
Algorithmica (2011) 61:606–637
DOI 10.1007/s00453-010-9427-8

Tight Bounds for Selfish and Greedy Load Balancing

Ioannis Caragiannis · Michele Flammini ·
Christos Kaklamanis · Panagiotis Kanellopoulos ·
Luca Moscardelli

Received: 14 May 2008 / Accepted: 30 June 2010 / Published online: 17 July 2010
© Springer Science+Business Media, LLC 2010

Abstract We study the load balancing problem in the context of a set of clients each
wishing to run a job on a server selected among a subset of permissible servers for
the particular client. We consider two different scenarios. In selfish load balancing,
each client is selfish in the sense that it chooses, among its permissible servers, to
run its job on the server having the smallest latency given the assignments of the
jobs of other clients to servers. In online load balancing, clients appear online and,
when a client appears, it has to make an irrevocable decision and assign its job to
one of its permissible servers. Here, we assume that the clients aim to optimize some
global criterion but in an online fashion. A natural local optimization criterion that
can be used by each client when making its decision is to assign its job to that server

A preliminary version of the results in this paper appeared in Proceedings of the 33rd International
Colloquium on Automata, Languages and Programming (ICALP ’06), LNCS, vol. 4168,
pp. 184–195. Springer, Berlin (2006). This work was partially supported by the European Union
under IST FET Integrated Project 015964 AEOLUS and COST Action 293 GRAAL, and by a
“Caratheodory” basic research grant from the University of Patras.

I. Caragiannis · C. Kaklamanis (�) · P. Kanellopoulos
Research Academic Computer Technology Institute & Department of Computer Engineering and
Informatics, University of Patras, 26500 Rio, Greece
e-mail: kakl@ceid.upatras.gr

I. Caragiannis
e-mail: caragian@ceid.upatras.gr

P. Kanellopoulos
e-mail: kanellop@ceid.upatras.gr

M. Flammini
Dipartimento di Informatica, Università di L’Aquila, Via Vetoio, Coppito 67100, L’Aquila, Italy
e-mail: flammini@di.univaq.it

L. Moscardelli
Department of Sciences, University of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy
e-mail: moscardelli@sci.unich.it

mailto:kakl@ceid.upatras.gr
mailto:caragian@ceid.upatras.gr
mailto:kanellop@ceid.upatras.gr
mailto:flammini@di.univaq.it
mailto:moscardelli@sci.unich.it

Algorithmica (2011) 61:606–637 607

that gives the minimum increase of the global objective. This gives rise to greedy
online solutions. The aim of this paper is to determine how much the quality of load
balancing is affected by selfishness and greediness.

We characterize almost completely the impact of selfishness and greediness in
load balancing by presenting new and improved, tight or almost tight bounds on the
price of anarchy of selfish load balancing as well as on the competitiveness of the
greedy algorithm for online load balancing when the objective is to minimize the
total latency of all clients on servers with linear latency functions. In addition, we
prove a tight upper bound on the price of stability of linear congestion games.

Keywords Load balancing · Price of anarchy · Price of stability · Congestion
games · Online algorithms

1 Introduction

We study the load balancing problem in the context of a set of clients each wishing to
run a job on a server selected among a subset of permissible servers for the particular
client. We consider two different scenarios. In the first, called selfish load balancing
(or load balancing games), each client is selfish in the sense that it chooses, among
its permissible servers, to run its job on the server having the smallest latency given
the assignments of the jobs of other clients to servers. In the second scenario, called
online load balancing, clients appear online and, when a client appears, it has to make
an irrevocable decision and assign its job to one of its permissible servers. Here, we
assume that the clients are not selfish and aim to optimize some global objective but
in an online fashion (i.e., without any knowledge of clients that may arrive in the
future). A natural local optimization criterion that can be used by each client when
making its decision is to assign its job to the server that gives the minimum increase
of the global objective. This gives rise to greedy online solutions. The aim of this
paper is to answer the question of how much the quality of load balancing is affected
by selfishness and greediness.

1.1 Load Balancing Games

Load balancing games are special cases of the well-known congestion games intro-
duced by Rosenthal [29] and studied in a sequence of papers [6, 10, 11, 14, 16, 18,
26, 30, 31]. In congestion games there is a set E of resources, each resource e hav-
ing a non-negative and non-decreasing latency function fe defined over non-negative
numbers, and a set of n players. Each player i has a set of strategies Si ⊆ 2E (each
strategy of player i is a set of resources). An assignment A = (A1, . . . ,An) is a vec-
tor of strategies, one strategy for each player. The cost of a player for an assignment
A is defined as cost(i) = ∑

e∈Ai
fe(ne(A)), where ne(A) is the number of players

using resource e in A, while the social cost of an assignment is the total cost of all
players. An assignment is a pure Nash equilibrium if no player has any incentive to
unilaterally deviate to another strategy, i.e., costi (A) ≤ costi (A−i , s) for any player i

and for any s ∈ Si , where (A−i , s) is the assignment produced if just player i deviates

608 Algorithmica (2011) 61:606–637

from Ai to s. This inequality is also known as the Nash condition. In weighted con-
gestion games, each player has a weight wi and the latency of a resource e depends
on the total weight of the players that use e. For this case, a natural social cost func-
tion is the weighted sum of the costs of all players (or the weighted average of their
costs). In linear congestion games, the latency function of resource e is of the form
fe(x) = αex + βe with non-negative constants αe and βe . Load balancing games are
congestion games where the strategies of players are singleton sets. In load balanc-
ing terminology, we use the terms server and client instead of the terms resource and
player. The set of strategies of a client contains the servers that are permissible for the
client. A load balancing game is called symmetric when all servers are permissible
for any client.

We evaluate the quality of solutions of a load balancing game by comparing the
social cost of Nash equilibria to the cost of the optimal assignment (i.e., the mini-
mum cost). We use the notions of price of anarchy introduced in a seminal work of
Koutsoupias and Papadimitriou [23] (see also [27]) and price of stability [3] (or op-
timistic price of anarchy) defined as follows. The price of anarchy/stability of a load
balancing game is defined as the ratio of the maximum/minimum social cost over
all Nash equilibria over the optimal cost. The price of anarchy/stability for a class
of load balancing games is simply the highest price of anarchy/stability among all
games belonging to that class.

The papers [15, 17–19, 22, 25] study various games which can be thought of as
special cases of congestion games with respect to the complexity of computing equi-
libria of best/worst social cost and the price of anarchy when the social cost is defined
as the maximum latency experienced by any player. The social cost of the total la-
tency has been studied in [6, 10, 24, 33]. The authors in [24] study symmetric load
balancing games with linear latency functions and show tight bounds on the price
of anarchy of 4/3 for different servers and 9/8 for identical servers with weighted
clients. The price of anarchy of symmetric load balancing games with polynomial or
convex latency functions is studied in [20, 21]. In two papers, Awerbuch et al. [6]
and Christodoulou and Koutsoupias [10] prove tight bounds on the price of anarchy
of congestion games with linear latency functions. Among other results, they show
that the price of anarchy of pure Nash equilibria is 5/2 while for mixed Nash equi-

libria or pure Nash equilibria of weighted clients it is 3+√
5

2 ≈ 2.618. Tight bounds
on the price of anarchy of congestion games with polynomial latency functions are
presented in [1]; these improve previous results in [6, 10].

Does the fact that load balancing games are significantly simpler than congestion
games in general have any implications for their price of anarchy? We give a negative
answer to this question for linear latency functions by showing that the 5/2 upper

bound (as well as the 3+√
5

2 upper bound for weighted clients) is tight. This is inter-
esting since the upper bounds for congestion games (as well as an earlier upper bound
of 5/2 proved specifically for load balancing [33]) are obtained using only the Nash
inequality (i.e., the inequality obtained by summing up the Nash condition inequali-
ties over all players’ strategies) and the definition of the social cost. So, it is somewhat
surprising that load balancing games are as general as congestion games in terms of
their price of anarchy and that the Nash inequality provides sufficient information to
characterize their price of anarchy.

Algorithmica (2011) 61:606–637 609

An important special case of load balancing is when servers have identical linear
latency functions. Here, better upper bounds on the price of anarchy can be obtained.
Note that this is not the case for congestion games since, as it was observed in [10],
any congestion game can be transformed to a congestion game on identical resources
(and, hence, the lower bounds of [6, 10] hold for congestion games with identical
resources as well). Suri et al. [33] prove that the price of anarchy of selfish load
balancing on identical servers is between 2.012067 and 1 + 2/

√
3 ≈ 2.1547. Again,

the upper bound is obtained by using the Nash inequality and the definition of the
social cost. We improve this result by showing that the lower bound is essentially
tight. Besides the Nash inequality, our proof also exploits structural properties of
games with high price of anarchy. We argue that such games can be represented as
a directed graph (called the game graph) and, then, structural properties of such a
game follow as structural properties of this graph. Furthermore, for weighted clients
and identical servers, we prove that the price of anarchy is at least 5/2.

Tight bounds on the price of stability of load balancing games have been proved
in [3]. The price of stability of linear congestion games has been studied in [11] where
it was shown that it lies between 1 + 1/

√
3 ≈ 1.577 and 1.6. The technique used to

obtain the upper bound is to consider pure Nash equilibria with potential not larger
than the potential of the optimal assignment and bound their social cost in terms of
the optimal cost using the Nash inequality. Using the same technique but with a more
refined analysis, we show that the lower bound is tight.

1.2 Greedy Load Balancing

From the algorithmic point of view, load balancing has been studied extensively,
including papers studying online versions of the problem (e.g., [2, 4, 5, 7, 9, 13,
28, 32, 33]). In online load balancing, clients appear in online fashion; when a client
appears, it has to make an irrevocable decision and assign its job to a server. In our
model, servers have linear latency functions and the objective is to minimize the total
latency, i.e., the sum of the latencies experienced by all clients. Clients may also
own jobs with non-negative weights; in this case, the objective is to minimize the
weighted sum of the latencies experienced by all clients. A natural greedy algorithm
proposed in [5] for this problem is to assign each client to the server that yields
the minimum increase to the total latency (ties are broken arbitrarily). This results
to greedy assignments. Given an instance of online load balancing, an assignment
of clients to servers is called a greedy assignment if the assignment of a client to a
server minimizes the increase in the cost of the instance revealed up to the time of
its appearance. Following the standard performance measure in competitive analysis,
we evaluate the performance of this algorithm in terms of its competitiveness (or
competitive ratio). The competitiveness of the greedy algorithm on an instance is
the maximum ratio of the cost of any greedy assignment over the optimal cost and
its competitiveness on a class of load balancing instances is simply the maximum
competitiveness over all instances in the particular class.

