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Abstract A graph is König-Egerváry if the size of a minimum vertex cover equals
that of a maximum matching in the graph. These graphs have been studied exten-
sively from a graph-theoretic point of view. In this paper, we introduce and study
the algorithmic complexity of finding König-Egerváry subgraphs of a given graph.
In particular, given a graph G and a nonnegative integer k, we are interested in the
following questions:

1. does there exist a set of k vertices (edges) whose deletion makes the graph König-
Egerváry?

2. does there exist a set of k vertices (edges) that induce a König-Egerváry subgraph?

We show that these problems are NP-complete and study their complexity from the
points of view of approximation and parameterized complexity. Towards this end,
we first study the algorithmic complexity of ABOVE GUARANTEE VERTEX COVER,
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where one is interested in minimizing the additional number of vertices needed be-
yond the maximum matching size for the vertex cover. Further, while studying the
parameterized complexity of the problem of deleting k vertices to obtain a König-
Egerváry graph, we show a number of interesting structural results on matchings and
vertex covers which could be useful in other contexts.

Keywords Vertex cover · Above guarantee vertex cover · König graphs · König
vertex/edge deletion sets · Maximum matching · Parameterized complexity ·
Approximation algorithms · Unique game conjecture

1 Introduction

The classical notions of matchings and vertex covers have been at the center of se-
rious study for several decades in the area of Combinatorial Optimization [19]. In
1931, König and Egerváry independently proved a result of fundamental importance:
in a bipartite graph the size of a maximum matching equals that of a minimum ver-
tex cover [19]. This led to a polynomial-time algorithm for finding a minimum ver-
tex cover in bipartite graphs. In fact, a maximum matching can be used to obtain a
2-approximation algorithm for the MINIMUM VERTEX COVER problem in general
graphs, which is still the best-known constant-factor approximation algorithm for
this problem [15]. Interestingly, this min-max relationship holds for a larger class of
graphs known as König-Egerváry graphs and it includes bipartite graphs as a proper
subclass. König-Egerváry graphs will henceforth be called König graphs.

König graphs have been studied for a fairly long time from a structural point of
view [2, 5, 17, 18, 27]. Both Deming [5] and Sterboul [27] gave independent char-
acterizations of König graphs and showed that König graphs can be recognized in
polynomial time. Lovász [18] used the theory of matching-covered graphs to give an
excluded-subgraph characterization of König graphs that contain a perfect matching.
Korach et al. [17] generalized this and gave an excluded-subgraph characterization
for the class of all König graphs.

A natural optimization problem associated with a graph class G is the following:
given a graph G, what is the minimum number of vertices to be deleted from G

to obtain a graph in G ? For example, when G is the class of empty graphs, forests
or bipartite graphs, the corresponding problems are VERTEX COVER, FEEDBACK

VERTEX SET and ODD CYCLE TRANSVERSAL, respectively. We call the vertex-
deletion problem corresponding to the class of König graphs the KÖNIG VERTEX

DELETION problem. A set of vertices whose deletion makes a given graph König
is called a König vertex deletion set. In the parameterized setting, the parameter for
vertex-deletion problems is the solution size, that is, the number of vertices to be
deleted so that the resulting graph belongs to the given graph class.

In this paper, we define various problems related to finding König-Egerváry sub-
graphs and study their algorithmic complexity from the points of view of parameter-
ized complexity and approximation algorithms. More precisely the problems that we
study in this paper are:
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1. KÖNIG VERTEX (EDGE) DELETION. Given a graph G and a nonnegative inte-
ger k, do there exist at most k vertices (respectively, edges) whose deletion results
in a König subgraph?

2. VERTEX (EDGE) INDUCED KÖNIG SUBGRAPH. Given a graph G and a nonnega-
tive integer k, do there exist at least k vertices (respectively, edges) which induce1

a König subgraph?

The KÖNIG VERTEX DELETION and VERTEX INDUCED KÖNIG SUBGRAPH prob-
lems (and similarly, KÖNIG EDGE DELETION and EDGE INDUCED KÖNIG SUB-
GRAPH) are equivalent from the point of view of NP-completeness but differ in their
approximability and parameterized complexity.

The main technical contribution of this paper is in showing that the KÖNIG VER-
TEX DELETION problem is fixed-parameter tractable. To do this, we first establish
interesting structural connections between minimum vertex covers, maximum match-
ings and minimum König vertex deletion sets. Using these, we show that KÖNIG

VERTEX DELETION is fixed-parameter tractable when parameterized by the solution
size. Note that König graphs are not hereditary, that is, not closed under taking in-
duced subgraphs. For instance, a 3-cycle is not König but attaching an edge to one of
the vertices of the 3-cycle results in a König graph. In fact, KÖNIG VERTEX DELE-
TION is one of the few vertex-deletion problems associated with a non-hereditary
graph class whose parameterized complexity has been studied. Another such exam-
ple can be found in [21].

One motivation for studying König subgraph problems is that the versions of ver-
tex deletion problems when the resulting graph we look for is bipartite (i.e. replace
König in the above problem definitions by bipartite) are well studied in the area of
approximation algorithms and parameterized complexity [12, 25, 26]. König sub-
graph problems are natural generalizations of bipartite subgraph problems but have
not been studied algorithmically. We believe that this can trigger explorations of other
questions in König graphs.

Another motivation for studying König subgraph problems is that KÖNIG VER-
TEX DELETION is closely related to a problem known as ABOVE GUARANTEE VER-
TEX COVER. The latter is a variant of the classical VERTEX COVER problem and is
defined as follows: given a graph G = (V ,E) and a nonnegative integer k, decide
whether G has a vertex cover of size at most μ(G) + k, where μ(G) is the size
of a maximum matching of G. This problem was first introduced by Subramanian
in [28]. Note that the parameter k is the size of the solution beyond the matching
size. This parameterization is more meaningful than the standard parameterized ver-
sion of VERTEX COVER where the parameter is the size of the entire solution, since
in graphs with a perfect matching the solution is at least half the number of vertices in
the graph. A brute-force algorithm for VERTEX COVER that checks all vertex-subsets
is a fixed-parameter algorithm in this case. The parameterized complexity of ABOVE

GUARANTEE VERTEX COVER was open for quite some time and is now known to
be fixed-parameter tractable due to the results in [24] and in this paper.

1If E′ ⊆ E is a set of edges, then the graph G[E′] induced by E′ is one whose vertex-set is the set of
endpoints of E′ and whose edge-set is the set E′ .
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This paper is organized as follows. In Sect. 2 we give a brief outline of parame-
terized complexity, describe our notation and state some known results about König
graphs. In Sect. 3 we show that ABOVE GUARANTEE VERTEX COVER is fixed-
parameter tractable by reducing it to a (fixed-parameter tractable) problem called
MIN 2-CNF SAT DEL (Theorem 1). We show how to use an O(logn log logn)-
approximation algorithm for MIN 2-CNF SAT DEL to obtain an approximation algo-
rithm for ABOVE GUARANTEE VERTEX COVER with the same asymptotic perfor-
mance ratio (Theorem 2). In addition, we show that neither of these problems admit
constant-factor approximation algorithms unless the UNIQUE GAMES CONJECTURE

(UGC) [14] is false (Theorem 3, Corollary 1).
Section 4 is the main technical section of the paper. Here we study the parameter-

ized complexity and approximability of KÖNIG VERTEX DELETION. We show that
for graphs with a perfect matching, KÖNIG VERTEX DELETION is fixed-parameter
equivalent to ABOVE GUARANTEE VERTEX COVER. This immediately establishes
the fixed-parameter tractability of KÖNIG VERTEX DELETION on graphs with a per-
fect matching. For general graphs, we first establish some structural connections
between minimum vertex covers, maximum matchings and minimum König ver-
tex deletion sets. Using these, we exhibit a reduction from KÖNIG VERTEX DELE-
TION to ABOVE GUARANTEE VERTEX COVER, which then establishes the fixed-
parameter tractability of the former (Theorem 4). The approximability of KÖNIG

VERTEX DELETION is similar to that of ABOVE GUARANTEE VERTEX COVER.
It does not admit a constant-factor approximation algorithm unless UGC is false
and can be approximated to within a factor of O(logn log logn) (Theorem 5, Corol-
lary 10).

