
Algorithmica (2012) 62:130–145
DOI 10.1007/s00453-010-9446-5

A Linear Algorithm for the Random Sampling
from Regular Languages

Olivier Bernardi · Omer Giménez

Received: 10 September 2009 / Accepted: 18 August 2010 / Published online: 3 September 2010
© Springer Science+Business Media, LLC 2010

Abstract We present the first linear algorithm for the random sampling from regular
languages. More precisely, for generating a uniformly random word of length n in
a given regular language, our algorithm has worst-case space bit-complexity O(n)

and mean time bit-complexity O(n). The previously best algorithm, due to Denise
and Zimmermann (Theor. Comp. Sci. 218(2):233–248, 1999), has worst-case space
bit-complexity O(n2) and mean time bit-complexity O(n log(n)). The Denise et al.
algorithm was obtained by performing a floating-point optimization on the general re-
cursive method formalized by Nijenhuis and Wilf (and further developed by Flajolet,
Zimmermann and Van Cutsem). Our algorithm combines the floating-point optimiza-
tion with a new divide-and-conquer scheme.

Keywords Random sampling · Regular languages

1 Introduction

A random generation algorithm, or RGA for short, for a combinatorial class C is an
algorithm that receives an integer n as input, and outputs an object chosen uniformly
at random among the objects of size n in C . RGAs find applications in areas such
as hardware and software testing, coding theory and bioinformatics; also, they are
valuable tools for conjecturing some probabilistic properties of the classes of objects
they sample from. These needs have motivated the search for efficient RGAs. Al-
though several papers are devoted to RGAs particular to a special class of objects

O. Bernardi
MIT, Cambridge, 02139 MA, USA
e-mail: bernardi@math.mit.edu

O. Giménez (�)
Universitat Politecnica de Catalunya, Barcelona, Spain
e-mail: omer.gimenez@gmail.com

mailto:bernardi@math.mit.edu
mailto:omer.gimenez@gmail.com

Algorithmica (2012) 62:130–145 131

(for instance, planar graphs [10]), it is even more important to come up with general
strategies for designing RGAs which apply to a whole family of classes. In particular,
much attention has been set on the family of regular languages [5, 13], on the family
of algebraic languages (in particular, codes for trees) [1, 2, 7, 11, 12, 15], and more
generally on the family of recursive combinatorial classes [9, 17].

For a given recursive combinatorial class, a RGA can be obtained by following
the so-called recursive method originating from the work of Nijenhuis and Wilf [17]
and further developed by Flajolet, Zimmermann and Van Cutsem [9]. These recursive
RGAs are the ones classically used in packages like Combstruct (under the computer
algebra MAPLE) and CS (under MUPAD). A different approach, the so-called ECO
method follows from the work of Barcucci et al.; this approach applies to combina-
torial classes that can be described in terms of succession rules [2, 3]. More recently,
Duchon et al. have shown how to design Boltzmann samplers for recursive combina-
torial classes [8]. For a given class C , a Boltzmann sampler receives a positive real
parameter z, and outputs an object c ∈ C with a probability proportional to z|c|, where
|c| is the size of c (this makes sense for z small enough).

The performance of a RGA can be measured either in terms of its integer-
complexity (where storing an integer costs 1 unit of space and a comparison or arith-
metic operation on integers costs 1 unit of time) or in terms of its bit complexity
(where storing a bit costs 1 unit of space and a comparison or arithmetic operation on
integers costs 1 unit of time). For RGAs, the two measures are really different because
most algorithms have to manipulate integers growing exponentially in the length n

of the word to be generated (this feature was already mentioned in [9]). For instance,
the recursive method for context-free languages leads to a linear integer-complexity
but to a quadratic bit-complexity in both time and space. In the following, we shall
only use the bit-complexity, which represents a much more realistic measure of prac-
tical costs of the algorithms. Another important remark is that random generation
algorithms rely on the use of a random number generator in order to perform ran-
dom choices. This explains that we shall focus on mean time complexity (since the
worst-case complexity is infinite) and consider that generating a (uniformly) random
bit costs 1 unit of time.

In this article we study the problem of designing efficient RGAs for regular lan-
guages (equivalently, sets of words recognized by a deterministic finite automaton,
sets of words generated by a regular expression, sets of paths within a directed
graph). This family indeed deserves special attention because of its omnipresence
in computer science and bioinformatics. The best known RGA for regular languages
was obtained by Denise and Zimmermann in [7] by adapting the classical recursive
method to certified floating-point arithmetics. It should be clear that, although using
floating point arithmetic, this RGA is exact: the probability measure on the output
is exactly uniform. For generating a word of length n in a given regular language,
the RGA of Denise and Zimmermann has mean-time bit complexity O(n log(n)) and
a worst case bit-complexity O(n2) (although the space complexity is O(n) in most
cases). Comparing with this result, Boltzmann samplers (piled up with a rejection
procedure) would give an algorithm having time-complexity of order O(n2) if no
margin of error is accepted on the length n of the word to be generated (see [8, The-
orem 5]). The ECO method has a time complexity of O(n3) integer operations in the
general case.