The performance of greedy load balancing with respect to the total latency has
been studied in [5, 33]. Awerbuch et al. [5] consider a more general model where
each client owns a job with a load vector denoting the impact of the job to each server

610 Algorithmica (2011) 61:606–637

(i.e., how much the assignment of the job to a server will increase its load) and the
objective is to minimize the Lp norm of the load of the servers. In the context similar
to the one studied in the current paper, their results imply a 3 + 2

√
2 ≈ 5.8284 upper

bound. This result applies also in the case of weighted clients where the objective is
to minimize the weighted average latency. Suri et al. [33] consider the same model as
ours and show upper bounds of 17/3 and 2 + √

5 ≈ 4.2361 for different servers and
identical servers, respectively. In a way similar to the study of the price of anarchy
of congestion games, [33] develops a greedy inequality which is used to obtain the
upper bounds on competitiveness. They also present a lower bound of 3.0833 for the
competitiveness of greedy assignments in the case of identical servers. Christodoulou
et al. [12] have analyzed a different than greedy online algorithm for load balancing
and proved that it has competitiveness at most 2 + √

5 ≈ 4.2361.
The main question left open by the work of [33] is whether the existence of differ-

ent servers does hurt the competitiveness of greedy load balancing. We give a positive
answer to this question as well. By a rather counterintuitive construction, we show
that the 17/3 upper bound of [33] is tight. This is interesting since it indicates that the
greedy inequality is powerful enough to characterize the competitiveness of greedy
load balancing. We also consider the case of identical servers where we almost close
the gap between the upper and lower bounds of [33] by showing that the competitive-
ness of greedy load balancing is between 4 and 2

3

√
21 + 1 ≈ 4.05505. In the proof

of the upper bound, we use the greedy inequality but, more importantly, we also use
arguments for the structure of greedy and optimal assignments of instances that yield
a high competitiveness. In a similar way to the case of selfish load balancing, we ar-
gue that such instances can be represented as directed graphs (called greedy graphs)
that enjoy particular structural properties. In the case of weighted clients, we present
a tight lower bound of 3 + 2

√
2 on identical servers matching the upper bound of [5].

The results presented in this paper are summarized in Table 1.

1.3 Roadmap

The rest of the paper is structured as follows. We present the bounds on the price of
stability of linear congestion games in Sect. 2. The bounds on the price of anarchy
of selfish load balancing are presented in Sect. 3, while the bounds on the competi-
tiveness of greedy load balancing are presented in Sect. 4. In Sect. 5 we present ex-
tensions of the results to selfish and greedy load balancing when clients are weighted
and conclude with open problems in Sect. 6.

2 The Price of Stability of Linear Congestion Games

We present a tight upper bound on the price of stability of linear congestion games.
Our proof uses the main idea in the proof of [11] and bounds the social cost of any
Nash equilibrium having a potential smaller than the potential of the optimal assign-
ment. In the proof we also make use of the Nash inequality which together with the
inequality on the potentials yields the upper bound. However, the two inequalities
may not be equally important in order to achieve the best possible bound and this is

Algorithmica (2011) 61:606–637 611

Table 1 Summary of our results

Problem Measure Result Comments

Unweighted Price of stability, 1 + 1/
√

3 Section 2, Theorem 3.

congestion game upper bound Matches a lower bound from [11]

Unweighted Price of anarchy, 2.5 Section 3.1, Theorem 4.

load balancing lower bound Matches an upper bound from [6, 10]

for unweighted congestion games

Unweighted Price of anarchy, ≈ 2.012 Section 3.3.

load balancing, upper bound Matches a lower bound from [33]

identical servers

Unweighted Competitiveness 17/3 Section 4.1, Theorem 10.

load balancing of greedy, Matches an upper bound from [33]

lower bound

Unweighted Competitiveness ≈ 4.055 Section 4.2, Theorem 13.

load balancing, of greedy, Improves an upper bound from [33]

identical servers upper bound

Unweighted Competitiveness 4 Section 4.2, Theorem 14.

load balancing, of greedy, Improves a lower bound from [33]

identical servers lower bound

Weighted Price of anarchy, 3+√
5

2 Section 5, Theorem 15.

load balancing lower bound Matches an upper bound from [6]

for congestion games

Weighted Price of anarchy, 2.5 Section 5, Theorem 16

load balancing, lower bound

identical servers

Weighted Competitiveness 3 + 2
√

2 Section 5, Theorem 17.

load balancing, of greedy, Matches an upper bound from [5]

identical servers lower bound for unrelated servers

taken into account in our analysis. We now state the Nash inequality (see for exam-
ple [10, 11, 33]) as applied to our setting. It follows by summing the Nash condition
inequalities of all clients.

Lemma 1 (Nash inequality) For any congestion game, where each resource e has
latency function fe(x) = αex + βe , with a pure Nash equilibrium and an optimal
assignment of ne and oe players at each resource e, respectively, it holds that

∑

e

(αen
2
e + βene) ≤

∑

e

oe(αene + αe + βe).

We use Rosenthal’s potential function [29]. We remind that, assuming a strategy
profile A for a congestion game with linear latency function fj (x) = αjx + βj , we

612 Algorithmica (2011) 61:606–637

define the potential of the strategy to be Pot(A) = ∑m
j=1

∑nj (A)

i=1 fj (i), where m is the
number of resources, and nj (A) denotes the number of clients using resource j in A.
By its definition, the potential function has the property that for any two assignments
differing only in the strategy of a single client, the difference of the potentials and
the difference of the cost experienced by that client in the two assignments have
the same sign. Furthermore, the potential function has local minima at pure Nash
equilibria and, in order to establish an upper bound on the price of stability, it suffices
to bound the social cost of pure Nash equilibria whose potential is less than or equal
to the potential of the optimal assignment.

In our proof, we will need the following technical lemma.

Lemma 2 For any non-negative integers x, y and γ = 2
√

3 − 3, it holds that

(1 − γ)xy + y − γ x + γy2 ≤
(

1 − γ

2

)2

x2 + (1 + γ)y2.

Proof Define the function g(x, y) as the subtraction of the left part from the right
part in the above inequality. Substituting γ we have

g(x, y) = (7 − 4
√

3)x2 + y2 − (4 − 2
√

3)xy − y + (2
√

3 − 3)x

=
(

(2 − √
3)x − y +

√
3

2

)2

+ (
√

3 − 1)y − 3

4
.

In order to prove the lemma, it suffices to show that g(x, y) ≥ 0 for any non-negative
integer values of x and y. First, we observe that if y ≥ 2 it is (

√
3 − 1)y − 3

4 ≥ 0.

Hence, g(x, y) ≥ 0 for any integer y ≥ 2. Also, g(x,0) = ((2−√
3)x +

√
3

2)2 − 3
4 ≥ 0

for any integer x ≥ 0. For y = 1, by trivial calculations we obtain that the parabolic

function g(x,1) = ((2 − √
3)x − 1 +

√
3

2)2 + √
3 − 7

4 is equal to zero for x = 0 and
x = 1. So, it is non-negative for any non-negative integer value of x. �

We are now ready to prove the following result. A matching lower bound is pre-
sented in [11].

Theorem 3 The price of stability of congestion games with linear latency functions
is at most 1 + 1/

√
3.

Proof Consider a linear congestion game, an optimal assignment and a pure Nash
equilibrium of not larger potential. We will show that the social cost of this Nash
equilibrium (and, as a consequence, the social cost of the best Nash equilibrium) is
no more than 1 + 1√

3
times the cost of the optimal assignment.

Denote by nj and oj the number of clients using resource j in the Nash and
optimal assignment, respectively. By the inequality of the potentials, we obtain that

Algorithmica (2011) 61:606–637 613

m∑

j=1

nj∑

i=1

fj (i) ≤
m∑

j=1

oj∑

i=1

fj (i) ⇒

m∑

j=1

(αj (nj + 1)nj + 2βjnj) ≤
m∑

j=1

(αj (oj + 1)oj + 2βjoj) ⇒

m∑

j=1

(αjn
2
j + βjnj) ≤

m∑

j=1

αj (o
2
j + oj − nj) +

m∑

j=1

βj (2oj − nj). (1)

By the Nash inequality, we obtain that

m∑

j=1

(αjn
2
j + βjnj) ≤

m∑

j=1

(αj (nj + 1)oj + βjoj). (2)

Let γ = 2
√

3 − 3. By multiplying (1) by γ and (2) by 1 − γ and adding them and
using Lemma 2, we obtain that

m∑

j=1

(αjn
2
j + βjnj) ≤

m∑

j=1

αj ((1 − γ)njoj + oj − γ nj + γ o2
j)

+
m∑

j=1

βj ((1 + γ)oj − γ nj)

≤
m∑

j=1

αj

((
1 − γ

2

)2

n2
j + (1 + γ)o2

j

)

+
m∑

j=1

βj

((
1 − γ

2

)2

nj + (1 + γ)oj

)

=
(

1 − γ

2

)2 m∑

j=1

(αjn
2
j + βjnj) + (1 + γ)

m∑

j=1

(αjo
2
j + βjoj).

Therefore, the price of stability is at most

∑m
j=1 (αjn

2
j + βjnj)

∑m
j=1 (αj o

2
j + βjoj)

≤ 1 + γ

1 − (
1−γ

2)2
= 1 + 1√

3
.

�

3 Bounds on the Price of Anarchy

In this section, we present tight bounds on the price of anarchy. We first show that
the known upper bound of Suri et al. [33] on the price of anarchy of load balancing
games on different servers with linear latency functions is tight (Sect. 3.1). Then,

614 Algorithmica (2011) 61:606–637

we present better upper bounds in the case of identical servers starting from simple
bounds that already improve the previous results from [33] (Sect. 3.2) and concluding
with a computer-assisted proof (in Sect. 3.3) which essentially yields an upper bound
matching the corresponding lower bound of [33].

For the study of the price of anarchy of non-symmetric load balancing games, we
can consider games in which each client has at most two strategies. This is clearly
sufficient when proving lower bounds. In order to prove upper bounds, we observe
that for any game, there exists another game with at most two strategies per client
which has the same price of anarchy. Given any load balancing game, let O and N

be the optimal assignment and the Nash equilibrium that yields the worst social cost
for this game, respectively. The game with the same clients and servers in which each
client has its strategies in O and N as strategies also has the same optimal assignment
and the same Nash equilibrium (and, consequently, the same price of anarchy). We
represent such games as directed graphs (called game graphs) having a node for each
server and a directed edge for each client; the direction of each edge is from the
strategy of the client in the optimal assignment to the strategy of the client in the
Nash equilibrium. A self-loop indicates that the client has the same strategy in the
optimal assignment and the Nash equilibrium.

