
Algorithmica (2012) 62:192–208
DOI 10.1007/s00453-010-9450-9

Construction Sequences and Certifying 3-connectivity

Jens M. Schmidt

Received: 1 September 2009 / Accepted: 1 September 2010 / Published online: 11 September 2010
© Springer Science+Business Media, LLC 2010

Abstract Tutte proved that every 3-vertex-connected graph G on more than 4 ver-
tices has a contractible edge. Barnette and Grünbaum proved the existence of a re-
movable edge in the same setting. We show that the sequence of contractions and the
sequence of removals from G to K4 can be computed in O(|V |2) time by extending
Barnette’s and Grünbaum’s theorem. As an application, we derive a certificate for the
3-vertex-connectivity of graphs that can be easily computed and verified.

Keywords Algorithms and data structures · Construction sequence · 3-connected ·
Certifying algorithm · Tutte contraction · Removable edges

1 Introduction

For a given set O of operations and a given set B of base graphs, a construction
sequence of a graph G is a sequence of operations in O that constructs G when being
applied to a base graph in B . For 3-vertex-connected (we say 3-connected) graphs G,
we focus on construction sequences with B = {K4} and for which O consists either of
inverse contractions (Tutte’s construction sequence) or inverse removals (Barnette’s
and Grünbaum’s construction sequence). These two construction sequences are the
inverse of the sequence of contractions and the sequence of removals, respectively.
We will define contractions, removals and their inverse operations in Sect. 2.

Inductively defined constructions of graph classes are important, because the set
of operations used in the constructions can often be exploited to prove properties on
these graph classes. For 3-connected graphs, the existence theorems on contractible

This research was supported by the Deutsche Forschungsgemeinschaft within the research training
group “Methods for Discrete Structures” (GRK 1408) and is an extended version of [13].

J.M. Schmidt (�)
Dept. of Computer Science, Freie Universität Berlin, Berlin, Germany
e-mail: jens.schmidt@inf.fu-berlin.de

mailto:jens.schmidt@inf.fu-berlin.de

Algorithmica (2012) 62:192–208 193

and removable edges yield such inductively defined constructions. Although these
existence theorems are used frequently in graph theory [14, 15, 18], we are not aware
of any computational results to find the sequence of contractions or removals, except
for sequences where contractions and removals are allowed to intermix [1]. More-
over, efficient algorithms are unlikely to be derived from the existence proofs as they,
e.g., in the case of Barnette and Grünbaum, depend heavily on adding longest paths,
which are NP-hard to find. The main contribution of this paper is a structural result
about the existence of Barnette’s and Grünbaum’s construction sequence and, based
on that result, a simple algorithm to compute such a sequence in time O(|V |2). In ad-
dition, we show that Barnette’s and Grünbaum’s construction sequence can be trans-
formed in linear time to the sequence of contractions, obtaining a close connection
between these two sequences and a simple quadratic time algorithm for computing
Tutte’s construction sequence. Both algorithms do not rely on the 3-connectivity test
of Hopcroft and Tarjan [6], which runs in linear time but is rather involved.

The concept of certifying algorithms, which give a small and easy-to-verify cer-
tificate of correctness along with their output, was initiated by Blum and Kannan [3]
and developed further by Mehlhorn et al. [8–10]. While being important for pro-
gram verification, certifying algorithms often provide new insights into a problem,
which can lead to new techniques. For that reason they are a major goal for prob-
lems on which the known fast solutions are complicated and difficult to implement.
Testing a graph on 3-connectivity is such a problem. Yet, surprisingly little work has
been devoted to certify 3-connectivity, although a sophisticated linear-time recogni-
tion algorithm (not giving an easy-to-verify certificate) is known for over 35 years
[6, 19, 20]. In fact, we are aware of only one certifying algorithm (in the sense
of Mehlhorn et al.) for that problem, which runs in quadratic time, but is quite in-
volved [1]. Using construction sequences, we give a simple alternative solution with
running time O(|V |2) that performs essentially DFS-traversals and show that the
used certificate is easy-to-verify in time O(|E|).

We first recapitulate well-known results on the existence of construction sequences
in Sects. 2.1 and 2.2 and point out how the sequence of contraction can be obtained
from Barnette’s and Grünbaum’s sequence in linear time. Sections 2.3 and 3 cover
the main idea for the existence result that we use for computing Barnette’s and Grün-
baum’s construction sequence. The end of Sect. 3 deals with the representation of
construction sequences. Section 4 shows how to use construction sequences for a
certifying 3-connectivity test.

2 Construction Sequences

Let G = (V ,E) be a finite graph with n := |V |, m := |E|, V (G) = V and E(G) = E.
A graph is connected if there is a path between any two vertices and disconnected
otherwise. For k ≥ 1, a graph is k-vertex-connected if n > k and deleting every k − 1
vertices leaves a connected graph. We will write k-connected throughout the paper
when referring to k-vertex-connectivity. A vertex (resp. a pair of vertices) that leaves
a disconnected graph upon deletion is called a cut vertex (resp. a separation pair).
Note that k-connectivity does not depend on parallel edges or self-loops. From now

194 Algorithmica (2012) 62:192–208

on, we assume for simplicity that our input graph G = (V ,E) is simple, although all
results can be extended to multigraphs. A path leading from vertex v to vertex w is
denoted by v → w. For a vertex v in a graph, let N(v) = {w | vw ∈ E} denote its set
of neighbors and deg(v) its degree. For a graph G, let δ(G) be the minimum degree
of its vertices.

