
Algorithmica (2012) 62:637–658
DOI 10.1007/s00453-010-9474-1

On Independent Sets and Bicliques in Graphs

Serge Gaspers · Dieter Kratsch · Mathieu Liedloff

Received: 13 August 2009 / Accepted: 2 November 2010 / Published online: 11 November 2010
© Springer Science+Business Media, LLC 2010

Abstract Bicliques of graphs have been studied extensively, partially motivated by
the large number of applications. In this paper we improve Prisner’s upper bound
on the number of maximal bicliques (Combinatorica, 20, 109–117, 2000) and show
that the maximum number of maximal bicliques in a graph on n vertices is �(3n/3).
Our major contribution is an exact exponential-time algorithm. This branching al-
gorithm computes the number of distinct maximal independent sets in a graph in
time O(1.3642n), where n is the number of vertices of the input graph. We use this
counting algorithm and previously known algorithms for various other problems re-
lated to independent sets to derive algorithms for problems related to bicliques via
polynomial-time reductions.

Keywords Counting algorithms · Combinatorial bound · Maximal bicliques ·
Maximal independent sets · Exact exponential time algorithm

A large part of the research was done while Serge Gaspers was visiting the University of Metz.
A preliminary version of this paper appeared in the proceedings of WG 2008 [18]. Serge Gaspers
acknowledges partial support of NFR and of Conicyt Chile via the project Basal-CMM.

S. Gaspers (�)
Institute of Information Systems, Vienna University of Technology, Favoritenstraße 9-11,
1040 Vienna, Austria
e-mail: gaspers@kr.tuwien.ac.at

D. Kratsch
LITA, Université Paul Verlaine-Metz, 57045 Metz Cedex 01, France
e-mail: kratsch@univ-metz.fr

M. Liedloff
LIFO, Université d’Orléans, 45067 Orléans Cedex 2, France
e-mail: liedloff@univ-orleans.fr

mailto:gaspers@kr.tuwien.ac.at
mailto:kratsch@univ-metz.fr
mailto:liedloff@univ-orleans.fr

638 Algorithmica (2012) 62:637–658

1 Introduction

Bicliques Let the vertex sets X and Y be independent sets of a graph G = (V ,E)

such that xy ∈ E for all x ∈ X and y ∈ Y . The subgraph of G induced by X ∪ Y

is called a biclique of G. Furthermore depending on the context and the application
area, one also calls the pair (X,Y) or the vertex set X ∪ Y a biclique. From a graph-
theoretic point of view it is natural to consider a biclique of a graph G as a complete
bipartite induced subgraph of G. For technical reasons, we prefer to consider a bi-
clique B ⊆ V of a graph G = (V ,E) as a vertex set inducing a complete bipartite
subgraph of G.

Note that our definition allows X or Y to be an empty set, and thus X ∪ Y to be an
independent set. In [9, 10], such X ∪ Y are not considered to be bicliques, whereas
independents sets are considered to be bicliques in [19, 27] and in the present paper.
Bicliques with at least one edge are called proper bicliques.

A biclique B ⊆ V of G is a maximal biclique of G if B is not properly contained
in another biclique of G.

Applications Research on maximal bicliques and algorithms to enumerate all max-
imal bicliques of (bipartite) graphs with polynomial delay is motivated by various
applications of bicliques in (bipartite) graphs. Applications of bicliques in automata
and language theory, graph compression, artificial intelligence and biology are dis-
cussed in [3]. An important application in data mining is based on the formal concept
analysis [15] where each concept is a maximal biclique of a bipartite graph.

Previous Work The complexity of algorithmic problems on bicliques has been stud-
ied extensively. First results were mentioned by Garey and Johnson [16], among them
the NP-completeness of the balanced complete bipartite subgraph problem. The max-
imum biclique problem is polynomial for bipartite graphs [7], and NP-hard for gen-
eral graphs [32]. The maximum edge biclique problem was shown to be NP-hard by
Peeters [26].

Approximation algorithms for node and edge deletion biclique problems are given
by Hochbaum [19]. Enumerating maximal bicliques has attracted a lot of attention
in the last decade. The algorithms in [23, 24] enumerate all maximal bicliques of a
bipartite graph as concepts during the construction of the concept lattice. Nowadays
there are polynomial delay enumeration algorithms for maximal (proper) bicliques
in bipartite graphs [10, 21] and general graphs [9]. There are also polynomial delay
algorithms to enumerate all maximal non-induced bicliques of a graph [2, 10].1

Prisner studied various aspects of bicliques in graphs. Among others, he showed
that the maximum number of maximal bicliques in a bipartite graph on n vertices
is 2n/2. He also established a lower bound of 3n/3 and an upper bound of 1.6181n (up
to a polynomial factor) on the maximum number of maximal bicliques in a graph on
n vertices [27].

1When the condition that X and Y are independent sets in the definition of a biclique is omitted, then
(X,Y) is called a non-induced biclique of G. In this case a different maximality notion is used. See for
example [2].

Algorithmica (2012) 62:637–658 639

Our Results We use polynomial-time Turing reductions to transform results on
maximal independent sets into results on maximal bicliques. In this way we improve
upon Prisner’s upper bound and show that the maximum number of maximal bi-
cliques in a graph on n vertices is at most 1

31/3−1
· 3n/3. Our main contribution is an

algorithm to count all maximal independent sets in a graph. This branching algorithm
has worst-case running time O(1.3642n) and this upper bound is established by mak-
ing use of the Measure & Conquer technique, see e.g. [13]. We also provide a lower
bound for the running time of this counting algorithm. Finally we show how to use
this algorithm to count all maximal bicliques of a graph within the same time bound.

2 Preliminaries

All graphs in this paper are simple and undirected. For a graph G = (V ,E), we let
n = |V | and m = |E|. An edge between vertices u and v is denoted by uv. The set
of neighbors of a vertex v ∈ V is the set of all vertices adjacent to v, denoted by
N(v). The closed neighborhood of a vertex v is N [v] = {v} ∪ N(v). The distance
between two vertices u,v is the length of the shortest path from u to v. We denote
by Nk(v) the set of all vertices at distance k from v, and by Nk[v] the set of all
vertices at distance at most k from v. The degree of a vertex v is d(v) = |N(v)|. A
clique is a set of vertices that are all pairwise adjacent, and an independent set is a
set of vertices that are all pairwise non-adjacent. An independent set is maximal if it
is not properly contained in another independent set. The subgraph of G induced by
a vertex set A ⊆ V is denoted by G[A]. A graph is called bipartite if its vertex set
can be partitioned into two independent sets V and W . The bipartite complement of
a bipartite graph G = (V ,W,E) is a bipartite graph having the vertices of G as its
vertex set and the non-edges of G with an endpoint in V and another in W as its edge
set.

