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Abstract δ-Hyperbolic metric spaces have been defined by M. Gromov in 1987
via a simple 4-point condition: for any four points u,v,w,x, the two larger of the
distance sums d(u, v) + d(w,x), d(u,w) + d(v, x), d(u, x) + d(v,w) differ by at
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most 2δ. They play an important role in geometric group theory, geometry of neg-
atively curved spaces, and have recently become of interest in several domains of
computer science, including algorithms and networking. In this paper, we study un-
weighted δ-hyperbolic graphs. Using the Layering Partition technique, we show that
every n-vertex δ-hyperbolic graph with δ ≥ 1/2 has an additive O(δ logn)-spanner
with at most O(δn) edges and provide a simpler, in our opinion, and faster con-
struction of distance approximating trees of δ-hyperbolic graphs with an additive
error O(δ logn). The construction of our tree takes only linear time in the size of
the input graph. As a consequence, we show that the family of n-vertex δ-hyperbolic
graphs with δ ≥ 1/2 admits a routing labeling scheme with O(δ log2 n) bit labels,
O(δ logn) additive stretch and O(log2(4δ)) time routing protocol, and a distance la-
beling scheme with O(log2 n) bit labels, O(δ logn) additive error and constant time
distance decoder.

Keywords Algorithms · Distance and routing labeling schemes · Additive
spanners · δ-Hyperbolic graphs

1 Introduction

This paper investigates whether δ-hyperbolic graphs admit good spanners and com-
pact and efficient routing and distance labeling schemes. Commonly, when we make
a query concerning a pair of vertices in a graph (adjacency, distance, shortest route,
etc.), we need to make an access to a global data structure storing the information.
A compromise to this approach is to store enough information locally in a label asso-
ciated with a vertex such that the query can be answered using only the information
in the labels of two vertices in question and nothing else. Motivation of localized data
structure in distributed computing is surveyed and widely discussed in [33, 51].

We are mainly interested here in the distance and routing labeling schemes, in-
troduced by Peleg (see, e.g., [51]). Informally, distance labeling schemes (DLS, for
short) are schemes that label the vertices of a graph with short labels in such a way
that the distance between any two vertices u and v can be determined or estimated
efficiently by merely inspecting the labels of u and v, without using any other in-
formation. A routing scheme is a mechanism that can deliver packets of information
from any vertex of the network to any other vertex. Routing labeling schemes (RLS,
for short) are schemes that label the vertices of a graph with short labels in such a way
that given the label of a current vertex and the label of a destination, it is possible to
compute efficiently the port number of the edge from the current vertex that heads
in the direction of the destination. Routing is one of the basic tasks that a distributed
network of processors must be able to perform.

More formally, a graph family D is said to have an l(n) bit (s, r)-approximate
distance labeling scheme if there is a function L labeling the vertices of each n-
vertex graph in D with distinct labels of up to l(n) bits, and there exists an algo-
rithm/function f , called distance decoder, that given two labels L(v),L(u) of two
vertices v,u in a graph G from D, computes, in time polynomial in the length
of the given labels, a value f (L(v),L(u)) such that dG(v,u) ≤ f (L(v),L(u)) ≤
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s · dG(v,u) + r (where dG(v,u) is the length of a shortest path between u and v

in G). Note that the algorithm is not given any additional information, other that the
two labels, regarding the graph from which the vertices were taken. Similarly, a fam-
ily � of graphs is said to have an l(n) bit (s, r)-approximate routing labeling scheme
if there exist a function L, labeling the vertices of each n-vertex graph in � with dis-
tinct labels of up to l(n) bits, and an efficient algorithm/function f , called the routing
decision or routing protocol, that given the label of a current vertex v and the label
of the destination vertex (the header of the packet), decides in time polynomial in
the length of the given labels and using only those two labels, whether this packet
has already reached its destination, and if not, to which neighbor of v to forward the
packet. Furthermore, the routing path from any source s to any destination t produced
by this scheme in a graph G from � must have the length at most s · dG(s, t) + r .
For simplicity, (1, r)-approximate labeling schemes (distance or routing) are called
r-additive labeling schemes (with additive stretch r), and (s,0)-approximate label-
ing schemes are called s-multiplicative labeling schemes (with multiplicative stretch
factor s). The distance and routing labeling schemes, we propose for δ-hyperbolic
graphs, are additive in nature.

Introduced by Gromov [38], δ-hyperbolicity measures, to some extent, the devia-
tion of a metric from a tree metric. Recall that a metric space (X,d) embeds into a tree
network (with positive real edge lengths), that is, d is a tree metric, iff for any four
points u,v,w,x, the two larger of the distance sums d(u, v) + d(w,x), d(u,w) +
d(v, x), d(u, x) + d(v,w) are equal. A metric space (X,d) is called δ-hyperbolic if
the two largest distance sums differ by at most 2δ. A connected graph G = (V ,E) is
δ-hyperbolic (or of hyperbolicity δ) if the metric space (V , dG) is δ-hyperbolic, where
dG is the standard shortest path metric defined on G. 0-Hyperbolic metric spaces are
exactly the tree metrics (therefore, in what follows, we will be interested in more
general δ-hyperbolic metric spaces where δ > 0).1 On the other hand, the Poincaré
half space in Rk with the hyperbolic metric is δ-hyperbolic with δ = log2 3. Several
classes of geodesic metric spaces are known to be hyperbolic [6, 42] (a metric space
(X,d) is called hyperbolic if it is δ-hyperbolic for some constant δ).

A spanning subgraph H of a graph G = (V ,E) is called a (s, r)-spanner of G if
dH (u, v) ≤ s · dG(u, v) + r holds for any u,v ∈ V . A (s,0)-spanner is usually called
a multiplicative s-spanner, a (1, r)-spanner is usually called an additive r-spanner.

Our Results Using the Layering Partition technique (developed in [10, 13] for
chordal and k-chordal graphs), we present two new networking primitives for un-
weighted δ-hyperbolic graphs with δ ≥ 1/2. We show that

– every n-vertex δ-hyperbolic graph has an additive O(δ logn)-spanner with at most
O(δn) edges and

– the family of δ-hyperbolic graphs with n vertices admits an O(δ logn)-additive
routing labeling scheme with O(δ log2 n) bit labels and O(log2(4δ)) time routing
protocol.