3.1 Servers with Different Latency Functions

The next theorem states that the upper bound of 5/2 presented in [33] (and also
implied by the results in [6, 10] for linear congestion games) is tight. This bound was
known to be tight for linear congestion games in general but the constructions in the
lower bounds in [6, 10] are not load balancing games.

Theorem 4 For any ε > 0, there is a load balancing game with linear latency func-
tions whose price of anarchy is at least 5/2 − ε.

Proof We construct a game graph G consisting of a complete binary tree with k + 1
levels and 2k+1 − 1 nodes with a line of k + 1 edges and k + 1 additional nodes
hung at each leaf. So, graph G has 2k + 2 levels 0, . . . ,2k + 1, with 2i nodes at
level i for i = 0, . . . , k and 2k nodes at levels k + 1, . . . ,2k + 1. The servers corre-
sponding to nodes of level i = 0, . . . , k − 1 have latency functions fi(x) = (2/3)ix,
the servers corresponding to nodes of level i = k, . . . ,2k have latency functions
fi(x) = (2/3)k−1(1/2)i−kx, and the servers corresponding to nodes of level 2k + 1
have latency functions f2k+1(x) = (2/3)k−1(1/2)kx.

Consider the assignment where all clients select servers corresponding to the end-
point of their corresponding edge which is closer to the root of the game graph.
This assignment is a Nash equilibrium, since servers corresponding to nodes of level
i = 0, . . . , k −1 have two clients and latency 2(2/3)i , servers corresponding to nodes
of level i = k, . . . ,2k have one client and latency (2/3)k−1(1/2)i−k , and servers cor-
responding to nodes of level 2k + 1 have no client. Therefore, due to the definition
of the latency functions, a client assigned to a server corresponding to a node of level
i = 0, . . . ,2k would experience exactly the same latency if it changed its decision
and chose the server corresponding to the node of level i + 1.

Algorithmica (2011) 61:606–637 615

The cost of this assignment is

cost =
k−1∑

i=0

4 · 2i (2/3)i +
2k∑

i=k

2k(2/3)k−1(1/2)i−k

= 15(4/3)k − (2/3)k−1 − 12.

To compute an upper bound for the cost of the optimal assignment, it suffices to
consider the assignment where all clients select the servers corresponding to nodes
which are further from the root. We obtain that the cost opt of the optimal assignment
is

opt ≤
k−1∑

i=1

2i (2/3)i +
2k∑

i=k

2k(2/3)k−1(1/2)i−k + 2k(2/3)k−1(1/2)k

= 6(4/3)k − 4.

Hence, for any ε > 0 and for sufficiently large k, the price of anarchy of the game
is larger than 5/2 − ε. �

3.2 Identical Servers

In the case of identical servers with linear latency functions we can show a tight
bound on the price of anarchy of approximately 2.012067; a matching lower bound
has been presented in [33]. First, we present the main idea in our analysis to obtain a
slightly weaker result which already improves the previously known upper bound of
1 + 2√

3
≈ 2.1547 [33]. Then, we further improve our analysis.

We will upper-bound the ratio of the social cost of the worst Nash equilibrium to
the optimal social cost of games with at most two strategies per client which satisfy a
particular property. We say that server j is of type nj/oj meaning that it has nj clients
in the Nash equilibrium and oj clients in the optimal assignment (equivalently, server
j has in-degree nj and out-degree oj in the game graph). We first show that for any
game we can construct another game that has at least the same price of anarchy and,
furthermore, satisfies the following 2-neighborhood property: in the game graph, the
incoming edge of any server of type 1/1 originates from a server of type 0/1. Then,
the idea behind the proof is to account for the contribution of servers of type 1/1 and
0/1 in the social cost together.

In general, latency functions would be of the form f (x) = αx + β where α > 0

and β ≥ 0. Then, the price of anarchy is given by the ratio
∑

j (αn2
j +βnj)

∑
j (αo2

j +βoj)
which is

at most
∑

j n2
j∑

j o2
j

. Hence, without loss of generality, we may assume that the latency

function is of the form f (x) = x.
In the proof of our weakest bound (Theorem 6), we make use of the following

technical lemma.

616 Algorithmica (2011) 61:606–637

Lemma 5 Let ψ = 6+√
21

6 , ξ = 7
√

21−12
30 and define the functions g(x, y) = xy +

(1 + ξ)y − ξx and h(x, y) = 1
4ψ

x2 + ψy2. For any non-negative integers x, y such
that either x 	= 1 or y 	= 1, it holds that g(x, y) ≤ h(x, y). Furthermore, g(0,1) +
g(1,1) = h(0,1) + h(1,1).

Proof We start by noting that g(0,1) + g(1,1) = ξ + 3 = 78+7
√

21
30 and h(0,1) +

h(1,1) = 2ψ + 1
4ψ

= 78+7
√

21
30 . Define the function

f (x, y) = h(x, y)−g(x, y) =
(

1

2
√

ψ
x −√

ψy + ξ
√

ψ

)2

+ (2ξψ − ξ −1)y − ξ2ψ.

In order to prove the lemma, it suffices to show that f (x, y) ≥ 0 for any non-negative
integer values of x and y when either x 	= 1 or y 	= 1. First, observe that if y ≥ 2, then

y ≥ ξ2ψ
2ξψ−ξ−1 = 125

√
21

336 − 9
16 ≈ 1.14, which implies that (2ξψ − ξ − 1)y − ξ2ψ ≥ 0.

Hence, f (x, y) ≥ 0 for any integer y ≥ 2. Also, f (x,0) = (1
2
√

ψ
x + ξ

√
ψ)2 −

ξ2ψ ≥ 0 for any integer x ≥ 0. For y = 1, by straightforward calculations we obtain
that the parabolic function f (x,1) = (1

2
√

ψ
x + (ξ − 1)

√
ψ)2 + 2ψξ − ξ − ξ2ψ − 1

is positive for x = 0, negative for x = 1 and equal to zero for x = 2. So, it is non-
negative for any non-negative integer value of x besides 1. �

Theorem 6 The price of anarchy of selfish load balancing on identical servers is at
most 2

3

√
21 − 1 ≈ 2.05505.

Proof Consider a load balancing game on servers with latency function f (x) = x and
clients having at most two strategies. Without loss of generality, we may assume that
the game satisfies the 2-neighborhood property, i.e., the incoming edge of any server
j of type 1/1 originates from a server of type 0/1 in the game graph. If this is not the
case, we show how to construct another game with not smaller price of anarchy. If a
client c had server j as its only strategy (this corresponds to a self-loop in the corre-
sponding game graph), then we may construct a new game by excluding server j and
client c from the original one; the new game has worse price of anarchy since both
the social cost of the optimal assignment and the social cost of the Nash equilibrium
are decreased by 1. So, let j ′ and j ′′ be the servers to which server j is connected cor-
responding to clients c1 and c2 selecting servers j ′ and j in the optimal assignment
and servers j and j ′′ in the Nash assignment, respectively. Clearly, nj ′′ ≤ 2, since,
otherwise, client c2 would have an incentive to use server j in the Nash equilibrium.
Assume that server j ′ is of type nj ′/oj ′ for nj ′ > 0 or oj ′ > 1. If nj ′ > 0, we can
construct a new game by excluding server j and substituting clients c1 and c2 by a
client selecting server j ′ in the optimal assignment and server j ′′ in the Nash assign-
ment. The new game has worse price of anarchy, since both the cost of the optimal
assignment and the cost of the Nash equilibrium are decreased by 1. If oj ′ > 1, then
we can add a new server j ′

1 and change the strategy of client c1 to {j ′
1, j}. The new

game has worse price of anarchy since the cost of the Nash equilibrium remains the
same, while the cost of the optimal assignment decreases.

Algorithmica (2011) 61:606–637 617

Now, denote by F the set of servers of type 1/1 and by S the set of servers of type
0/1 which are connected through an edge to a server in F in the game graph. Also, for
each server j in F we denote by S(j) the server of S from which the client destined
for j originates. By the Nash inequality, we obtain that

∑
j n2

j ≤ ∑
j (ojnj + oj)

and, since
∑

j nj = ∑
j oj , we have that

∑

j

n2
j ≤

∑

j

(nj oj + oj)

=
∑

j

(

njoj + 18 + 7
√

21

30
oj − 7

√
21 − 12

30
nj

)

=
∑

j 	∈F∪S

g(nj , oj) +
∑

j∈F

(g(nS(j), oS(j)) + g(nj , oj))

≤
∑

j 	∈F∪S

h(nj , oj) +
∑

j∈F

(h(nS(j), oS(j)) + h(nj , oj))

= 6 − √
21

10

∑

j

n2
j + 6 + √

21

6

∑

j

o2
j

where the first equality follows since
∑

j nj = ∑
j oj , the second equality follows by

the definition of function g, the second inequality follows by Lemma 5, and the last
equality follows by the definition of function h. We obtain that the price of anarchy
is

∑
j n2

j
∑

j o2
j

≤ 2

3

√
21 − 1. �

3.3 Tightening the Analysis

The main idea in order to improve the analysis in the proof of Theorem 6 is to
strengthen the properties of the games that have to be considered and account for the
contributions of servers of type 1/1 together with the servers in their neighborhood in
the game graph (in a way that is well defined below). By extending the neighborhood
that we consider, we obtain better and better upper bounds which converge to the
lower bound of 2.012067 presented in [33]. We present the formal proof for an upper
bound of 2.029656 and a series of better bounds obtained using more complicated
computer-assisted proofs.

Consider the game graph of the game satisfying the 2-neighborhood property. We
call a 4-path any directed path of at most four nodes in the game graph starting with
a server of type 0/1 and having a server of type 1/1 as its second node. Let p be such
a path starting with the server j0 and containing server j1 as its second node. Denote
by j2 the third server in the path p and assume that j2 is of type nj2/oj2 . The path
may terminate at server j2 if it has no outgoing edges in the game graph. Otherwise,
path p has a fourth server j3 of type nj3/oj3 . An example of a 4-path is presented
in Fig. 1. We say that a game satisfies the 4-neighborhood property if in any 4-path,

618 Algorithmica (2011) 61:606–637

Fig. 1 An example of a 4-path

the third server j2 has nj2 = 2 and the fourth server j3, if it exists, has nj3 = 3 and
neither of them has any self-loop.

We show that given any game that satisfies the 2-neighborhood property and has
price of anarchy at least 5/3, there exists a game satisfying the 4-neighborhood prop-
erty which has at least the same price of anarchy. Consider a 4-path consisting of
servers j0, j1, j2 and possibly j3.