A subdivision of a graph G is a graph that replaces each edge in E(G) by a path
of length at least one. Conversely, we want a function that returns the original graph
without subdivided edges. If deg(v) = 2 for a vertex v in a graph G, let smoothv(G)

be the graph obtained from G by deleting v followed by adding an edge between its
neighbors; we say v is smoothed. Otherwise, let smoothv(G) = G. Let smooth(G)

be the graph obtained by smoothing every vertex in G. For an edge e ∈ E, let G \ e

denote the graph obtained from G by deleting e. Let Kn be the complete graph on n

vertices.
The following are well-known corollaries of Menger’s theorem [11].

Lemma 1 (Fan Lemma) Let v be a vertex in a graph G that is k-connected with
k ≥ 1 and let A be a set of at least k vertices in G with v /∈ A. There are k internally
vertex-disjoint paths P1, . . . ,Pk from v to distinct vertices a1, . . . , ak ∈ A such that
for each of these paths V (Pi) ∩ A = ai .

Lemma 2 (Expansion Lemma [21]) Let G be a k-connected graph. The graph ob-
tained by adding a new vertex v joined to at least k vertices in G is still k-connected.

2.1 Tutte’s Characterization and Its Inverse

Although G is simple, contractions cannot always avoid parallel edges in interme-
diate graphs. E. g., consider a cycle with an additional vertex connected to all cycle
vertices by an edge. This is a wheel graph, and the edges adjacent to the non-cycle
vertex are called spokes. The contraction of any edge that is not a spoke in a wheel
graph will create a parallel edge. That is why we define contractions to preserve
graphs to be simple. Contracting an edge e = xy in a graph deletes e, merges vertices
x and y, and replaces every set of parallel edges by a single edge. An edge e is called
contractible if contracting e results in a 3-connected graph.

A vertex splitting takes a vertex v of a 3-connected graph, replaces v by two ver-
tices x and y with an edge between them and replaces every former edge uv that was
incident to v with either the edge ux, uy or both such that |N(x)| ≥ 3 and |N(y)| ≥ 3
in the new graph. Vertex splitting as defined here is therefore the exact inverse of
contracting a contractible edge that has end vertices of degree ≥ 3.

Theorem 3 (Corollary of Tutte [17]) The following statements are equivalent:

A simple graph G is 3-connected

⇐⇒ There exists a sequence of contractions from G to K4 on contractible (1)

edges e = xy with |N(x)| ≥ 3 and |N(y)| ≥ 3

⇐⇒ There exists a construction sequence from K4 to G using vertex (2)

splittings

Algorithmica (2012) 62:192–208 195

We describe next a straightforward O(n2) algorithm to compute (1) for a graph
G on more than 4 vertices. First, we decrease the number of edges to O(n) in G by
applying the following algorithm due to Nagamochi and Ibaraki.

Theorem 4 (Nagamochi, Ibaraki [12]) Let G be a connected graph and k ∈ N. There
is an O(m) time algorithm computing a spanning subgraph of G that has at most
k(n − 1) edges and is k-connected (resp. k-edge-connected) if and only if G is k-
connected (resp. k-edge-connected). Moreover, if G is k-connected (resp. k-edge-
connected), the spanning subgraph contains a vertex of degree k.

This algorithm preserves the 3-connectivity or respectively, the non 3-connectivity
of G. Moreover, if G is 3-connected, the resulting graph contains a vertex of de-
gree 3 and by a result of Halin [5], every vertex of degree 3 is incident to a con-
tractible edge e. We get e by subsequently contracting each of the three incident
edges and testing the resulting graph with the algorithm of Hopcroft and Tarjan [6]
on 3-connectivity. Iteration of both subroutines gives us the whole contraction se-
quence in O(n2) time. However, the Hopcroft-Tarjan test is difficult to implement
and we will give a much simpler algorithm that is capable of computing both charac-
terizations later. In both approaches, we use the algorithm of Theorem 4 to preprocess
the input graph in advance. As it allows for a very simple implementation, we do not
certify this preprocessing step.

2.2 Barnette’s and Grünbaum’s Characterization and Its Inverse

The Barnette and Grünbaum operations (BG-operations) consist of the following op-
erations on a 3-connected graph (see Figs. 1(a)–(c)).

(a) add an edge xy (possibly a parallel edge)
(b) subdivide an edge ab by vertex x and add the edge xy for y /∈ {a, b}
(c) subdivide two distinct, non-parallel edges by vertices x and y, respectively, and

add the edge xy

In all three cases, let xy be the edge that was added by the BG-operation.

Theorem 5 (Barnette and Grünbaum [2], Tutte [18]) A graph G is 3-connected if
and only if G can be constructed from K4 using BG-operations.

Theorem 5 was proven in this notation by Barnette and Grünbaum [2], but implic-
itly described in a theorem about nodal connectivity by Tutte [18, Theorem 12.65].

Fig. 1 The three operations of Barnette and Grünbaum

196 Algorithmica (2012) 62:192–208

If not stated otherwise, every construction sequence uses only BG-operations. Let
a BG-operation be basic, if it does not create parallel edges and let a construction
sequence be basic, if it only uses basic BG-operations.