132 Algorithmica (2012) 62:130–145

In this contribution we present the first space- and time-optimal algorithm for the
random sampling from regular languages. More precisely, we show an algorithm
with mean-time bit-complexity O(n) and worst-case space bit-complexity O(n) to
generate uniformly at random a word of n characters. The new idea underlying this
improvement is a divide-and-conquer scheme for counting and generating words in
a regular language. If implemented naively with exact integer representation, the
divide-and-conquer RGA has linear bit-complexity in space but not in time. How-
ever, we show that linear time complexity can be achieved by adapting our RGA to
certified floating-point arithmetics. In practice, our algorithm outperforms previously
known algorithms for large values of n and allows to generate words of length one
billion on a standard PC. On a more theoretical point of view, our result proves the
linearity of the complexity of random sampling for a large and important class of
languages. The most obvious question left open is whether a linear time RGA exists
for any context-free language.

The paper is organized as follows. In Sect. 2, we recall the definition of the re-
cursive RGA for regular languages and then describe the divide-and-conquer RGA.
In Sect. 3, we discuss the adaptation of both RGAs to floating-point arithmetics and
compare the complexities of the algorithms. In Sect. 4, we discuss implementation is-
sues and compare experimental performances of both RGAs. We conclude in Sect. 5
with some remarks and possible extensions.

2 Description of the Random Generation Algorithms

2.1 Regular Languages and Automatons

We first recall some definitions about regular languages. An alphabet is a finite set
whose elements are called letters. A word is a finite sequence of letters; a language
is a set of words. An (finite, deterministic and complete) automaton on an alphabet A
is a quadruple M = (Q,q0,F,σ), where Q is the set of states, q0 ∈ Q is the initial
state, F ⊆ Q are the final states, and σ : Q × A �→ Q is the transition function. The
(labelled) digraph GM associated to M is the digraph whose vertices are the states
of M and where there is an arc from state p to state q with label a ∈ A if and only
if σ(p,a) = q . A word w = a1a2 · · ·an is accepted by the automaton M if w labels
a directed path from the initial state to a final state. The language accepted by an
automaton M, denoted by L(M), is the set of words accepted by M. A language L is
regular if there is an automaton M such that L = L(M).

In the following, we let M = (Q,q0,F,σ) be an automaton on the alphabet A with
accepted language L = L(M). For any state p in Q, we denote by Mp the automaton
(Q,p,F,σ). Similarly, for any pair of states q, q ′ in Q, we denote by Mq,q ′ the
automaton (Q,q, {q ′}, σ). We also denote by Lq = L(Mq) (resp. Lq,q ′ = L(Mq,q ′))
its accepted language. Finally, let lq,n (resp. lq,q ′,n) denote the number of words of
length n in this language. In particular, L = Lq0 = ⊎

q ′∈F Lq0,q
′ .

2.2 Recursive RGA

We first recall the definition of the recursive RGA for the language L(M). We con-
sider the (random) first letter a1 of a word w = a1a2 · · ·an chosen uniformly at ran-

Algorithmica (2012) 62:130–145 133

dom among the word of length n in L(M) = Lq0 . For any letter a ∈ A, the probability

that a1 = a is
lσ (q0,a),n−1

lq0,n
. Moreover, conditionally upon a1, the subword w′ = a2 · · ·an

is a word of length n − 1 chosen uniformly at random in Lq1 , where q1 = σ(q0, a1).
Thus, if all the numbers lq,m for q ∈ Q and m = 0,1, . . . , n − 1 are preprocessed,
one can choose the letters a1, a2, . . . , an of w sequentially with suitable probabilities.
This leads to the following algorithm.

Definition 1 [9, 17] Recursive RGA:
(0) Input: an automaton M = (Q,q0,F,σ) and an integer n.

Preprocessing:

(1) Set lq,0 = 1 if q is a final state and lq,0 = 0 otherwise.
(2) For i from 1 to n do:
(3) For all q ∈ Q, lq,i = ∑

a∈A lσ (q,a),i−1.
Generation:

(4) Set q = q0.
(5) For i from 1 to n do:
(6) Choose the letter ai = a in A with probability

lσ (q,a),n−i

lq,n−i+1
.

(7) Set q = σ(q, ai).
(8) Return the word w = a1a2 · · ·an.

It should be clear from the above discussion that the recursive RGA outputs a word
of length n uniformly at random in the language L(M).

2.3 Divide-and-Conquer RGA

Recall first that the words of the language L = L(M) are in one-to-one correspon-
dence with the directed paths from the initial state to a final state in the digraph GM
and that the number lq,q ′,n counts the directed paths of length n from state q to state
q ′ in this digraph. Now, the problem of generating uniformly at random a path of
length 2n going from a state q to a state q ′ can be solved recursively by choosing
the middle state p (reached after n steps) with suitable probability and then generate
uniformly at random paths of length n from q to p and from p to q ′. Moreover, the

suitable probability for choosing the middle state p is
lq,p,n·lp,q′,n

lq,q′,2n
. This simple obser-

vation underlies the divide-and-conquer RGA. For simplicity, we first describe this
algorithm when the length n of the word to be generated is a power of 2.