1For unweighted graphs different from trees, by definition, 2δ is a positive integer, and therefore δ ∈
{ 1

2 ,1, 3
2 ,2, 5

2 ,3, . . .} (i.e., δ is an integer or a half-integer).
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Table 1 Our results on routing labeling schemes and spanners of δ-hyperbolic graphs along with related
known results (see Sect. 1.2 and Sect. 6). The sign ‘+’ indicates that the stretch is additive, ‘×’ indicates
that the stretch is multiplicative

Routing Labeling Scheme Sparse Spanner

graphs stretch label size ref. stretch # of edges ref.

trees +0 O(logn) [27, 58] – – –

k-chordal (k ≥ 3) +2� k
2 � O(

log3 n
log logn

) [23, 25] +(k + 1) O(n) [15]

+(k + 1) O(log2 n) [20]

tree-length λ (λ > 0) +(6λ − 2) O(λ log2 n) [20] +4λ O(λn) [22]

δ-hyperbolic (δ ≥ 1/2) +O(δ logn) O(δ log2 n) here +O(δ logn) O(δn) here

general ×(4k − 5), ∀k ≥ 2 Õ(kn1/k) [58] ×(2k − 1), ∀k ≥ 1 O(n1+1/k) [59]

To the best of our knowledge, for δ-hyperbolic graphs, these networking primitives
are constructed for the first time. In Table 1, we put our results in the context of
related, previously known results. The class of δ-hyperbolic graphs generalizes the
class of k-chordal graphs and the class of tree-length λ graphs.

Additionally, we provide a faster and, in our opinion, simpler to understand con-
struction of distance approximating trees of δ-hyperbolic graphs on n vertices with
an additive error O(δ logn). As a consequence, we obtain also a faster and easier to
construct O(δ logn)-additive distance labeling scheme with O(log2 n) bit labels and
constant time distance decoder. Note that these results are comparable with results
known in literature (see [37, 38] for distance approximating trees and [30] for ap-
proximate distance labeling schemes) in the additive error incurred and in the label
size, however the construction of our approximating tree, and therefore of distance
labeling scheme, is faster and simpler. The construction of our approximating tree
for a connected graph G = (V ,E) can be done in linear O(|E|) time while the con-
struction of [37, 38] needs O(|V |2) time. Using our approximating tree, a distance
labeling scheme for G can be constructed in O(|E| + |V | log |V |) time, while the
construction of [30], based on a tree from [37, 38], needs O(|V |2) time.

Bibliographic Note Proposition 2 and the result on distance approximating trees
(see Sect. 4, Proposition 4) were announced in SoCG’2008 paper [17] and the current
paper is their journal version. All other results are new and have not appeared before.

1.1 δ-Hyperbolicity

δ-Hyperbolic metric spaces play an important role in geometric group theory and in
geometry of negatively curved spaces [4, 37, 38]. δ-Hyperbolicity captures the ba-
sic common features of “negatively curved” spaces like the classical real-hyperbolic
space Hk, Riemannian manifolds of strictly negative sectional curvature, and of dis-
crete spaces like trees and the Caley graphs of word-hyperbolic groups. It is remark-
able that a strikingly simple concept leads to such a rich general theory [4, 37, 38].

More recently, the concept of δ-hyperbolicity emerged in discrete mathematics,
algorithms, and networking. For example, it has been shown empirically in [53] (see



Algorithmica (2012) 62:713–732 717

also [3]) that the internet topology embeds with better accuracy into a hyperbolic
space than into an Euclidean space of comparable dimension. A few algorithmic
problems in hyperbolic spaces and hyperbolic graphs have been considered in re-
cent papers [3, 14, 17, 30, 44, 50]. Kleinberg showed [44] that every connected
finite graph has an embedding in the hyperbolic plane so that the greedy routing
based on the virtual coordinates obtained from this embedding is guaranteed to work.
Krauthgamer and Lee [50] presented a PTAS for the Traveling Salesman Problem
when the set of cities lie in Hk. They also show how to preprocess a finite subset
of a δ-hyperbolic geodesic space with a uniformly bounded local geometry to ef-
ficiently answer nearest-neighbor queries with an additive error O(δ). Chepoi and
Estellon [14] established a relationship between the minimum number of balls of
radius R + 2δ covering a finite subset S of a δ-hyperbolic geodesic space and the
size of the maximum R-packing of S and showed how to compute such coverings
and packings in polynomial time. Chepoi et al. [17] gave efficient algorithms for fast
and accurate estimations of diameters and radii of δ-hyperbolic geodesic spaces and
graphs.

The class of δ-hyperbolic graphs generalizes the class of k-chordal graphs and
the class of tree-length λ graphs, as bounded chordality implies bounded tree-length
(each k-chordal graph has the tree-length at most � k

2� [21]) and bounded tree-length
implies bounded hyperbolicity (each tree-length λ graph has hyperbolicity at most λ

[17]). Recall that a graph is k-chordal (or of chordality k) if its induced cycles are
of length at most k, and it is of tree-length λ if it has a Robertson-Seymour tree-
decomposition into bags of diameter at most λ [21]. Notice also that the graphs of
bounded hyperbolicity and the graphs of bounded tree-width (i.e., graphs admitting a
Robertson-Seymour tree-decomposition into bags of bounded size) are incomparable:
a complete graph Kn on n vertices has tree-width n− 1 and hyperbolicity 0, while an
induced cycle Cn on n = 4k vertices has tree-width 2 and hyperbolicity k = n/4.

In [8, 17, 49], some more classes of graphs with small hyperbolicity were inves-
tigated. For chordal graphs as well as dually chordal graphs and strongly chordal
graphs one can construct trees approximating the graph-distances within an additive
error 2 or 3 [10], from which it follows that those graphs have low δ-hyperbolicity
(this result has been extended in [13] to all k-chordal graphs, also implying that k-
chordal graphs are � k

2�-hyperbolic). In general, the distance in a δ-hyperbolic space
on n points can be approximated within an additive error of 2δ log2 n by a weighted
tree metric [37, 38] and this approximation is tight. For n-vertex δ-hyperbolic graphs
G, we describe here an alternative (linear time) construction of a tree approximating
the distances of G with an additive error of O(δ log2 n) (see Sect. 4).