In Sect. 5 we study vertex and edge versions of the INDUCED KÖNIG SUBGRAPH

problem. We show that VERTEX INDUCED KÖNIG SUBGRAPH is unlikely to be
fixed-parameter tractable (that it is W [1]-hard) and that it is inapproximable to within
a factor of O(n1−ε), for any ε > 0 (Theorem 6, Corollary 12). We also show that
KÖNIG EDGE INDUCED SUBGRAPH is NP-complete (Theorem 7), has a constant-
factor approximation algorithm (Theorem 8) and is fixed-parameter tractable (The-
orem 9). Similar to its vertex counterpart, KÖNIG EDGE DELETION does not admit
constant-factor approximation algorithms unless UGC is false (Corollary 13). We
conclude in Sect. 6 with some open problems among which is the parameterized
complexity of KÖNIG EDGE DELETION.

2 Preliminaries

In this section we summarize the necessary concepts concerning parameterized com-
plexity, fix our notation and describe some well-known properties of König graphs.

2.1 Parameterized Complexity

A parameterized problem is a subset of Σ∗ × Z
≥0, where Σ is a finite alphabet and

Z
≥0 is the set of nonnegative numbers. An instance of a parameterized problem is

therefore a pair (I, k), where k is the parameter. In the framework of parameterized
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complexity, the running time of an algorithm is viewed as a function of two quantities:
the size of the problem instance and the parameter. A parameterized problem is said
to be fixed-parameter tractable (FPT) if there exists a deterministic algorithm that
takes as input (I, k) and decides whether it is a YES or NO-instance in time O(f (k) ·
|I |O(1)), where f is a function depending only on k. The class FPT consists of all
fixed-parameter tractable problems.

A parameterized problem π1 is fixed-parameter reducible to a parameterized
problem π2 if there exist functions f,g : Z

≥0 → Z
≥0, Φ : Σ∗ × Z

≥0 → Σ∗ and
a polynomial p(·) such that for any instance (I, k) of π1, (Φ(I, k), g(k)) is an
instance of π2 computable in time f (k) · p(|I |) and (I, k) ∈ π1 if and only if
(Φ(I, k), g(k)) ∈ π2. Two parameterized problems are fixed-parameter equivalent if
they are fixed-parameter reducible to each other. The basic complexity class for fixed-
parameter intractability is W [1] as there is strong evidence that W [1]-hard problems
are not fixed-parameter tractable. To show that a problem is W [1]-hard, one can ex-
hibit a fixed-parameter reduction from a known W [1]-hard problem to the problem
at hand. For more on parameterized complexity see [7, 8, 23].

2.2 Notation

Given a graph G, we use μ(G), β(G) and κ(G) to denote, respectively, the size
of a maximum matching, a minimum vertex cover and a minimum König vertex
deletion set of G. We sometimes use τ(G) to denote the difference β(G) − μ(G).
When the graph being referred to is clear from the context, we simply use μ,
β , κ and τ . Given a graph G = (V ,E) and two disjoint vertex subsets V1,V2
of V , we let (V1,V2) denote the bipartite graph with vertex set V1 ∪ V2 and edge
set {{u,v} : {u,v} ∈ E and u ∈ V1, v ∈ V2}. If B is a bipartite graph with vertex par-
tition L 	 R then we let μ(L,R) denote the size of the maximum matching of B .
If M is a matching and {u,v} ∈ M then we say that u is the partner of v in M . If
the matching being referred to is clear from the context we simply say u is a partner
of v. The vertices of G that are the endpoints of edges in the matching M are said to
be saturated by M ; all other vertices are unsaturated by M .

2.3 Properties of König Graphs

A graph G = (V ,E) is said to be König if β(G) = μ(G). The following lemma
follows directly from the definition of König graphs.

Lemma 1 [5, 27] A graph G = (V ,E) is König if and only if for every bipartition
of V into V1 	 V2, with V1 a minimum vertex cover of G, there exists a matching
across the cut (V1,V2) saturating every vertex of V1.

In order to show that a graph is König it is actually sufficient to demonstrate the
existence of just one bipartition of V into V1 	 V2, with V1 a vertex cover of G such
that there exists a matching across the cut (V1,V2) saturating every vertex of V1.

Lemma 2 A graph G = (V ,E) is König if and only if there exists a bipartition of V

into V1 	 V2, with V1 a vertex cover of G such that there exists a matching across the
cut (V1,V2) saturating every vertex of V1.
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Proof If G is König then, by Lemma 1, there exists a bipartition V1 	 V2, with V1 a
minimum vertex cover of G, such that there exists a matching across the cut (V1,V2)

saturating every vertex of V1. Conversely suppose that the vertex set of G can be
partitioned as V1 	 V2 such that V1 is a vertex cover and there exists a matching M

across the cut (V1,V2) saturating every vertex of V1. We claim that in fact V1 is a
minimum vertex cover and that M is a maximum matching of G. Suppose that M ′ is
a maximum matching of G and |M ′| > |M|. Since V1 is a vertex cover, it picks up at
least one endpoint from each edge of M ′. Therefore |V1| = |M| ≥ |M ′|, a contradic-
tion. Therefore M is indeed a maximum matching of G and since any vertex cover
of G has size at least |M|, it follows that V1 is a minimum vertex cover of G. �

One can test whether the graph is König using the following lemma.

Lemma 3 [10] Given a graph G on n vertices and m edges and a maximum matching
of G, one can test whether G is König in time O(n + m). If G is indeed König then
one can find a minimum vertex cover of G in this time.

Since a maximum matching can be obtained in time O(m
√

n) [29], we have

Lemma 4 Let G be a graph on n vertices and m edges. One can check in
time O(m

√
n) whether G is König and, if König, find a bipartition of V (G)

into V1 	 V2 with V1 a minimum vertex cover of G such that there exists a match-
ing across the cut (V1,V2) saturating every vertex of V1.

3 The Above Guarantee Vertex Cover Problem

In this section we show that ABOVE GUARANTEE VERTEX COVER is fixed-
parameter tractable and discuss its approximability. This problem plays a central role
in this paper and the results established here are used in studying the parameterized
complexity and approximability of other König subgraph problems.

Given a graph G it is clear that β(G) ≥ μ(G). Recall the definition of ABOVE

GUARANTEE VERTEX COVER: given a graph G and a nonnegative integer parame-
ter k decide whether β(G) ≤ μ(G) + k. We first show that for the parameterized
complexity of the ABOVE GUARANTEE VERTEX COVER problem we may, without
loss of generality, assume that the input graph has a perfect matching.

Let G = (V ,E) be an undirected graph and let M be a maximum matching of G.
Construct G′ = (V ′,E′) as follows. Define

I = V \ V [M],
V ′ = V ∪ {u′ : u ∈ I },
E′ = E ∪ {{u′, v} : {u,v} ∈ E} ∪ {{u,u′} : u ∈ I }.

Then M ′ = M ∪ {{u,u′} : u ∈ I } is a perfect matching for G′. Note that |V (G′)| ≤
2|V (G)| and |E(G′)| ≤ 2|E(G)| + |V (G)|.
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Lemma 5 Let G be a graph without a perfect matching and let G′ be the graph
obtained by the above construction. Then G has a vertex cover of size μ(G) + k if
and only if G′ has a vertex cover of size μ(G′) + k.

Proof Let M denote a maximum matching of G, I denote the set V (G) \ V [M] and
I ′ denote the new set of vertices that are added in constructing G′. Clearly, μ(G′) =
μ(G) + |I |.

(⇒) Let C be a vertex cover of G of size μ(G)+ k. Define C′ = C ∪ I ′. It is easy
to see that C′ covers all the edges of G′. Also, |C′| = μ(G) + k + |I ′| = μ(G′) + k.