Definition 2 Divide-and-conquer RGA:
(0) Input: an automaton M = (Q,q0,F,σ) and an integer n = 2k .

Preprocessing:

(1) Set lp,q,1 to be the number of arcs going from p to q in GM.
(2) For i from 2 to k do:
(3) For all q, q ′ ∈ Q, set lq,q ′,2i = ∑

p∈Q lq,p,2i−1 · lp,q ′,2i−1 .
Generation:

(4) Choose the final state p = qn in F with probability
lq0,p,n∑

f ∈F lq0,f,n
.

134 Algorithmica (2012) 62:130–145

(5) For i from 1 to k do:
(6) For j from 1 to 2i do:

(7) Choose the state p = q(2j−1)m with probability
lq,p,m·lp,q′,m

lq,q′,2m
,

where m = 2k−i , q = q(2j−2)m and q ′ = q2jm.
(8) For i from 1 to n do:
(9) Choose the letter ai uniformly among the letters labelling arcs from

qi−1 to qi .
(10) Return the word w = a1a2 · · ·an.

In the divide-and-conquer RGA, Lines (1)–(3) correspond to the preprocessing
of the numbers lp,q,2i for all p,q in Q and all integer i ∈ {1, . . . , k}. Lines (4)–(7)
correspond to the choice of the sequence of states q0, . . . , qn in a random directed
path of length n from the initial state q0 to a final state qn. Finally, Lines (8)–(9)
correspond to the choice of the label of the arc (letter ai) between the consecutive
states qi−1 and qi , for i ∈ {1, . . . , n}. The above discussion should make the following
theorem obvious (when n is a power of 2).

Theorem 3 The divide-and-conquer RGA generates a word of length n uniformly at
random in the language L(M).

Let us now explain how to deal with the case where n is not a power of 2. An
addition scheme for n is a sequence n1, n2, . . . , ns such that n1 = 1, ns = n and
for all k ∈ {2, . . . , s} there are indices i, j < k such that nk = ni + nj . Given an
addition scheme n1, n2, . . . , ns for n, one can preprocess all the numbers lq,q ′,ni

for
q, q ′ ∈ Q and i{1, . . . , s} recursively by using the relation lq,q ′,nk

= ∑
p∈Q lq,p,ni

·
lp,q ′,nj

, where nk = ni + nj . Then, at the generation step, a directed path of length
nk = ni + nj from a state q to a state q ′ can be chosen uniformly at random by

choosing the state p reached after ni steps with probability
lq,p,ni

·lp,q′,nj

lq,q′,nk

and then

generating uniformly at random a path of length ni from q to p and a path of length
nj from p to q ′. We omit the specification of the algorithm for generic n and simply
observe that if br . . . b1b0 is the binary representation of n (that is, n = ∑r

i=0 bi2i),
then the increasing sequence whose terms are {2i | 1 ≤ i ≤ s} ∪ {∑r

i=0 bi2i | 1 ≤ i ≤
s} is an addition scheme for n.

3 Complexity Analysis

In this section we analyze and compare the complexity of the recursive and divide-
and-conquer RGAs. We will only be interested in the bit-complexity of algorithms,
where storing a bit costs 1 unit of space and 1 unit of time, while comparing, adding,
subtracting or multiplying two bits costs 1 unit of time. Given an automaton M with
state space Q = {p1,p2, . . . , pq} on the alphabet A, we will express the complexity
of the RGAs as a function of the number q of states and the length n of the word to
be generated. The number of letters a = |A| also enters in the discussion but will be
considered a (small) fixed constant.

Algorithmica (2012) 62:130–145 135

We also recall our assumptions about random choices occurring in the RGA (for
instance in Line (6) of the recursive RGA and Line (7) of the divide-and-conquer
RGA). We assume in this paper that one can draw a number uniformly at random
from the interval [0,1]. From now on, the letter X will always denote such a random
number. The complexity of producing and reading the first k bits of X is assumed to
be O(k). Given these assumptions, comparing X with a fixed real number y has con-
stant mean time complexity but unbounded worst-case time complexity. In Line (6) of
the recursive RGA, the choice of the letter ai is made by comparing a random number
X with the threshold values fq,i,r = 1

lq,n−i+1

∑r
j=1 lσ (q,αj),n−i for r = {0, . . . ,a} (the

letter ai is the k-th letter of the alphabet A if and only if fq,i,r−1 ≤ x < fq,i,r). Simi-
larly the choice in Line (7) of the divide-and-conquer RGA is made by comparing X

with the threshold values fq,q ′,m,r = 1
lq,q′,2m

∑r
j=1 lq,pj ,mlpj ,q ′,m for r = {0, . . . ,q}.

Here two strategies are possible: either all the values fq,q ′,m,r are stored at the pre-
processing step or they are computed each time that they are necessary. We call high-
preprocessing the version of the divide-and-conquer which computes and stores the
values fq,q ′,m,r in the preprocessing step and low-preprocessing the other version.1

3.1 Exact Integer Representation

We first analyze the complexity of the recursive and divide-and-conquer RGAs using
exact integer representation.