1.2 Related Work on Distance and Routing Labeling Schemes

Distance Labeling The main results in this area are that general graphs support an
(exact) distance labeling scheme with labels of O(n) bits [36], and that trees [5, 52],
bounded tree-width graphs [36], distance-hereditary graphs [31], bounded clique-
width graphs [18], non-positively curved plane graphs [16], all support distance la-
beling schemes with O(log2 n) bit labels. The O(n) bit upper bound is tight for gen-
eral graphs, and a lower bound of �(log2 n) bit on the label length is known for trees
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[36], implying that all the results mentioned above are tight as well, since all those
graph families contain trees. Later, [9, 32] showed an optimal bound of O(logn) bits
for interval graphs, permutation graphs, and their generalizations.

Other results concern approximate distance labeling schemes. For arbitrary
graphs, the best scheme to date is due to Thorup and Zwick [59]. They proposed a
(2k − 1)-multiplicative DLS, for each integer k ≥ 1, with labels of O(n1/k log2 n)

bits. Moreover, �(n1/k) bit labels are required in the worst-case for every s-
multiplicative DLS with s < 2k + 1, for k = 1,2,3,5, and with s < 4k/3 + 2, for
all other values of k. In [35], it is proved that trees (and bounded tree-width graphs as
well) dadmit a (1 + 1/ logn)-multiplicative DLS with labels of O(logn� log logn)

bits, and this is tight in terms of label length and approximation. They also design
some O(1)-additive DLS with O(log2 n) bit labels for several families of graphs,
including the graphs with bounded longest induced cycle, and, more generally, the
graphs of bounded tree-length. Interestingly, it is easy to show that every exact DLS
for these families of graphs needs labels of �(n) bits in the worst-case [35]. Recently,
metrics with doubling dimension α have been considered, i.e., metrics for which, for
every r , each ball of radius 2r can be covered by at most 2α balls of radius r . It
generalizes Euclidean metrics and bounded growth graphs, and includes many re-
alistic networks. After several successive improvements [39, 41, 54, 56], the best
scheme for them to date, due to Slivkins [55], is a (1 + ε)-multiplicative DLS with
O(ε−O(α) logn� log logn) bit labels. This is optimal for bounded α, by combining
the results of [41] and the lower bound of [35] for trees. Note also that weighted pla-
nar graphs admit a (1 + ε)-multiplicative DLS with labels of O(ε−1 log3 n) bits (see
[40, 57]). This has been generalized in [1] to graphs excluding a fixed minor with the
same stretch and space bounds.

The existence of a O(δ logn)-additive distance labeling scheme with O(log2 n) bit
labels for n-vertex δ-hyperbolic graphs was already indicated in [30]. Its construction
uses a distance labeling scheme for trees and a Gromov’s result that the distances in
a δ-hyperbolic space can be approximated by the weighted tree distances (see Theo-
rem 1). The additive error incurred by our result is slightly weaker (but of the same
order), however the construction of our distance approximating tree, and therefore
of our distance labeling scheme, is simpler (our tree can be constructed in linear
O(|E|) time while the construction in [30] needs O(|V |2) time). Note also that our
distance approximating tree has n vertices while that of [30] may have about O(n2)

vertices. Paper [30] contains also a lower bound result which says that the label length
O(log2 n) is optimal up to some constant for every additive error up to nε .

Routing Labeling For general graphs there is an evident shortest path (i.e., with
s = 1 and r = 0) RLS with labels of O(n logd) bits (so-called, full tables; here d is
the maximum degree of a vertex) and this upper bound on the label size is tight (see
[34]). A better routing scheme is known for trees. In [27, 58], a shortest path RLS
for trees of arbitrary degree and diameter is described that assigns each vertex of an
n-vertex tree a (1 + o(1)) log2 n bit label. A shortest path routing labeling schemes
with O(log2 n) bit labels are known for bounded tree-width graphs [23, 36] and non-
positively curved plane graphs [16].

To obtain routing schemes for general graphs that use o(n) bit label for each ver-
tex, one has to abandon the requirement that packets are always routed on shortest
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paths, and settle instead for the requirement that packets are routed on paths which
are close to optimal [19, 26, 58]. A 3-multiplicative RLS that uses labels of size
Õ(n2/3) was obtained in [19],2 and a 5-multiplicative RLS that uses labels of size
Õ(n1/2) was obtained in [26]. Later, authors of [58] further improved these results.
They presented a (4k−5)-multiplicative RLS with only Õ(kn1/k) bit labels, for every
k ≥ 2. Note that, each routing decision takes constant time in their scheme, and the
label size is optimal, up to a logarithmic factor (see [28, 34]). For planar graphs, a
shortest path RLS which uses 8n + o(n) bits per vertex is developed in [29], and a
(1 + ε)-multiplicative RLS for every ε > 0 which uses O(ε−1 log3 n) bits per vertex
is developed in [57]. This has been generalized in [1] to graphs excluding a fixed
minor with the same stretch and space bounds. Routing in metric spaces (including
complete weighted graphs) with doubling dimension α has been considered in [2,
12, 45–48, 55, 56]. It was shown that any graph with doubling dimension α admits a
(1 + ε)-multiplicative routing labeling scheme with labels of size ε−O(α) log2 n bits.

Recently, the routing result for trees of Thorup and Zwick [58] was used in design-
ing O(1)-additive routing labeling schemes with O(logO(1) n) bit labels for several
families of graphs, including chordal graphs, chordal bipartite graphs, circular-arc
graphs, AT-free graphs and their generalizations, the graphs with bounded longest
induced cycle, the graphs of bounded tree-length, the bounded clique-width graphs,
etc. (see [20, 23–25] and papers cited therein).

In this paper, using the Layering Partition technique developed in [10, 13] and new
properties of δ-hyperbolic graphs established here, we generalize the routing labeling
scheme of [20], developed for tree-length λ graphs, to all δ-hyperbolic graphs. Note
that any tree-length λ graph is λ-hyperbolic [17] but that the converse is not true.

