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Abstract We obtain the following results related to dynamic versions of the shortest-
paths problem:

(i) Reductions that show that the incremental and decremental single-source
shortest-paths problems, for weighted directed or undirected graphs, are, in a
strong sense, at least as hard as the static all-pairs shortest-paths problem. We
also obtain slightly weaker results for the corresponding unweighted problems.

(ii) A randomized fully-dynamic algorithm for the all-pairs shortest-paths prob-
lem in directed unweighted graphs with an amortized update time of Õ(m

√
n)

(we use Õ to hide small poly-logarithmic factors) and a worst case query time
is O(n3/4).

(iii) A deterministic O(n2 logn) time algorithm for constructing an O(logn)-
spanner with O(n) edges for any weighted undirected graph on n vertices. The
algorithm uses a simple algorithm for incrementally maintaining single-source
shortest-paths tree up to a given distance.
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1 Introduction

The objective of a dynamic shortest path algorithm is to efficiently process an online
sequence of update and query operations. Each update operation inserts or deletes
edges from an underlying dynamic graph. Each query operation asks for the distance
between two specified vertices in the current graph. A dynamic algorithm is said to
be fully dynamic if it can handle both insertions and deletions. An incremental algo-
rithm is an algorithm that can handle insertions, but not deletions, and a decremental
algorithm is an algorithm that can handle deletions, but not insertions. Incremental
and decremental algorithms are sometimes referred to as being partially dynamic. An
all-pairs shortest paths (APSP) algorithm is an algorithm that can report distances be-
tween any two vertices of the graph. A single-source shortest paths (SSSP) algorithm
can only report distances from a given source vertex.

We present three results related to dynamic shortest paths problems. We begin with
simple reductions that show that the innocent looking incremental and decremental
SSSP problems are, in a strong sense, at least as hard as the static APSP problem.
This may explain the lack of progress on these problems, and indicates that it will be
difficult to improve classical algorithms for these problems, such as the decremental
algorithm of Even and Shiloach [10].

We then present a new fully dynamic APSP algorithm for unweighted directed
graphs. The amortized update time of the algorithm is Õ(m

√
n) and the worst-case

query time is O(n3/4). The algorithm is randomized. The results returned by the algo-
rithm are correct with very high probability. The new algorithm should be compared
with a recent algorithm of Demetrescu and Italiano [9] and its slight improvement
by Thorup [28]. Their algorithm, which works for weighted directed graphs, has an
amortized update time of Õ(n2) and a query time of O(1). For sparse enough graphs
our new algorithm has a faster update time. The query cost, alas, is much larger. Very
recently, Bernstein [5] presented an algorithm for undirected graphs with (2 + ε)

stretch, almost linear update time and O(log logn) query time.
The new algorithm can also be compared to fully dynamic reachability algorithms

for directed graphs obtained by the authors in [21] and [23]. A reachability algorithm
is only required to determine, given two vertices u and v, whether there is a directed
path from u to v in the graph. The reachability problem, also referred to as the tran-
sitive closure problem, is, of course, easier than the APSP problem. A fully dynamic
reachability algorithm with an amortized update time of Õ(m

√
n) and a worst-case

query time of O(
√

n) is presented in [21]. A fully dynamic reachability algorithm
with an amortized update time of O(m + n logn) and a worst-case query time of
O(n) is presented in [23].

Finally, we present a simple application of incremental SSSP algorithms, showing
that they can be used to speed up the operation of the greedy algorithm for construct-
ing spanners. In particular, we obtain an O(n2 logn) time algorithm for constructing
an O(logn)-spanner with O(n) edges for any weighted undirected graph on n ver-
tices. The previously fastest algorithm for constructing such spanners runs in O(mn)

time [1].
The rest of this paper is organized as follows. In the next section we describe

the hardness results for incremental and decremental SSSP. We also discuss the im-
plications of these results. In Sect. 3 we then present our new fully dynamic APSP
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algorithm. In Sect. 4 we present our improved spanner construction algorithm. We
end in Sect. 5 with some concluding remarks and open problems.

2 Hardness of Partially Dynamic SSSP Problems

We start with two simple reductions that show that the incremental and decremental
weighted SSSP problems are at least as hard as the static weighted APSP problem.
We then present two similar reductions that show that the incremental and decre-
mental unweighted SSSP problems are at least as hard as several natural static graph
problems such as Boolean matrix multiplication and the problem of finding all edges
of a graph that are contained in triangles.