Proposition 4 The bit-complexity of the RGAs using exact integer representation is
given in Table 1.

Proof We first analyze the complexity of the recursive RGA and then the two ver-
sions of the divide-and-conquer RGA.

Recursive RGA. The preprocessed numbers lq,m, for q ∈ Q and m ∈ {1, . . . , n},
are of order am, hence they have binary representations of length O(m). Thus, the
preprocessing step has space-complexity O(q

∑n
m=1 m) = O(qn2). Moreover, the

cost of an addition of two numbers of length O(m) is O(m), thus the preprocessing
step has time-complexity O(qn2). At the generation step, the threshold values fq,m,r

are compared with random numbers chosen uniformly in [0,1]. In average, a constant

Table 1 Bit-complexity of RGAs using exact integer representation

RGA: Recursive Divide-and-conquer Divide-and-conquer

Version: Low-preprocessing High-preprocessing

Preprocessing space qn2 q2n q3n

Preprocessing time qn2 q3n2 q3n2

Generation time n qn log(q)n

1We do not consider here the distinction between high- or low-preprocessing for the recursive RGA, since
their complexity are equal up to a factor depending only on the number a of letters.

136 Algorithmica (2012) 62:130–145

number of bits of fq,m,r is sufficient for such a comparison. Hence, by computing the
value of the thresholds fq,m,r only with the precision needed, one obtains a mean
time-complexity in O(n) for the generation step.

Divide-and-conquer RGA. We analyze the complexity in the special case where n

is a power of 2. It can be checked that the complexity obtained is also valid for
general n.

We first analyze the low-preprocessing version. The preprocessed numbers lq,q ′,2i ,

for q, q ′ ∈ Q and i ∈ {1, . . . , log2(n)}, are of order a2i
, hence they have binary

representations of length O(2i). Thus, the preprocessing step has space-complexity
O(q2 ∑log(n)

i=1 2i) = O(q2n). Since the multiplication of two numbers of length O(b)

takes time O(b2) when using a naive algorithm, the preprocessing step has time-

complexity O(q3 ∑log2(n)

i=1 22i) = O(q3n2). The time-complexity of the generation
step is O(qn) since, as in the case of the recursive RGA, the threshold values fq,q ′,2i ,r

need only to be computed with the precision needed for comparison with a random
number X.

We analyze the high-preprocessing version. In this version, the threshold val-
ues fq,q ′,m,r = 1

lq,q′,2m

∑r
j=1 lσ (q,pj),mlσ (pj ,q ′),m are stored with exact representa-

tion. More precisely the numerator sq,q ′,m,r = ∑r
j=1 lq,pj ,mlpj ,q ′,m and denomina-

tor lq,q ′,2m = ∑q
j=1 lq,pj ,mlpj ,q ′,m are both stored with exact representation. Since

the size of the binary representation of sq,q ′,m,r is at most the size of the binary
representation lq,q ′,2m, the space-complexity is multiplied by at most q between the
low-preprocessing and high-preprocessing versions. The time-complexity of the pre-
processing step is unchanged between the two versions, since exactly the same com-
putations are performed. The mean time-complexity of the generation step using di-
chotomic search to compare a random number X with the threshold values fq,q ′,m,r

is then O(log(q)n). �

Remark Note that the computations performed in Lines (2)–(3) of the divide-and-
conquer RGA correspond to a matrix multiplication. Hence, the time-complexity of
the preprocessing step could be reduced to O(qlog2(7)n2) by using the Strassen algo-
rithm for matrix multiplication [4]. Time-complexity could also be improved by us-
ing more sophisticated algorithms for integer multiplications. For instance, the time-
complexity would be O(qlog2(7)nlog2(3)) if Karatsuba algorithm is used.

3.2 Floating-point Arithmetic

As already mentioned, the numbers lq,m or lq,q ′,m preprocessed by RGAs have a
binary representation of length O(n). Observe, however, that to choose a letter a ∈ A

at the generation step of the recursive RGA it is often enough to know O(log(a)) bits
of the numbers lq,m. This remark, already expressed in [9], can be used to obtain an
efficient approximate RGA. For any positive real number γ , a γ -approximate RGA
for a regular language L takes as input an integer n and outputs a random word W

of length n in L such that the difference of probability |P(W = w1) − P(W = w2)|
is less than 2γ for any two words w1, w2 of length n in L. As we will see below,
floating-point arithmetic naturally leads to some γ -approximate RGAs. Furthermore,

Algorithmica (2012) 62:130–145 137

Denise and Zimmerman have shown in [7] how to design an efficient exact RGA
using certified floating-point arithmetic. We now recall some of the ideas and results
of [7] and adapt them to the divide-and-conquer RGA.

Recall from [14] that a floating-point number x is generally represented by
three values: a sign sx ∈ {−1,1}, a mantissa mx and an exponent ex such that
x = sx ·mx · 2ex . When computing numbers using a fixed mantissa length b, a round-
ing mode � has to be chosen for arithmetic operations (e.g. toward 0, toward −∞ or
toward nearest neighbor). This choice fixes the behavior of the floating-point arith-
metic operation as follows: for any two numbers x, y (represented with mantissa
length b), the floating-point operation � corresponding to the arithmetic operation ∗
in {+,−,×, /} is such that x � y = �(x ∗ y). We now analyze the error propagation
occurring during the preprocessing step of the RGAs using floating-point arithmetic.