3 Improving Prisner’s Bound

There is a natural relation between independent sets (and cliques) on one hand and
bicliques on the other hand. Thus it is not surprising that poly nomial-time Turing
reductions (in fact mainly Karp reductions) have been used in various hardness proofs
for problems on bicliques [16]. The following property is central for our purpose.

Lemma 1 Let G = (V ,E) be a graph. For every v ∈ V , the graph Hv is the graph
with vertex set V (Hv) = N(v) ∪ N2(v). Its edge set E(Hv) consists of the following
edges:

• xy ∈ E(Hv) if xy ∈ E and x, y ∈ N(v),
• xy ∈ E(Hv) if xy ∈ E and x, y ∈ N2(v),
• xy ∈ E(Hv) if xy /∈ E, x ∈ N(v) and y ∈ N2(v).

Then B ⊆ V is a (maximal) biclique of G if and only if B − v is a (maximal) inde-
pendent set of a graph Hv for some v ∈ B .

640 Algorithmica (2012) 62:637–658

Proof Let B be a (maximal) biclique of G. Take some v ∈ B . Then B ⊆ {v}∪N(v)∪
N2(v) in G, where the independent sets X and Y of the biclique B satisfy X ⊆ N(v)

and Y ⊆ {v} ∪ N2(v). Since B is a biclique and by the construction of Hv , we obtain
that B − v is an independent set in Hv . On the other hand, if B ′ is a (maximal)
independent set of Hv , for some v ∈ V , then B ′ ∩ N(v) is an independent set of
G[N(v)] and B ′ ∩ N2(v) is an independent set of G[N2(v)]. Hence B ′ is a biclique
of G − v and B ′ ∪ {v} is a biclique of G.

Finally, due to the correspondence between bicliques and independent sets, this
also holds for maximality by inclusion of vertices. �

The corresponding Turing reduction does not increase the number of vertices since
|V (Hv)| ≤ |V | − 1. Thus this reduction is useful for exact exponential-time algo-
rithms.

Corollary 2 Given an algorithm to find a maximum independent set of a graph in
time O∗(cn), it can be used to establish an algorithm to find a maximum biclique of a
graph in time O∗(cn). Given an algorithm to count all independent sets of size k of a
graph in time O∗(cn), it can be used to establish an algorithm to count all bicliques
of size k of a graph in time O∗(cn).2

Proof To find a maximum biclique of a graph G = (V ,E), compute a maximum
independent set for each Hv , v ∈ V , constructed according to Lemma 1 and return
the largest set of vertices found.

To count all bicliques of size k of a graph G = (V ,E) on n vertices, order the ver-
tices of G: V = {v1, v2, . . . , vn}. For i = 1, . . . , n, compute the number of indepen-
dent sets of size k − 1 of Hi

vi
where Hi

vi
is obtained from Gi = G[{vi, vi+1, . . . , vn}]

using Lemma 1. Adding up the results gives the number of bicliques of size k of G. �

By this corollary and the algorithms in [28, 31], a maximum biclique of a graph
can be found in time O(1.2109n) and all maximum bicliques of a graph can be
counted in time O(1.2377n).

We emphasize that the approach of Corollary 2 is not directly applicable to use
an algorithm counting the maximal independent sets of a graph to establish one to
count the maximal bicliques of a graph. The issues are that double-counting has to
be avoided at the same time as the maximality of each counted biclique has to be
ensured. Such counting algorithms are established in the next section.

We finish this section with a combinatorial problem. The maximum number of
maximal bicliques in a graph on n vertices has been studied by Prisner [27]. He set-
tled the question for bipartite graphs. The maximum number of maximal bicliques
in a bipartite graph on n vertices is precisely 2n/2. For general graphs the ques-
tion remained open. He established a lower bound of 3n/3 and an upper bound of
(1.618034n + o(1)) · n5/2 for the maximum number of maximal bicliques in a graph
on n vertices. We significantly improve the upper bound.

2Throughout the paper we write f (n) = O∗(g(n)) if f (n) ≤ p(n) · g(n) for some polynomial p(n).

Algorithmica (2012) 62:637–658 641

Theorem 3 The maximum number of maximal bicliques in a graph on n vertices is
at most c · 3n/3 where c = 1

31/3−1
< 2.2612.

Proof Let n be a positive integer and let G be any graph on n vertices. Let
v1, v2, . . . , vn be the vertices of G and let B be the set of maximal bicliques of G. We
show that |B| is at most c · 3n/3.

Let Bi ⊆ B, 1 ≤ i ≤ n, be the set of bicliques B of B such that vi ∈ B and
{v1, v2, . . . , vi−1} ∩ B = ∅. Note that by definition the Bi ’s form a partition of B.

Consider a Bi for any 1 ≤ i ≤ n. Any maximal biclique B ∈ Bi contains no vj

with j < i. Thus B is also a maximal biclique of G \ {v1, . . . , vi−1} which contains
n− i + 1 vertices. Applying Lemma 1, there is a one-to-one correspondence between
the maximal bicliques B of Bi and the maximal independent sets B − vi of the graph
Hvi

\ {v1, . . . , vi−1}. Note that Hvi
contains n− i vertices. By a well-known theorem

of Moon and Moser [22], the maximum number of maximal independent sets in a
graph on n′ vertices is 3n′/3. Thus the number of maximal bicliques of Bi is at most
3(n−i)/3.

As a consequence, |B| ≤ ∑n
i=1 3(n−i)/3 < 1

31/3−1
· 3n/3. �

Corollary 4 The maximum number of maximal bicliques in a graph is �(3n/3).

4 Counting Algorithms

There are decision, optimization, counting and enumeration problems. Algorithms
solving hard problems of any of these types are studied in the domain of exact
exponential-time algorithms using worst-case running times to measure the quality of
algorithms. Obviously, each enumeration algorithm can be used to solve correspond-
ing counting, optimization and decision problems. On the other hand, the worst-case
running time of an enumeration algorithm is lower bounded by the number of ob-
jects to be enumerated. Thus, for example, each algorithm to enumerate all maximal
independent sets of a graph or to enumerate all maximal bicliques of a graph has a
worst-case running time of �(3n/3) ([22, 27]).

Counting problems are a classical subject in algorithms and complexity. Recently
within the domain of exact exponential-time algorithms the time complexity of count-
ing problems attracts a lot of attention. For example, it is interesting that the best
known algorithm to compute the chromatic number of a graph [4] and the best known
algorithm to compute a minimum dominating set of a graph [30], both solve in fact a
corresponding counting problem (within the same running time).