2 Preliminaries: Geodesic δ-Hyperbolic Spaces

Let (X,d) be a metric space. A (closed) ball B(c, r) of radius r centered at c ∈ X con-
sists of all points x ∈ X at distance at most r to c, i.e., B(c, r) = {x ∈ X : d(c, x) ≤ r}.
A geodesic segment joining two points x and y from X is a map ρ from the seg-
ment [a, b] of length |a − b| = d(x, y) to X such that ρ(a) = x,ρ(b) = y, and
d(ρ(s), ρ(t)) = |s − t | for all s, t ∈ [a, b]. A metric space (X,d) is geodesic if every
pair of points in X can be joined by a geodesic. Every unweighted graph G = (V ,E)

equipped with its standard distance dG can be transformed into a geodesic (network-
like) space (X,d) by replacing every edge e = (u, v) by a segment [u,v] of length
1; the segments may intersect only at common ends. Then (V , dG) is isometrically
embedded in a natural way in (X,d).

In case of geodesic metric spaces, there exist several equivalent definitions of δ-
hyperbolicity involving different but comparable values of δ [4, 11, 37, 38]. A geo-
desic triangle �(x,y, z) with vertices x, y, z ∈ X is union [x, y] ∪ [x, z] ∪ [y, z]
of three geodesic segments connecting these vertices. Let mx be the point of the
geodesic segment [y, z] located at distance αy := (d(y, x) + d(y, z) − d(x, z))/2
from y. Then mx is located at distance αz := (d(z, y) + d(z, x) − d(y, x))/2 from z

2Here, Õ(f ) means O(f polylog(n)).
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Fig. 1 A geodesic triangle �(x,y, z), the points mx,my,mz, and the tripod ϒ(x,y, z)

because αy +αz = d(y, z). Analogously, define the points my ∈ [x, z] and mz ∈ [x, y]
both located at distance αx := (d(x, y) + d(x, z) − d(y, z))/2 from x; see Fig. 1 for
an illustration. There exists a unique isometry ϕ which maps �(x,y, z) to a star
ϒ(x,y, z) consisting of three solid segments [x,m], [y,m], and [z,m] of lengths
αx,αy, and αz, respectively. This isometry maps the vertices x, y, z of �(x,y, z)

to the respective leaves x, y, z of ϒ(x,y, z) and the points mx,my, and mz to the
center m of this tripod. Any other point of ϒ(x,y, z) is the image of exactly two
points of �(x,y, z). A geodesic triangle �(x,y, z) is called δ-thin if for all points
u,v ∈ �(x,y, z), ϕ(u) = ϕ(v) implies d(u, v) ≤ δ. A geodesic triangle �(x,y, z) is
called δ-slim if for any point u on the side [x, y] the distance from u to [x, z] ∪ [z, y]
is at most δ. The notions of geodesic triangles, δ-slim and δ-thin triangles can also
be defined in case of graphs. The single difference is that for graphs, the center of
the tripod is not necessarily the image of any vertex on the geodesic of �(x,y, z).
Nevertheless, if a point of the tripod is the image of a vertex of one side of �(x,y, z),
then it is also the image of another vertex located on another side of �(x,y, z). The
following result shows that hyperbolicity of a geodesic space is equivalent to having
thin or slim geodesic triangles (the same result holds for graphs).

Proposition 1 [4, 11, 37, 38] Geodesic triangles of geodesic δ-hyperbolic spaces
and δ-hyperbolic graphs are 4δ-slim and 4δ-thin. Conversely, geodesic spaces and
graphs with δ-thin triangles are 2δ-hyperbolic and geodesic spaces and graphs with
δ-slim triangles are 8δ-hyperbolic.

Gromov [37, 38] established that any δ-hyperbolic metric on n points can be ap-
proximated in O(n2) time by a tree-metric with an additive error O(δ logn):

Theorem 1 [37, 38] For a δ-hyperbolic space (X,d) on n points with a root-point s

there exists a weighted tree T and a mapping ϕ : X 
→ T such that dT (ϕ(s), ϕ(x)) =
d(s, x) for any x ∈ X and d(x, y) − 2δ log2 n ≤ dT (ϕ(x),ϕ(y)) ≤ d(x, y) for any
x, y ∈ X. The tree T can be constructed in O(n2) time.

We conclude this section with a property of δ-hyperbolic graphs formulated and
proven in several texts on Gromov hyperbolic spaces (in particular, in [4, 11]) for
all δ-hyperbolic spaces. This result is used in the proof of the fundamental property
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Fig. 2 A graph, its layering partition, and the tree � associated with that layering partition

of δ-hyperbolic spaces established in [38] that geodesics in such spaces diverge at
exponential rate. For a proof, see also [17]. For a simple path ρ of a graph G, let l(ρ)

denote its length.

Lemma 1 [4, 11] Let G = (V ,E) be a graph with δ-thin geodesic triangles and let
ρ be a simple path connecting two vertices p,q of G. If [p,q] is a geodesic segment
between p and q , then for every vertex x ∈ [p,q], the distance from x to a closest
vertex y of ρ is at most 1 + δ log2 l(ρ).

3 Properties of Layering Partitions of δ-Hyperbolic Graphs

In this section, we describe layering partitions of δ-hyperbolic graphs (δ ≥ 1/2) and
present their metric properties. These properties are used in the construction of sparse
spanners and routing schemes.

Let G = (V ,E) be an unweighted connected graph with a distinguished vertex
s and let r := max{dG(s, x) : x ∈ V }. A layering of G with respect to s is the de-
composition of V into the spheres Li = {u ∈ V : d(s, u) = i}, i = 0,1,2, . . . , r. The
corresponding layering partition LP = {Li

1, . . . ,L
i
pi

: i = 0,1,2, . . . , r} of G is a

partition of each Li into clusters Li
1, . . . ,L

i
pi

such that two vertices u,v ∈ Li belong

to the same cluster Li
j if and only if they can be connected by a path outside the ball

Bi−1(s) of radius i − 1 centered at s. This partition has been introduced in [10, 13]
and recently have been used also in [7, 20, 21]. It was shown in [13] that for a given
unweighted graph G such a layering partition can be found in O(|E|) time. Clearly,
for a given starting vertex s, the corresponding layering partition of G is unique.
However, considering different starting vertices in G, one can get different layering
partitions of G.