Let A be an incremental (decremental) algorithm for the weighted (unweighted)
directed (undirected) SSSP problem. We let initA(m,n) be the initialization time of A
on a graph with m edges and n vertices. We let updateA(m,n) be the amortized edge
insertion (deletion) time of A, and queryA(m,n) be the amortized query time of A,
where m and n are the number of edges and vertices in the graph at the time of the op-
eration. We assume that the functions initA(m,n), updateA(m,n) and queryA(m,n)

are monotone in m and n. Let δG(u, v) be the length of the shortest path from u to v

in G.

Theorem 2.1 Let A be an incremental (decremental) algorithm for the weighted
directed (undirected) SSSP problem. Then there is an algorithm for the static APSP
problem for weighted graphs that runs in O(initA(m + n,n + 1) + n·updateA(m +
n,n + 1) + n2 ·queryA(m + n,n + 1)) time.

Proof Let G = (V ,E) be a graph, with |V | = n and |E| = m, and let w : E → R
+ be

an assignment of non-negative weights to its edges. The proof works for both directed
and undirected graphs. We assume, without loss of generality, that V = {1,2, . . . , n}.
Let W = maxe∈E w(e) be the maximum edge weight.

Assume, at first, that A is a decremental algorithm. We construct a new graph
G0 = (V ∪ {0},E ∪ ({0} × V )), where 0 is a new source vertex. A new edge (0, j),
where 1 ≤ j ≤ n is assigned the weight j ·nW . (See Fig. 1(a).) The graph G0, com-
posed of n + 1 vertices and m + n edges, is passed as the initial graph to the decre-
mental algorithm A. The source is naturally set to be 0. After A is initialized, we per-
form the n queries query(j), for 1 ≤ j ≤ n. Each query query(j) returns δG0(0, j),
the distance from 0 to j in G0. As the weight of the edge (0,1) is substantially
smaller than the weight of all other edges emanating from the source, it is easy to
see that δG(1, j) = δG0(0, j) − nW , for every 1 ≤ j ≤ n. We now delete the edge
(0,1) from G0 and perform again the n queries query(j), for 1 ≤ j ≤ n. We now
have δG(2, j) = δG0(0, j) − 2nW , for every 1 ≤ j ≤ n. Repeating this process n − 2
more times we obtain all distances in the original graph by performing only n edge
deletions and n2 queries.

The proof when A is an incremental algorithm is analogous. The only difference
is that we now insert the edges (0, j) one by one, in reverse order. We first insert the
edge (0, n), with weight n2W , then the edge (0, n − 1) with weight (n − 1)nW , and
so on. �
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We note that the simple reduction just described works for undirected, directed, as
well as directed acyclic graphs (DAGs). We next move to unweighted versions of the
problem.

Theorem 2.2 Let A be an incremental (decremental) algorithm for the unweighted
directed (undirected) SSSP problem. Then there is an algorithm that multiplies two
Boolean n × n matrices, with a total number of m 1’s, in O(initA(m + 2n,4n) + n·
updateA(m + 2n,4n) + n2 ·queryA(m + 2n,4n)) time.

Proof Let A and B be two Boolean n × n matrices. Let C = AB be their Boolean
product. Construct a graph G = (V ,E) as follows: V = {si, ui, vi,wi | 1 ≤ i ≤ n},
and E = {(si , si+1) | 1 ≤ i < n} ∪ {(si , ui) | 1 ≤ i ≤ n} ∪ {(ui, vj ) | aij = 1,1 ≤ i,

j ≤ n} ∪ {(vi,wj ) | bij = 1,1 ≤ i, j ≤ n}. (See Fig. 1(b).) The graph G is composed
of 4n vertices and m+ 2n− 1 edges. Let s = s1. It is easy to see that δG(s,wj ) = 3 if
and only if c1j = 1. We now delete the edge (s1, u1). Now, δG(s,wj ) = 4 if and only
if c2j = 1. We then delete the edge (s2, u2), and so on. Again we use only n delete
operations and n2 queries. The incremental case is handled in a similar manner. �

Discussion All known algorithms for the static APSP problems in weighted di-
rected or undirected graphs run in �(mn) time. A running time of O(mn + n2 logn)

is obtained by running Dijkstra’s algorithm from each vertex (see [11]). Slightly faster
algorithms are available, in various settings. For the best available results see [11, 14,
18, 19, 27]. Karger et al. [16] show that any path-comparison algorithm for the prob-
lem must have a running time of �(mn).