(⇐) Let C′ be a vertex cover of G′ of size μ(G′) + k. Define M ′ to be the set of
edges of the form {{u,u′} : u ∈ I and u′ ∈ I ′} such that both endpoints are in C′. One
can show that C = (C′ ∩V [M])∪{u ∈ I : {u,u′} ∈ M ′} is a vertex cover of G of size
μ(G) + k. �

3.1 Parameterized Complexity

We show that ABOVE GUARANTEE VERTEX COVER is fixed-parameter tractable by
exhibiting a fixed-parameter reduction from ABOVE GUARANTEE VERTEX COVER

to a problem known as MIN 2-CNF SAT DEL [20]. This problem is defined as fol-
lows: given a 2-CNF formula and a nonnegative integer k, do there exist at most k

clauses whose deletion makes the resulting formula satisfiable? This problem is NP-
complete and its parameterized complexity was open for quite some time. Recently
Razgon and O’Sullivan have shown this problem to be fixed-parameter tractable [24].

Lemma 6 [24] Given a 2-CNF SAT formula F on n variables and m clauses and
a nonnegative integer k, one can decide whether F has at most k clauses whose
deletion makes it satisfiable in time O(15k · k · m3). That is, the MIN 2-CNF SAT

DEL problem is fixed-parameter tractable with respect to parameter k.

We now describe the reduction from ABOVE GUARANTEE VERTEX COVER to
MIN 2-CNF SAT DEL (see [4]). Let G = (V ,E) be a graph with a perfect match-
ing P . For every vertex u ∈ V , define xu to be a Boolean variable. Let F (G,P )

denote the Boolean formula

F (G,P ) =
∧

(u,v)∈P

(x̄u ∨ x̄v)
∧

(u,v)∈E

(xu ∨ xv).

Note that F (G,P ) is a formula on |V | variables and at most 2|E| clauses.
The proof of the next lemma follows from that of Theorem 5.1 in [4].

Lemma 7 Let G = (V ,E) be an n-vertex graph with a perfect matching P . Then G

has a vertex cover of size at most n/2 + k if and only if there exists an assignment
that satisfies all but at most k clauses of F (G,P ).

From the proof of Theorem 5.1 in [4], it also follows that given an assignment
that satisfies all but at most k clauses of F (G,P ) one can find (in polynomial time)
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an assignment that satisfies all but at most k clauses of the form (x̄u ∨ x̄v), where
(u, v) ∈ P , that is, clauses that correspond to the perfect matching.

Since MIN 2-CNF SAT DEL can be solved in time O(15k · k · m3), where m is the
number of clauses in the input formula, we have

Theorem 1 Given a graph G = (V ,E) and a nonnegative integer parameter k, one
can decide whether β(G) ≤ μ(G) + k in time O(15k · k · |E|3). Moreover if G has a
vertex cover of size μ(G) + k then one can find a vertex cover of this size within this
time.

3.2 Approximation Algorithm

The parameterized version of ABOVE GUARANTEE VERTEX COVER asks whether
τ(G) ≤ k. The optimization version of ABOVE GUARANTEE VERTEX COVER is the
problem of finding the minimum value of τ(G). Therefore an approximation algo-
rithm for ABOVE GUARANTEE VERTEX COVER approximates the “above-guarantee
parameter” rather than the entire vertex cover.

Klein et al. [16] have shown that MIN 2-CNF SAT DEL admits a factor-
O(logn log logn) approximation algorithm, where n is the number of variables in
the 2-SAT formula.

Lemma 8 [1, 16] Let F be an instance of MIN 2-CNF SAT DEL with n variables.
One can in polynomial time obtain a solution that is O(logn log logn) times an op-
timal solution size. If we are willing to allow randomness, we can obtain a solution
that is O(

√
logn) times an optimal solution size.

We use this algorithm and the reduction from ABOVE GUARANTEE VERTEX

COVER to MIN 2-CNF SAT DEL to obtain an O(logn log logn)-approximation al-
gorithm for τ(G).

An outline of our approximation algorithm is as follows. Given a graph G =
(V ,E) we first apply the construction described before Theorem 5, if necessary, to
obtain a graph H with a perfect matching P . Note that τ(G) = τ(H). Let F (H,P )

denote the 2-CNF SAT formula obtained from H and P by the construction outlined
before Lemma 7. We noted that given an assignment that satisfies all but at most k

clauses of F (H,P ) one can construct an assignment in polynomial time that satis-
fies all but at most k clauses of the form (x̄u ∨ x̄v), where (u, v) ∈ P . We next use
an O(logn log logn) approximation algorithm for MIN 2-CNF SAT which “corre-
sponds” to a set S of edges of the perfect matching P . The set V (S), consisting of
the endpoints of those edges in P which correspond to clauses in S , represents the
vertex cover in excess of the matching size and in the graph G \ V (S), the sizes of a
minimum vertex cover and maximum matching coincide. That is, G \ V (S) is König
and therefore by Lemma 4 one can obtain a minimum vertex cover C of this graph
in polynomial time. Using C and S , one can reconstruct a vertex cover for G of the
appropriate size. The algorithm is presented in Fig. 1.

Theorem 2 Let G be a graph on n vertices with a maximum matching of size μ and a
minimum vertex cover of size β . Then ALGO-ABOVE-GUAR-VERTEX-COVER finds
a vertex cover of G of size μ(G) + O(logn log logn)(β(G) − μ(G)).
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ALGO-ABOVE-GUAR-VERTEX-COVER

Input: A graph G = (V ,E).
Output: A vertex cover of G of size at most μ + O(log |V | log log |V |)(β − μ).

1. If G does not have a perfect matching, construct G′ as in Theorem 5 and set H ←
G′; else set H ← G.

2. Find a perfect matching P of H and construct F (H,P ). If G did not have a
perfect matching then P is the perfect matching obtained from some maximum
matching M of G as described in the construction before Theorem 5.

3. Use the approximation algorithm for MIN 2-CNF SAT DEL to obtain an
O(logn log logn)-approximate solution S for F (H,P ), where n = |V (H)|.

4. Obtain a minimum vertex cover C of the König graph H \ V (S), where V (S)

is the set of vertices of H corresponding to S , that is, V (S) is the set of the
endpoints of those edges in P which correspond to clauses in S .

5. If H = G then return C ∪ V (S); else return (V (S) ∩ V (G)) ∪ (V (M) ∩ C).

Fig. 1 Approximation algorithm for ABOVE GUARANTEE VERTEX COVER

Proof The proof follows from the fact that the reduction from ABOVE GUARANTEE

VERTEX COVER to MIN 2-CNF SAT DEL is cost-preserving and that there exists a
factor-O(logn log logn) approximation algorithm for the latter. �

Thus this algorithm approximates the deficit between the sizes of a minimum ver-
tex cover and a maximum matching. There exists a 2-approximation algorithm for the
VERTEX COVER problem which simply includes all vertices of a maximum match-
ing. It is a long standing open problem to devise a polynomial time algorithm which
has an approximation factor less than 2.

Our algorithm is better than any constant factor approximation algorithm for VER-
TEX COVER whenever

β − μ = o

(
n

logn log logn

)

and μ = Ω(n). To see this, note that a c-approximate algorithm, c > 1, outputs a
solution of size μc + (β − μ)c whereas our algorithm outputs a solution of size μ +
O(α(β − μ)), where α = logn log logn. Now if β − μ = o(n/α) and if μ = Ω(n),
then our algorithm outputs a solution of size μ + o(μ), which is better than

βc = μ + μ(c − 1) + (β − μ)c ≥ μ + Ω(μ).

One can obtain a randomized approximation algorithm for τ using the O(
√

logn)-
randomized approximation algorithm for MIN 2-CNF SAT DEL, mentioned in
Lemma 8, in Step 3 of the algorithm.

3.3 Hardness of Approximation

We now show that ABOVE GUARANTEE VERTEX COVER and MIN 2-CNF SAT

DEL do not admit constant-factor approximation algorithms if the UNIQUE GAMES
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CONJECTURE (UGC) [14] is true. In what follows, we use the abbreviation VC-PM
for the VERTEX COVER problem on graphs with a perfect matching.

We make use of the following two results:

Lemma 9 [15] If UGC is true then VERTEX COVER cannot be approximated to
within a factor of 2 − ε, for any constant ε > 0.