Lemma 5 If the preprocessing step of the recursive (resp. divide-and-conquer) RGA
is performed using floating-point arithmetic with mantissa length b, then one obtains
approximations l̃q,m of lq,m (resp. l̃q,q ′,m of lq,q ′,m) satisfying

|̃lq,m − lq,m| ≤ 2ma
2b

lq,m and |̃lq,q ′,m − lq,q ′,m| ≤ 4mq
2b

lq,q ′,m (1)

for all q, q ′ in Q and all m ∈ N.

Proof The analysis is very similar to the one performed in [7] and we will only do it
for the divide-and-conquer algorithm in the case where n is a power of 2. The basic
property of the floating-point operations ⊕ and ⊗ is that if x, y are real numbers and
x̃, ỹ are floating-point numbers (represented with mantissa of length b) satisfying
|̃x − x| < xδx and |̃y − y| < yδy , then

|(̃x ⊕ ỹ) − (x + y)| ≤ |x + y|(max(δx + δy) + 21−b)

and

|(̃x ⊗ ỹ) − (x × y)| ≤ |x × y|(δx + δy + 21−b).

Thus, by denoting δm the minimum real number such that |̃lq,q ′,m − lq,q ′,m| <

lq,q ′,mδm for all pair of states q, q ′ in Q, one easily obtains δ2i ≤ 2δ2i−1 + 2q
2b . From

this bound, a simple induction shows that δ2i ≤ 2q
2b (2i+1 −1) and the result follows. �

3.3 Approximate RGAs

The bound on error propagation given by Lemma 5 allows one to design γ -
approximate RGAs. Recall that at the generation step of the recursive RGA, the
random choices are made by drawing a number X uniformly at random from the
interval [0,1] and comparing it with some threshold values fq,m,r or fq,q ′,m,r . Let us
denote respectively by f̃q,m,r and f̃q,q ′,m,r the threshold values obtained by using the
approximations l̃q,m and l̃q,q ′,m instead of lq,m and lq,q ′,m. From (1) one easily gets

|f̃q,m,r − fq,m,r | ≤ 4an

2b
and |f̃q,q ′,m,s − fq,q ′,m,s | ≤ 8qn

2b
(2)

for all q, q ′ ∈ Q, m ≤ n, r ∈ {1 . . .a} and s ∈ {1 . . .q}.

138 Algorithmica (2012) 62:130–145

It is clear from (2) that for all q, q ′ ∈ Q and all m ≤ n there is a probability at most
8an
2b that a uniformly random number X compares differently with the approximate

threshold f̃q,m,r and with the exact threshold fq,m,r . Moreover, the number of com-
parisons made at the generation step of the recursive RGA is at most an. Hence, there
is a probability at most an · 8an

2b that the word w̃ generated by the recursive RGA using

the approximate thresholds f̃q,m,r is different from the world w that would have been
generated by using the exact thresholds fq,m,r . Thus, running the recursive RGA with

mantissa length b = log(8a2n2

γ
)� gives a γ -approximate RGA.

Similarly, for the divide-and-conquer RGA, the probability that a the word w̃ gen-
erated using the approximate thresholds f̃q,q ′,m,s is different from the world w that

would have been generated using the exact thresholds f̃q,q ′,m,s is at most qn · 16qn

2b .

Thus, using a mantissa length b = log(
16q2n2

γ
)� gives a γ -approximate RGA. This

leads to the following result.

Proposition 6 The complexity of the γ -approximate RGAs is given in Table 2.

Proof Due to the previous discussion, it only remains to analyze the complexity of
the preprocessing step of the recursive RGA (resp. divide-and-conquer RGA) with

floating-point arithmetic using a mantissa length b = log(8a2n2

γ
)� = O(log(n/γ))

(resp. b = log(
16q2n2

γ
)� = O(log(qn/γ))). Moreover, the analysis made in the proof

of Proposition 4 shows that the complexity of the preprocessing step performed with
a fixed mantissa length b is the one indicated in Table 3. From this, Proposition 6
follows. �

3.4 Exact RGAs

We now recall the method called ADZ in [7] and used there in order to design an ef-
ficient exact RGA. In the ADZ version of the recursive RGA, the preprocessing step
is performed using floating-point arithmetic with a (well chosen) mantissa length b

ensuring that the absolute difference between any threshold fq,m,r and its approxi-
mation f̃q,m,r is at most δ. Then, at the generation step, if a random number X falls
in one of the error intervals [f̃q,m,r − δ, f̃q,m,r + δ], the preprocessing step is run
again but with exact integer representation so as to compare X with the real threshold
fq,m,r . The same method can be applied to the divide-and-conquer RGA. Observe

Table 2 Bit-complexity of γ -approximate RGAs

RGA: Recursive Divide-and-conquer Divide-and-conquer

Version: Low-preprocessing High-preprocessing

Preprocessing space qn log(n/γ) q2 log(n) log(qn/γ) q3 log(n) log(qn/γ)