Since j2 is connected to at least server j1, it has nj2 > 0. If nj2 ≥ 3, then client c2
between j1 and j2 would have an incentive to use server j1 in the Nash equilibrium.
If nj2 = 1, then we can replace the clients c1 and c2 by a new client selecting server
j0 in the optimal assignment and server j2 in the Nash assignment and obtain a game
with higher price of anarchy, since both the cost of the optimal assignment and of the
Nash equilibrium are decreased by 1.

If server j3 exists, then since j3 is connected to at least server j2, it has nj3 ≥ 1. If
nj3 = 1, then we can introduce a new server j∗ and change the strategy set of client c3
to {j∗, j3} to obtain another game in which server j3 is connected to a server of type
0/1. The social cost of the Nash assignment is the same while the optimal social cost
does not increase. If nj3 = 2, we distinguish between two cases for oj2 . If oj2 = 1,
then we may remove servers j0, j1, and j2 and clients c1, c2 and c3 and change the
strategy of the client c4 which is the second client connected to server j2 in the Nash
equilibrium so that it connects to j3 instead of j2. In this way, the social cost of the
Nash assignment is decreased by 5 while the optimal social cost is decreased by 3;
overall the price of anarchy increases since the original game had price of anarchy
larger than 5/3. If oj2 > 1, we remove the client c3, change the strategy of client c4
so that it connects to server j3 in the Nash equilibrium and introduce two new servers
j∗

0 and j∗ of types 0/1 and 1/1, respectively, and clients c5 and c6 connecting j∗
0 to

j∗ and j∗ to j2, respectively. The social cost of the Nash assignment is increased by 1
while the optimal cost decreases by at least 1. Overall, the price of anarchy increases.
Clearly, if nj3 ≥ 4, then client c3 would have an incentive to use server j2.

It remains to show that neither j2 nor j3 have self-loops. We will actually show
that any game whose game graph has self-loops at nodes of in-degree 2 or 3 can be
converted to a game without such self-loops with higher price of anarchy.

Lemma 7 For any game, there exists a game having at least the same price of anar-
chy and whose game graph has no self-loops at nodes with in-degree 2 and 3.

Proof Starting from a game whose game graph has self-loops at some nodes of in-
degree 2 (respectively, 3), we will construct another game whose game graph has no
self-loops at nodes of in-degree 2 (resp., 3) and has higher price of anarchy.

Consider a game with game graph G that has t self-loops at nodes of in-degree 2
(resp., 3). Construct the graph G′ by first putting twelve (resp., twenty) copies of G.
Denote by L the set of self-loops at nodes of G with in-degree 2 (resp., 3).

Algorithmica (2011) 61:606–637 619

Fig. 2 (a–d) Constructions used in the proof of Lemma 7. (e) Connecting the copies of a node with a
self-loop and in-degree 2 in the original game graph with the constructions in (a) and (b)

For each self-loop in L we apply the following procedure in order to augment
G′. Let v be the node of G with in-degree 2 (resp., 3) having the self-loop. Connect
the outgoing edges of twelve (resp., twenty) constructions like the one in Fig. 2a
(resp., Fig. 2c) to the twelve (resp., twenty) copies of node v, with one outgoing edge
connected to each copy. Furthermore, connect the twelve (resp., twenty) copies of v

to the input edges of the construction of Fig. 2b (resp., Fig. 2d) and remove the twelve
(resp., twenty) copies of the self-loop from G′. An example is depicted in Fig. 2e.

We first show that graph G′ is a game graph, i.e., the assignment where each client
selects the server to which the corresponding edge points to is a Nash equilibrium.
Notice that each copy of a node of G has in- and out-degree in G′ equal to those of the
corresponding node in G. Hence, a client corresponding to any edge of G′ which is a
copy of an edge in G has no incentive to deviate (since the client corresponding to the
edge in G had no incentive to deviate either). Also, edges with at least one endpoint
in the constructions of Figs. 2a, 2b, 2c, and 2d point from a node of in-degree i to a
node of in-degree i + 1 (for i = 0,1, . . . ,4). Hence, the corresponding client would
experience the same latency if it changed its strategy and, hence, no such client has
an incentive to deviate either.

We will now show that the new game has higher price of anarchy than the original
one. In order to show this, we will also use the fact that the price of anarchy of the
original game is at most 2

3

√
21 − 1 which follows by Theorem 6.

Denote by cost the social cost of the Nash equilibrium of the original game (where
each client selects the server to which the corresponding edge points in the game
graph G) and by opt the cost of the assignment where each client selects the server
from which the corresponding edge originates in the game graph G. For the case of
nodes of in-degree 2, the cost of the Nash equilibrium for the new game is

12 · cost + 12t · 12 + 4t · 32 + t · 42 = 12

(

cost + 16t

3

)

.

The first term comes from the contribution of the nodes in the twelve copies of G, the
second term comes from the contribution of the nodes in the constructions of Fig. 2a,

620 Algorithmica (2011) 61:606–637

while the last two terms come from the contribution of nodes in the construction of
Fig. 2b. Similarly, the assignment where all clients select the server at the origin of
the corresponding edge has cost

12 · opt + 24t · 12 + 4t · 12 = 12

(

opt + 7t

3

)

.

The first term comes from the contribution of the nodes in the twelve copies of G, the
second term comes from the contribution of nodes in the constructions of Fig. 2a,
while the last term comes from the contribution of nodes in the constructions of
Fig. 2b.

So, the price of anarchy of the new game is at least

cost + 16t/3

opt + 7t/3
>

cost

opt
,

since, by Theorem 6, it is cost/opt ≤ 2
3

√
21 − 1 < 16/7.

Respectively, for the case of nodes with in-degree 3, the cost of the Nash equilib-
rium of the new game is

20 · cost + 40t · 12 + 20t · 22 + 5t · 42 + t · 52 = 20

(

cost + 45t

4

)

while the assignment where all clients select the server at the origin of the corre-
sponding edge has cost

20 · opt + 100t · 12 + 5t · 12 = 20

(

opt + 21t

4

)

.

So, the price of anarchy of the new game is at least

cost + 45t/4

opt + 21t/4
>

cost

opt
,

since, by Theorem 6, it is cost/opt ≤ 2
3

√
21 − 1 < 45/21. �

Given a server j in a 4-path p of a game satisfying the 4-neighborhood property,
we define part(j,p) as follows. For servers j0, j1, j2 and j3 (if it exists), it is

part(j0,p) = part(j1,p) =
{

1, if oj2 = 0,
1

oj2
, if oj2 > 0,

part(j2,p) =
{ 1

2 , if oj2 = 0,
1

2oj2
, if oj2 > 0,

part(j3,p) = 1

6
.

Denote by P4 the set of all 4-paths in the game graph. The above definition satisfies
that

∑
p∈P4

part(j,p) ≤ 1, for each server j and, in particular,
∑

p∈P4
part(j,p) = 1,

Algorithmica (2011) 61:606–637 621

for each server of type 1/1. Intuitively, we amortize the contribution of a server to
the social cost over the 4-paths containing that server, and part(j,p) is the fraction
of the contribution of j that we assign to path p.

In our proof of the stronger upper bound, we use the following two technical

lemmas. Let ψ = 34+√
629

34 and ξ = 37
√

629−204
1054 . We define the functions g(x, y) =

xy + (1 + ξ)y − ξx and h(x, y) = 1
4ψ

x2 + ψy2.

Lemma 8 For any non-negative integers x, y such that either x 	= 1 or y 	= 1, it holds
that g(x, y) ≤ h(x, y).

Proof Define the function

f (x, y) = h(x, y)−g(x, y) =
(

1

2
√

ψ
x −√

ψy + ξ
√

ψ

)2

+ (2ξψ − ξ −1)y − ξ2ψ.

In order to prove the lemma, it suffices to show that f (x, y) ≥ 0 for any non-negative
integer values of x and y when either x 	= 1 or y 	= 1. First, observe that if y ≥ 2,

then y ≥ ξ2ψ
2ξψ−ξ−1 ≈ 1.17, which implies that (2ξψ − ξ − 1)y − ξ2ψ ≥ 0. Hence,

f (x, y) ≥ 0 for any integer y ≥ 2. Also, f (x,0) = (1
2
√

ψ
x + ξ

√
ψ)2 − ξ2ψ ≥ 0

for any integer x ≥ 0. For y = 1, by straightforward calculations we obtain that the
parabolic function f (x,1) = (1

2
√

ψ
x + (ξ −1)

√
ψ)2 +2ψξ − ξ − ξ2ψ −1 is positive

for x = 0, negative for x = 1 and equal to zero for x = 2. So, it is non-negative for
any non-negative integer value of x besides 1. �

Lemma 9 For any 4-path p, it holds that

∑

j∈p

part(j,p)g(nj , oj) ≤
∑

j∈p

part(j,p)h(nj , oj).

Proof We consider a 4-path p with servers j0, j1, j2 of type 0/1, 1/1, 2/oj2 and a
fourth server j3 of type 3/oj3 if oj2 > 0. We distinguish between the cases oj2 = 0
and oj2 > 0.

In the first case, by simple calculations, we show that g(0,1) + g(1,1) +
1
2g(2,0) ≤ h(0,1) + h(1,1) + 1

2h(2,0).
In the second case, we have to show that g(0,1) + g(1,1) + 1

2g(2, oj2) +
oj2
6 g(3, oj3) ≤ h(0,1) + h(1,1) + 1

2h(2, oj2) + oj2
6 h(3, oj3). By straightforward cal-

culations, we obtain that g(2, oj2)−h(2, oj2) ≤ g(2,1)−h(2,1) = 0 for any oj2 ≥ 1,
and that g(3, oj3) − h(3, oj3) ≤ g(3,1) − h(3,1) for any oj3 ≥ 0. So, the proof com-
pletes by showing that g(0,1)+g(1,1)+ 1

6g(3,1) ≤ h(0,1)+h(1,1)+ 1
6h(3,1). �

By using the fact that
∑

j nj = ∑
j oj , the definition of functions g and h, and

Lemmas 8 and 9, we obtain that

622 Algorithmica (2011) 61:606–637

∑

j

n2
j ≤

∑

j

(njoj + oj) =
∑

j

(nj oj + (1 + ξ)oj − ξnj) =
∑

j

g(nj , oj)

=
∑

p∈P4

∑

j∈p

g(nj , oj)part(j,p) +
∑

j

(

1 −
∑

p∈P4

part(j,p)

)

g(nj , oj)

≤
∑

p∈P4

∑

j∈p

h(nj , oj)part(j,p) +
∑

j

(

1 −
∑

p∈P4

part(j,p)

)

h(nj , oj)

=
∑

j

h(nj , oj) = 1

4ψ

∑

j

n2
j + ψ

∑

j

o2
j

which yields that the price of anarchy is

∑
j n2

j
∑

j o2
j

≤ 4ψ2

4ψ − 1
= 323 − 6

√
629

85
≈ 2.029656.