We continue by showing that if G is a graph with n vertices and with δ-thin
geodesic triangles, then the diameters of clusters in any layering partition of G are
bounded by a function of δ and log2 n. Note that the diameter of a set S ⊆ V in a
graph G = (V ,E) is defined here as diamG(S) := max{dG(u, v) : u,v ∈ S}. In the
literature, it is often called weak diameter (see, e.g., [43]) because distances are mea-
sured in original graph G, not in the subgraph of G induced by S.
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Fig. 3 To the proof of
Proposition 2

Set �n := 4 + 3δ + 2δ log2 n.

Proposition 2 Let Li
j be a cluster of a layering partition of a graph G with δ-thin

geodesic triangles and n vertices, and let u,v ∈ Li
j . Then dG(u, v) ≤ �n.

Proof Suppose, by way of contradiction, that u,v belong to a common cluster
Li

j but dG(u, v) > �n. Let ρ be a simple path connecting the vertices u,v out-
side the ball Bi−1(s). Let [u,v] be a geodesic segment connecting the vertices u

and v. Set r := 2 + δ + δ log2 n. On the sphere Li−r pick two vertices u′, v′ of
G such that u′ lies on a geodesic segment [s, u] between the root s and the ver-
tex u while v′ lies on a geodesic segment [s, v] between s and v; see Fig. 3.
Since dG(u, v) > 2δ log2 n + 3δ + 4, we conclude that dG(u′, v′) > δ. Since the
geodesic triangle formed by the geodesic segments [s, u], [s, v], [u,v] is δ-thin,
dG(s,u′) = dG(s, v′), and dG(u′, v′) > δ, we conclude that d(u′, x) ≤ δ for some
vertex x of G lying on the geodesic segment [u,v]. By Lemma 1, the path ρ con-
tains a vertex y such that dG(x, y) ≤ δ log2 l(ρ) + 1 ≤ δ log2 n + 1. Thus dG(s, y) ≤
dG(s,u′) + dG(u′, x) + dG(x, y) ≤ i − r + δ + δ log2 n + 1. On the other hand, since
y belongs to the path ρ, we must have dG(s, y) ≥ i. Thus i ≤ i − r + δ + δ log2 n+1,

hence 2 + δ + δ log2 n = r ≤ 1 + δ + δ log2 n, a contradiction. �

Let Γ be a graph whose vertex set is the set of all clusters Li
j in a layering partition

LP of a graph G. Two vertices Li
j and Li′

j ′ are adjacent in Γ if and only if there exist

u ∈ Li
j and v ∈ Li′

j ′ such that u and v are adjacent in G (see Fig. 2). It is shown in
[13] that Γ is a tree, called the layering tree of G, and that Γ is computable in linear
time in the size of G.

Let V T be a shortest path tree spanning G and rooted at s. We call V T a vertical
spanning tree of G. For integers i ∈ {1,2, . . . , r} and 0 ≤ k ≤ i, and any vertex v ∈
Li , let f k(v) be the kth ancestor of v in V T , i.e., the vertex on the (v, s)-path of the
vertical tree V T located at distance k from v. Clearly, f k(v) ∈ Li−k if v ∈ Li . For
any cluster Li

j of the layering partition LP of G and any 0 ≤ k ≤ i, let F i
j (k) be the

set of kth ancestors of vertices of Li
j in V T .



Algorithmica (2012) 62:713–732 723

Proposition 3 Let Li
j be a cluster of a layering partition of an n-vertex graph G with

δ-thin geodesic triangles. Then dG(x, y) ≤ δ for every k such that min{��n/2�, i} ≤
k ≤ i and any x, y ∈ F i

j (k).

Proof Consider arbitrary vertices u,v ∈ Li and set λ := dG(u, v)/2. Denote by [s, u]
and [s, v] the geodesic segments connecting in V T vertex s with u and v, respec-
tively. Let also [u,v] be any geodesic segment connecting u and v in G. Since
dV T (s, u) = dV T (s, v) = dG(s,u) = dG(s, v), for the geodesic triangle of G formed
by the geodesic segments [s, u], [s, v] and [u,v], we have αu = αv = λ = i − αs .
All geodesic triangles of G are δ-thin, whence for any two vertices a ∈ [s, u]
and b ∈ [s, v] with dG(a, s) = dG(b, s) ≤ αs , the inequality dG(a, b) ≤ δ holds.
Hence, dG(f k(v), f k(u)) ≤ δ whenever �λ� ≤ k ≤ i. Now, if both u,v belong to
the same cluster Li

j ⊆ Li , then, by Proposition 2, dG(u, v) ≤ �n. By the proof

above, we get dG(f k(v), f k(u)) ≤ δ whenever �dG(u, v)/2� ≤ k ≤ i. Consequently,
dG(f k(v), f k(u)) ≤ δ for every k with min{��n/2�, i} ≤ k ≤ i. �

Since geodesic triangles of a δ-hyperbolic graph G are 4δ-thin, the following
corollary is immediate.

Corollary 1 Let Li
j be a cluster of a layering partition of an n-vertex δ-hyperbolic

graph G. Then dG(x, y) ≤ 4δ for every k such that min{2(�n − 3), i} ≤ k ≤ i and
any x, y ∈ F i

j (k).

4 Distance Approximating Trees and Distance Labeling Schemes

In this section, we present a simple method which constructs for any δ-hyperbolic
graph G = (V ,E) with n vertices a distance O(δ logn)-approximating tree in optimal
time O(|E|). Recall that, a tree T = (V ,F ) is called a distance κ-approximating
tree of a graph G = (V ,E) if |dG(x, y) − dT (x, y)| ≤ κ for each pair of vertices
x, y ∈ V [10, 13]. Our result and the definition of a distance approximating tree are
comparable with Theorem 1. The approximation of distances used in Theorem 1
is stronger because the mapping ϕ is non-expansive. On the other hand, distance
approximating trees have the same set of vertices as G while the trees occurring in
the theorem of Gromov may have Steiner points (in fact our construction can be easily
modified to be non-expansive by accepting edges of length 1/2 and Steiner points).
The error incurred by our result is slightly weaker (but of the same order), however the
construction of our approximating tree T is simpler and can be done in linear O(|E|)
time while the construction in Theorem 1 needs O(|V |2) time. As a byproduct, we
obtain also a O(δ logn)-additive distance labeling scheme with O(log2 n) bit labels
for the family of n-vertex δ-hyperbolic graphs (see Proposition 5).

