci
(this can also been seen from the condition in Corollary 14), we run it on each of the

http://www-genome.wi.mit.edu/mpg/hapmap/hapstruc.html
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Table 3 The regions and blocks
on chromosome 3 Name Length # SNPs # Blocks # SNPs Missing

(kbps) per block rate

16a 40 14 1 5 7.96%

16b 106 53 1 6 3.76%

2 4 2.69%

17a 186 70 1 6 4.70%

2 5 1.50%

3 4 7.80%

4 6 6.27%

18a 286 74 1 16 3.70%

2 6 5.73%

3 4 2.15%

regions instead of blocks. Once haplotypes are inferred for the members of all pedi-
grees, haplotype frequencies (in the population) are estimated by simple counting.
The common haplotypes and their frequencies in each block, estimated by TREE-k-
RHC, ILP and the EM algorithm are summarized in Table 4. Since region 16a-1 has
only 14 loci, which are too few for TREE-k-RHC, we omit it from the comparison.
The majority of the common haplotypes identified by TREE-k-RHC and ILP for all
blocks are the same as those found by the EM algorithm. Furthermore, for the com-
mon haplotypes found by all three programs, the programs estimated very similar
frequencies.

We also compare the numbers of recombinations required in the solutions found
by ILP and TREE-k-RHC, and the similarity between the phases inferred by them.
We randomly select four regions from the entire genome and report their results in
Table 5. Again, TREE-k-RHC is run on each region while ILP is run on each block.
We observe that the number of the recombinants that TREE-k-RHC found in each
block are the same as ILP’s numbers in most of the blocks, except for one (i.e. block
17a-3). In this block, ILP requires no recombinant but TREE-k-RHC requires one.
After a further analysis, we find that this extra recombinant required by TREE-k-
RHC is buried in a sequence of consecutive homozygous loci across the boundary
between this block and a neighboring block, and can thus be shifted to the boundary
without affecting the haplotype solution. In other words, this recombinant does not
have to be in this block, and thus we can treat the results of ILP and TREE-k-RHC
on this block as identical. The table also shows that for more than 99.5% of the loci,
both program inferred the same phases. Note that, here ILP takes advantage of the
available haplotype block structure while TREE-k-RHC is able to produce a similar
haplotype solution without using the block information. In fact, TREE-k-RHC puts
most of the recombinants required in a region at the boundary between haplotype
blocks.

The minimum number of loci required by TREE-k-RHC depend on many factors
including the size of the pedigree, the structure of the pedigree, and the distribution of
the alleles. Our rough empirical estimation shows that TREE-k-RHC (for a reason-
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Table 4 Common haplotypes and their frequencies obtained by TREE-k-RHC, ILP and the EM method.
In haplotypes, the alleles are encoded as 1 = A, 2 = C, 3 = G, and 4 = T

Block Common EM ILP TREE- Block Common EM ILP TREE-

haplotype k-RHC haplotype k-RHC

17a-1 3 1 3 4 4 4 0.340 0.292 0.315 18a-1 1444231214144132 0.269 0.240 0.222

1 3 3 2 4 2 0.302 0.250 0.282 1444111214144132 0.240 0.208 0.277

3 3 2 4 2 4 0.135 0.093 0.118 1444131214144132 0.189 0.198 0.231

3 3 3 4 4 4 0.102 0.135 0.131 4222133313412211 0.125

3 3 2 4 4 4 0.068 0.073 0.065 1444231234144132 0.083 0.073 0.092

1 3 3 2 4 4 0.052 4444133214144132 0.052 0.064

Sum 1.000 0.844 0.911 Sum 0.906 0.771 0.886

17a-2 2 3 2 4 2 0.354 0.323 0.337 18a-2 3 1 2 4 4 2 0.497 0.427 0.501

3 3 4 2 4 0.333 0.313 0.337 1 3 2 4 3 4 0.260 0.167 0.272

3 3 4 4 2 0.146 0.156 0.139 3 1 2 2 4 2 0.127 0.094 0.098

3 4 4 4 4 0.125 0.125 0.156 1 3 4 4 4 4 0.094 0.073 0.075

Sum 0.958 0.917 0.969 1 3 2 4 3 2 0.063

17a-3 4 4 3 1 0.413 0.417 0.447 3 1 2 4 4 4 0.052

3 1 1 2 0.281 0.229 0.208 Sum 0.978 0.892 0.946

4 1 3 1 0.236 0.219 0.201 18a-3 2 2 1 1 0.419 0.385 0.417

4 1 3 2 0.070 0.073 0.082 4 3 3 3 0.219 0.219 0.217

Sum 1.000 0.930 0.938 2 3 1 1 0.206 0.240 0.194

17a-4 3 4 4 1 2 4 0.385 0.344 0.401 4 3 1 3 0.125 0.115 0.147

2 3 2 4 3 2 0.333 0.302 0.307 Sum 0.969 0.958 0.975

3 4 2 4 2 4 0.250 0.219 0.235 16b-2 4 1 2 2 0.541 0.510 0.516

Sum 0.969 0.865 0.943 2 3 3 4 0.281 0.250 0.269

16b-1 3 2 4 1 1 2 0.801 0.781 0.797 2 3 3 2 0.156 0.156 0.148

1 3 2 3 3 4 0.083 0.083 0.062 Sum 0.978 0.917 0.933

Sum 0.885 0.865 0.859

ably large k) requires about 40 loci when n ≤ 20 and about 60 loci when 20 < n < 50.
The number does not increase much once n passes 50.

7 Concluding remarks

This paper presents an efficient algorithm for k-RHC on tree pedigrees without mat-
ing loops. The algorithm is capable of handling large tree pedigrees. On the other
hand, the k-RHC problem on general pedigrees with mating loops seems much harder
to deal with. By extending the techniques in this paper, we have only been able to ob-
tain a nontrivial algorithm that runs in time O(mn2 +n3 logn(n logn)k) with success
probability 1 − O(k2 logn

m
+ 1

n2 ). This (latter) algorithm is not efficient for large gen-
eral pedigrees, and thus further research is needed.
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Table 5 Comparison of the
number of recombinations in the
solutions found by ILP and
TREE-k-RHC. The phase
similarity column means the
percentage of loci with the same
phases inferred by these two
programs

Region Block # Recombinants # Recombinants Phase

(TREE-k-RHC) (ILP) similarity

11a 0 0.996

11a-1 0 0

17a 14 0.996

17a-1 0 0

17a-2 0 0

17a-3 1 0

17a-4 0 0

18a 4 0.995

18a-1 0 0

18a-2 0 0

18a-3 2 2

19a 8 0.996

19a-1 3 3

19a-2 1 1
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