Like in Theorem 3, we want the inverse of a BG-operation. Let removing the edge
e = xy of a graph be the operation of deleting e followed by smoothing x and y.
An edge e = xy in G is called removable, if removing e yields a 3-connected graph.
We show that removing a removable edge e = xy with |N(x)| ≥ 3, |N(y)| ≥ 3 and
|N(x) ∪ N(y)| ≥ 5 is exactly the inverse of a BG-operation.

Theorem 6 The following statements are equivalent:

A simple graph G is 3-connected (3)

⇐⇒ There exists a sequence of removals from G to K4 on removable (4)

edges e = xy with |N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪ N(y)| ≥ 5

⇐⇒ There exists a construction sequence from K4 to G using (5)

BG-operations

⇐⇒ There exists a basic construction sequence from K4 to G using (6)

BG-operations

Proof Theorem 5 establishes (3) ⇔ (5). Moreover, the proof of Theorem 5 in [2]
implicitly shows that on simple graphs basic operations suffice. Thus, only the equiv-
alence for (4) remains. We first prove (6) ⇒ (4) and then (4) ⇒ (5).

BG-operations operate by definition on 3-connected graphs, this holds in particu-
lar for the ones in sequence (6). Let G′ be the graph obtained by a basic BG-operation
in (6) that adds the edge e = xy. The operation can clearly be undone by removing e

in G′. Since BG-operations preserve 3-connectivity with Theorem 5, |N(x)| ≥ 3 and
|N(y)| ≥ 3 hold in G′.

It remains to show that |N(x) ∪ N(y)| ≥ 5 in G′. If |N(x)| ≥ 4 or |N(y)| ≥ 4,
|N(x)∪N(y)| ≥ 5 follows, since x and y are neighbors and no self-loops exist. Thus,
let |N(x)| = |N(y)| = 3. Having N(x) \ {y} �= N(y) \ {x} yields |N(x) ∪ N(y)| ≥ 5
as well, so let N(x) \ {y} and N(y) \ {x} contain the same two vertices a and b. If
|V (G′)| > 4, a or b must be adjacent to a vertex c that is neither adjacent to x nor y.
But then {a, b} is a separation pair, contradicting the 3-connectivity of G′. On the
other hand, |V (G′)| = 4 is only possible when operation (a) was performed as BG-
operation, since operations (b) and (c) create new vertices. This gives a contradiction,
as (a) is not a basic operation on K4.

We prove (4) ⇒ (5). Let G′ be the graph containing a removable edge e = xy

that is removed in (4). Note that G′ can have parallel edges due to previous removals
but no self-loops. The removal can be undone by one of the three BG-operations.
On smoothing of e, we count how many end vertices are deleted. This is either 0,
1, or 2. If no end vertex is deleted, removing e just deletes e which is inverted by
operation (a). If exactly one end vertex, say x ∈ V (G′), is deleted, let f be the edge in
which x was smoothed. Then (b) can be applied, because y /∈ f (see Fig. 2(a)) since

Algorithmica (2012) 62:192–208 197

Fig. 2 Cases that would fail when undoing a removal

otherwise x would have had only 2 neighbors in G′, contradicting the assumption
|N(x)| ≥ 3.

If both end vertices, x and y, are deleted, let f1 and f2 be the edges in which x

and y were smoothed, respectively. Operation (c) can only be applied if f1 and f2
are neither identical nor parallel. But f1 = f2 would again contradict |N(x)| ≥ 3 in
G′ (see Fig. 2(b)), and f1 being parallel to f2 would contradict |N(x)∪N(y)| ≥ 5 in
G (see Fig. 2(c)), since in that case N(x) ∪ N(y) consists only of x, y and the two
vertices f1 ∩ f2. �

We show that Barnette’s and Grünbaum’s characterization is algorithmically at
least as powerful as Tutte’s by giving a simple linear time transformation. Lemma 7
allows us to focus on computing BG-operations only.

Lemma 7 Every construction sequence using BG-operations can be transformed in
linear time to the sequence (1) of contractions.

Proof We transform every BG-operation in reverse order of the construction se-
quence to 0, 1 or 2 contractions each. Operation (a) yields no contraction while
operation (b) yields the contraction of exactly one part of the subdivided edge (ei-
ther xa or xb in Fig. 1). For an operation (c), let e = ab and f = vw be the edges
that are subdivided with x and y. Both edges share at most one vertex; w.l.o.g. let
a = v be that vertex if it exists. We contraction the edges xb and yw in arbitrary
order. In all cases, contractions inverse BG-operations except for the added edge xy,
which is left over. But additional edges do not harm the 3-connectivity of the graph
nor subsequent contractions. Thus, we have found a contraction sequence to K4 un-
less the first contraction in the case of an operation (c) yields a graph H that is not
3-connected. Let H ′ be the 3-connected graph after the second contraction of the
same operation (c). Then H can be obtained from H ′ by applying operation (b) and
therefore is 3-connected. �

2.3 Identifying Intermediate Graphs with Subdivisions in G

Let K4 = G0,G1, . . . ,Gz = G be the 3-connected graphs obtained in a construc-
tion sequence Q to a simple 3-connected graph G using the basic BG-operations
C0, . . . ,Cz−1. We can reverse Q by starting with G and removing the added edges of
BG-operations in reverse order. Suppose we would delete the added edge of every Ci

instead of removing it and treat emerging paths containing interior vertices of degree

198 Algorithmica (2012) 62:192–208

Fig. 3 The graphs G0, . . . ,Gz and S0, . . . , Sz of a construction sequence of G. On graphs Si , the dashed
edges and vertices are in G but not in Si and vertices depicted in black are real vertices. For example, the
path C0 = e → h → g is a BG-path for S0, yielding S1. The links of S1 are the paths C0, a → b → c and
the single edges ae, ef , f c, cd , da, fg, gd

2 as (topological) edges in Gi (see Fig. 3). Then iteratively paths are deleted instead
of edges being removed and we obtain the sequence of subdivisions G = Sz, . . . , S0
in G with S0 being a K4-subdivision. This leads to the following proposition.