Preprocessing time qn log(n/γ) q3 log(n) log(qn/γ)2 q3 log(n) log(qn/γ)2

Generation time n qn log(q)n

Algorithmica (2012) 62:130–145 139

Table 3 Complexity of the preprocessing step using floating-point arithmetic with a mantissa of length b

RGA: Recursive Divide-and-conquer Divide-and-conquer

Version: Low-preprocessing High-preprocessing

Preprocessing space qbn q2b log(n) q3b log(n)

Preprocessing time qbn q3b2 log(n) q3b2 log(n)

Table 4 Mean bit-complexity of RGAs using the ADZ method

RGA: Recursive Divide-and-conquer Divide-and-conquer

Version: Low-preprocessing High-preprocessing

Preprocessing space, worst-case qn2 q2n q3n

Preprocessing space, mean qn log(n) q2 log(n) log(qn) q3 log(n) log(qn)

Preprocessing time, mean qn log(n) q3 log(n) log(qn)2 q3 log(n) log(qn)2

Generation time, mean n qn log(q)n

that the worst-case complexity of the ADZ version of the RGAs corresponds to the
complexity of the RGAs using exact integer representation. However, the mean com-
plexity can be improved by a suitable choice of the length b of the mantissa.

Theorem 7 The bit-complexity of the exact RGAs using the ADZ floating-point opti-
mization method is given in Table 4.

Proof By (2), taking a mantissa length b = log2(8a2n3)� = O(log(n)) ensures that
|f̃q,m,r − fq,m,r | ≤ δ = 1

2an2 for all q, q ′ ∈ Q and all m ≤ n. Since at most an com-
parisons (between some random numbers X and some thresholds fq,m,r) are made at
the generation step of the recursive RGA, this choice of b gives a probability at most
2anδ = O(1/n) of having to make the preprocessing step with exact integer represen-
tation. Moreover, the complexity of preprocessing with exact integer representation
is O(an2) by Proposition 4. Thus, the mean time-complexity of exact preprocess-
ing is O(an). Furthermore, the time-complexity of floating-point preprocessing with
mantissa length b is O(qn log(n)) by Table 3. Thus, the mean time-complexity of the
ADZ version of the recursive RGA is O(an + qn log(n)) = O(qn log(n)). The mean
space-complexity is obtained by a similar argument.

Similarly, by (2), taking a mantissa length b′ = log2(16q2n4)� = O(log(qn))

in the ADZ version of the divide-and-conquer RGA ensures that the probability of
having to perform the preprocessing step with exact integer representation is at most
16q2n2

2b = O(1/n2). Thus, the mean time-complexity of exact preprocessing is O(q3)

by Proposition 4, for both the low-preprocessing and high-preprocessing versions.
Furthermore, the time-complexity of floating-point preprocessing with a mantissa
length b′ is O(q3 log(n) log(qn)2) by Table 3. Thus, the mean time-complexity of the
ADZ version of the divide-and-conquer RGAs is O(q3 log(n) log(qn)2). The mean
space-complexity is obtained by a similar argument. �

140 Algorithmica (2012) 62:130–145

4 Implementation

We have implemented the γ -approximate versions of the recursive RGA and of the
low and high-preprocessing divide-and-conquer RGAs. All implementations have
been done in C++. Our aim is to compare the efficiency of the different algorithms,
in conditions as similar as possible. In what follows we discuss the technical details
of our implementations. Then, we provide experimental results comparing their effi-
ciency.

4.1 Floating-point Numbers

We have opted to implement the γ -approximate version of the algorithms instead of
the much slower exact arithmetic version. We have chosen arbitrarily γ = 10−100.
This choice of γ requires floating-points numbers with a mantissa size b between
300 and 400 bits, depending on the particular algorithm, the number of states of
the automaton and the length of the generated words, as described in (2). Typi-
cally, hardware-based floating-point numbers have mantissas of at most 100 bits,
so we have used the well-known GMP library (http://gmplib.org) for high-precision
floating-point numbers.

4.2 Matrix Product

Our implementation uses standard matrix multiplication to compute the preprocessed
matrices (lq,q ′,2i)q,q ′ in the low-preprocessing divide-and-conquer RGA, so it is not
particularly efficient for large values of q.

4.3 Pseudo-random Numbers

We use the pseudo-random generator provided by the GMP library, which defaults
to the Mersenne-Twister algorithm [16]. This algorithm, which was designed with
Monte Carlo and other statistical simulations in mind, is known to provide a good
balance between fast generation and high-quality pseudo-random numbers.

4.4 Disk Usage

Both algorithms use preprocessed data at the generation step. Reading these data from
disk has a significant impact in the running time of the RGA. Our implementations
use text-based files and standard C++ streams to store and retrieve preprocessed
data. This choice is clearly inefficient, but makes development and debugging easier.