Lemma 10 [4, 30] If there exists a (2 − ε)-approximation algorithm for VC-PM
then there exists a (2 − ε/2)-approximation algorithm for VERTEX COVER.

We can now prove the following.

Theorem 3 Assuming UGC to be true, the ABOVE GUARANTEE VERTEX COVER

problem in graphs with a perfect matching cannot be approximated to within a factor
of c, for any constant c > 1.

Proof Suppose that there exists a c-approximate algorithm A for ABOVE GUARAN-
TEE VERTEX COVER on graphs with a perfect matching for some constant c > 1.
By Lemmas 9 and 10, it is sufficient to exhibit a (2 − ε)-approximate algorithm, for
some constant ε > 0, for VC-PM. This would give us the desired contradiction. We
show that A itself is such an algorithm and obtains a (2 − ε)-approximate solution
with ε = 2/(c + 1).

Let G = (V ,E) be a graph on 2n vertices with a perfect matching and minimum
vertex cover of size n + αn, where 1/n ≤ α ≤ 1. Use algorithm A on G to obtain a
vertex cover of size at most n + cαn. The quality of this solution is (n + cαn)/(n +
αn) = (1 + cα)/(1 +α). We distinguish two cases: (1) α < 1/c and (2) α ≥ 1/c. We
claim that in either case the approximation factor is 2 − 2/(c + 1) = 2c/(c + 1). To
see this, first consider the case when α < 1/c. It is straightforward to show that (1 +
cα)/(1 + α) < 2c/(c + 1) if and only if α < 1/c. When α ≥ 1/c, note that A can
even return the entire vertex set of G as solution. The approximation factor in this
case is actually seen to be at most 2/(1 + α) which can be easily seen to be at most
2c/(1 + c). This completes the proof of the theorem. �

Since there is an approximation-preserving reduction (Lemma 7) from ABOVE

GUARANTEE VERTEX COVER to MIN 2-CNF SAT DEL, a constant-factor approxi-
mation algorithm for the latter implies the existence of a constant-factor approxima-
tion algorithm for the former. Thus we have,

Corollary 1 If UGC is true then MIN 2-CNF SAT DEL does not admit a constant-
factor approximation algorithm.

To the best of our knowledge, the only other hardness result known for MIN 2-
CNF SAT DEL is a 2.88-approximation hardness assuming P �= NP due to Chlebik
and Chlebikova [3].

Dinur and Safra [6] have shown that unless P = NP, VERTEX COVER cannot be
approximated to within 1.3606 even on graphs with a perfect matching. Using this,
we obtain:
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Corollary 2 Under the hypothesis P �= NP, ABOVE GUARANTEE VERTEX COVER

in graphs with a perfect matching cannot be approximated to within 1.7212.

Proof Let A be a d-approximation algorithm for computing τ(G) in graphs with a
perfect matching. Let G be an n-vertex graph with a perfect matching. Using A,
one can obtain a vertex cover of size at most n/2 + dτ(G). An optimum vertex
cover of G has size n/2 + τ(G). By the NP-hardness of approximating VERTEX

COVER [6], we must have (n + 2dτ(G))/(n + 2τ(G)) ≥ 1.3606. Simplifying this
yields n/τ(G) ≤ 2(d −1.3606)/0.3606. Note that n/τ(G) ≥ 2 and so d ≥ 1.7212. �

4 The König Vertex Deletion Problem

Recall that the KÖNIG VERTEX DELETION problem is, given a graph and a nonneg-
ative integer parameter k, to decide whether there exist at most k vertices whose dele-
tion makes the resulting graph König. We first investigate the parameterized complex-
ity of this problem and then describe an approximation algorithm for its optimization
version.

4.1 Parameterized Complexity

We first consider the case when the input graph has a perfect matching.

Graphs with a Perfect Matching For graphs with a perfect matching it turns out that
KÖNIG VERTEX DELETION and ABOVE GUARANTEE VERTEX COVER are fixed-
parameter equivalent.

Lemma 11 Let G be an n-vertex graph with a perfect matching. Then G has a vertex
cover of size at most n/2 + k if and only if G has a König vertex deletion set of size
at most 2k.

Proof (⇒) Let P be a perfect matching of G and C a vertex cover of G of size at
most n/2+k. Consider the subset M ⊆ P of matching edges both of whose endpoints
are in C. Clearly V [M] is a König vertex deletion set of G of size at most 2k.

(⇐) Conversely let K be a König vertex deletion set of G of size r ≤ 2k. Then G\
K is a König graph on n − r vertices and hence has a vertex cover C′ of size at
most (n − r)/2. Clearly C = C′ ∪ K is a vertex cover of G of size |C′| + |K| ≤
(n − r)/2 + r = (n + r)/2 ≤ n/2 + k. �

The following corollary follows from Lemmas 5 and 11 and the fact that VERTEX

COVER is NP-complete.

Corollary 3 The KÖNIG VERTEX DELETION problem is NP-complete.

By Theorem 1, ABOVE GUARANTEE VERTEX COVER is fixed-parameter
tractable and therefore we have:
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Corollary 4 The KÖNIG VERTEX DELETION problem, parameterized by the solu-
tion size, is fixed-parameter tractable on graphs with a perfect matching.

The next result relates the size of a minimum vertex cover with that of a minimum
König vertex deletion set for graphs with a perfect matching.

Corollary 5 Let G be an n-vertex graph with a perfect matching P . Then β(G) =
n/2 + k if and only if κ(G) = 2k. Moreover if κ(G) = 2k, then there exists an edge
subset M ⊆ P of size k such that V [M] is a minimum König vertex deletion set of G.

If we let τ(G) = β(G) − μ(G), then the above corollary states: κ(G) = 2τ(G).

Graphs Without a Perfect Matching For graphs without a perfect matching we do
not know of a reduction from KÖNIG VERTEX DELETION to ABOVE GUARANTEE

VERTEX COVER and neither does the general case seem reducible to the case where
the graph has a perfect matching. However we show that the general problem is fixed-
parameter tractable using some new structural results between maximum matchings
and vertex covers.

To begin with, we derive a weaker version of Lemma 11 which relates the size of
a vertex cover with that of a König vertex deletion set for graphs without a perfect
matching.

Lemma 12 Let G be a graph without a perfect matching. If G has a vertex cover of
size μ(G) + k then G has a König vertex deletion set of size at most 2k. Moreover,
τ(G) ≤ κ(G) ≤ 2τ(G), where τ(G) = β(G) − μ(G).

Proof Let M be a maximum matching of G and let C be a vertex cover of G of
size μ(G) + k. Define I = V \ V [M], CI = C ∩ I and M ′ to be the subset of M

both of whose endpoints are in C. Clearly V [M ′] ∪ CI is a König vertex deletion set
of G of size at most 2k. This shows that κ(G) ≤ 2τ(G). To prove that τ(G) ≤ κ(G),
suppose that there exists S ⊆ V , |S| < τ(G), such that G \ S is König. Then the
following easily verifiable inequalities:

μ(G \ S) ≤ μ(G),

β(G \ S) ≥ β(G) − |S| = μ(G) + τ(G) − |S|
imply that β(G \ S) > μ(G \ S), a contradiction. �

Suppose Y is a vertex cover in a graph G = (V ,E). Consider a maximum match-
ing M between Y and V \Y . If M saturates every vertex of Y then the graph is König.
If not, then Y \ V [M], the set of vertices of Y unsaturated by M , is a König vertex
deletion set by Lemma 2. What we prove in this section is that if Y is a minimum
vertex cover, then Y \ V [M] is a minimum König vertex deletion set. Our first obser-
vation is that any minimum König vertex deletion set is contained in some minimum
vertex cover.
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Fig. 2 The sets that appear in
the proof of Theorem 13. The
matching M consists of the solid
edges across V1 and V2

Lemma 13 Let G be a graph with a minimum König vertex deletion set K . Let V (G\
K) = V1 	 V2 where V2 is independent and there is a matching M from V1 to V2
saturating V1. Then V1 ∪ K is a minimum vertex cover for G.