Let Γ be the layering tree defined by the layering partition LP of G. To construct
the distance approximating tree T = (V ,F ) of G, for each cluster C := Li

j of LP

we select a vertex vC of Li−1 which is adjacent in G with at least one vertex of C

and make vC adjacent in T to all vertices of C. Since Γ is a tree, T is a tree as well.
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Since the layering partition LP of G can be constructed in linear time, the tree T can
be constructed in linear O(|E|) time, too (see [10, 13] for details).

Recall that �n := 4 + 3δ + 2δ log2 n.

Proposition 4 The tree T = (V ,F ) is a distance �n-approximating tree for an n-
vertex graph G = (V ,E) with δ-thin geodesic triangles. In particular, T = (V ,F ) is
a distance 4(�n − 3)-approximating tree for a δ-hyperbolic graph G.

Proof It can be easily seen that the tree T preserves the distances to the root s, i.e.,
dT (x, s) = dG(x, s) for any x ∈ V. From Proposition 2, if x, y belong to a common
cluster, then dT (x, y) = 2 and dG(x, y) ≤ �n. Now, suppose that x and y belong
to different clusters of Γ , say x ∈ C′ := Li′

j ′ and y ∈ C′′ := Li′′
j ′′ . Let C := Li

j be
the cluster which is the nearest common ancestor of C′ and C′′ in the tree Γ. By
definition of clusters, any path of G connecting the vertices x and y will traverse
the clusters lying on the unique path P(C′,C′′) of the tree Γ between C′ and C′′. In
particular, any shortest (x, y)-path will intersect the cluster C. Since dG(x, z) ≥ i′ − i

and dG(z, y) ≥ i′′ − i for any vertex z ∈ C, we conclude that dG(x, y) ≥ i′ + i′′ − 2i.

On the other hand, any (x, y)-path of G, sharing a single vertex with each cluster
(except C) of the path P(C′,C′′) and intersecting the cluster C in a shortest path, has
length at most i′ + i′′ − 2i + �n, thus i′ + i′′ − 2i ≤ dG(x, y) ≤ i′ + i′′ − 2i + �n.

Now, notice that dT (x, y) = i′ + i′′ − 2i + 2 or dT (x, y) = i′ + i′′ − 2i if the two
clusters of P(C′,C′′) incident to C have the same neighbor in T . In both cases,
we conclude that |dG(x, y) − dT (x, y)| ≤ �n. Now, since geodesic triangles of a
δ-hyperbolic graph G are 4δ-thin, the second assertion is immediate. �

By using edges of length 1
2 and Steiner points, the tree T can easily be transformed

into a tree T 1
2

which has the same approximating performances and satisfies the non-

expansive property. For this, for each cluster C := Li
j we introduce a Steiner point

wC, and add an edge of length 1
2 between any vertex of C and wC and an edge of

length 1
2 between wC and the vertex vC defined above.

Now, using a known result on distance labeling schemes for trees (see [35, 51]),
we obtain the following result.

Proposition 5 The family of δ-hyperbolic graphs G with n vertices and m edges
admits an O(δ logn)-additive distance labeling scheme with O(log2 n) bit labels and
constant time distance decoder. The labeling scheme can be constructed in O(m +
n logn) time.

Proof Let T = (V ,F ) be a distance 4(�n − 3)-approximating tree of a δ-hyperbolic
graph G = (V ,E) constructed above. We know that tree T can be constructed in
linear O(m) time for G. By [35, 51], there is a function labeling in O(n logn) total
time the vertices of an n-vertex tree T with labels of up to O(log2 n) bits such that
given the labels of any two vertices v,u of T , it is possible to compute in constant
time the (exact) distance dT (v,u), by merely inspecting the labels of u and v. By the
proof of Proposition 4, we have −2 ≤ dG(x, y) − dT (x, y) ≤ 4(�n − 3). Hence, the
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value d̄G(u, v) := dT (u, v) + 4(�n − 3) satisfies 0 ≤ d̄G(u, v) − dG(u, v) ≤ 4(�n −
3) + 2. �

Note that one can get a similar result by just using a distance labeling scheme
constructed for a Gromov’s original (weighted) tree (see Theorem 1) as it was done
in [30]. The additive error incurred by our result is slightly weaker (but of the same
order), however the construction of our approximating tree T , and therefore of our
labeling scheme, is faster and simpler.

5 Additive Spanners

We continue with a simple method which constructs for any δ-hyperbolic graph G =
(V ,E) with n vertices an additive O(δ logn)-spanner H with O(δn) edges, i.e., a
spanning subgraph H of G with at most O(δn) edges such that dH (u, v)−dG(u, v) ≤
O(δ logn) holds for any u,v ∈ V . Recall that, without loss of generality, we assumed
that δ ≥ 1/2.

Let LP = {Li
1, . . . ,L

i
pi

: i = 0,1,2, . . . , r} be a layering partition of G where

L0 = {s} and r := max{dG(s, x) : x ∈ V } (see Sect. 3 for construction and notations).
The graph H consists of a vertical spanning tree V T of G rooted at s and a set of
horizontal trees, one such tree HT i

j for each cluster Li
j . From now on, set �∗ :=

2(�n − 3). If i > �∗, then the horizontal tree HT i
j is a shortest path tree spanning in

G the vertices of the set F i
j (�

∗) and rooted at any vertex of F i
j (�

∗). If i ≤ �∗, then

HT i
j is just one node tree, i.e., HT i

j := {s}. Notice that, according to Propositions 1

and 3, the diameter of each set F i
j (�

∗) is at most 4δ.

Lemma 2 The graph H is an additive O(δ logn)-spanner of G.