The analysis can be extended by considering games satisfying the κ-neighborhood
property for κ > 4. We call a κ-path any directed path of at most κ nodes in the
game graph starting with a server of type 0/1 and having a server of type 1/1 as its
second node. A game satisfies the κ-neighborhood property if it satisfies the (κ − 1)-
neighborhood property and for any κ-path in the game graph, the κ-th node, if it
exists, has in-degree κ −1 and no self-loops. Again, it can be shown that for any game
there exists a game satisfying the κ-neighborhood property having at least the same
price of anarchy. In order to upper-bound the price of anarchy, we define part(j,p)

which denotes how much server j participates in the κ-path p and the functions
gκ(x, y) = xy + (1 + ξκ)y − ξκx and hκ(x, y) = 1

4ψκ
x2 + ψκy2. We seek for values

of ψκ and ξκ so that the functions gκ and hκ satisfy lemmas similar to Lemmas 8 and

κ Upper bound Lower bound

4 2.029656065 1.8
5 2.019343848 1.9375
6 2.015325799 1.970588235
7 2.013332672 1.994252874
8 2.012388288 2.005703422
9 2.012186496 2.0100271

10 2.012110246 2.011232914
11 2.012080068 2.011769481
12 2.012071449 2.011970945
13 2.012068514 2.01202926
14 2.012067464 2.012053615
15 2.012067113 2.012062622

Fig. 3 Upper bounds obtained for κ = 4, . . . ,15. The third column has the lower bounds obtained by the
constructions of [33] with κ + 1 levels

Algorithmica (2011) 61:606–637 623

9 that minimize 4ψ2
κ

4ψκ−1 . Then, the analysis continues in the same way as in the proof
above. We have implemented the proof in a C program for values κ = 5, . . . ,15. The
bounds obtained are depicted in Fig. 3.

For κ = 4, . . . ,15, by appropriately defining part(j,p), the κ-paths that make the
inequality of Lemma 9 tight consist of the first κ servers with types in the following
sequence 0/1, 1/1, 2/1, 3/1, 4/2, 5/2, 6/2, 7/2, 8/3, 9/3, 10/3, 11/4, 12/4, 13/4,
14/5. These are essentially the lower bound constructions of [33]. For κ ≥ 4, such a
construction with κ + 1 levels has the servers in the first κ levels to be of type in the
above sequence while servers of the last level κ are of type κ/0.

4 Greedy Load Balancing

In this section we study greedy load balancing by focusing on servers with linear
latency functions. Similarly to the case of selfish load balancing, in the study of the
competitiveness of greedy load balancing we consider load balancing instances in
which each client has at most two strategies. This is clearly sufficient when proving
lower bounds. In order to prove upper bounds, we observe that for any instance, there
exists another instance with at most two strategies per client for which greedy has
the same competitiveness. Given any load balancing instance, let O and N be the
optimal assignment and the greedy assignment of the highest cost for this instance,
respectively. The instance with the same clients and servers in which each client has
its strategies in O and N as strategies also has the same optimal assignment and the
same greedy assignment (and, consequently the same competitiveness). We represent
such instances as directed graphs (called greedy graphs) having a node for each server
and a directed edge with timing information for each client; the direction of each
edge is from the strategy of the client in the optimal assignment to the strategy of the
client in the greedy assignment and the timing information denotes the time the client
appears.

The cost of an assignment is again the total latency. When each server j has been
assigned nj clients and its latency function is fj (x) = αjx + βj , then the total cost
of the greedy assignment equals

∑
j (αjn

2
j + βjnj). As discussed in [33], the greedy

algorithm does not necessarily lead to equilibrium assignments. In the greedy algo-
rithm, each client is essentially choosing the best possible server at the time it makes
its decision. When all servers have the same latency function f (x) = αx + β , each
client c is simply choosing the server with the minimum number of clients.

4.1 Different Servers

First, we show that the upper bound of [33] for different servers is tight.

Theorem 10 For any ε > 0, greedy load balancing has competitiveness at least
17/3 − ε.

Proof We first present an instance that yields a lower bound arbitrarily close to 5.
We construct an instance Ik(α, t) represented by a greedy graph which is a complete

624 Algorithmica (2011) 61:606–637

binary tree with k levels 0,1, . . . , k − 1 and with its edges directed towards the root.
Denote by Si the set of servers at level i. The root R has latency function fR(x) =
αRx = αx and the latency functions fs(x) = αsx for the other nodes are defined as
follows: For i = 0, . . . , k − 2, given a server s at level i, its left child 	(s) has α	(s) =
αs/5 and the right child r(s) has αr(s) = 3αs/5. Given a server s at level k −2, its left
child 	(s) has α	(s) = αs and its right child r(s) has αr(s) = 3αs . These definitions
yield

∑
s∈Si

αs = α(4/5)i for i = 0, . . . , k − 2, and
∑

s∈Sk−1
αs = 4α(4/5)k−2. Given

any non-leaf server s, the client connecting s with its left child appears prior to the
client connecting s with its right child and, if s is not the root, the client connecting
s to its parent appears after the clients connecting s with its children. The client
connecting the root with its right child has timing t and is the client that arrives last.

Consider the assignment where each client selects the server corresponding to
the node closer to the root. We will show that this is a greedy assignment. Indeed,
consider the two clients c1 and c2 connecting a server s to 	(s) and r(s), respectively,
and recall that c1 appears before c2 and, furthermore, the client connecting s to its
parent (if s 	= R) appears after c2. We first consider the case when 	(s) and r(s)

are leaves. When c1 appears, both 	(s) and s have zero clients and the same latency
functions, and, therefore, we can assign c1 to s, since the increase of the cost is αs

for both choices. Moreover, when c2 appears, we can also assign it to s since r(s)

has zero clients and latency function fr(s)(x) = 3αsx and s has one client and latency
function fs(x) = αsx. Thus, the increase in the cost is 3αs for both choices. Now,
assume that 	(s) and r(s) are not leaves. When c1 appears, server 	(s) has already
two clients and latency function f	(s)(x) = αsx/5, while server s has zero clients and
latency function fs(x) = αsx. Therefore, we can assign c1 to s, since the increase in
the cost is αs for both choices. Moreover, when c2 appears, we can also assign it to s

since r(s) has two clients and latency function fr(s)(x) = 3αsx/5, while server s has
one client and latency function fs(x) = αsx. Thus, the increase in the cost is 3αs for
both choices.

In order to bound the optimal cost it suffices to consider the assignment of
each client to the server which is closer to the leaves. Denote by opt(Ik(α, t))

and gr(Ik(α, t)) the optimal cost and the cost of the greedy assignment of an
instance Ik(α, t), respectively. We have opt(Ik(α, t)) ≤ ∑k−1

i=1
∑

s∈Si
αs = 4α and

gr(Ik(α, t)) = 4
∑k−2

i=0
∑

s∈Si
αs = 20α(1 − (4/5)k−1).

We will now use the instance described above to obtain the 17/3 lower bound. We
construct a greedy graph consisting of a complete binary tree with k levels and with
its edges directed towards the root. Denote by S′

i the set of servers of level i. The
root R has latency function fR(x) = x. The latency functions for the other servers
are defined as follows. For i = 0, . . . , k − 2, given a server s at level i, its left child
	(s) has α	(s) = 3αs/7 and the right child r(s) has αr(s) = 5αs/7. Given a server s at
level k −2, its left child 	(s) has α	(s) = 3αs/5 and its right child r(s) has αr(s) = αs .
These definitions yield

∑
s∈S′

i
αs = (8/7)i for i = 0, . . . , k − 2, and

∑
s∈S′

k−1
αs =

8
5 (8/7)k−2. Given any server s which is not a leaf, the client connecting s to its left
child 	(s) has timing t	(s) and the client connecting s to its right child r(s) has timing
tr(s) with t	(s) < tr(s). If s is not the root, the client connecting s to its parent appears
after the clients connecting s to its children.

Algorithmica (2011) 61:606–637 625

Fig. 4 The construction in the proof of Theorem 10. The instance I (α, t) is depicted at the left and is used
as a triangle in the construction at the right part

We augment the instance as follows: For each leaf s of the binary tree connected
with its parent node through an edge of timing t , we include a copy I

s,1
k of instance

Ik(αs/5, t − 3) and a copy I
s,2
k of instance Ik(3αs/5, t − 3) whose roots Rs,1 and

Rs,2 are connected through edges of timing t − 2 and t − 1 with s. For each non-
leaf node s, we include a copy I s

k of instance Ik(αs/5, t	(s) − 2) whose root Rs is
connected through an edge of timing t	(s) − 1 with s, where t	(s) is the timing of the
edge connecting s with its left child in the binary tree. The construction is depicted
in Fig. 4.