Proof Suppose S is a vertex cover of G such that |S| < |V1|+ |K|. We will show that
there exists a König vertex deletion set of size smaller than |K|, contradicting our
hypothesis. Define V ′

1 = V1 ∩ S, V ′
2 = V2 ∩ S and K ′ = K ∩ S. Let A1 be the vertices

of V ′
1 whose partner in M is in V ′

2 and let A2 be the vertices of V ′
1 whose partner

in M is not in V ′
2. See Fig. 2. We claim that A1 ∪ K ′ is a König vertex deletion set

of G and |A1 ∪ K ′| < |K|, which will produce the required contradiction and prove
the lemma. This claim is proved using the following three claims:

Claim 1. |A1 ∪ K ′| < |K|.
Claim 2. A2 ∪ V ′

2 is a vertex cover in G \ (A1 ∪ K ′).
Claim 3. There exists a matching between A2 ∪V ′

2 and V \ (V ′
1 ∪K ′ ∪V ′

2) saturating
every vertex of A2 ∪ V ′

2.

Proof of Claim 1 Clearly |S| = |V ′
1| + |V ′

2| + |K ′|. Note that S intersects |A1| of
the edges of M in both end points and |M| − |A1| edges of M in one end point (in
either V ′

1 or V ′
2). Furthermore V ′

2 has |V ′
2 \ V [M]| vertices of S that do not intersect

any edge of M . Hence |M| + |A1| + |V ′
2 \ V [M]| = |V ′

1| + |V ′
2|. That is, |V ′

1| +
|V ′

2| = |V1| + |A1| + |V ′
2 \ V [M]| (as |M| = |V1|). Hence |S| < |V1| + |K| implies

that |A1| + |V ′
2 \ V (M)| + |K ′| < |K| which implies that |A1| + |K ′| < |K| proving

the claim. �

Proof of Claim 2 Since S = A1 ∪A2 ∪V ′
2 ∪K ′ is a vertex cover of G, clearly A2 ∪V ′

2
covers all edges in G \ (A1 ∪ K ′). �

Proof of Claim 3 Since the partner of a vertex in A2 in M is in V \ (V ′
1 ∪K ′ ∪V ′

2), we
can use the edges of M to saturate vertices in A2. To complete the proof, we show that
in the bipartite graph (V ′

2, (V1 \ V ′
1) ∪ (K \ K ′)) there is a matching saturating V ′

2.
To see this, note that any subset D ⊆ V ′

2 has at least |D| neighbors in (V1 \ V ′
1) ∪
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(K \ K ′). For otherwise, let D′ be the set of neighbors of D in (V1 \ V ′
1) ∪ (K \ K ′)

where we assume |D| > |D′|. Then (S \ D) ∪ D′ is a vertex cover of G of size
strictly less than |S|, contradicting the fact that S is a minimum vertex cover. To see
that (S \D)∪D′ is indeed a vertex cover of G, note that S \V ′

2 covers all edges of G

except those in the graph (V ′
2, (V1 \ V ′

1) ∪ (K \ K ′)) and all these edges are covered
by (V ′

2 \ D) ∪ D′. Hence by Hall’s theorem, there exists a matching saturating all
vertices of V ′

2 in the bipartite graph (V ′
2, (V1 \ V ′

1) ∪ (K \ K ′)), proving the claim. �

This completes the proof of the lemma. �

Lemma 13 has interesting consequences.

Corollary 6 For any two minimum König vertex deletion sets K1 and K2, μ(G \
K1) = μ(G \ K2).

Proof Since K1 and K2 are minimum König vertex deletion sets of G, β(G \ K1) =
μ(G \ K1) and β(G \ K2) = μ(G \ K2). By Theorem 13, β(G \ K1) + |K1| = β(G)

and β(G\K2)+|K2| = β(G). Since |K1| = |K2|, it follows that β(G\K1) = β(G\
K2) and hence μ(G \ K1) = μ(G \ K2). �

From Lemmas 4 and 13, we get

Corollary 7 Given a graph G = (V ,E) and a minimum König vertex deletion set
for G, one can construct a minimum vertex cover for G in polynomial time.

Our goal now is to prove the “converse” of Corollary 7. In particular, we would
like to construct a minimum König vertex deletion set from a minimum vertex cover.
Our first step is to show that if we know that a given minimum vertex cover contains
a minimum König vertex deletion set then we can find the König vertex deletion
set in polynomial time. Recall that given a graph G = (V ,E) and A,B ⊆ V such
that A∩B = ∅, we use μ(A,B) to denote a maximum matching in the bipartite graph
comprising of the vertices in A ∪ B and the edges in {{u,v} ∈ E : u ∈ A,v ∈ B}. We
denote this graph by (A,B).

Lemma 14 Let K be a minimum König vertex deletion set and Y a minimum ver-
tex cover of a graph G = (V ,E) such that K ⊆ Y . Then μ(G \ K) = μ(Y,V \ Y)

and |K| = |Y | − μ(Y,V \ Y).

Proof If G is König then the theorem clearly holds. Therefore assume that K �= ∅.
Note that Y \ K is a minimum vertex cover of the König graph G \ K . Thus μ(G \
K) = μ(Y \ K,V \ Y). We claim that μ(Y \ K,V \ Y) = μ(Y,V \ Y). For if not, we
must have μ(Y \ K,V \ Y) < μ(Y,V \ Y). Then let M be a maximum matching in
the bipartite graph (Y,V \ Y) and K ′ ⊆ Y be the set of vertices unsaturated by M .
Note that K ′ �= ∅ is a König vertex deletion set for G. Since μ(Y,V \ Y) = |Y | −
|K ′| and μ(Y \ K,V \ Y) = |Y | − |K| we have |K ′| < |K|, a contradiction, since
by hypothesis K is a smallest König vertex deletion set for G. Therefore we must
have μ(G \ K) = μ(Y,V \ Y) and |K| = |Y | − μ(Y,V \ Y). �
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Fig. 3 The sets that appear in
the proof of Lemma 15. The
solid edges across Y1 and V \ Y1
constitute the matching M1

The next lemma says that μ(Y,V \ Y) is the same for all minimum vertex cov-
ers Y of a graph G. Together with Lemma 14, this implies that if K is a minimum
König vertex deletion set and Y is a minimum vertex cover of a graph G = (V ,E),
then μ(G \ K) = μ(Y,V \ Y).

Lemma 15 For any two minimum vertex covers Y1 and Y2 of G, μ(Y1,V \ Y1) =
μ(Y2,V \ Y2).

Proof Suppose without loss of generality that μ(Y1,V \Y1) > μ(Y2,V \Y2). Let M1
be a maximum matching in the bipartite graph (Y1,V \ Y1). To arrive at a contradic-
tion, we study how Y2 intersects the sets Y1 and V \ Y1 with respect to the match-
ing M1. To this end, we define the following sets (see Fig. 3):

– A = Y2 ∩ Y1 ∩ V [M1].
– B = Y2 ∩ (V \ Y1) ∩ V [M1].
– A1 is the set of vertices in A whose partners in M1 are also in Y2.
– A2 is the set of vertices in A whose partners in M1 are not in Y2.

We first show that

Claim In the bipartite graph (Y2,V \ Y2) there is a matching saturating each vertex
in A2 ∪ B .

It will follow from the claim that μ(Y2,V \Y2) ≥ |A2|+|B|. However, note that Y2
intersects every edge of M1 at least once (as Y2 is a vertex cover). More specifically,
Y2 intersects |A1| edges of M1 twice and |M1| − |A1| edges once (either in Y1 or
in V \Y1). Hence, |A|+|B| = |M1|+|A1| and so |A2|+|B| = |M1| and so μ(Y2,V \
Y2) ≥ |A2| + |B| = |M1| a contradiction to our assumption at the beginning of the
proof. Thus it suffices to prove the claim.