In this section we present an exact exponential-time algorithm to count all maxi-
mal independent sets of a graph. Based on a polynomial-time Turing reduction this
algorithm can be used to establish an algorithm to count all maximal bicliques of
a graph. No such counting algorithms of running time O∗(cn), with c <

3
√

3 were
known prior to our work. On the other hand, the problem to count the maximal inde-
pendent sets is known to be #P -complete even when restricted to chordal graphs [25].
Our goal is to construct and analyze a branching algorithm solving the counting prob-
lem.

642 Algorithmica (2012) 62:637–658

4.1 Algorithm to Count All Maximal Independent Sets

We would first like to say a word of precaution. Even if the problem of counting all
maximal independent sets of a graph seems very similar to the problems of counting
all maximum independent sets of a graph, or all independent sets of a given size k,
there is a fundamental difference coming from the notion of maximality. The best
known exact exponential-time algorithm to count all independent sets of maximum
size or of size k [5, 6, 14, 31] rely on a branching strategy which has the following
properties: vertices that are decided not to be in the counted independent sets of a
subproblem (generated by a branching algorithm) can be deleted and removed from
further consideration, and graphs of maximum degree 2 can be handled in polyno-
mial time. But if the algorithm is supposed to count all maximal independent sets,
this strategy does not work (unless P = #P). Consider a graph G = (F ∪ M,E) for
which we would like to count all maximal independent sets of G that are included
in F . In other words, M is the set of vertices that have been decided not to be in any
maximal independent set in the current subproblem, but for each of them, a neigh-
bor must be added to ensure the maximality of the counted independent sets. By a
simple reduction from the #Satisfiability problem, requiring to count all satisfying
assignments to a boolean formula, it can be shown that this problem is #P-hard even
if G[F] has maximum degree 1 (an edge in G[F] corresponds to a variable, its end
points to the true/false value of this variable, and the vertices in M correspond to the
clauses of the formula).

Our algorithm deals with marked graphs G = (F,M,E), where vertices of F are
called free and vertices of M are called marked. Let u be a vertex of F ∪ M . The
degree of u is the number of neighbors in F ∪ M and is denoted by d(u). Given a set
D ⊆ (F ∪M), the set N(u)∩D is denoted by ND(u) and its cardinality is denoted by
dD(u). For a marked graph G = (F,M,E), the marked graph induced by the vertex
sets F ′ ⊆ F and M ′ ⊆ M is G[F ′,M ′] = (F ′,M ′,E ∩ ((F ′ ∪ M ′) × (F ′ ∪ M ′))).

The following notions are crucial for our algorithm. A set S ⊆ F is a maximal
independent set of a marked graph G = (F,M,E) if S is a maximal independent set
of G[F]. We say that the maximal independent set S of G satisfies property � if each
vertex of M has a neighbor in S.

Given a marked graph G, our algorithm computes the number of maximal inde-
pendent sets of G = (F,M,E) satisfying �. Thus, a marked vertex u is used to force
that each maximal independent set S of G counted by the algorithm contains at least
one free neighbor of u. This is particularly useful to guarantee that only maximal
independent sets of the input graph are counted. In the remainder of this section, we
suppose that G is a connected graph, otherwise the algorithm is called for each of its
connected components, and the product of the results gives the number of maximal
independent sets of G satisfying �.

Given a simple graph G′ = (V ,E), #MaximalIS(G = (V ,∅,E)) returns the
number of maximal independent sets of G′. See Fig. 1 for the description of the
algorithm.

We emphasize that all the halting ((H1)–(H2)) and reduction ((R1)–(R7)) rules are
necessary for our running time analysis in Subsects. 4.3 and 4.4. The branching rule
(B) selects a vertex u, orders its free neighbors in a list BL(u) = [v1, v2, . . . , vdF (u)]

Algorithmica (2012) 62:637–658 643

Fig. 1 Algorithm #MaximalIS counting all maximal independent sets

and makes a recursive call (that is a branching) counting all maximal independent
sets containing u, and a recursive call for each i = 1,2, . . . , dF (u) where it counts all
maximal independent sets containing vi but none of v1, v2, . . . , vi−1.

The selected vertex u is chosen according to three criteria (i)–(iii). By (i), u has
minimum degree, which ensures either that the algorithm makes few recursive calls

644 Algorithmica (2012) 62:637–658

or that many vertices are removed in each branching. By (ii), u has a neighbor of
maximum degree among all vertices satisfying (i). If the degree of this neighbor is
high, then many vertices are removed in at least one recursive call. If the degree of
this vertex is low, every vertex of minimum degree has no high-degree neighbor. This
property is exploited in the analysis of our algorithm, which considers a decrease
in the degree of a vertex of small degree more advantageous than a decrease in the
degree of a high-degree vertex. Similarly, (iii) ensures either many recursive calls
where many vertices are removed or a knowledge on the degrees of the neighbors of
a vertex of minimum degree. The ordered list BL(u) is defined in this way to ensure
that for certain configurations of N2[u], reduction rule (R1) or a (fast) subsequent
branching on a marked vertex of degree 2 is applied in many recursive calls.

4.2 Correctness of #MaximalIS

We show the correctness of the branching and reduction rules of #MaximalIS. (H1)
If the input graph has no vertices then the only maximal independent set is the empty
set. (H2) If there is a marked vertex u without any free neighbor then there is no
maximal independent set satisfying �. (R1) If a marked vertex u has only one free
neighbor, it has to be in the maximal independent set to satisfy �. (R2) By maxi-
mality, each free vertex without any free neighbor has to belong to all maximal inde-
pendent sets. (R3) Since marked vertices cannot belong to any maximal independent
set, edges between two marked vertices are irrelevant and can be removed. (R4) Sup-
pose u,v ∈ F are two free vertices and N [u] = N [v]. Every maximal independent set
containing a neighbor of u does not contain v. Moreover, every maximal independent
set containing u can be replaced by one containing v instead of u. Thus, it is suffi-
cient to remove v and to return the number of maximal independent sets containing
a neighbor of u plus twice the number of maximal independent sets containing u.
(Note that the algorithm can easily be implemented such that the number of maximal
independent sets containing u is obtained from the recursive call. For example, keep
a counter to associate to each free vertex the number of maximal independent sets
containing this vertex.) (R5) If u ∈ M has a neighbor v such that all neighbors of v

are also neighbors of u, then every maximal independent set of G − u must contain a
vertex of N [v] \ {u} and thus a neighbor of u in G. (R6) If two marked vertices have
the same neighborhood then one of them is irrelevant. (R7) Let v be a free vertex and
u a vertex such that N(u) = N(v), and thus u and v are non adjacent. Hence every
maximal independent set containing a neighbor of u does not contain v and every
maximal independent set containing u (if u is free) also contains v. Thus the number
of maximal independent sets is the same as for G − v.