Consider the assignment where each client selects the server corresponding to the
node closer to the root. We will show that this is a greedy assignment by arguing
about the choices of all different sets of clients. We begin by considering clients
corresponding to edges inside the copies (of I s

k when s in not a leaf and I
s,1
k and

I
s,2
k when s is a leaf). Clearly, since those edges arrive prior to the edges connecting

the copies to the binary tree and by the discussion above, the assignment of those
edges to the nodes closer to the root is a valid outcome of the greedy algorithm. We
now move to clients corresponding to edges outside the copies. Consider client c1

corresponding to an edge e = (Rs,1, s) connecting the root Rs,1 of copy I
s,1
k to a

leaf s of the binary tree. Rs,1 has latency function fRs,1(x) = αsx/5 and already two
clients, while s has latency function fs(x) = αsx and no clients. So, the increase in
the total cost will be equal to αs for both choices of client c1. Similarly, consider
client c2 corresponding to an edge e = (Rs,2, s) connecting the root Rs,2 of copy
I

s,2
k to a leaf s of the binary tree. Rs,2 has latency function fRs,2(x) = 3αsx/5 and

already two clients, while s has latency function fs(x) = αsx and one client. So, the
increase in the total cost will be equal to 3αs for both choices of client c2. Now,
consider client c3 corresponding to an edge e = (Rs, s) connecting the root Rs of
copy I s

k to a non-leaf s of the binary tree. Rs has latency function fRs (x) = αsx/5

626 Algorithmica (2011) 61:606–637

and already two clients, while s has latency function fs(x) = αsx and no clients.
So, the increase in the total cost will be equal to αs for both choices of client c3.
Until now, we have argued about clients connecting copies of instance Ik(α, t) to
the binary tree. We proceed to handle the clients connecting nodes of the binary
tree to their parents. Consider client c4 corresponding to an edge e = ((s), s) con-
necting the left child 	(s) to its parent s, for the case where 	(s) is a leaf of the
binary tree. 	(s) has latency function f	(s)(x) = 3αsx/5 and already two clients,
while s has latency function fs(x) = αsx and one client. So, the increase in the
total cost will be equal to 3αs for both choices of client c4. Similarly, consider
client c5 corresponding to an edge e = (r(s), s) connecting the right child r(s) to
its parent s, for the case where r(s) is a leaf of the binary tree. Both r(s) and s

have already two clients and the same latency functions. Therefore, the increase in
the total cost will be equal to 5αs for both choices of client c5. Moreover, consider
client c6 corresponding to an edge e = ((s), s) connecting the left child 	(s) to its
parent s, for the case where 	(s) is not a leaf of the binary tree. 	(s) has latency
function f	(s)(x) = 3αsx/7 and already three clients, while s has latency function
fs(x) = αsx and one client. So, the increase in the total cost will be equal to 3αs

for both choices of client c6. Finally, consider client c7 corresponding to an edge
e = (r(s), s) connecting the right child r(s) to its parent s, for the case where r(s)

is not a leaf of the binary tree. r(s) has latency function fr(s)(x) = 5αs/7 and al-
ready three clients, while s has latency function fs(x) = αsx and already two clients.
Therefore, the increase in the total cost will be equal to 5αs for both choices of client
c7.

In order to bound the optimal cost it suffices to consider the assignment of each
client to the server which is closer to the leaves. In this assignment, each non-root
server is assigned one client. Therefore, the cost of the servers that form IR

k is 1/5 +
opt(IR

k), the cost of each non-root node s is αs , the cost of the servers that form I s
k is

αs/5+opt(I s
k), while the cost of the servers that form I

s,1
k and I

s,2
k is αs/5+opt(I s,1

k)

and 3αs/5 + opt(I s,2
k), respectively. Denote by opt and gr the optimal cost and the

cost of the greedy assignment of the construction. We have that

opt ≤ 1

5
+ opt(IR

k) +
k−2∑

i=1

∑

s∈S′
i

(
6αs

5
+ opt(I s

k)

)

+
∑

s∈S′
k−1

(
9αs

5
+ opt(I s,1

k) + opt(I s,2
k)

)

≤ 1

5
+ 4

5
+

k−2∑

i=1

∑

s∈S′
i

(
6αs

5
+ 4αs

5

)

+
∑

s∈S′
k−1

(
9αs

5
+ 4αs

5
+ 12αs

5

)

= 1 + 2
k−2∑

i=1

∑

s∈S′
i

αs + 5
∑

s∈S′
k−1

αs

= 21(8/7)k−1 − 15,

Algorithmica (2011) 61:606–637 627

and

gr =
k−2∑

i=0

∑

s∈S′
i

(9αs + gr(I s
k)) +

∑

s∈S′
k−1

(4αs + gr(I s,1
k) + gr(I s,2

k))

=
k−2∑

i=0

∑

s∈S′
i

(9αs + 4αs(1 − (4/5)k−1)) +
∑

s∈S′
k−1

(4αs + 16αs(1 − (4/5)k−1))

= (13 − 4(4/5)k−1)

k−2∑

i=0

∑

s∈S′
i

αs + (20 − 16(4/5)k−1)
∑

s∈S′
k−1

αs

= 119(8/7)k−1 − 91 + 28(4/5)k−1 − 252

5
(32/35)k−1.

We conclude that for any ε > 0 and for sufficiently large k, the competitiveness of
the greedy assignment is at least 17/3 − ε. �

4.2 Identical Servers

We also study the case of identical servers with latency function f (x) = x. By rea-
soning about the structure of load balancing instances of particular properties, we
prove an upper bound of 2

3

√
21 + 1 ≈ 4.05505 (Theorem 13) on the competitiveness

of the greedy algorithm, improving the previous bound of 2 + √
5 ≈ 4.2361 from

[33].
In our proof, we use the greedy inequality developed in [33] as well as a technical

lemma (Lemma 12).

Lemma 11 (Greedy inequality, Suri et al. [33]) For any load balancing instance
on servers with latency functions fj (x) = αjx + βj , with a greedy and an optimal
assignment of nj and oj clients at each server j , respectively,

∑
j (αjn

2
j + βjnj) ≤

∑
j oj (2αjnj + αj + βj).

Lemma 12 Let ψ = 9+√
21

6 and ξ = 7
√

21−3
30 and define the functions g(x, y) =

2xy + (1 + ξ)y − ξx and h(x, y) = 1
ψ

x2 + ψy2. For any non-negative integers
x, y such that either x 	= 1 or y 	= 1, it holds that g(x, y) ≤ h(x, y). Furthermore,
g(0,1) + g(1,1) = h(0,1) + h(1,1).

Proof We start by noting that g(0,1) + g(1,1) = ξ + 4 = 117+7
√

21
30 and h(0,1) +

h(1,1) = 2ψ + 1
ψ

= 117+7
√

21
30 . Define the function

f (x, y) = h(x, y) − g(x, y) =
(

1√
ψ

x − √
ψy + ξ

√
ψ

2

)2

+ (ξψ − ξ − 1)y − ξ2ψ

4
.

In order to prove the lemma, it suffices to show that f (x, y) ≥ 0 for any non-negative
integer values of x and y when either x 	= 1 or y 	= 1. First, observe that if y ≥ 3, then

628 Algorithmica (2011) 61:606–637

y ≥ ξ2ψ
4(ξψ−ξ−1)

= 1 + 25
√

21
84 ≈ 2.36, which implies that (ξψ − ξ − 1)y − ξ2ψ

4 ≥ 0.

Hence, f (x, y) ≥ 0 for any integer y ≥ 3. Also, f (x,0) = (1√
ψ

x + ξ
√

ψ
2)2 − ξ2ψ

4 ≥ 0
for any integer x ≥ 0. For y = 1, by straightforward calculations we obtain that the

parabolic function f (x,1) = (1√
ψ

x − √
ψ + ξ

√
ψ

2)2 + ξψ − ξ − 1 − ξ2ψ
4 is positive

for x = 0, negative for x = 1 and equal to zero for x = 2. So, it is non-negative for any
non-negative integer value of x besides 1. For y = 2, by straightforward calculations

we obtain that the parabolic function f (x,2) = (1√
ψ

x − 2
√

ψ + ξ
√

ψ
2)2 + 2(ξψ −

ξ − 1) − ξ2ψ
4 is equal to zero for x = 3 and positive for x = 2 and x = 4. So, it is

non-negative for any non-negative integer value of x. �

Theorem 13 Greedy load balancing on identical servers has competitiveness at most
2
3

√
21 + 1 ≈ 4.05505.

Proof Consider a load balancing instance on servers with latency function f (x) = x

and clients having at most two strategies. We will upper-bound the ratio of the cost
of the greedy assignment to the optimal cost of instances with at most two strate-
gies per client which satisfy a particular property. We say that server j is of type
nj/oj meaning that it has nj clients in the greedy assignment and oj clients in the
optimal assignment (equivalently, server j has in-degree nj and out-degree oj in the
greedy graph). We first show that for any instance we can construct another instance
that has at least the same competitiveness and, furthermore, satisfies the following
2-neighborhood property: the incoming edge of any server of type 1/1 originates
from a server of type 0/1. Then, the idea behind the proof is to account for the con-
tribution of servers of type 1/1 and 0/1 in the cost of the greedy assignment together.

Consider a server j of type 1/1. If a client c had server j as its only permissible
server (this would correspond to a self-loop in the corresponding greedy graph), then
we could construct a new instance by excluding server j and client c from the original
one. In this way, we would obtain a new instance where both the optimal cost and the
cost of the greedy assignment are decreased by 1 (and, hence, the competitiveness
of the greedy assignment increases). So, let j ′ and j ′′ be the servers to which server
j is connected in the greedy graph through edges corresponding to clients c1 and c2

that select servers j ′ and j in the optimal assignment and servers j and j ′′ in the
greedy assignment, respectively. We can assume that for each server of type 1/1, its
input client appears prior to its output client. Indeed, if c2 appears prior to c1, we
can introduce a new server j∗ and make client c2 originate from j∗ without changing
its timing. In this way the server of type 1/1 is replaced by two servers of types
1/0 and 0/1, respectively, without changing the cost of the greedy and the optimal
assignment.

Assume that server j ′ is of type nj ′/oj ′ with nj ′ > 0 and, furthermore, that at
least one of its input clients appears prior to c1. Then, we could remove server j

and replace clients c1 and c2 by a new client c′ from server j ′ to server j ′′ having
the same timing with c2 to obtain another greedy graph in which both the optimal
cost and the cost of the greedy assignment are decreased by 1. So, no input client of
j ′ appears prior to c1. Then, we can introduce a new server j∗ and make client c1

Algorithmica (2011) 61:606–637 629

originate from j∗ instead of j ′ (without changing its timing) to obtain a new greedy
graph. If oj ′ > 1 in the original instance, then the optimal cost of the new instance
would decrease by at least 3 while the cost of the greedy assignment would remain
the same. If oj ′ = 1, we obtain a new instance in which the greedy assignment has
the same competitiveness with the original instance and in which the input client of
j originates from a server of type 0/1.

Now, denote by F the set of servers of type 1/1 and by S the set of servers of
type 0/1 which are connected through an edge to a server in F in the greedy graph.
Also, for each server j in F we denote by S(j) the server of S from which the client
destined for j originates. By the greedy inequality,

∑
j n2

j ≤ ∑
j oj (2nj + 1), and

since
∑

j nj = ∑
j oj , we have that

∑

j

n2
j ≤

∑

j

(2njoj + oj) =
∑

j

(

2njoj + 27 + 7
√

21

30
oj − 7

√
21 − 3

30
nj

)

=
∑

j /∈S∪F

g(nj , oj) +
∑

j∈F

(g(nS(j), oS(j)) + g(nj , oj))

≤
∑

j /∈S∪F

h(nj , oj) +
∑

j∈F

(h(nS(j), oS(j)) + h(nj , oj))

= 9 − √
21

10

∑

j

n2
j + 9 + √

21

6

∑

j

o2
j

where the first equality follows since
∑

j nj = ∑
j oj , the second equality follows

by the definition of function g, the second inequality follows by Lemma 12, and
the last equality follows by the definition of function h. Hence, we obtain that the
competitiveness is

∑
j n2

j
∑

j o2
j

≤ 2

3

√
21 + 1 ≈ 4.05505. �

We also present an almost matching lower bound.