Proof of Claim Let P denote the partners of the vertices of A2 in M1. Since P ⊆
V \ Y2, we use the edges of M1 to saturate vertices of A2. Hence it is enough to
show that the bipartite graph B = (B, (V \ Y2) \ P) contains a matching saturating
the vertices in B . Suppose not. By Hall’s Theorem there exists a set D ⊆ B such
that |NB(D)| < |D|. We claim that the set Y ′

2 := Y2 \ D + NB(D) is a vertex cover
of G. To see this, note that the vertices in Y2 \ D cover all the edges of G except
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those in the bipartite graph (D,Y1 ∩ (V \ Y2)) and these are covered by NB(D).
Therefore Y ′

2 is a vertex cover of size strictly smaller than Y2, a contradiction. This
proves that there exists a matching in (Y2,V \Y2) saturating each vertex in A2 ∪B . �

This completes the proof of the lemma. �

The next two lemmas show how we can obtain a minimum König vertex deletion
set from a minimum vertex cover in polynomial time.

Lemma 16 Given a graph G = (V ,E), let Y be any minimum vertex cover of G

and M a maximum matching in the bipartite graph (Y,V \ Y). Then K := Y \ V [M]
is a minimum König vertex deletion set of G.

Proof Clearly K is a König vertex deletion set. Let K1 be a minimum König ver-
tex deletion set of G. By Lemma 13, there exists a minimum vertex cover Y1 such
that K1 ⊆ Y1 and

|K1| = |Y1| − μ(Y1,V \ Y1) (by Lemma 14)

= |Y | − μ(Y1,V \ Y1) (since Y1 and Y are minimum vertex covers)

= |Y | − μ(Y,V \ Y) (by Lemma 15)

= |K|.
This proves that K is a minimum König vertex deletion set. �

Lemma 17 Given a graph G = (V ,E) and a minimum vertex cover for G, one can
construct a minimum König vertex deletion set for G in polynomial time.

Note that although both these problems—VERTEX COVER and KÖNIG VERTEX

DELETION—are NP-complete, we know of very few pairs of such parameters where
we can obtain one from the other in polynomial time on the same graph (e.g. edge
dominating set and minimum maximal matching, see [11]). In fact, there are para-
meter pairs such as dominating set and vertex cover where such a polynomial-time
transformation is not possible unless P = NP. This follows since in bipartite graphs,
for instance, a minimum vertex cover is computable in polynomial time whereas
computing a minimum dominating set is NP-complete.

We are now ready to prove that the KÖNIG VERTEX DELETION problem is fixed-
parameter tractable in general graphs.

Theorem 4 Given a graph G = (V ,E) and an integer parameter k, the problem
of whether G has a subset of at most k vertices whose deletion makes the resulting
graph König can be decided in time O(15k · k2 · |E|3). Hence the KÖNIG VERTEX

DELETION problem is fixed-parameter tractable when parameterized by the solution
size.

Proof Use the FPT algorithm from Theorem 1 to test whether G has a vertex cover
of size at most μ(G) + k. If not, by Lemma 12, we know that the size of a minimum
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König vertex deletion set is strictly more than k. Therefore return NO. If yes, then
find the size of a minimum vertex cover by applying Theorem 1 with every integer
value between 0 and k for the excess above μ(G). Note that for YES-instances of the
ABOVE GUARANTEE VERTEX COVER problem, the FPT algorithm actually outputs
a vertex cover of size μ(G) + k. We therefore obtain a minimum vertex cover of G.
Use Lemma 16 to get a minimum König vertex deletion set in polynomial time and
depending on its size answer the question. It is easy to see that all this can be done in
time O(15k · k2 · |E|3). �

Note that computing a maximum independent set (or equivalently a minimum
vertex cover) in an n-vertex graph can be done in time O∗(20.288n) [9]. By Lemma 17,
one can compute a minimum König vertex deletion set in the same exponential time.

Corollary 8 Given a graph G = (V ,E) on n vertices one can find a minimum König
vertex deletion set in time O∗(20.288n) = O∗(1.221n).2

Suppose we wanted to compute a minimum König vertex deletion set on graphs of
treewidth at most w. A dynamic programming approach as for DOMINATING SET or
INDEPENDENT SET is not obvious. However since one can obtain a minimum vertex
cover on graphs with treewidth at most w in time O∗(2w) [23], by Lemma 17, one
can obtain a minimum König deletion set within this time.

Corollary 9 If a tree-decomposition for G of width w is given, one can find a mini-
mum König vertex deletion set in time O∗(2w).

4.2 Approximability

In Lemma 12 we established that for any graph G (whether it has a perfect matching
or not), τ(G) ≤ κ(G) ≤ 2τ(G), where τ(G) = β(G) − μ(G) is the excess vertex
cover beyond the size of a maximum matching. Therefore a good approximation of
the above guarantee parameter τ yields a good approximation for κ and vice versa.

In the algorithm outlined in Fig. 1, note that V (S) ∩ V (G) is actually a König
vertex deletion set of G. Since |V (S)| ≤ O(logn log logn) (β − μ), we have, by
Theorem 2.

Theorem 5 Given a graph G on n vertices, there exists an algorithm that approxi-
mates the König vertex deletion set of G to within a factor of O(logn log logn).

On graphs with a perfect matching, the ABOVE GUARANTEE VERTEX COVER

and KÖNIG VERTEX DELETION problems are equivalent and hence Theorem 3 and
Lemma 11 imply

Corollary 10 If UGC is true then KÖNIG VERTEX DELETION does not admit a
constant-factor approximation algorithm.

2The O∗ notation suppresses polynomial terms.



874 Algorithmica (2011) 61:857–881

Since KÖNIG VERTEX DELETION and ABOVE GUARANTEE VERTEX COVER

are equivalent in terms of approximability in graphs with a perfect matching
(Lemma 11), Corollary 2 implies

Corollary 11 Under the hypothesis P �= NP, KÖNIG VERTEX DELETION cannot be
approximated to within 1.7212.

5 The Induced König Subgraph Problem

In this section we deal with the parameterized complexity and approximability of the
vertex and edge versions of the INDUCED KÖNIG SUBGRAPH problem.

5.1 Vertex Induced König Subgraph

The NP-completeness of this problem follows from that of KÖNIG VERTEX DELE-
TION but it has a different parameterized complexity. We show that VERTEX IN-
DUCED KÖNIG SUBGRAPH is W [1]-hard and is as hard to approximate as the INDE-
PENDENT SET problem.

Theorem 6 VERTEX INDUCED KÖNIG SUBGRAPH is W [1]-hard with respect to the
number of vertices in the induced subgraph as parameter.

Proof We give a parameter-preserving reduction from INDEPENDENT SET to VER-
TEX INDUCED KÖNIG SUBGRAPH. Given an instance (G, k) of INDEPENDENT

SET, construct a graph H as follows. The vertex set of H consists of two copies
of V (G) namely, V1 = {u1 : u ∈ V (G)} and V2 = {u2 : u ∈ V (G)}. For all u ∈ V (G),
(u1, u2) ∈ E(H). If (u, v) ∈ E(G), add the edges (u1, v1), (u2, v2), (u1, v2) and
(v1, u2) in E(H). H has no more edges.

We claim that G has an independent set of size k if and only if H has a König
subgraph of size 2k. Let I be an independent set of size k in G. Let K = {u1, u2 ∈
V (H) : u ∈ I }. Clearly H [K] is an induced matching on 2k vertices and is bipartite
and hence König. Conversely, let K be a König subgraph of H on 2k vertices. By
Lemma 2, every König graph on n vertices has an independent set of size at least n/2.
Therefore let I ′ be an independent set of K of size at least k. Define I = {u ∈ V (G) :
either u1 or u2 ∈ I ′}. It is clear that the vertices of I ′ correspond to distinct vertices
of G and hence |I | ≥ k. It is also easy to see that the vertices in I actually form an
independent set in G. �

Since the INDEPENDENT SET problem can have no approximation algorithms
with factor O(n1−ε), for any ε > 0, unless P = NP [13, 31], we have:

Corollary 12 There is no approximation algorithm for VERTEX INDUCED KÖNIG

SUBGRAPH with factor O(n1−ε), for any ε > 0, unless P = NP.
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In the reduction above, |V (H)| = 2|V (G)| and (G, k) is a yes-instance of INDE-
PENDENT SET if and only if (H,2k) is a yes-instance of VERTEX INDUCED KÖNIG

SUBGRAPH. Thus this reduction can also be viewed as a reduction from VERTEX

COVER to KÖNIG VERTEX DELETION giving yet another proof of Corollary 3.