An implementation aiming for efficiency should read and write the numbers in
binary form, rather than text form, preferably in the same way the arithmetic library
stores the numbers in memory. In this way, we eliminate the parsing overhead, and
the file size is reduced by a constant factor log2(256)/ log2(10) � 2.41.

http://gmplib.org

Algorithmica (2012) 62:130–145 141

4.5 Caching Computations in the Low-preprocessing Divide-and-Conquer RGA

In the recursive RGAs all random choices for the generation of a word are done on
different probabilities (that is, by comparison of a random number X with different
threshold values). However, the random choices of the divide-and-conquer RGAs
may be done several times on the same probabilities. This occurs when the generated
word uses often the same transitions of the automaton. In our implementation we take
advantage of this fact by caching the computations required for the random choices
of the low-preprocessing divide-and-conquer RGA. Note that the performance gain
of this approach depends both on the automaton and the actual word being generated.

4.6 Sequential Access and the Memory Hierarchy

It is well known that algorithms that access data sequentially perform better over
those that use random access. The performance hit is enormous when data is stored
in disk due to the latency of physical devices. A similar phenomenon, albeit at a
smaller scale, occurs when working with RAM memory and cache memory.

From this point of view the recursive RGA has an advantage over the divide-
and-conquer RGA described in Definition 2, since the latter generates the word
non-sequentially. In fact, the actual letters forming the word are not decided until
steps (8)–(9). We can make the divide-and-conquer RGA output the letters sequen-
tially by implementing it recursively (as it is customary with divide-and-conquer al-
gorithms), instead of the given iterative implementation. We have implemented both
the iterative and the recursive versions of the divide-and-conquer RGA.

4.7 Parallelization

Our implementations are single processor. When asked to generate w > 1 words of
the same length, our recursive RGA implementation generates the w words in parallel
while reading the preprocessed data from disk, thus effectively amortizing the disk
reading time among all the generated words.

The recursive RGA does not appear to be parallelizable when generating a sin-
gle word. This stays in sharp contrast with the divide-and-conquer RGA which, like
all divide-and-conquer algorithms, can be easily and efficiently parallelized into any
factor desired, by dividing recursively the generation of a word of length n into two
independent generation of words of length n/2, with the appropriate initial and final
states.

Finally, note that if we parallelize using several processors, all the parallel pro-
grams do need to have access to the same preprocessed data. Thus if we do not
parallelize using a shared-memory architecture the disk running time would increase
proportionally to the number of processors. This also degrades the benefits of caching
in the low-preprocessing divide-and-conquer RGA.

4.8 Experimental Results

We show experimental data from our implementations of the γ -approximate RGAs,
obtained for different values of n, q and w. The automata we use in our experi-
ments are randomly generated automata on alphabets of size a = 2, where half of

142 Algorithmica (2012) 62:130–145

Fig. 1 Theoretical and experimental space-complexity of preprocessing (top diagrams) and
time-complexity of preprocessing and one word generation (bottom diagrams). Here and below the no-
tation DaC (resp. Rec) stands for the divide-and-conquer RGA (resp. recursive RGA)

the states are accepting states, and transitions between states are chosen uniformly
at random. (The same experiments have been run with a family of non-random au-
tomata, those recognizing words on the alphabet {a,b} without q consecutive a’s.
The results are completely analogous to those obtained with random automata.) We
compare the recursive RGA with the low-preprocessing divide-and-conquer RGA.
The performance of the high-preprocessing divide-and-conquer RGA is similar to the
low-preprocessing version for small values of q, but it quickly degrades for large q.

All experiments have been done in a desktop computer with an Intel Core 2 Duo
processor and 2 gigabytes of RAM, running the 64-bits version of Ubuntu 8.10. Both
implementations have been compiled with gcc version 4.3.2 with level 3 optimiza-
tions and without debugging support. We obtain the running time of an experiment by
running it 5 times, discarding the quickest and the slowest times, and averaging the
times of the remaining ones. We remark that, due to the choice of γ = 10−100, it is
highly improbable that the γ -approximate RGAs will fall back to the exact arithmetic
implementation during its execution.

We study first which algorithm is best for several combinations of q and n, both
in terms of space-complexity (size of the files containing the preprocessed data) and
time-complexity (time of one word generation, including preprocessing). Figure 1
compares the theoretical expectation with the actual experimental data. The plots
on the left show the theoretical border between those situations where the recursive
RGA is preferable (large q and small n) and those where the divide-and-conquer
RGA is preferable (small q and small n). They have been obtained by comparing
the expressions in Table 2; note that these expressions do not take account of the

Algorithmica (2012) 62:130–145 143

Fig. 2 Total running time
(preprocessing and generation)
when modifying the length n of
the generated words (in
logarithmic scale)

Fig. 3 Total running time (preprocessing and generation) when modifying the number of states q of the
automaton or the number w of words generated in parallel

constant terms. The diagrams on the right show the outcome of our experiments.
A white square (resp. a black square) means that the recursive RGA (resp. the divide-
and-conquer RGA) performed better in our experiments.

Analyzing Fig. 1, we see that the divide-and-conquer RGA is more space efficient
than expected. This is probably due to the way we store the numbers in the pre-
processing step: small integer numbers, like those appearing in some of the matrices
of the divide-and-conquer RGA preprocessing, are represented using very few bytes.
With respect to the time-complexity, the results are roughly as expected.