(B) The algorithm considers the two possibilities that either u or at least one neigh-
bor of u is in the current maximal independent set. By induction and the fact that N [u]
is removed if the algorithm decides to add u to the current maximal independent set,
every maximal independent set containing u is counted and it is counted only once.
Consider the possibility that at least one neighbor of u is in the current maximal inde-
pendent set and let vi be the first such neighbor in the ordered list BL(u), containing
all the free neighbors of u. That no maximal independent set containing a vertex ap-
pearing before vi in BL(u) is counted, is ensured by either its deletion (because it is

Algorithmica (2012) 62:637–658 645

a neighbor of vi) or the marking of this vertex. So, every maximal independent set
containing vi but neither u (removed as it is a neighbor of vi) nor a vertex appearing
before vi in BL(u) is counted exactly once.

4.3 Running Time Analysis of #MaximalIS

The goal is to analyze the running of the branching algorithm. Measure & Conquer
is a technique available since a few years for this purpose. For an introduction to
Measure & Conquer we refer the reader to [13]. Measure & Conquer has been used
to establish several of the fastest known exact exponential-time algorithms for well-
studied NP-hard problems [11–13, 17, 20, 29].

To analyze the running time of our algorithm, we use the following measure μ(G)

of a marked graph G.

μ := μ
(
G = (F,M,E)

)

:=
n−1∑

i=1

wi |Vi | + m2 · Kδ(G has no marked vertex of degree 2)

The weights m2 and wi , 1 ≤ i ≤ n − 1 are real numbers taken from [0,1] that will be
fixed later. For 1 ≤ i ≤ n− 1, Vi denotes the set of vertices of degree i in G and Kδ is
the logical Kronecker Delta returning 1 if its argument is true and 0 otherwise. The
following values will be useful in the analysis.

�wi =
{

wi − wi−1 if 2 ≤ i ≤ n − 1,

w1 if i = 1.

To further simplify the forthcoming analysis, we assume:

wi = 1, 4 ≤ i ≤ n − 1

wi−1 ≤ wi, 2 ≤ i ≤ n − 1, and

�wi ≥ �wi+1, 1 ≤ i ≤ n − 1.

It is not hard to see that an application of a reduction rule will not increase∑n−1
i=1 wi |Vi |. Furthermore no reduction rule can be applied more than n times, re-

spectively m times for (R3). Finally, each reduction rule can be implemented to run
in polynomial time, and thus for each subproblem the running time of our algorithm,
excluding the recursive calls by branching rule (B), is polynomial. Consequently we
need to analyze the maximum number of such recursive calls, that is the maximum
number of subproblems generated by a recursive call by (B), during the execution of
our algorithm on a marked graph of measure μ, which we denote by T (μ).

We only have to analyze the changes in measure when applying branching rule (B).
Case 1: (B) is applied to a marked vertex u with d(u) = 2.
Let v1 and v2 be its two neighbors. By (R3), that is since (R3) could not be applied,

v1, v2 ∈ F , and by (R2), d(v1), d(v2) ≥ 2.

646 Algorithmica (2012) 62:637–658

(a) Suppose d(v1) = d(v2) = 2. For i ∈ {1,2}, let xi be the other neighbor of vi .
If d(x1) = d(x2) = 1 then the algorithm deals with a component of constant
size, and the number of maximal independent sets of such a component can be
computed in constant time. Suppose now that d(x1) ≥ 2. In the first branch (or
subproblem) u, v1 and x1 are removed. In the second branch u, v2 and x2 are
removed. In both branches, the graph might not have a marked vertex of degree
2 any more. Thus, the corresponding recurrence is majorized by

T (μ) ≥ T (μ − 3w2 + m2) + T (μ − w1 − 2w2 + m2).

(b) Suppose d(v1) ≥ 3 and d(v2) ≥ 2. In the first branch u, v1 and at least two other
neighbors of v1 are removed. In the second branch u, v2 and the other neighbors
of v2, at least one, are removed. Thus, the corresponding recurrence is majorized
by

T (μ) ≤ T (μ − 2w1 − w2 − w3 + m2) + T (μ − w1 − 2w2 + m2).

Since w2 ≤ w3 and w2 ≤ 2w1 (recall that �w1 ≥ �w2), it follows that 3w2 ≤
2w1 + w2 + w3 and thus the solution of the recurrence in case (b) is not worse
than the one of case (a).

Case 2: Vertex u is chosen by the else statement of (B).
Thus u satisfies the conditions (i), (ii) and (iii). Let [v1, . . . , vdF (u)] be the Branch-

ing List, short BL(u), built by the algorithm. Given a vertex vi , 1 ≤ i ≤ dF (u), of
BL(u), we denote by Op(vi) the operation of adding vi to the current maximal in-
dependent set, removing N [vi] and marking the vertices v1, . . . , vi−1 that are not
adjacent to vi .

Let �u denote the gain on the measure obtained by adding u to the current max-
imal independent set. Removing u and its neighbors from the graph decreases μ(G)

by wd(u) +∑
v∈N(u) wd(v). Moreover, the decrease of the degrees of vertices in N2(u)

implies a gain of
∑

x∈N2(u)(wd(x) − wd(x)−dN(u)(x)). Let m2(u) be equal to m2 if the
subinstance obtained from adding u to the current maximal independent set has a
marked vertex of degree 2 after exhaustively applying all the reduction rules, and
equal to 0 otherwise. Then,

�u = wd(u) +
∑

v∈N(u)

wd(v) +
∑

x∈N2(u)

(wd(x) − wd(x)−dN(u)(x)) + m2(u).

Let �Op(vi)
denote the gain on the measure when vi ∈ BL(u), 1 ≤ i ≤ dF (u),

is selected and added to the maximal independent set. Again, by selecting vertex
vi the vertices of N [vi] are removed and thus a gain of wd(vi) + ∑

x∈N(vi)
wd(x)

is obtained. Since neighbors of vertices of N2(vi) have been removed, we gain∑
y∈N2(vi)

(wd(y) − wd(y)−dN(vi)
(y)). The measure further decreases whenever among

the marked vertices of {v1, . . . , vi−1}, some of them have only one remaining free
neighbor after the deletion of N [vi]. By direct application of reduction rule (R1),
these vertices and their neighbors are also removed from the graph. We denote this

Algorithmica (2012) 62:637–658 647

extra gain by marked1(Op(vi)). Thus,

�Op(vi)
= wd(vi) +

∑

x∈N(vi)

wd(x) +
∑

y∈N2(vi)

(wd(y) − wd(y)−dN(vi)
(y))

+ marked1(Op(vi)) + m2(vi).

Putting all together, we obtain the following general recurrence for case 2:

T (μ) ≤ T (μ − �u) +
∑

vi∈BL(u)

T (μ − �Op(vi)
).