5.2 Edge Induced König Subgraph

We now show that EDGE INDUCED KÖNIG SUBGRAPH is NP-complete and study
its approximability and parameterized complexity. We will see that, unlike the other
König subgraph problems, EDGE INDUCED KÖNIG SUBGRAPH admits a good
(constant-factor) approximation algorithm.

NP-Completeness Since both KÖNIG EDGE DELETION and EDGE INDUCED

KÖNIG SUBGRAPH have the same complexity from the classical point of view, it
is sufficient to prove that one of them is NP-complete. We actually show that:

Theorem 7 KÖNIG EDGE DELETION is NP-complete.

Proof We give a reduction from MIN 2-CNF SAT DEL. Let Φ be a 2-CNF SAT for-
mula with m clauses composed of the literals {x1, x̄1, . . . , xn, x̄n}. Construct a graph
GΦ = (V ,E) as follows. Let

V := {x1, x̄1, x1,1, x̄1,1, . . . , x1,m+2, x̄1,m+2, . . . , xn, x̄n, xn,1, x̄n,1, . . . , xn,m+2, x̄n,m+2};
that is, V consists of m + 3 copies of xi, x̄i . Add exactly those edges so that for
each 1 ≤ i ≤ n, the vertex sets Li = {xi, xi,1, . . . , xi,m+2} and Ri = {x̄i , x̄i,1, . . . ,

x̄i,m+2} form a complete bipartite graph with Li and Ri as the left and right partite
sets, respectively. Finally for each clause (yi ∨ yj ) of Φ add an edge (yi, yj ) (among
the vertices {x1, x̄1, . . . , xn, x̄n}). Note that GΦ has a perfect matching and that each
clause of Φ corresponds to an edge of GΦ .

Claim There exists an assignment satisfying all but k clauses of Φ if and only if there
exist at most k edges whose deletion makes GΦ König.

(⇒) Let α be an assignment to the variables of Φ that satisfies all but k clauses.
Each of these k clauses corresponds to a distinct edge in GΦ . Delete these edges
from GΦ . Then for each edge in the remaining graph, at least one endpoint of the
edge is assigned 1 by the assignment α. To prove that the remaining graph is König,
by Lemma 2, we must demonstrate a bipartition of the vertex set into V1 	 V2 (say)
such that V2 is independent and there exists a matching across the cut (V1,V2) sat-
urating V1. If α(xi) = 1 then place the vertices xi, xi,1, . . . , xi,m+2 in V1; else place
x̄i , x̄i,1, . . . , x̄i,m+2 in V1. The remaining vertices are placed in V2. As Φ satisfies all
remaining clauses, V2 is independent. Note that if xi ∈ V1 then x̄i ∈ V2 and vice versa.
Also if xi,j ∈ V1 then x̄i,j ∈ V2 and vice versa. Hence there exists a matching across
the cut (V1,V2) that saturates V1.

(⇐) Conversely suppose that deleting a set S of k edges makes GΦ König. We will
assume that S is a minimal edge deletion set. Any minimal König edge deletion set
has size at most m, since deleting all the m “clause edges” from GΦ results in a König
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graph. Therefore we may assume that k ≤ m. Call the resulting graph G′
Φ . Then the

vertex set of G′
Φ can be partitioned into V1 and V2 such that V2 is independent and

there exists a matching across the cut (V1,V2) that saturates V1.

Claim 1 For each 1 ≤ i ≤ n, it is not the case that xi, x̄i ∈ V2.

Suppose that for some 1 ≤ i ≤ n, xi, x̄i ∈ V2. Then it must be that C̄i =
{x̄i,1, . . . , x̄i,m+2} � V2 since otherwise m + 2 edges between xi and the vertices
of C̄i must have been deleted from GΦ to obtain G′

Φ , a contradiction. If C̄i ⊆ V1
then Ci = {xi,1, . . . , xi,m+2} ⊆ V2 for there to be a matching across the cut (V1,V2)

saturating all of C̄i . But then m + 2 edges between x̄i and Ci must have been deleted
from GΦ to obtain G′

Φ , again a contradiction. This argument shows that there ex-
ist integers p,q ≥ 1 with p + q = m + 2, such that V1 contains p vertices of C̄i

and V2 contains the remaining q vertices of C̄i . In order for there to be a matching
across (V1,V2) saturating all p vertices of C̄i in V1 there must be at least p vertices
of Ci in V2. Since the vertices of Ci and C̄i form a complete bipartite graph we end
up deleting at least pq + 1 ≥ m + 2 edges of GΦ , a contradiction yet again. This
proves Claim 1.

Claim 2 For each 1 ≤ i ≤ n, it is not the case that xi, x̄i ∈ V1.

Suppose that there exists i, 1 ≤ i ≤ n, such that xi, x̄i ∈ V1. Let M be a matching
across (V1,V2) that saturates the vertices of V1. We distinguish three cases.

Case 1. C̄i = {x̄i,1, . . . , x̄i,m+2} ⊆ V1. This implies that Ci = {xi,1, . . . , xi,m+2} ⊆
V2 as otherwise no matching across (V1,V2) would saturate all of C̄i . Let xa1 and xb1

be the partners of xi and x̄i , respectively, relative to the matching M . By Claim 1,
xa1 and xb1 represent different variables, that is, they are not the negations of one
another. This implies that x̄a1 and x̄b1 are in V1. Consider the pair xa1 , x̄a1 . We will
show that Ca1 = {xa1,1, . . . , xa1,m+2} ⊆ V2 and C̄a1 = {x̄a1,1, . . . , x̄a1,m+2} ⊆ V1. For
if not, suppose that 1 ≤ q ≤ m+1 vertices of C̄a1 are in V2 while the remaining p ≥ 1
vertices of C̄a1 are in V1. In order for the vertices of C̄a1 to have partners with respect
to M at least p vertices of Ca1 must be in V2. This implies that at least pq edges have
been deleted from GΦ to obtain G′

Φ . Since p + q = m + 2, we have pq ≥ m + 1,
a contradiction. The upshot is that the partners of x̄a1 and x̄b1 relative to M are vertices
from the set {x1, x̄1, . . . , xn, x̄n}. Let the partners of x̄a1 and x̄b1 relative to M be xa2

and xb2 respectively. Again by Claim 1, xa2 and xb2 represent distinct variables and
hence x̄a2 and x̄b2 are in V1. Repeating this argument we obtain a sequence of vertices
of the form:

xi xa1 x̄a1 xa2 x̄a2 . . .
...

...
...

...
...

x̄i xb1 x̄b1 xb2 x̄b2 . . .

V1 V2 V1 V2 V1

Since there are only 2n vertices such a chain must end at V2 with both endpoints being
the negation of one another. This contradicts Claim 1 and shows that this situation
does not arise.
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Case 2. C̄i = {x̄i,1, . . . , x̄i,m+2} ⊆ V2 and Ci = {xi,1, . . . , xi,m+2} ⊆ V1. This is the
symmetric version of Case 1 and can be handled similarly.

Case 3. For some integers p,q ≥ 1 and p + q = m + 2, p vertices of C̄i lie in V1

and the remaining q vertices lie in V2. By symmetry, p vertices of Ci must lie in V2.
This implies that at least pq ≥ m+1 edges have been deleted from GΦ to obtain G′

Φ ,
a contradiction. This proves Claim 2.

Since S was assumed to be a minimal König edge deletion set, for each vertex yi ,
all copies yi,1, . . . , yi,m+2 of it must be placed in the same partition as yi itself and
hence all edges of GΦ that are part of the n copies of Km+3,m+3 lie across the
cut (V1,V2). It is easy to see that any other partitioning of the copies would result in
more edges being deleted unnecessarily. Therefore the edges that were deleted from
GΦ were those that corresponded to the clauses of Φ . If a vertex yi is in V1 assign
the corresponding literal the value 1; else assign the literal the value 0. Note that this
assignment is consistent as all copies of a vertex are in the same partition as the vertex
itself and for no vertex do we have that xi, x̄i ∈ V1 or xi, x̄i ∈ V2. This assignment
satisfies all but the k clauses that correspond to the edges that were deleted. �

Since the above reduction is cost-preserving, approximation lower-bounds for
MIN 2-CNF SAT DEL carry over to KÖNIG EDGE DELETION. Therefore by Corol-
lary 1, we obtain

Corollary 13 If UGC is true then KÖNIG EDGE DELETION does not have a c-
approximation algorithm, for any constant c > 1.