Proposition 8 Let Q be a construction sequence from a graph G0 to G using BG-
operations. Then G contains a subdivision of G0 that is specified by Q.

In particular, Proposition 8 yields with Theorem 5 that every 3-connected graph
contains a subdivision of K4 (Theorem of J. Isbell [2]). Each Si is a subdivision
of Gi . Conversely, Gi = smooth(Si) for all 0 ≤ i ≤ z, since smoothing a graph is
precisely the inverse operation of subdividing a graph without vertices of degree two.
The vertices x in Si with deg(x) ≥ 3 are called real vertices, because they correspond
to vertices in Gi . Real vertices have at least 3 neighbors in Gi , because Gi is 3-
connected.

Note that in non-basic construction sequences Gi can have parallel edges, al-
though Si is always simple.

Definition 9 Let the links of each Si be the unique paths in Si with only their end
vertices being real. Let two links be parallel if they share the same end vertices. Then
a BG-path for Si is a path P = x → y in G with the following properties:

1. Si ∩ P = {x, y}.
2. If a link of Si contains x and y, the end vertices of that link are x and y.

Algorithmica (2012) 62:192–208 199

3. If x and y are inner vertices of links Lx and Ly of Si , respectively, Lx and Ly are
not parallel.

The links of Si partition E(Si) because Si is 2-connected, has therefore minimum
degree two and is not a cycle. It is easy to see that every BG-path for Si corresponds to
a BG-operation on Gi and vice versa. We will exploit this duality in the next section.

In general, construction sequences are not bound to start with K4. Titov and Kel-
mans [7, 16] extended Theorem 5 by proving the existence of a construction sequence
even when starting with an arbitrary 3-connected graph G0 instead of K4, as long as
a subdivision of G0 is contained in G. This is a generalization of Theorem 5, since
every 3-connected graph contains a K4-subdivision by Proposition 8.

Theorem 10 [7, 16] Let G0 be a 3-connected graph. A simple graph G is
3-connected and contains a subdivision of G0 if and only if G can be constructed
from G0 using basic BG-operations.

3 Prescribing Subdivisions

If G is 3-connected, the 3-connected base graph G0 of the construction sequences
of Theorem 5 and 10 corresponds to a subdivision H ⊂ G of G0 by Proposition 8.
The proofs of Theorems 5 and 10 show only for a very special subdivision H in
G that a construction sequence from H to G using BG-paths exists. In fact, the
G0-subdivision containing the maximum number of edges in G is chosen for both
theorems. The construction sequence is then obtained by adding longest BG-paths.
Unfortunately, computing these depends heavily on solving the longest paths prob-
lem, which is known to be NP-hard even for 3-connected graphs [4].

Suppose we choose some subdivision H of G0 in advance; we say that H is pre-
scribed. Is it possible to strengthen Theorems 5 and 10 to start a construction se-
quence using BG-paths with H ? Such a result would provide an efficient computa-
tional approach to construction sequences, since it allows us to search the neighbor-
hood of H in G for BG-paths, yielding a new prescribed subdivision of a 3-connected
graph.

However, when restricted to basic operations it is not possible to prescribe H , as
the minimal counterexample in Fig. 4 shows: Consider the graph G consisting of
H := K4 depicted in black with an additional vertex x connected to three vertices
of H . Then every BG-path for H will create a parallel link, which is a path of length
two having x as its middle vertex, although G is simple. But what if we drop the
condition that construction sequences have to be basic? The following theorem shows
that at this expense we can indeed start a construction sequence from any prescribed
subdivision.

Fig. 4 Every possible
BG-operation adds a parallel
edge to the black subgraph

200 Algorithmica (2012) 62:192–208

Fig. 5 The case
H �= smooth(H). Dashed edges
are in E(G) \ E(H), arrows
depict the BG-path x′ → y′

Theorem 11 Let G be a 3-connected graph and H ⊂ G with H being a subdivision
of a 3-connected graph. There is a BG-path for H in G. Moreover, for every link L of
H of length at least 2 there is a parallel link (maybe L itself) that contains an inner
vertex on which a BG-path for H starts.

Proof We distinguish two cases.

– H �= smooth(H).
Then links of length at least 2 exist in H and we pick an arbitrary one of them, say
T = a → b. Let x be an inner vertex of T and let I be the union of inner vertices
of all parallel links of T . We show that there is a vertex in I on which a BG-path
for H starts. By the 3-connectivity of G, the graph G \ {a, b} is connected. Since
H contains at least four vertices, there exists a path P = x → y in G \ {a, b} with
y ∈ V (H)\ I (see Fig. 5). The path P has the Property 9.2. Let x′ be the last vertex
in P that is contained in I and let y′ be the first vertex in P that is contained in
V (H) \ I . Then the subpath x′ → y′ of P has Properties 9.1–9.3 and is a BG-path
for H .