Theorem 14 For any ε > 0, greedy load balancing on identical servers has compet-
itiveness at least 4 − ε.

Proof We assume that there are m servers s1, s2, . . . , sm, and k groups of clients
g1, . . . , gk , where group gj has m/j2 clients c

j
i , 1 ≤ i ≤ m/j2. We assume that m is

such that all groups have integer size. Each client c
j
i has s1, s2, . . . , si as permissible

servers. The clients appear in non-increasing order according to index i (ties are bro-
ken arbitrarily), i.e., c1

m, c1
m−1, . . . , c

1
m/4+1, c

2
m/4, c

1
m/4, c

2
m/4−1, c

1
m/4−1, . . . , c

2
m/9+1,

c1
m/9+1, c

3
m/9, c

2
m/9, c

1
m/9, . . . , etc.

630 Algorithmica (2011) 61:606–637

To upper bound the optimal cost opt, it suffices to consider the assignment where
each client c

j
i chooses server si . We obtain that

opt ≤
k−1∑

i=1

i2(|gi | − |gi+1|) + k2|gk| = m + m

k−1∑

i=1

i2
(

1

i2
− 1

(i + 1)2

)

= m

(

1 + 2
k−1∑

i=1

1/(i + 1) −
k−1∑

i=1

1/(i + 1)2

)

≤ m(2Hk + ζ1)

for some positive constant ζ1, where Hk is the k-th Harmonic number.
A greedy assignment is obtained by making each client select the server with

the smallest index among its permissible servers having the minimum number of
clients. In the analysis we make use of sets of clients called rows. A client belongs
to row rowi if, when it selects its server, it is the i-th client selecting that server. For
example, clients c1

m, c1
m−1, . . . , c

1
m/2+1 select servers s1, . . . , sm/2, respectively; each

of them is the first client in its server, so they belong to row1. Then, c1
m/2, . . . , c

1
m/4+1

select servers s1, . . . , sm/4; they belong to row2. We can verify that the set of servers
selected by clients in rowi+1 is subset of the set of servers selected by clients in
rowi for i = 1, . . . ,2k − 3, that rows row2i−1 and row2i contain clients of groups
g1, . . . , gi , and that |row2i | = m

(i+1)2 and |row2i−1| = m
i(i+1)

for any i = 1, . . . , k − 1.
So, for i = 1, . . . ,2k − 3, the number of servers receiving exactly i clients in the
greedy assignment is |rowi | − |rowi+1|. We compute a lower bound on the cost gr

of the greedy assignment by considering only the servers with at most 2k − 4 clients.
We have that

gr ≥
k−2∑

i=1

((2i − 1)2(|row2i−1| − |row2i |) + (2i)2(|row2i | − |row2i+1|))

= m

k−2∑

i=1

(

(2i − 1)2
(

1

i(i + 1)
− 1

(i + 1)2

)

+ (2i)2
(

1

(i + 1)2
− 1

(i + 1)(i + 2)

))

≥ m

k−2∑

i=1

(
8

i + 1
− 20

(i + 1)2

)

≥ m(8Hk − ζ2)

for some positive constant ζ2. We conclude that for any ε > 0 and sufficiently large k

and m, the competitiveness of the greedy assignment is at least 4 − ε. �

An example of the construction used in the proof of Theorem 14 is presented in
Fig. 5.

Algorithmica (2011) 61:606–637 631

Fig. 5 An example with 36 servers and 3 groups of clients of size 36, 9 and 4 respectively. The clients
appear in the following order: c1

36, c1
35, . . . , c1

10, c2
9, c1

9, c2
8, c1

8, c2
7, c1

7, c2
6, c1

6, c2
5, c1

5, c3
4, c2

4, c1
4, c3

3, c2
3,

c1
3, c3

2, c2
2, c1

2, c3
1, c2

1 and c1
1. A valid assignment of cost 83 and the greedy assignment of cost 250 are

presented at the top and bottom of the figure, respectively

5 Weighted Clients

In this section, we consider selfish and greedy load balancing with weighted clients
and servers with linear latency functions. First, we show that the upper bound of
3+√

5
2 ≈ 2.618 on the price of anarchy of weighted congestion games [6, 10] is tight

even for load balancing games.

Theorem 15 For any ε > 0, there exists a load balancing game with linear latency

functions and with weighted clients whose price of anarchy is at least 3+√
5

2 − ε.

Proof Denote by φ = 1+√
5

2 the golden ratio. We construct a game with k + 1 servers
so that server j has latency function fj (x) = 1

φ2j x for j = 0, . . . , k − 1, and fk(x) =
1

φ2(k−1) x. For j = 0, . . . , k−1 there is a client of weight φj having servers j and j +1
as its strategies.

Consider the assignment where client j selects server j (j = 0, . . . , k − 1). Since
servers k − 1 and k have the same latency functions, and server k is not used by any
client, client k − 1 has no incentive to deviate from server k − 1 to server k. Now,
consider client j with 0 ≤ j ≤ k − 2. By the definition of the latency functions fj (x)

and the weight of client j , we have that client j experiences latency φ−j at server j .
If client j deviates to server j +1, then the load at server j +1 would be φj+1 +φj =

632 Algorithmica (2011) 61:606–637

φj+2 and the latency experienced by client j would be fj+1(φ
j+2) = φ−j again. So,

for j = 0, . . . , k − 2, client j has no incentive to deviate either. We conclude that the
assignment is a Nash equilibrium. Clearly, its social cost is k.

In order to upper bound the optimal cost, it suffices to consider the assignment
where client j selects server j +1 for j = 0, . . . , k−1. Its cost is

∑k−1
j=0 φjfj+1(φ

j) =
∑k−2

j=0 φjfj+1(φ
j) + φk−1fk(φ

k−1) = (k − 1)/φ2 + 1. So, for any ε > 0 and suffi-

ciently large k, the price of anarchy is larger than φ2 − ε = 3+√
5

2 − ε. �

The proof of the above theorem makes use of different servers. In the case of
identical servers, we have a slightly weaker lower bound.

Theorem 16 For any ε > 0, there exists a load balancing game with weighted clients
and identical servers whose price of anarchy is at least 5/2 − ε.

Proof We construct a game graph G consisting of a complete ternary tree with k + 1
levels with a binary tree of k + 1 levels hung at each leaf so that the root of the binary
tree coincides with the leaf of the ternary tree and an additional node hung at each leaf
of the binary trees. So, graph G has 2k +2 levels 0, . . . ,2k +1, with 3i nodes at level
i for i = 0, . . . , k, 3k2i−k nodes at levels k + 1, . . . ,2k and 6k nodes at level 2k + 1.
The servers corresponding to the nodes have the same latency function f (x) = x and
the clients corresponding to edges connecting nodes of levels i and i + 1 have weight
wi = (2/3)i for i = 0, . . . , k − 1, wi = (2/3)k−1(1/2)i−k for i = k, . . . ,2k − 1 and
w2k = (1/3)k−1. The construction is depicted in Fig. 6.

Consider the assignment where all clients select servers corresponding to the end-
point of their corresponding edge which is closer to the root of the game graph.
We will show that this assignment is a Nash equilibrium. We have to consider five

Fig. 6 The construction in the proof of Theorem 16

Algorithmica (2011) 61:606–637 633

sets of clients corresponding to: edges connecting nodes of levels i and i + 1 for
i = 0, . . . , k − 2, edges connecting nodes of levels k − 1 and k, edges connecting
nodes of levels i and i + 1 for i = k, . . . ,2k − 2, edges connecting nodes of levels
2k − 1 and 2k and edges connecting nodes of levels 2k and 2k + 1. Consider a client
ci corresponding to an edge connecting nodes vi and vi+1 of levels i and i + 1 with
0 ≤ i ≤ k − 2. The server corresponding to node vi is used by three clients of weight
(2/3)i each. Hence, the latency experienced by client ci is 3(2/3)i . The server corre-
sponding to node vi+1 is used by three clients of weight (2/3)i+1 each. If client ci de-
viated to this server, its latency would be (2/3)i +3(2/3)i+1 = 3(2/3)i again. Hence,
client ci has no incentive to deviate. Now, consider a client ck−1 corresponding to an
edge connecting nodes vk−1 and vk of levels k −1 and k. The server corresponding to
node vk−1 is used by three clients of weight (2/3)k−1 each. Hence, the latency expe-
rienced by client ck−1 is 3(2/3)k−1. The server corresponding to node vk is used by
two clients of weight (2/3)k−1 each. If client ck−1 deviated to this server, its latency
would be 3(2/3)k−1 again. So, client ck−1 has no incentive to deviate. Furthermore,
consider a client ci corresponding to an edge connecting nodes vi and vi+1 of levels
i and i + 1 with k ≤ i ≤ 2k − 2. The server corresponding to node vi is used by two
clients of weight (2/3)k−1(1/2)i−k each. Hence, the latency experienced by client ci

is (2/3)k−1(1/2)i−k−1. The server corresponding to node vi+1 is used by two clients
of weight (2/3)k−1(1/2)i+1−k each. If client ci deviated to this server, its latency
would also be (2/3)k−1(1/2)i−k + (2/3)k−1(1/2)i−k = (2/3)k−1(1/2)i−k−1. Again,
client ci has no incentive to deviate. We continue by considering a client c2k−1 cor-
responding to an edge connecting nodes v2k−1 and v2k of levels 2k − 1 and 2k. The
server corresponding to node v2k−1 is used by two clients of weight (1/3)k−1 each.
Hence, the latency experienced by client c2k−1 is 2(1/3)k−1. The server correspond-
ing to node v2k is used by one client of weight (1/3)k−1. If client c2k−1 deviated
to this server, its latency would be 2(1/3)k−1 again. We conclude that client c2k−1

has no incentive to deviate. Finally, consider a client c2k corresponding to an edge
connecting nodes v2k and v2k+1 of levels 2k and 2k + 1. The server corresponding
to node v2k is used only by c2k and the latency is (1/3)k−1, while the server corre-
sponding to node v2k+1 is not used by any client. If client c2k deviated to this server,
its latency would also be (1/3)k−1. Again, client c2k has no incentive to deviate. We
conclude that the assignment is a Nash equilibrium. Its cost is

cost =
k−1∑

i=0

((3wi)
23i) +

2k−1∑

i=k

((2wi)
23k2i−k) + 6kw2

2k

= 9
k−1∑

i=0

(4/3)i + 12(4/3)k−1
2k−1∑

i=k

(1/2)i−k + 6k(1/9)k−1

= 45(4/3)k − 9(2/3)k − 27.