We next show several plots where we compare the performances when modifying
one parameter but fixing the remaining ones. In Fig. 2 we show (on a logarithmic
scale) the effect of modifying n, and in Fig. 3 we show the effect of modifying the
number q of states and the number w of generated words. Figure 2 illustrates the fact
(expected from theoretical analysis) that the divide-and-conquer RGA is the only
valid alternative for generating large words (of length n = 106 say).

5 Concluding Remarks

The ADZ version of the divide-and-conquer RGA is the first known algorithm to
generate words of length n uniformly at random in expected time-complexity O(n).
This improves over the previously best know complexity O(n logn) given by the
ADZ version of the recursive RGA. The space requirements of the preprocessing

144 Algorithmica (2012) 62:130–145

step are also greatly reduced, from O(n logn) to O((logn)2); the worst-case space-
complexity is also reduced from O(n2) to O(n). Moreover, the divide-and-conquer
RGA is almost as easy to implement as the recursive RGA and experiments show that
it behaves well in practice.

The above analysis is a bit biased by the fact that the complexity of the algorithms
depend on the number q of states of the automaton. In practice, the number q can
be quite large, so that it is more realistic to consider the complexity as a function of
both q and n. In terms of the worst-case space-complexity the divide-and-conquer
RGA performs better than the recursive RGA as soon as q is smaller than n/ log(n).
In terms of time-complexity (for generating 1 word), the divide-and-conquer RGA
performs better than the recursive RGA if q is smaller than

√
n/ log(n).

Finally, let us mention that the divide-and-conquer RGA (as the recursive RGA)
can be extended so as to generate words with non-uniform probabilities. Indeed, for
any choice of weight on the transitions of the automaton (i.e. on the edge of the
corresponding digraph), it is straightforward to modify the RGAs in such a way that
any given word is generated with a probability proportional to the product of the
weights on the path labelled by this word. This kind of improvement is particularly
relevant for bioinformatics applications [6].

Acknowledgements We are very grateful to Philippe Duchon and Alain Denise for fruitful discussions.

References

1. Alonso, L., Schott, R.: Random Generation of Trees: Random Generators in Computer Science.
Kluwer Academic, Norwell (1995)

2. Barcucci, E., Del Lungo, A., Pergola, E.: Random generation of trees and other combinatorial objects.
Theor. Comp. Sci. 218, 219–232 (1999)

3. Barcucci, E., Del Lungo, A., Pergola, E., Pinzani, R.: ECO: a general methodology for the enumera-
tion of combinatorial objects. J. Differ. Equ. Appl. 5, 435–490 (1999)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 1st edn. MIT Press, Cam-
bridge (1990)

5. Denise, A.: Génération aléatoire uniforme de mots de langages rationnels. Theor. Comp. Sci. 159(1),
43–63 (1996)

6. Denise, A., Rocques, O., Termier, M.: Random generation of words of context-free languages accord-
ing to the frequencies of letters. In: Colloquium on Mathematics and Computer Science, pp. 113–125
(2000)

7. Denise, A., Zimmermann, P.: Uniform random generation of decomposable structures using floating-
point arithmetic. Theor. Comp. Sci. 218(2), 233–248 (1999)

8. Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the random generation
of combinatorial structures. Comb. Probab. Comput. 3(4–5), 577–625 (2004)

9. Flajolet, P., Zimmermann, P., Van Cutsem, B.: A calculus for the random generation of labelled com-
binatorial structures. Theor. Comp. Sci. 132(1), 1–35 (1994)

10. Fusy, E.: Uniform random sampling of planar graphs in linear time. Random Struct. Algorithms 35(4),
464–522 (2009)

11. Goldwurm, M.: Random generation of words in an algebraic language in linear binary space. Inf.
Process. Lett. 54(4), 229–233 (1995)

12. Hickey, T., Cohen, J.: Uniform random generation of strings in a context-free language. SIAM J.
Comput. 12(4), 645–655 (1983)

13. Kannan, S., Sweedyk, Z., Mahaney, S.: Counting and random generation of strings in regular lan-
guages. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 551–557 (1995)

Algorithmica (2012) 62:130–145 145

14. Knuth, D.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2. Addison-Wesley,
Reading (1969)

15. Mairson, H.G.: Generating words in a context free language uniformly at random. Inf. Process. Lett.
49(2), 95–99 (1994)

16. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform
pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

17. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms. Academic Press, San Diego (1978)

	A Linear Algorithm for the Random Sampling from Regular Languages
	Abstract
	Introduction
	Description of the Random Generation Algorithms
	Regular Languages and Automatons
	Recursive RGA
	Divide-and-Conquer RGA

	Complexity Analysis
	Exact Integer Representation
	Floating-point Arithmetic
	Approximate RGAs
	Exact RGAs

	Implementation
	Floating-point Numbers
	Matrix Product
	Pseudo-random Numbers
	Disk Usage
	Caching Computations in the Low-preprocessing Divide-and-Conquer RGA
	Sequential Access and the Memory Hierarchy
	Parallelization
	Experimental Results

	Concluding Remarks
	Acknowledgements
	References