– H = smooth(H).
Then H consists only of real vertices and since H �= G, there is a vertex in V (G) \
V (H) or an edge in E(G) \ E(H). At first, assume that there is a vertex x ∈
V (G) \ V (H). Then, by the 2-connectivity of G and Fan Lemma 1 we can find
a path P = y1 → x → y2 with no other vertices in H than y1 and y2. For P the
Properties 9.1–9.3 hold, because every link in H is an edge. Now suppose that
V (G) = V (H) and let e be an edge in E(G) \ E(H). Then e must be a BG-path
for H , since both end vertices are real.

�

In Theorem 11, non-basic operations can only occur in the case H = smooth(H)

when a path through a vertex of V (G) \ V (H) is chosen. Although we cannot avoid
that, it is possible to obtain a basic construction by augmenting the BG-operations
with a fourth operation (d), which can be seen as combination of operations (a)
and (b):

(d) connect a new vertex to three distinct vertices

Algorithmica (2012) 62:192–208 201

Operation (d) preserves 3-connectivity with Lemma 2 and is basic, because each
new edge ends on the new vertex. Whenever we encounter a vertex in V (G) \ V (H)

in Theorem 11, we know by Fan Lemma 1 and the 3-connectivity of G that there
are three internally vertex-disjoint paths to real vertices in H with all inner vertices
being in V (G) \ V (H). Adding these paths to H is called an expand operation and
corresponds to operation (d) in the smoothed graph. This gives the following re-
sult.

Theorem 12 Let G be a simple graph and let H be a subdivision of a 3-connected
graph. Then

G is 3-connected and H ⊆ G

⇐⇒ δ(G) ≥ 3 and there exists a construction sequence from H to G (7)

using BG-paths

⇐⇒ δ(G) ≥ 3 and there exists a basic construction sequence from H to G (8)

using BG-paths and the expand operation

Proof Let G be 3-connected and H ⊆ G. Then δ(G) ≥ 3 holds and if H = G, the
desired construction sequences are empty and exist. If H ⊂ G, we can apply Theo-
rem 11 iteratively with or without the additional expand operation and the construc-
tion sequences exist as well. For the sufficiency part, both construction sequences
imply H ⊆ G, since only paths are added to construct G. Additionally, G must be
3-connected, as adding BG-paths to each Si preserves Si+1 to be a subdivision of a
3-connected graph with Theorem 5, and δ(G) ≥ 3 ensures that the last subdivision G

of a 3-connected graph is 3-connected itself. �

A straightforward algorithm to compute Barnette’s and Grünbaum’s construction
sequence of a 3-connected graph is to search iteratively for removable edges. But in
contrast to the algorithm in Sect. 2.1 that computes contractible edges, this approach
only leads to an O(n3) algorithm. The reason for the additional factor of n is that
not all vertices with degree 3 must have an incident removable edge (see Fig. 6 for
a counterexample on 9 vertices) and we have to try every edge in the worst case.
Computing BG-paths instead of BG-operations allows us to obtain better running
times. For this aim, we need to represent construction sequences.

An obvious representation of a construction sequence Q would be to store the
graph G0 = smooth(H) and in addition every BG-operation, which gives the se-

Fig. 6 A 3-connected graph
having a vertex x of degree 3
with no incident edge being
removable. Removing each
incident edge of x results in the
black separation pair

202 Algorithmica (2012) 62:192–208

quence G0, . . . ,Gz = G. Unfortunately, the graphs Gi are not necessarily subgraphs
of Gi+1, so we have to take care of relabeled edges when specifying each operation.

Whenever an edge e is subdivided as part of an operation (b) or (c), we specify it
by its index in Gi followed by assigning new indices to the new degree-two vertex
and one of the two new separated edge parts in Gi+1. The other edge part keeps the
index of e.

Similarly, on operations (a) and (b), real end vertices of the added edge are spec-
ified by their indices in Gi . We assign a new index to the added edge in Gi+1, too.
Finally, we have to impose the constraint that Gz is not just isomorphic but identical
to G, meaning that vertices and edges of Gz and G are labeled by exactly the same
indices, since otherwise we would have to solve the graph isomorphism problem to
check that Q really constructs G.

On the other hand, the identification of Gi with a subdivision Si in G allows
us to represent Q without indexing issues: We just store S0 ⊂ G and the BG-paths
C0, . . . ,Cz−1. Hence, we can represent each construction sequence Q of G in the
following two ways.

– Edge representation: Represent Q by G0 and a sequence of BG-operations, along
with specifying new and old indices for each operation, such that Gz and G are
labeled the same.

– Path representation: Represent Q by S0 and BG-paths C0, . . . ,Cz−1.

Both representations refer to the same sequence of graphs G0, . . . ,Gz and are
linear in the graph size. Assuming the uniform cost model, this size is Θ(m), as the
uniform cost model is independent on the size of the numbers processed; in particular,
the space amount of each index is 1 instead of O(logn). The next lemma states that
it does not matter which of the two representations we compute.

Lemma 13 The edge and path representations of a construction sequence Q can be
transformed into each other in O(m) time. Moreover, the representation computed is
a unique representation of Q.