Proof Let u,v be two vertices of G, and let Li′
j ′ ,Li′′

j ′′ be the clusters of G containing

u and v, respectively. Let Li
j be the cluster which is the nearest common ancestor of

Li′
j ′ and Li′′

j ′′ in the layering tree Γ . Every path of G from u to v must intersect the

cluster Li
j . Since dG(u, z) ≥ i′ − i and dG(z, v) ≥ i′′ − i for any vertex z ∈ Li

j , we
conclude that dG(u, v) ≥ i′ + i′′ − 2i.

Let u′, v′ ∈ Li
j be the ancestors of u and v in the vertical tree V T . If i ≤ �∗, then

the distance in H between u and v is at most dV T (u, s) + dV T (v, s) ≤ i′ − i + �∗ +
i′′ − i + �∗ = i′ + i′′ − 2i + 4(�n − 3). Hence, dH (u, v) − dG(u, v) ≤ 4(�n − 3),
and we are done in this case. Assume now that i > �∗. Consider the vertices
u′′ := f �∗

(u′) and v′′ := f �∗
(v′). We have dH (u, v) ≤ dV T (u,u′′)+dHT i

j
(u′′, v′′)+

dV T (v′′, v) = i′ − i + �∗ + 8δ + i′′ − i + �∗ = i′ + i′′ − 2i + 2�∗ + 8δ (by Propo-
sition 3, both vertices u′′ and v′′ can be connected in HT i

j to the root of HT i
j by a

path of length at most 4δ). Consequently, dH (u, v) − dG(u, v) ≤ 4(�n − 3) + 8δ =
4 + 20δ + 8δ log2 n, and we are done in this case, too. �

Lemma 3 The graph H has at most (4δ + 1)(n − 1) edges.
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Proof The vertical tree V T has n − 1 edges. Every horizontal tree HT i
j has at most

|Li
j | leaves and so at most 4δ|Li

j | edges, except when i ≤ �∗. In this latter case, HT i
j

contains no edges. The clusters {Li
j : i = 1, . . . , r, j = 1, . . . , pi} of G are disjoint,

so the total number of edges of H is at most n − 1 + 4δ(n − 1) = (4δ + 1)(n − 1). �

Thus, we proved the following result.

Proposition 6 Every n-vertex δ-hyperbolic graph with δ ≥ 1/2 has an additive
O(δ logn)-spanner with at most O(δn) edges, and such a spanner can be constructed
in polynomial time.

6 Routing Labeling Scheme

To build a routing labeling scheme for an unweighted δ-hyperbolic graph G, we use
the layering partition LP = {Li

1, . . . ,L
i
pi

: i = 0,1,2, . . . , r} of G, its layering tree
Γ , and the vertical tree V T associated with Γ (see Sect. 3 and Sect. 5 for defini-
tions). We also use Proposition 2, Proposition 3, Corollary 1, and a modification of
the method proposed in [20] for routing in graphs with tree-length bounded by λ in-
troduced in [21]. Our Proposition 3 is essential in obtaining O(δ log2 n)-bit routing
label size.

As in Sect. 3, we assume that the trees Γ and V T are rooted at L0 = {s} and s. Let
again f k(v) be the kth ancestor of v in V T , i.e., the vertex of the (v, s)-path of V T at
distance k from v. For simplicity, we will use f (v) for f 1(v). To get routing labels for
vertices of G, first we construct in O(n) time a routing labeling scheme for the verti-
cal tree V T . As it was shown in [27, 58], one can assign to each vertex v ∈ V a label
treelabel(v) of size at most O(logn) bits, so that given treelabel(u) and treelabel(v)

of two vertices of V T , and nothing else, it is possible to determine in constant time,
by a routing decision function f (treelabel(u), treelabel(v)), the port number at u of
the first edge on the unique path of V T from u to v. Recall that treelabel(v) contains
the port number from v to its father f (v) in V T and this information can be extracted
in constant time from treelabel(v).

Then, for the layering tree Γ , we build in O(n logn) time a hierarchical tree H
as follows. Find a centroid node M of Γ and let it to be the root of H. (Recall that
a centroid node of a tree T with p nodes is a node such that any subtree of T not
containing it has at most p/2 nodes; a centroid node of a tree can be found in linear
time). For each subtree of Γ \ {M} construct a hierarchical tree recursively, and build
H by connecting M to the roots of those trees. Clearly, the height of H is at most
log2 |V (Γ )| ≤ log2 n.

In each cluster C of the layering partition LP we pick an arbitrary vertex rC and
call it the center of C. For each vertex v of G, let C(v) denote the unique cluster of
LP containing v. For each vertex v ∈ V and for each cluster X which is an ancestor
of C(v) in H, the label Label(v) of v in G will store a full description of the following
shortest path path(v,X) of G (see Fig. 4 for an illustration):
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– If X is also an ancestor of C(v) in Γ , then path(v,X) is a shortest path of G be-
tween the vertices f k(rX) and f k(v′), where v′ is the ancestor in V T of v belong-
ing to the cluster X and k is the smallest integer such that dG(f k(rX), f k(v′)) ≤
4δ (by Corollary 1, such k exists). Let also level(v,X) := dG(s, f k(rX)) =
dG(s, f k(v′)).

– Otherwise, path(v,X) is a shortest path of G between the vertices f t (r ′
X) and

f t (v′), where r ′
X and v′ are the ancestors in V T of rX and v, respectively, be-

longing to the cluster Y := ncaΓ (C(v),X) and t is the smallest integer such that
dG(f t (r ′

X),f t (v′)) ≤ 4δ. Here, ncaΓ (C(v),X) is the nearest common ancestor of
C(v) and X in rooted tree Γ . Set also, in this case, level(v,X) := dG(s, f t (r ′

X)) =
dG(s, f t (v′)).

Under the full description of a path P := (x1, . . . , xl) we understand an ordered
sequence of l triples. Each triple consists of the identification id(x) (an integer from
{1, . . . , n}) of a vertex x of P , the port number from x to the next vertex in P and
the port number from x to the previous vertex in P (integers from {1, . . . ,degG(x)}).
For the end-vertices of the path, missing entries are nil. We assume that the sequence
is ordered with respect to id(·)s. Clearly, since the height of H is at most log2 n,
each label Label(v), v ∈ V , will store the descriptions of at most log2 n such short, of
length ≤ 4δ, paths. The routing label of a vertex v ∈ V is

Label(v) := (id(v), treelabel(v),depthlabel(v),

[help(v,X0),help(v,X1), . . . ,help(v,Xh)]),
where

help(v,Xj ) := [path(v,Xj ), level(v,Xj ), treelabel(rXj
)].