To compute an upper bound for the cost of the optimal assignment, it suffices to
consider the assignment where all clients select the servers corresponding to nodes
which are further from the root. We obtain that the cost opt of the optimal assignment

634 Algorithmica (2011) 61:606–637

Fig. 7 Constructions used in the proof of Theorem 17. (a) Graph G0. (b) The graph Gk that is obtained
using G1

k−1 and G2
k−1. (c) An example (graph G2)

is

opt ≤
k−1∑

i=0

(w2
i 3i+1) +

2k−1∑

i=k

(w2
i 3k2i+1−k) + 6kw2

2k

= 3
k−1∑

i=0

(4/3)i + 6(4/3)k−1
2k−1∑

i=k

(1/2)i−k + 6k(1/9)k−1

= 18(4/3)k − 9.

Hence, for any ε > 0 and for sufficiently large k, the ratio of the social cost of the
Nash equilibrium to the social cost of the optimal assignment is larger than 5/2−ε. �

For greedy load balancing, the next lower bound states that the upper bound of [5]
for a more general version of the problem (namely, online scheduling on unrelated
machines) is already tight for greedy load balancing of weighted clients on identical
servers.

Theorem 17 For any ε > 0, there exists a load balancing instance with weighted
clients and identical servers for which greedy has competitiveness at least
3 + 2

√
2 − ε.

Proof We describe the recursive procedure LB which, on input a non-negative inte-
ger k, computes a greedy graph Gk as follows: If k = 0, Gk consists of two servers
connected through a directed edge of weight 1 and timing information 1. Otherwise
it executes LB on input k − 1 twice to obtain two identical greedy graphs G1

k−1 and
G2

k−1 and introduces a directed edge of weight 2k/2 and timing information k + 1
connecting the server of maximum in-degree in G1

k−1 to the server of maximum in-
degree in G2

k−1. Finally, the procedure LB outputs as Gk the union of G1
k−1 and

G2
k−1 together with the new edge (see Fig. 7).
Gk is a greedy graph, since at each time step the client that appears may choose

between two servers having the same load and the edge corresponding to the client
has a timing information that is greater than the timing information of all edges ap-
pearing in the two copies G1

k−1 and G2
k−1. In the greedy assignment, each client is

assigned to the server corresponding to the node that is the head of the directed edge,
while in order to bound the optimal cost it suffices to consider the assignment where
each client selects the server corresponding to the tail of the directed edge.

Algorithmica (2011) 61:606–637 635

Denote by gr(i) the cost of greedy assignment and by opt(i) the cost of the assign-
ment that upperbounds the optimal assignment in Gi . Clearly, opt(0) = gr(0) = 1.
We obtain the following two recursive relations:

opt(i) = 2opt(i − 1) + 2i ,

gr(i) = 2gr(i − 1) + 2i + 21+i/2
i−1∑

j=0

2j/2.

The first term in both relations follows since graph Gi is obtained by two copies
G1

i−1 and G2
i−1 of Gi−1. The second term of the first relation follows by observing

that the servers having the maximum in-degree in G1
i−1 and G2

i−1 have out-degree 0.
So, the total weight of the outgoing edges from the server of maximum in-degree in
G1

i−1 is increased from 0 to 2i/2. The last two terms in the second relation follow by
observing that the maximum in-degree in the two copies of Gi−1 is i and the edges

incident to the two nodes of maximum in-degree have weights 1,
√

2,2, . . . ,2
i−1

2 . So,
when we add the new edge to obtain Gi , the total weight of the incoming edges into
the server of maximum in-degree in G2

i−1 is increased from
∑i−1

j=0 2j/2 to
∑i

j=0 2j/2

and the last two terms in the second relation represent the increase in the (weighted)
total latency.

Using these relations, we can inductively show that opt(k) = 2k(k + 1) and
gr(k) = 2k((3 + 2

√
2)k − 5 − 4

√
2) + 21+k/2(3 + 2

√
2). Hence, for any ε > 0 and

for sufficiently large k, the ratio of the cost of the greedy assignment to the optimal
cost of Gk is at least 3 + 2

√
2 − ε. �

6 Open Problems

Although most of our results are tight, there are still several interesting questions
about load balancing, especially when the latency functions are linear. An intriguing
open problem is to compute tight bounds for the price of stability of weighted load
balancing games. It is also interesting to close the gap between the lower bound of
5/2 on the price of anarchy for selfish load balancing games of weighted clients on

identical servers and the upper bound of 3+√
5

2 which has been proved for congestion
games [6]. We believe that our lower bound is tight. We have considered pure Nash
equilibria of load balancing games. Some of our results hold or can be extended
to hold for mixed and correlated equilibria [11] as well. There is also a small gap
between 4 and 4.05505 for the competitiveness of greedy load balancing on identical
servers. We believe that it can be further narrowed by extending our upper bound
technique. Finally, we remark that by slightly modifying the arguments in the proofs
of Theorems 14 and 17, it follows that the lower bounds hold for any deterministic
online load balancing algorithm; hence, the greedy algorithm is (almost) optimal in
these particular cases. Investigating whether the use of randomization can lead to
better competitiveness deserves further attention. Recent results in this direction are
presented in [8].

636 Algorithmica (2011) 61:606–637

References

1. Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price of anarchy for polyno-
mial congestion games. In: Proceedings of the 23rd International Symposium on Theoretical Aspects
of Computer Science (STACS ’06), LNCS, vol. 3884, pp. 218–229. Springer, Berlin (2006)

2. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling. In: Proceed-
ings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’97), pp. 493–500
(1997)

3. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, E., Wexler, T., Roughgarden, T.: The price of
stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)

4. Avidor, A., Azar, Y., Sgall, J.: Ancient and new algorithms for load balancing in the Lp norm. Algo-
rithmica 29(3), 422–441 (2001)

5. Awerbuch, B., Azar, Y., Grove, E.F., Kao, M.-Y., Krishnan, P., Vitter, J.S.: Load balancing in the Lp

norm. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS
’95), pp. 383–391 (1995)

6. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: Proceedings of the 37th
Annual ACM Symposium on Theory of Computing (STOC ’05), pp. 57–66 (2005)

7. Azar, Y., Epstein, A.: Convex programming for scheduling unrelated parallel machines. In: Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing (STOC ’05), pp. 331–337 (2005)

8. Caragiannis, I.: Better bounds for online load balancing on unrelated machines. In: Proceedings of the
19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’08), pp. 972–981 (2008)

9. Chandra, A.K., Wong, C.K.: Worst-case analysis of a placement algorithm related to storage alloca-
tion. SIAM J. Comput. 4(3), 249–263 (1975)

10. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings
of the 37th Annual ACM Symposium on Theory of Computing (STOC ’05), pp. 67–73 (2005)

11. Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of correlated equilibria of
linear congestion games. In: Proceedings of the 13th Annual European Symposium on Algorithms
(ESA ’05), LNCS, vol. 3669, pp. 59–70. Springer, Berlin (2005)

12. Christodoulou, G., Mirrokni, V., Sidiropoulos, A.: Convergence and approximation in potential
games. In: Proceedings of the 23rd Symposium on Theoretical Aspects of Computer Science (STACS
’06), pp. 349–260 (2006)

13. Cody, R.A., Coffman, E.G.: Record allocation for minimizing expected retrieval costs on drum-like
storage devices. J. ACM 23(1), 103–115 (1976)

14. Cominetti, R., Correa, J.R., Stier Moses, N.E.: Network games with atomic players. In: Proceedings of
the 33rd International Colloquium on Automata, Languages, and Programming (ICALP ’06), LNCS,
vol. 4168, pp. 525–536. Springer, Berlin (2006)

15. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Trans. Algorithms 3(1),
(2007)

16. Fabrikant, A., Papadimitriou, C., Talwar, K.: On the complexity of pure equilibria. In: Proceedings of
the 36th Annual ACM Symposium on Theory of Computing (STOC ’04), pp. 604–612 (2004)

17. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and com-
plexity of Nash equilibria for a selfish routing game. Theor. Comput. Sci. 410(36), 3305–3326 (2009)

18. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. Theor. Comput. Sci. 348(2–3),
226–239 (2005)

19. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing Nash equilibria for schedul-
ing on restricted parallel links. In: Proceedings of the 36th Annual ACM Symposium on Theory of
Computing (STOC ’04), pp. 613–622 (2004)

20. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: The price of anarchy for polynomial social
cost. Theor. Comput. Sci. 369(1–3), 116–135 (2006)

21. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash equilibria in discrete routing
games with convex latency functions. J. Comput. Syst. Sci. 74(7), 1199–1225 (2008)

22. Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilibria and ball fusion. Theory Com-
put. Syst. 36(6), 683–693 (2003)

23. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Proceedings of the 16th International
Symposium on Theoretical Aspects of Computer Science (STACS ’99), LNCS, vol. 1563, pp. 404–
413. Springer, Berlin (1999)

24. Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish routing. Theor. Com-
put. Sci. 406(3), 187–206 (2008)

Algorithmica (2011) 61:606–637 637

25. Mavronicolas, M., Spirakis, P.: The price of selfish routing. Algorithmica 48(1), 91–126 (2007)
26. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)
27. Papadimitriou, C.: Algorithms, games and the internet. In: Proceedings of the 33rd Annual ACM

Symposium on Theory of Computing (STOC ’01), pp. 749–753 (2001)
28. Phillips, S., Westbrook, J.: Online load balancing and network flow. In: Proceedings of the 25th An-

nual ACM Symposium on Theory of Computing (STOC ’93), pp. 402–411 (1993)
29. Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2,

65–67 (1973)
30. Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002)
31. Roughgarden, T., Tardos, E.: Bounding the inefficiency of equilibria in nonatomic congestion games.

Games Econ. Behav. 47(2), 389–403 (2004)
32. Shmoys, D., Wein, J., Williamson, D.: Scheduling parallel machines on-line. SIAM J. Comput. 24(6),

1313–1331 (1995)
33. Suri, S., Tóth, C., Zhou, Y.: Selfish load balancing and atomic congestion games. Algorithmica 47(1),

79–96 (2007)

	Tight Bounds for Selfish and Greedy Load Balancing
	Abstract
	Introduction
	Load Balancing Games
	Greedy Load Balancing
	Roadmap

	The Price of Stability of Linear Congestion Games
	Bounds on the Price of Anarchy
	Servers with Different Latency Functions
	Identical Servers
	Tightening the Analysis

	Greedy Load Balancing
	Different Servers
	Identical Servers

	Weighted Clients
	Open Problems
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