Proof Let G0 and a sequence of BG-operations along with their specified indices
on edges and vertices be given. If an operation O ′ subdivides an edge e′, we define
β(e′,O ′) to be the edge that gets a new index. Let e be the added edge of an operation
in Q. Exploiting the duality of BG-paths and BG-operations, the edge e corresponds
to a BG-path C, which will be subdivided by inserting |C| − 1 vertices in the con-
struction sequence. To compute the BG-path C from e, we have to keep track of the at
most |C| − 1 operations that subdivide e and glue the subdivided parts back together.

Whenever an operation O ∈ Q subdivides e, we store a pointer at β(e,O) to e.
Moreover, on all edges f that point to e and are subdivided by an operation O ′′, we
store a pointer at β(f,O ′′) to e. In both cases, we append β(e,O) (resp. β(f,O ′′))
to a list stored on the edge e. Therefore, we keep track of all new edges β(e,O)

and β(f,O ′′) that subdivided C. Eventually, we get all the edges in which C got
subdivided by augmenting the list of e with e itself. Hence, we have computed the
set of edges that C consists of. Since Gz has the same labeling as G, the indices of e

and all other edges in C are still contained in G.

Algorithmica (2012) 62:192–208 203

The set of edges is not necessarily in the order of appearance in C, but this can
be easily fixed in time O(|C|) by temporarily storing the incidence information of
every vertex in C and extracting the BG-path C from a degree-one vertex. In order to
compute S0, we analogously maintain pointers for each edge of G0 and get the links
of S0. Since the links of S0 together with C0, . . . ,Cz−1 partition E(G) \ E(S0), the
running time is O(m).

Conversely, let S0 and the sequence C0, . . . ,Cz−1 of BG-paths be given. We
remove BG-paths in reversed order from G by deleting their edge (there is only
one edge left this way, the one added in the corresponding BG-operation) followed
by smoothing their end vertices. Therefore, we pass through the graph sequence
Gz, . . . ,G0 and get G0. If both end vertices of the BG-path Ci = a → b are real
after deleting ab, we can keep their index and construct the corresponding BG-
operation (a).

Otherwise, let a have degree 2 after deleting ab and let e and f be its incident
edges. When a is smoothed, we can assign the lowest index of e and f to the new
edge. Thus, all indices that are necessary for constructing the operation (b) can be
found in constant time. If additionally b has degree 2, the same procedure constructs
operation (c). It remains to show that always unique representations of Q are com-
puted. The path representation with BG-paths is by definition unique. In contrast,
edge representations can vary in their indices. However, picking the incident edge
with lowest index before smoothing a vertex creates a unique representation, since
all edge indices of G are given. �

If G is simple, the construction sequences (7) and (8) can be transformed into each
other efficiently.

Lemma 14 For simple graphs G, the construction sequences (7) and (8) can be
transformed into each other in O(m).

Proof With Lemma 13, we can assume that the construction sequence (7) is given
in the path representation. We will rearrange the order of BG-paths to generate ba-
sic operations. For each BG-path P , its position in the construction sequence and a
pointer to the first BG-path F(P) that ends at an inner vertex of P (if that path exists)
is stored. We define the position of each link of S0 as 0. Performing a bucket sort on
the lower end vertices of each BG-path (lower in any given total order on V (G)) fol-
lowed by a stable bucket sort on the remaining end vertices gives a list of BG-paths
sorted in lexicographic order of the end vertex. This list can be used to efficiently
group paths that have the same end vertices.

Let Rab be the set of all BG-paths and links of S0 having end vertices a and b.
We apply the following rule: If a path P ∈ Rab has length one and does not have the
first position of all paths in Rab , we append it to the end of the construction sequence
and remove it from Rab . This does not harm the construction sequence, since a and
b were already real and P has no inner vertices.

The path with the first position in Rab cannot lead to a non-basic operation. We
look at all other paths P ∈ Rab , which are possibly non-basic, but must contain an
inner vertex w that is an end vertex of the subsequent BG-path F(P) = v → w.

204 Algorithmica (2012) 62:192–208

Fig. 7 No expand operation can
be formed

Without harming the construction sequence, P can be moved to the position of F(P),
since a and b were already real and no inner vertex of P is part of a BG-path before
F(P) is applied. If v is real at the point in time when F(P) is applied, we can
glue P and F(P) together to an expand operation, which is basic due to its new
vertex w. Otherwise, v is an inner vertex of a link (see Fig. 7) and P and F(P) can
be replaced with the two BG-paths v → a and b → w. Both BG-paths are basic, since
they contain end vertices of degree 2.

Conversely, the three internally vertex-disjoint paths of each expand operation can
be easily split into two BG-paths, possibly inducing non-basic operations. �

4 Certifying and Testing 3-connectivity in O(n2)

We use construction sequences in the path representation as a certificate for the 3-
connectivity of graphs. This leads to a new, certifying method for testing graphs on
being 3-connected. The total running time of this method is O(n2). This is dominated
by the time needed for finding the construction sequence and every improvement
made there will automatically result in a faster 3-connectivity test. The input graph
is a multigraph and does not have to be biconnected nor connected. We follow the
steps:

– Apply the linear-time algorithm of Nagamochi and Ibaraki to the input graph G′
in order to get a graph G = (V ,E) where the number of edges is in O(n).