Finally, we conclude the time analysis by Measure & Conquer. We solve the cor-
responding system of linear recurrences and establish an upper bound on the worst
case running time of our algorithm. The key step is to choose the weights m2, w1, w2
and w3 such that the worst-case solution taken over all recurrences is minimized (see
for example [13]). Using the weights w1 = 0.8473, w2 = 0.9181, w3 = 0.9875 and
m2 = 0.4, we obtain:

Theorem 5 Algorithm #MaximalIS counts all maximal independent sets of a given
graph G in time O(1.3642n), where n is the number of vertices of G.

Typically using a computer program, first the collection of recurrences that are
obtained for all possible cases of vertices, degrees, etc. in the general recurrence are
computed and then the optimal values of the weights are computed. For our problem
the number of recurrences is still rather moderate and therefore we are able to provide
for the interested reader the details of the analysis and list all possible worst cases in
the next subsection.

4.4 Detailed Running Time Analysis of Algorithm #MaximalIS

In this subsection we provide a detailed running time analysis of Algorithm
#MaximalIS. The branching corresponding to the selection of a marked vertex of
degree 2 has already been analyzed in detail in our high level analysis in Subsect. 4.3.
Here we give a list of cases, corresponding to the analysis in Case 2 in Subsect. 4.3.
Each case has a number, a condition telling us in which case we are, a picture and a
recurrence based on the measure of the created subinstances in this case. For those
cases, where it is not immediate how the recurrence is obtained, a comment is added
observing facts needed to obtain it.

Denote the neighbors of u by v1, v2, . . . , vd(u). For a selected vertex u, we say that
x is an external neighbor of a vertex v ∈ N(u) if x is a vertex of N(v) \ N [u].

Note that the algorithm can apply the branching rule on a r-regular graph, 2 ≤
r ≤ 4. However, when dealing with such an r-regular graph any subsequent recursive
calls will never be on an r-regular graph again (see for example [28]). Thus, these
graphs are not relevant to establish the running time bound. If the graph is 1-regular,
then the algorithm would treat it in polynomial time since the size of each connected
component is bounded by a constant.

In the following case analysis, cases number 1 (with d(x1) = 4), 18 and 21 corre-
spond to the tight cases.

648 Algorithmica (2012) 62:637–658

1) d(u) = 1, d(v1) = 2

T (μ) ≤ T (μ − w1 − w2 − �wd(x1)) + T (μ − w1 − w2 −
wd(x1))

2) d(u) = 1, d(v1) ≥ 3

T (μ) ≤ T (μ−w1 −wd(v1))+T (μ−wd(v1) − (d(v1)−1) ·
w1 − w2)

Comment: v1 has a neighbor of degree at least 2, otherwise N [v1] is a connected
component.

3) d(u) = 2, d(v1) = 2, d(v2) = 3, d(x1) = 2, x1 being the other neighbor of
v1

T (μ) ≤ T (μ + w1 − 3w2 − w3) + T (μ − 2w2 − w3) +
T (μ − 5w2 − w3)

Comment: {v1, v2} �∈ E, as d(x1) �= d(v2). In the branch where v2 is selected,
x1 is also selected by (R1) as v1 becomes marked and has a unique neighbor. As
N(u) �= N(x1), which is ensured by (R6) and (R7), x1 and v2 are not adjacent.

4) d(u) = 2, d(v1) = 2, d(v2) = 3, d(x1) ≥ 3

T (μ) ≤ T (μ − 2w2 − w3) + T (μ − w2 − 2w3) + T (μ −
2w2 − 4w3)

Comment: {v1, v2} �∈ E, otherwise N [u] = N [v1] and (R4) or (R5) would ap-
ply. When v2 is selected, x1 is also selected by (R1). By the selection rule of
u, d(x1) = 3 and no common neighbor of v2 and x1 has degree 2. If v2 and x1
are adjacent, the last branch can be ignored as the instance has no maximal in-
dependent set by halting rule (H2). For analyzing the last branch, also note that
w3 ≤ 2w2 as �w3 ≤ �w2.

5) d(u) = 2, d(v1) = 3, d(v2) = 3

T (μ) ≤ T (μ − w2 − 2w3) + 2T (μ − 4w3)

Comment: The vertices of degree 2 in N2(u) are not adjacent to both v1 and v2
(otherwise they have the same open neighborhood as u). Moreover, two adjacent
vertices in N2(u) of degree 2 are not adjacent to the same vertex in N(u) due to
the reduction rules. So, they have neighbors outside N [u] of degree at most 3.

Algorithmica (2012) 62:637–658 649

6) d(u) = 2, d(v1) = 2, d(v2) ≥ 4

T (μ) ≤ T (μ − 2w2 − w4) + T (μ − 3w2) + T (μ − 6w2 −
w4)

Comment: v1 and v2 are not adjacent due to (R4) and (R5). If they have a com-
mon neighbor, ignore the last branch. In the last branch, v2 and the external neigh-
bor of v1 are selected.

7) d(u) = 2, d(v1) ≥ 3, d(v2) ≥ 4

T (μ) ≤ T (μ−w2 −w3 −w4)+T (μ−3w2 −w3)+T (μ−
4w2 − w4)

8) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, v1 and v2 are adjacent

T (μ) ≤ T (μ− 3w3 −w4)+ 2T (μ− 4w3)+T (μ− 9w3 −
w4)

Comment: v1 and v2 are not adjacent to v3, otherwise (R4) or (R5) would apply
as v1 or v2 would have the same closed neighborhood as u. Moreover, v1 and
v2 do not share the same external neighbor otherwise v1 and v2 have the same
closed neighborhood. If v3 has a common neighbor in N2(u) with v1 or v2, then
ignore the last branch, otherwise v3 and both external neighbors of v1 and v2 are
selected.

9) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5,N(u) is independent, in the last
branch v1 and v2 disappear by reduction rules

T (μ) ≤ T (μ − 3w3 − w4) + 2T (μ + w2 − 5w3) + T (μ −
7w3 − w4)

Comment: In this case, when v3 is selected, v1 and v2 are removed by recursively
applying the reduction rules.

650 Algorithmica (2012) 62:637–658

10) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5,N(u) is independent, in the last
branch v1 (or v2) does not disappear by reduction rules

T (μ) ≤ T (μ − 3w3 − w4) + 2T (μ + w2 − 5w3) + T (μ +
2w2 − 7w3 − w4 − m2)

Comment: In the last branch v1 and v2 are marked and become of degree 2.
Therefore a marked vertex of degree 2 appears (−m2).

11) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, v1 and v2 are not adjacent, v3 is
adjacent to v1 and v2

T (μ) ≤ T (μ + 2w2 − 5w3 − w4) + T (μ + w1 − 4w3 −
w4) + 2T (μ − 5w3 − w4)

Comment: The external neighbors of v1 and v2 have degree 3, otherwise v1 or
v2 would have a neighbor of higher degree or higher dual degree and would have
been selected for branching instead of u. Moreover, the external neighbors of
v1 and v2 are distinct, otherwise (R6) or (R7) would apply. Finally, note that
BL(u) = [v1, v3, v2] or BL(u) = [v2, v3, v1]. and are distinct.

12) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, v1 and v2 are not adjacent, v3 is
adjacent to v2 (or v1)

T (μ) ≤ 2T (μ + w2 − 4w3 − w4) + T (μ + w2 − 6w3 −
w4) + T (μ − 6w3)

Comment: BL(u) = [v2, v3, v1] and the external neighbor of v2 has degree 3,
otherwise v2 would have been selected for branching as it has either a neighbor
of higher degree or higher dual degree than u.

Algorithmica (2012) 62:637–658 651

13) d(u) = 3, d(v1) ≥ 3, d(v2) ≥ 4, d(v3) ≥ 5

T (μ) ≤ T (μ− 2w3 − 2w4)+T (μ− 4w3)+T (μ− 4w3 −
w4) + T (μ − 5w3 − w4)

14) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, v1 and v2 are adjacent

T (μ) ≤ T (μ−w3 − 3w4)+ 2T (μ− 2w3 − 2w4)+T (μ−
8w3 − w4)

Comment: v1 and v2 are not adjacent to v3 because of (R4) and (R5) and they
have distinct (by (R4) and (R5)) external neighbors of degree 3 or 4 (by the
selection rule of u). If v3 has a common neighbor with v1 or v2 (except u), ignore
the last branch.

15) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, v1 and v2 are not adjacent, v3
is adjacent to v1 and v2

T (μ) ≤ T (μ+2w2 −5w3 −w4)+T (μ+w1 +w2 −5w3 −
w4) + T (μ + 2w2 − 6w3 − w4) + T (μ − 5w3 − w4)

Comment: Note that BL(u) = [v1, v3, v2] or BL(u) = [v2, v3, v1] and that v1 and
v2 have distinct external neighbors of degree 3.

16) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, v1 and v2 are not adjacent, v3
is adjacent to v2 (or v1)

T (μ) ≤ T (μ + 2w2 − 4w3 − 2w4) + T (μ + 2w2 − 5w3 −
w4)+T (μ+ 2w2 − 6w3 −w4)+T (μ+ 2w2 − 7w3 −w4)

Comment: BL(u) = [v2, v3, v1]. The external neighbor of v2 has degree 3 and
neighbors of degree 3 and 3 or 4. In the third branch where v3 is selected, N [v3]
is deleted (−4w3 − w4), v1 has its degree decreased (+w2 − w3), and another

652 Algorithmica (2012) 62:637–658

vertex has its degree decreased from 3 to 2 (+w2 − w3): the external neighbor x

of v2 if it is not adjacent to v3, or a neighbor of x if x and v3 are neighbors and
N [x] �⊆ N [v3], or the vertex in N2(x) \ N2[u] in the remaining case.

17) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4,N(u) is independent

T (μ) ≤ T (μ + 2w2 − 3w3 − 3w4) + T (μ + w2 − 2w3 −
3w4)+T (μ+w2 −2w3 −3w4 −m2)+T (μ+2w2 −6w3 −
w4 − m2)

Comment: The external neighbors of v1 and v2 have degree 3 and 3 or 4. In the
last two branches, a marked vertex of degree 2 is created.

18) d(u) = 3, d(v1) = 3, d(v2) = 4, d(v3) = 4, v1 is not adjacent to v2 and v3

T (μ) ≤ T (μ−w3 − 3w4)+T (μ− 2w3 − 2w4)+ 2T (μ+
w2 − 4w3 − 2w4)

19) d(u) = 3, d(v1) = 3, d(v2) = 4, d(v3) = 4, v1 is adjacent to v2 (or v3)

T (μ) ≤ T (μ − w3 − 3w4) + T (μ − 2w3 − 2w4) + T (μ −
3w3 − 2w4) + T (μ − 5w3 − 2w4)

20) d(u) = 3, d(v1) = 4, d(v2) = 4, d(v3) = 4

T (μ) ≤ T (μ − w3 − 3w4) + 3T (μ − 2w3 − 3w4)

Comment: Consider the branch where v1 is selected. A total of 5 vertices dis-
appear and at least 3 vertices of degree 4 either disappear or have their degree
reduced from 4 to 3: the vertices in N(u).

Algorithmica (2012) 62:637–658 653

21) d(u) = 4, d(v1) = 4, d(v2) = 4, d(v3) = 4, d(v4) = 5

T (μ) ≤ 4T (μ − 5w4) + T (μ + 3w3 − 9w4)

Comment: Consider the branch where v4 is selected. A total of 6 vertices dis-
appear and at least 3 vertices have their degree reduced from 4 to 3. We use the
same argument for v1, v2 and v3. Consider v1.
If v4 is not adjacent to v1: the degree of v4 is reduced.
If v4 is adjacent to v1 and N [v1] �⊆ N [v4]: a neighbor of v1 has its degree reduced
from 4 to 3.
If v4 is adjacent to v1 and N [v1] ⊆ N [v4]: Let y1 and y2 be the two common
neighbors of v1 and v4 (except u). y1 and y2 have degree 4 and neighbors of de-
gree 4,4,4 and 5. At least one of y1 and y2 has a neighbor of degree 4 outside
N [v4], otherwise N [y1] = N [y2].
22) d(u) = 4, d(v3) = 5, d(v4) = 5

T (μ) ≤ 3T (μ − 5w4) + 2T (μ − 6w4)

23) d(u) = 4, d(v4) ≥ 6

T (μ) ≤ 4T (μ − 5w4) + T (μ − 7w4)

24) d(u) ≥ 5

T (μ) ≤ 6T (μ − 6w4)

654 Algorithmica (2012) 62:637–658

4.5 Count all Maximal Independent Sets in a Marked Graph of Maximum Degree
Two

On input graphs of maximum degree 2 the algorithm #MaximalIS has an exponen-
tial worst-case running time. We show in this subsection, that all maximal indepen-
dent sets of a marked graph of maximum degree 2 can be counted in polynomial time.
Adding this polynomial time procedure to #MaximalIS is likely to be of help in im-
plementations of the algorithm; it does however not improve its worst case running
time.

Suppose first that G is a path Pn = (v1, v2, . . . , vn). Let Vi = {v1, v2, . . . , vi} for
i = 1, . . . , n. We define three values for the vertices of G with the following meaning:

• is(vi)—the number of maximal independent sets of G[Vi] containing vi

• od(vi)—the number of maximal independent sets of G[Vi−1] containing vi−1

• ond(vi)—the number of maximal independent sets of G[Vi−1] not containing vi−1

The algorithm gives the following values to v1:

• is(v1) = 0 if v1 is marked, and 1 otherwise,
• od(v1) = 0, and
• ond(v1) = 1.