Here Xj is the ancestor of C(v) in H at depth j and rXj
is the center of Xj . The

label depthlabel(v) allows to compute in constant time, together with depthlabel(u)

of some other vertex u, the depth in the hierarchical tree H of ncaH(C(v),C(u)).
According to [35], the nodes of H can be assigned labels depthlabel(X) of size
O(logn) bits in such a way that the depth in H of ncaH(X,Y ) can be computed
in constant time given depthlabel(X) and depthlabel(Y ). This part of Label(v) will
be useful in identifying an appropriate part of string [help(v,X0),help(v,X1), . . . ,

help(v,Xh)] to be used in the routing decision. Summarizing, we conclude that the
label Label(v) of each vertex v of G consists of at most O(δ log2 n) bits.

Assume now that a vertex u wants to send a message to an arbitrary vertex v. First
u creates a header huv of the message. For this, it extracts from Label(u) and Label(v)

the parts depthlabel(u) and depthlabel(v) and uses them to compute in constant time
the depth l in H of ncaH(C(u),C(v)). Then,

huv := [treelabel(v), treelabel(rXl
), rescue1, level1, rescue2, level2],

where rescue1 := path(u,Xl), level1 := level(u,Xl) and rescue2 := path(v,Xl),
level2 := level(v,Xl). Clearly, huv consists of at most O(δ logn) bits and can be
computed in O(1) time. The routing path from u to v follows the pattern depicted in
Fig. 4: the packet moves on the vertical tree V T until path rescue1 is reached, then
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Fig. 4 The three possible locations of cluster X on the path of Γ between C(u) and C(v) (with respect to
Y ). The routing path induced by the scheme is indicated in all three cases. The horizontal parts are paths
rescue1 and rescue2. The vertical parts are paths from the spanning tree V T of G. Note that, we show
rooted trees growing upward, so the roots are on bottom

moves on rescue1, then again on V T until path rescue2 is reached, then moves on
rescue2, and then on V T until the destination vertex v is reached.

More precisely, let X := ncaH(C(u),C(v)) and Y := ncaΓ (C(u),C(v)). By con-
struction of H from Γ , we infer that X belongs to the unique path of Γ con-
necting C(u) with C(v). There are three possible locations of X on that path: X

is between Y and C(u), X is between Y and C(v), or X = Y (see Fig. 4 for
an illustration). The routing algorithm proceeds as follows. Suppose that a packet
with header huv is at a vertex w (initially, w = u). If id(w) = id(v), then we are
done. Otherwise, we check if w is an ancestor of v. This can be done in O(1)

time by using treelabel(w) and treelabel(v). For this, we check if the port num-
ber returned by f (treelabel(v), treelabel(w)) is the port number of the father f (v)

of v. If w is an ancestor of v, then we return f (treelabel(w), treelabel(v)) (we
advance in V T ). Assume now that w is not an ancestor of v. Then, using the bi-
nary search, we check in O(log2(4δ)) time if id(w) belongs to the path rescue2.
If yes, then we extract the appropriate port number associated with w in rescue2
(we advance in the path rescue2). If no, then we check if w is an ancestor of rX
using treelabel(w) and treelabel(rX). If w is an ancestor of rX , then we return
f (treelabel(w), treelabel(rX)), if level1 < level2, and return port number between
w and its father f (w), otherwise (in both cases we advance in V T ). If w is not an
ancestor of rX (recall also that it is not an ancestor of v and it is not on the path
rescue2), then, using binary search we check in O(log2(4δ)) time if id(w) belongs
to the path rescue1. If yes, then we extract the appropriate port number associated
with w in rescue1 (we advance in the path rescue1). Otherwise (w is an ancestor of
u), we return the port number between w and its parent f (w) (we advance in V T ).
For each vertex w on the routing path, the decision where to go from w towards v

takes O(log δ) time in the worst case (i.e., if the binary search in rescue2 or/and in
rescue1 is involved; otherwise, it would take only O(1) time). Similarly to the proof
of Lemma 2, we can show that the length of the path traveled by any packet from u

to v is at most dG(u, v) + 4(�n − 3) + 8δ = dG(u, v) + 4 + 20δ + 8δ log2 n.
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Summarizing, we can formulate the main result of this section.

Proposition 7 The family of δ-hyperbolic graphs with n vertices and δ ≥ 1/2 ad-
mits an O(δ logn)-additive routing labeling scheme with O(δ log2 n) bit labels. Once
computed by the sender in O(δ) time, headers of size O(δ logn) bits never change.
Moreover, the scheme can be constructed in polynomial time and the routing decision
takes O(log2(4δ)) time per vertex.

7 Conclusion

In this paper, for unweighted n-vertex δ-hyperbolic graphs with δ ≥ 1/2, we designed
sparse spanners and compact routing and distance labeling schemes, all with an addi-
tive error O(δ logn). It would be interesting to know if similar results can be obtained
for δ-hyperbolic graphs with arbitrary edge weights and if the upper bounds obtained
are optimal. With respect to lower bounds, we know only the following. Since graphs
with tree-length λ are λ-hyperbolic (see [17]), from the lower bounds obtained in
[22] for tree-length λ graphs, we conclude that there are δ-hyperbolic graphs for
which every multiplicative δ-spanner (and thus every additive (δ − 1)-spanner) must
have �(n1+1/�(δ)) edges. Additionally, as we have mentioned earlier, the authors of
[30] gave some lower bound results for DLS on δ-hyperbolic graphs. It was shown
in [30] that the distance label size O(log2 n) is optimal up to some constant for every
additive error up to nε and that any s-multiplicative DLS using labels of any poly-
logarithmic size requires s = �(log logn). It would be interesting to know if similar
lower bound results known for DLS can be obtained also for RLS on δ-hyperbolic
graphs.
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