– Try to compute a K4-subdivision in G in O(n).
– Success: Let S0 be the K4-subdivision.
– Failure: Return a separation pair or cut vertex.

– Try to compute a construction sequence from prescribed S0 to G in O(n2).
– Success: Return the construction sequence.
– Failure: Return a separation pair or cut vertex.

The graph G output by Nagamochi and Ibaraki is 3-connected if and only if the
input graph G′ is 3-connected. We first describe how to find a K4-subdivision by one
Depth First Search (DFS), which as a byproduct eliminates self-loops and parallel
edges and sorts out graphs that are not connected or have vertices with degree less
than 3.

Lemma 15 Let G be a graph on at least 4 vertices. There is a simple DFS-based
algorithm that computes either a K4-subdivision or a separation pair in G in time
O(n + m).

Algorithmica (2012) 62:192–208 205

Fig. 8 Finding a
K4-subdivision. Dashed edges
depict (possibly empty) paths,
arcs depict backedges

Proof Let T be a DFS-tree of G and let a (resp. b) be the vertex in T that is visited
first (resp. second). We can assume that both a and b have exactly one child in T ,
respectively, as otherwise a and b form a separation pair. We choose two arbitrary
neighbors c and d of a that are different from b (see Fig. 8). W.l.o.g., let d be visited
later by the DFS than c. Let i be the least common ancestor of c and d in T . Then
i �= b, as b has exactly one child in T . Since d �= i holds, let j be the child of i that is
contained in the path i → d in T .

If G is 3-connected, we can find a backedge e that starts on a vertex z in the subtree
rooted at j and ends on an inner vertex z′ of a → i in time O(n). If e does not exist,
a and i form a separation pair. Otherwise, let k be the nearest ancestor of z contained
in the path j → d in T . Each of the three backedges ac, ad and e close a cycle when
added to T , resulting in six internally vertex-disjoint paths connecting the vertices
in {a, z′}, {z′, i}, {i, k}, {k, a}, {z′, k} and {a, i}, respectively. Thus, we have found a
K4-subdivision with real vertices a, z′, i and k. �

We now show how to carry out the last step of the algorithm. Let H be the com-
puted K4-subdivision. In order to find the construction sequence, we use the path
representation and try to find iteratively BG-paths along the lines of Theorem 11.

Lemma 16 Let H be a subdivision of a 3-connected graph that is contained in a
3-connected graph G with m = O(n). There is a algorithm that computes a BG-path
for H in time O(n).

Proof We compute the links of H , assign an index to every link and store this index
on each of the inner vertices of that link in O(n) total time. Moreover, we maintain
a pointer on that index that points to the end vertices of the link. It remains to show
how to find a BG-path along the lines of Theorem 11.

In case H �= smooth(H), we pick an arbitrary vertex x of degree two. Let
T = a → b be the link that contains x and let W be the set of vertices V (H) \ V (T)

minus all vertices in parallel links of T . We compute the path P = x → y′ by tem-
porarily deleting a and b and performing a DFS from x that stops on the first vertex
y′ ∈ W . We can check whether a vertex lies in a parallel link of T in constant time
by comparing the end vertices of its containing link with a and b. Thus, the subpath
x′ → y′ with x′ being the last vertex contained in T or in a parallel link of T is a
BG-path and can be found efficiently. Similarly, in case H = smooth(H) we delete
temporarily all edges in E(H) and start a DFS from a vertex x ∈ V (H) that has

206 Algorithmica (2012) 62:192–208

an incident edge in the remaining graph. The traversal is stopped on the first vertex
y ∈ V (H) \ {x} and the path x → y is then the desired BG-path. �

Each time we have found a BG-path, a new index is assigned to it and stored on
each of its inner vertices. We also store a pointer on this index that points to both end
vertices of the BG-path. These update operations can be carried out in O(n) time as
well. Iterating the procedure, a construction sequence can be found in time O(n2) if
the input graph G is 3-connected.

By Theorem 12, if G is not 3-connected, no construction sequence can exist. In
that case, it remains to show that we can always find a separation pair or cut vertex.
For some subdivision H ⊂ G of a 3-connected graph, the DFS starting at vertex x

must fail to find a new BG-path. If H �= smooth(H), the end vertices of the link that
contains x must form a separation pair. Otherwise, H = smooth(H) and x must be
a cut vertex due to Theorem 11. Thus, if G is not 3-connected, the algorithm returns
either a separation pair or a cut vertex.

Theorem 17 The construction sequences (7) and (8) can be computed in O(n2) and
establish a certifying 3-connectivity test with the same running time.

This raises the following open question.

Question 18 Is there a certifying algorithm with running time o(n2) that computes a
certificate for 3-connectivity of at most linear size?

4.1 Verifying the Construction Sequence

We could validate the certificate by transforming the path representation to the edge
representation using Lemma 13 and checking the validity of the BG-operations by
comparing indices, but there is a more direct way. First, it can be checked in linear
time that all BG-paths C0, . . . ,Cz−1 are paths in G and that these paths partition
E(G) \ E(S0). We try to remove the BG-paths Cz−1, . . . ,C0 from G in that order
(i.e., we delete the paths followed by smoothing its end vertices). If the certificate
is valid, this is well defined since all removed BG-paths are edges. On the other
hand, we can detect longer BG-paths |Ci | ≥ 2 before their removal. In that case, the
certificate is not valid, since the inner vertices of Ci are not attached to BG-paths Cj ,
j > i.