Chlebik and Chlebikova [3] have shown that it is NP-hard to approximate MIN

2-CNF SAT DEL to within 8
√

5 − 15 ≈ 2.88. This gives us

Corollary 14 It is NP-hard to approximate KÖNIG EDGE DELETION to within 2.88.

Approximation Results For EDGE INDUCED KÖNIG SUBGRAPH, it is easy to ob-
tain a 2-approximation algorithm by simply finding a cut of size m/2 and then delet-
ing all the other edges. As the resulting graph will be bipartite it will be König. In this
subsection, we give a 4/3-approximation algorithm for graphs with a perfect match-
ing and a 5/3-approximation algorithm for general graphs based on the following
combinatorial results.

Lemma 18 Let G = (V ,E) be a graph with a maximum matching M and let GM =
(VM,EM) be the graph induced on the vertices V [M] of M . Then G has an edge-
induced König subgraph of size at least 3|EM |

4 + |E−EM |
2 + |M|

4 .

Proof Randomly partition the vertex set of G into V1 	 V2 as follows. For each
edge ei ∈ M , select an endpoint of ei with probability 1/2 and place it in V1. De-
fine V2 = V −V1. Note that the edges in M always lie across the cut (V1,V2). An edge
of EM − M is in G[V2] with probability 1/4; an edge in E − EM lies in G[V2] with
probability 1/2. For each edge e ∈ E, define Xe to be the indicator random variable
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that takes the value 1 if e ∈ G[V2] and 0 otherwise. Also define X = ∑
e∈E Xe. Then

E[X] =
∑

e∈E

E[Xe] = |EM − M|
4

+ |E − EM |
2

.

Deleting the edges in G[V2] results in a König graph with

3|EM |
4

+ |E − EM |
2

+ |M|
4

edges in expectation. This algorithm can be easily derandomized by the method of
conditional probabilities (see, for instance [22]). This completes the proof. �

If G = (V ,E) has a perfect matching M then EM = E and |M| = |V |/2 and we
have

Corollary 15 Let G = (V ,E) be a graph on n vertices and m edges with a perfect
matching. Then G has a subgraph with at least 3m/4 +n/8 edges that is König. This
subgraph can be found in time O(mn).

Lemma 19 Let G = (V ,E) be an undirected graph on n vertices and m edges.
Then G has an edge-induced König subgraph of size at least 3m/5.

Proof Let M be a maximum matching of G and let G[VM ] = (VM,EM) be the sub-
graph induced by the vertices V [M] of M . Let η(G) denote the size of the maximum
edge induced König subgraph of G. By Lemma 18,

η(G) ≥ |EM | + |M|
4

+ |E|
2

.

Observe that by deleting all the edges in G[VM ] we obtain a König subgraph of G.
In fact, this is a bipartite graph with bipartition VM and V − VM . Therefore if |E −
EM | ≥ 3m/5, the statement of the lemma clearly holds. Otherwise, |EM | ≥ 2m/5
and by Lemma 18, we obtain η(G) ≥ |M|/4 + 3m/5. This completes the proof. �

The following theorem follows from Corollary 15 and Lemma 19 and the fact that
the optimum König subgraph has at most m edges.

Theorem 8 The optimization version of EDGE INDUCED KÖNIG SUBGRAPH is ap-
proximable to within a factor of 5/3 for general graphs. This factor can be improved
to 4/3 when restricted to graphs with a perfect matching.

Parameterized Complexity Note that Lemma 19 actually shows that EDGE IN-
DUCED KÖNIG SUBGRAPH is fixed-parameter tractable. To see this, suppose
that (G, k) is an instance of the problem; we are to decide whether G has an edge in-
duced König subgraph with at least k edges. Note that if the parameter k ≤ 3m/5 then
we answer YES and use the approximation algorithm described in the previous sub-
section to obtain an edge induced König subgraph with at least k edges. If k > 3m/5



Algorithmica (2011) 61:857–881 879

then we simply use a trivial O∗(2m) brute-force algorithm to decide the question.
This FPT algorithm has time complexity O∗(25k/3).

In this subsection, we give an O∗(2k) FPT algorithm for EDGE INDUCED KÖNIG

SUBGRAPH on connected graphs by using an exact algorithm for the optimization
version of the problem. To this end, we describe an O∗(2n) algorithm for this problem
using a simple structural result characterizing minimal König edge deletion sets of a
graph.

Lemma 20 Let G = (V ,E) be a graph. If E′ is a minimal König edge deletion set
of G then there exists V ′ ⊆ V such that E(G[V ′]) = E′, that is, the edge set of the
subgraph induced by V ′ is precisely E′.

Proof Let E′ be a minimal König edge deletion set of G. Then G′ = (V ,E − E′) is
König. Then the vertex set of G′ can be partitioned into V1 and V2 such that V2 is
a maximal independent set and there exists a matching saturating V1 that lies across
the cut (V1,V2). Let V ′ = V2. Since E′ is minimal, it is clear that E(G[V2]) = E′.
This completes the proof. �

Our exact algorithm for the optimization version of EDGE INDUCED KÖNIG

SUBGRAPH simply enumerates all possible subsets V ′ ⊆ V , deletes all edges E′
in G[V ′] and checks whether G − E′ is König. The algorithm returns an edge set
E′ = E(G[V ′]) of smallest size such that G − E′ is König.

Lemma 21 Given an n-vertex graph G = (V ,E), the optimization version of the
KÖNIG EDGE DELETION (and hence the optimization version of EDGE INDUCED

KÖNIG SUBGRAPH) can be solved in time O∗(2n) and space polynomial in n.

Theorem 9 EDGE INDUCED KÖNIG SUBGRAPH can be solved in O∗(2k) time in
connected undirected graphs.

Proof Let (G, k) be an instance of EDGE INDUCED KÖNIG SUBGRAPH where G is
a graph with m edges and n vertices. A connected graph has a spanning tree which,
being bipartite, is König. Since a tree has n − 1 edges, if k ≤ n − 1 we answer YES;
else n ≤ k + 1 and we use Lemma 21 to obtain an O∗(2k) time algorithm for EDGE

INDUCED KÖNIG SUBGRAPH. �

6 Conclusion and Open Problems

In this paper, we introduced and studied vertex and edge versions of the KÖNIG SUB-
GRAPH problem from the points of view of parameterized complexity and approxima-
tion algorithms. Our results are summarized in Fig. 4. We showed that KÖNIG VER-
TEX DELETION is FPT whereas VERTEX INDUCED KÖNIG SUBGRAPH is W [1]-
hard. The EDGE INDUCED KÖNIG SUBGRAPH problem is FPT and we conjecture
that KÖNIG EDGE DELETION is W [1]-hard. Some obvious open problems are:
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Problem Parameterized Approximability
complexity

KÖNIG VERTEX

DELETION/ABOVE

GUARANTEE VERTEX

COVER

FPT O(logn log logn) approximation
algorithm; NP-hard to approximate
to within 1.7212; no constant-factor
approximation algorithm assuming
UGC.

KÖNIG EDGE DELETION Open NP-hard to approximate to
within 2.88; no constant-factor
approximation algorithm assuming
UGC.

VERTEX INDUCED

KÖNIG SUBGRAPH

W [1]-hard No factor-O(n1−ε) approximation
algorithm.

EDGE INDUCED KÖNIG

SUBGRAPH

FPT 5/3-approximation algorithm for
general graphs; 4/3-approximation
algorithm for graphs with a perfect
matching.

Fig. 4 List of problems dealt with in this paper

1. What is the parameterized complexity of the KÖNIG EDGE DELETION problem?
2. Is there a better FPT algorithm for KÖNIG VERTEX DELETION perhaps without

making use of the algorithm for ABOVE GUARANTEE VERTEX COVER?
3. Are there better approximation algorithms for all these problems?
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