Suppose the values for vi−1 are known, then the values for vi are computed by simple
dynamic programming as follows:

• is(vi) = 0 if vi is marked, and od(vi−1) + ond(vi−1) otherwise,
• od(vi) = is(vi−1), and
• ond(vi) = od(vi−1).

The number of maximal independent sets of G satisfying property � (defined in
Subsect. 4.1) of G is is(vn) + od(vn).

If G is a cycle Cn, select an arbitrary vertex vi with neighbors vi−1 and vi+1 and
return the sum of the number of maximal independent sets

• containing vi if vi is not marked, or 0 otherwise,
• containing vi−1 if vi−1 is not marked, or 0 otherwise, and
• containing vi+1 but not vi−1 if vi+1 is not marked, or 0 otherwise.

This can easily be done by 3 recursive calls on the instances G \ N [vi],G \ N [vi−1]
and G \ N [vi+1] and by marking vi−1 in the last recursive call.

Lemma 6 Let G be a marked graph with maximum degree 2. The number of maximal
independent sets of G satisfying property � can be computed in linear time.

Remark 1 As od(vi) = is(vi−1), the value od(·) is redundant. But the above descrip-
tion makes it easier to see that a slight generalization of this algorithm, which is very
similar to the algorithm in [1], makes it possible to count all maximal independent
sets of a marked graph satisfying property � in time 3knO(1) when a path decompo-
sition of width k of the graph is known.

Algorithmica (2012) 62:637–658 655

4.6 Lower Bound on the Running Time of the Algorithm

We do not know whether the current techniques to analyze the running time of
branching algorithms establish the worst-case running time (up to a polynomial fac-
tor). Even Measure & Conquer provides only upper bounds of the running time, but
it is not known how far this upper bound might be from the (usually unknown) worst-
case running time of the algorithm. Therefore a lower bound for the worst case run-
ning time of branching algorithms is desirable (see for example [13]). Here we estab-
lish a lower bound the running time of Algorithm #MaximalIS.

Theorem 7 There exists an infinite family of graphs for which Algorithm #Maxi-
malIS runs in time �(1.3247n). Thus its worst case running time is �(1.3247n).

Proof The lower bound for the running time of #MaximalIS established here uses
the same family of graphs as the lower bound for an algorithm computing a minimum
independent dominating set [17].

Consider the graph Gl of Fig. 2. It has n = 2l vertices. Note that none of the
reduction or halting rules are applicable to Gl . The first branching of #MaximalIS
is on vertex u1 or vertex vl . Without loss of generality, suppose the algorithm always
chooses the vertex with smallest index when it has more than one choice (that is it
chooses u1 for the first recursive call).

The branching rule (B) then makes recursive calls on graphs with n − 3, n − 4
and n − 5 vertices, not marking any vertex. The structure of all resulting graphs is
similar to Gl : either isomorphic to Gl−2 or equal to Gl \ N [u1] or Gl \ N [u2]. The
subsequent recursive calls again remove 3, 4 and 5 vertices in each case and do not
mark any vertices.

The first levels of the corresponding search tree are depicted in Fig. 3. Unless
the graph has at most 4 vertices, each application of branching rule (B) satisfies the

Fig. 2 Graph Gl used to lower
bound the running time of
Algorithm #MaximalIS

Fig. 3 A part of the search tree of the execution of Algorithm #MaximalIS on the graph Gl

656 Algorithmica (2012) 62:637–658

recurrence

T (n) = T (n − 3) + T (n − 4) + T (n − 5)

for this graph and therefore the running time for this class of graphs is �(αn) where
α is the positive root of x−3 + x−4 + x−5 − 1, that is 1.3247 < α < 1.3248. �

4.7 Algorithm to Count All Maximal Bicliques

Finally we show how to use the algorithm to count the maximal independent sets of a
graph to establish an algorithm to count the maximal bicliques of a graph G = (V ,E).

We use the following polynomial-time Turing reduction of Dias et al. [9]. Let
G′ = (V ′,E′) be a copy of G. Let G′′ = (V ′′,E′′) where V ′′ = V ∪ V ′ and E′′ =
E ∪ E′ ∪ {xy′ : x, y ∈ V,y′ is a copy of y in V ′, and (x = y or xy �∈ E)}.

The following lemma is an immediate consequence of the 2–1 correspondence
between the maximal cliques of the complement of G′′ and the maximal bicliques of
G shown by Dias et al. [9]. For the sake of completeness, a proof is provided.

Lemma 8 The number of maximal independent sets of G′′ equals twice the number
of maximal bicliques of G.

Proof We show that there is a one-to-one correspondence between the bicliques of
G and the symmetric pairs of independent sets of G′′.

Let X ∪ Y be a biclique of G. Clearly, X,Y are independent sets in G and their
copies X′, Y ′ are independent sets in G′. Let x ∈ X and y ∈ Y . Then xy, x′y′ ∈ E′′
and xy′, x′y �∈ E′′. So, X ∪ Y ′ and X′ ∪ Y are independent sets in G′′.

Let X,Y ⊆ V be such that X ∪Y ′ is an independent set in G′′ where X′, Y ′ are the
copies of X,Y . Hence X,Y are independent sets in G. Let x ∈ X and y′ ∈ Y ′. Then
xy ∈ E. So, X ∪ Y is a biclique in G. By the symmetry of G′′, the independent set
X′ ∪ Y in G′′ also corresponds to the biclique X ∪ Y in G.

Clearly, this correspondence also holds for maximality by inclusion of vertices.
This implies that X ∪ Y is a maximal biclique of G if and only if X ∪ Y ′, and thus

also Y ∪ X′, are maximal independent sets of G′′. �

Using Lemma 8 and the algorithm to count the maximal independent sets of a
graph, we establish an algorithm to count the maximal bicliques of a graph.

Theorem 9 There is an algorithm to count the maximal bicliques of a graph in time
O(1.3642n), where n is the number of vertices of the input graph.

Proof The algorithm simply calls #MaximalIS((V ′′,∅,E′′)) and divides the re-
sult by 2. Notice that G′′ has 2n vertices and that every vertex of G′′ has degree n.
The first application of branching rule (B) makes n + 1 recursive calls and in each
one, n + 1 vertices are removed from the marked graph. Thus the running time is
(n + 1)(cn−1)nO(1) where cnnO(1) is the running time of #MaximalIS on a graph
with n vertices. The constant c = 1.3642 was rounded to derive the running time
for #MaximalIS, and thus the running time of the algorithm to count maximal bi-
cliques is O(1.3642n). �

Algorithmica (2012) 62:637–658 657

5 Conclusion

We have seen in this paper that various results for independent sets translate to results
for bicliques. The reverse questions are also interesting. For example, given an algo-
rithm to find a maximum biclique in a graph of running time O∗(cn), is it possible to
establish a O∗(cn) time algorithm for finding a maximum independent set in a graph?