We verify that every removed Ci = ab corresponds to a BG-operation by using
Definition 9 of BG-paths, and start with checking that a and b lie in our current
subgraph for Condition 9.1.

Conditions 9.2 and 9.3 can now be checked in constant time: Consider the situation
immediately after the deletion of ab, but before smoothing a and b. Then all links in
our subgraph are single edges, except possibly the ones containing a and b as inner
vertices.

Therefore, Condition 9.2 is not met for Ci if a is a neighbor of b and at least
one of the vertices a and b has degree two (see Fig. 9 for possible configura-
tions). Condition 9.3 is not met if N(a) = N(b) and both a and b have degree

Algorithmica (2012) 62:192–208 207

Fig. 9 Cases where
Condition 9.2 fails when
a ∈ N(b)

two. Both conditions can be checked in constant time. Note that encountering BG-
paths Cz−1,Cz−2, . . . ,Ci does not necessarily imply that the current subgraph is 3-
connected, since a path Cj with j < i and being no BG-path might occur later.

It remains to validate that the graph after removing all BG-paths equals K4. This
can done in constant time by checking it on being simple and having exactly 4 vertices
of degree three.

Theorem 19 The sequences (4)–(8) can be checked on validity in time linearly de-
pendent on their length.

Acknowledgement We want to thank the anonymous reviewers for their detailed and helpful comments
on the original version of this paper.

References

1. Albroscheit, S.: Ein Algorithmus zur Konstruktion gegebener 3-zusammenhängender Graphen (in
German). Diploma thesis, Freie Universität Berlin (2006)

2. Barnette, D.W., Grünbaum, B.: On Steinitz’s theorem concerning convex 3-polytopes and on some
properties of 3-connected graphs. In: Many Facets of Graph Theory. Lecture Notes in Mathematics,
pp. 27–40. Springer, Berlin (1969)

3. Blum, M., Kannan, S.: Designing programs that check their work. In: Proceedings of the 21st Annual
ACM Symposium on Theory of Computing (STOC’89), New York, pp. 86–97 (1989)

4. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete.
SIAM J. Comput. 5(4), 704–714 (1976)

5. Halin, R.: Zur Theorie der n-fach zusammenhängenden Graphen. Abh. Math. Semin. Univ. Hamb.
33(3), 133–164 (1969)

6. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3),
135–158 (1973)

7. Kelmans, A.K.: Graph expansion and reduction. In: Algebraic Methods in Graph Theory, Szeged,
Hungary, vol. 1, pp. 317–343 (1978)

8. Kratsch, D., McConnell, R.M., Mehlhorn, K., Spinrad, J.P.: Certifying algorithms for recognizing
interval graphs and permutation graphs. SIAM J. Comput. 36(2), 326–353 (2006). Preliminary version
in SODA 2003, pp. 158–167

9. Mehlhorn, K., Näher, S.: From algorithms to working programs: On the use of program checking
in LEDA. In: Proceedings of the 23rd International Symposium on Mathematical Foundations of
Computer Science (MFCS’98), pp. 84–93 (1998)

10. Mehlhorn, K., Näher, S., Seel, M., Seidel, R., Schilz, T., Schirra, S., Uhrig, C.: Checking geomet-
ric programs or verification of geometric structures. Comput. Geom. Theory Appl. 12(1–2), 85–103
(1999)

208 Algorithmica (2012) 62:192–208

11. Menger, K.: Zur allgemeinen Kurventheorie. Fund. Math. 10, 96–115 (1927)
12. Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse k-connected spanning sub-

graph of a k-connected graph. Algorithmica 7(1–6), 583–596 (1992)
13. Schmidt, J.M.: Construction sequences and certifying 3-connectedness. In: Proceedings of the 27th

International Symposium on Theoretical Aspects of Computer Science (STACS’10), Nancy, France,
pp. 633–644 (2010)

14. Thomassen, C.: Kuratowski’s theorem. J. Graph Theory 5(3), 225–241 (1981)
15. Thomassen, C.: Reflections on graph theory. J. Graph Theory 10(3), 309–324 (2006)
16. Titov, V.K.: A constructive description of some classes of graphs. Ph.D. Thesis, Moscow (1975)
17. Tutte, W.T.: A theory of 3-connected graphs. Indag. Math. 23, 441–455 (1961)
18. Tutte, W.T.: Connectivity in graphs. In: Mathematical Expositions, vol. 15. University of Toronto

Press, Toronto (1966)
19. Vo, K.-P.: Finding triconnected components of graphs. Linear Multilinear Algebra 13, 143–165

(1983)
20. Vo, K.-P.: Segment graphs, depth-first cycle bases, 3-connectivity, and planarity of graphs. Linear

Multilinear Algebra 13, 119–141 (1983)
21. West, D.B.: Introduction to Graph Theory. Prentice Hall, New York (2001)

	Construction Sequences and Certifying 3-connectivity
	Abstract
	Introduction
	Construction Sequences
	Tutte's Characterization and Its Inverse
	Barnette's and Grünbaum's Characterization and Its Inverse
	Identifying Intermediate Graphs with Subdivisions in G

	Prescribing Subdivisions
	Certifying and Testing 3-connectivity in O(n2)
	Verifying the Construction Sequence

	Acknowledgement
	References