Given a graph G = (V ,E) on n vertices, finding a maximum independent set in G

could be done by constructing a graph G′ obtained from G by adding an independent
set I of size n such that every vertex of I is adjacent to every vertex of V . Then G

has an independent set of size k if and only if G′ has a biclique of size n + k. This
shows that it is possible to obtain a O∗(c2n) algorithm for computing a maximum
independent set from an algorithm for computing a maximum biclique in a graph in
time O∗(cn).

A simple variant of this reduction also shows that it is W[1]-hard to find an induced
Kk,k , that is a biclique with k vertices in each part of its bipartition, in a graph, where
the parameter is k (now only k independent vertices need to be added to G and made
adjacent to every vertex in V). However the following question [8] about non-induced
bicliques is still open.

Open Question Determine the parameterized complexity of the following problem:
given a graph G and a parameter k, does G have a Kk,k as a subgraph.

Acknowledgements The authors would like to thank the coordinating editor, Richard Cole, for his
suggestion how to improve the upper bound of Theorem 3 from n · 3n/3 to 1

31/3−1
· 3n/3.

References

1. Alber, J., Niedermeier, R.: Improved tree decomposition based algorithms for domination-like prob-
lems. In: Proc. of LATIN 2002. LNCS, vol. 2286, pp. 613–627. Springer, Berlin (2002)

2. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus algorithms for the
generation of all maximal bicliques. Discrete Appl. Math. 145, 11–21 (2004)

3. Amilhastre, J., Vilarem, M.C., Janssen, P.: Complexity of minimum biclique cover and minimum
biclique decomposition for bipartite dominofree graphs. Discrete Appl. Math. 86, 125–144 (1998)

4. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion. SIAM J. Comput.
39, 546–563 (2009)

5. Dahllöf, V., Jonsson, P.: An algorithm for counting maximum weighted independent sets and its ap-
plications. In: Proc. of SODA 2002, pp. 292–298. ACM and SIAM, Philadelphia (2002)

6. Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2SAT and 3SAT formulae. Theor. Com-
put. Sci. 332, 265–291 (2005)

7. Dawande, M., Swaminathan, J., Keskinocak, P., Tayur, S.: On bipartite and multipartite clique prob-
lems. J. Algorithms 41, 388–403 (2001)

8. Demaine, E.D., Gutin, G., Marx, D., Stege, U.: Open Problems—Structure Theory and FPT Algo-
rithmcs for Graphs, Digraphs and Hypergraphs. Dagstuhl Seminar Proceedings 07281 (2007), IBFI,
Schloss Dagstuhl, Germany

9. Dias, V.M.F., Herrera de Figueiredo, C.M., Szwarcfiter, J.L.: Generating bicliques of a graph in lexi-
cographic order. Theor. Comput. Sci. 337, 240–248 (2005)

10. Dias, V.M.F., Herrera de Figueiredo, C.M., Szwarcfiter, J.L.: On the generation of bicliques of a graph.
Discrete Appl. Math. 155, 1826–1832 (2007)

11. Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible, D., Rossmanith, P.: An exact
algorithm for the maximum leaf spanning tree problem. In: Proc. of IWPEC 2009. LNCS, vol. 5917,
pp. 161–172. Springer, Berlin (2009)

658 Algorithmica (2012) 62:637–658

12. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem:
Exact and enumeration algorithms. Algorithmica 52, 293–307 (2008)

13. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact
algorithms. J. ACM 56 (2009)

14. Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and colorings with appli-
cations. In: Proc. of AAIM 2007. LNCS, vol. 4508, pp. 47–57. Springer, Berlin (2007)

15. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Berlin (1996)
16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

completeness. Freeman, New York (1979)
17. Gaspers, S., Liedloff, M.: A branch-and-reduce algorithm for finding a minimum independent domi-

nating set. ArXiv Report 1009.1381 [CoRR abs] (2010)
18. Gaspers, S., Kratsch, D., Liedloff, M.: On independent sets and bicliques in graphs. In: Proc. of WG

2008. LNCS, vol. 5344, pp. 171–182. Springer, Berlin (2008)
19. Hochbaum, D.S.: Approximating clique and biclique problems. J. Algorithms 29, 174–200 (1998)
20. Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple independent set algorithm.

In: Proc. of FSTTCS 2009. LIPICS, vol. 4, pp. 287–298, Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik, Germany

21. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Proc. of SWAT 2004.
LNCS, vol. 3111, pp. 260–272. Springer, Berlin (2004)

22. Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 3, 23–28 (1965)
23. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inf. Process. Lett. 71, 199–204 (1999)
24. Nourine, L., Raynaud, O.: A fast incremental algorithm for building lattices. J. Exp. Theor. Artif.

Intell. 14, 217–227 (2002)
25. Okamoto, Y., Uno, T., Uehara, R.: Counting the number of independent sets in chordal graphs. J. Dis-

crete Algorithms 6, 229–242 (2008)
26. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Appl. Math. 131, 651–654

(2003)
27. Prisner, E.: Bicliques in graphs I: Bounds on their number. Combinatorica 20, 109–117 (2000)
28. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7, 425–440 (1986)
29. van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer: a faster exact algorithm for

dominating set. In: Proc. of STACS 2008. LIPIcs, pp. 657–668. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Germany

30. van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets measure and conquer. In:
Proc. of ESA 2009. LNCS, vol. 5757, pp. 554–565. Springer, Berlin (2009)

31. Wahlström, M.: A tighter bound for counting max-weight solutions to 2SAT instances. In: Proc. of
IWPEC 2008. LNCS, vol. 5018, pp. 202–213. Springer, Berlin (2008)

32. Yannakakis, M.: Node and edge deletion NP-complete problems. In: Proc. of STOC 1978, pp. 253–
264. ACM, New York (1978)

http://arxiv.org/abs/1009.1381

	On Independent Sets and Bicliques in Graphs
	Abstract
	Introduction
	Bicliques
	Applications
	Previous Work
	Our Results

	Preliminaries
	Improving Prisner's Bound
	Counting Algorithms
	Algorithm to Count All Maximal Independent Sets
	Correctness of #MaximalIS
	Running Time Analysis of #MaximalIS
	Detailed Running Time Analysis of Algorithm #MaximalIS
	Count all Maximal Independent Sets in a Marked Graph of Maximum Degree Two
	Lower Bound on the Running Time of the Algorithm
	Algorithm to Count All Maximal Bicliques

	Conclusion
	Acknowledgements
	References