The reduction of Theorem 2.1 shows that if there is an incremental or decremen-
tal SSSP algorithm that can handle n update operations and n2 query operations in
O(mn1−ε + n2+o(1)), time, then there is also an O(mn1−ε + n2+o(1)) time algorithm
for the static APSP problem. We note that the trivial ‘dynamic’ SSSP algorithm that

Fig. 1 Reductions of static problems to incremental or decremental SSSP problems
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simply constructs a shortest paths tree from scratch after each update operation han-
dles n update operations in Õ(mn) time. Almost any improvement of this trivial
algorithm, even with much increased query times, will yield improved results for the
static APSP problem.

An interesting open problem is whether there are incremental or decremental SSSP
algorithms for weighted graphs that can handle m updates and n2 queries in Õ(mn)

time. (Note that the number of updates here is m and not n.)
We next consider unweighted versions of the SSSP problem. A classical result in

this area is the following:

Theorem 2.3 (Even and Shiloach [10]) There is a decremental algorithm for main-
taining the first k levels of a single-source shortest-paths tree, in a directed or undi-
rected unweighted graph, whose total running time, over all deletions, is O(km),
where m is the initial number of edges in the graph. Each query can be answered in
O(1) time.

It is easy to obtain an incremental variant of this algorithm. Such a variant is
described, for completeness, in Sect. 4, where it is also used.

How efficient is the algorithm of [10], and what are the prospects of improving it?
If k, the number of levels required is small, then the running time of the algorithm is
close to be optimal, as �(m) is an obvious lower bound. But, if a complete shortest
paths tree is to be maintained, i.e., k = n − 1, the running time of the algorithm
becomes O(mn). How hard will it be to improve this result?

Our reductions for the unweighted problems are slightly weaker than the ones we
have for the weighted problems. We cannot reduce the static APSP problems to the
partially dynamic SSSP problems, but we can still reduce the Boolean matrix multi-
plication problem to them. The APSP problem for undirected unweighted graphs can
be reduced to the Boolean matrix multiplication problem (see [12, 25, 26]), but these
reductions do not preserve sparsity.

The fastest known combinatorial algorithm for computing the Boolean product of
two n × n matrices that contain a total of m 1’s runs in O(mn) time. By a combi-
natorial algorithm here we refer to an algorithm that does not rely on fast algebraic
matrix multiplication techniques. Using such algebraic techniques it is possible to
multiply the matrices in O(n2.38) time (see [8]), and also in O(m0.7n1.2 + n2+o(1))

time (see [31]). Obtaining a combinatorial Boolean matrix multiplication algorithm
whose running time is O((mn)1−ε + n2), or O(n3−ε), for some ε > 0, is a major
open problem.

The reduction of Theorem 2.2 shows that reducing the total running time of the
algorithm of [10] to O(mn1−ε +n2+o(1)), using only combinatorial means, is at least
as hard as obtaining an improved combinatorial Boolean matrix multiplication algo-
rithm. Also, via the reduction of the static APSP problem to Boolean matrix multipli-
cation, we get that an incremental or decremental SSSP algorithm with a total running
time of O(n3−ε), and a query time of O(n1−ε), for some ε > 0, will yield a combi-
natorial algorithm for the static APSP problem with a running time of O(n3−ε). We
believe that this provides strong evidence that improving the algorithm of [10] will
be very hard.
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It is also not difficult to see that if the first k levels of a single-source shortest-
paths tree can be incrementally or decrementally maintained in o(km) time, then
there is a O(mn1−ε +n2+o(1)) time Boolean matrix multiplication algorithm. We use
the same technique as in Theorem 2.2 but this time instead of maintaining a single
tree we maintain n/k trees. More specifically, let s1, . . . , s�, where � = n/k (assume,
wlog, that n is divided by k) be dummy vertices. For every 1 ≤ i ≤ �, we connect si
to the vertices u(i−1)∗k+1, . . . , uik in the same way s was connected to the vertices
u1, . . . , un. Now we use these trees in the same manner that we used the single tree
of s to retrieve the answer to the boolean matrix multiplication, that is, we query and
delete edges from the tree of si to get the distance for every pair of vertices (u,w)

where u ∈ {u(i−1)k+1, . . . , uik} and w ∈ {w1, . . . ,wn}. The maximal depth of each
such tree is O(k). The total maintenance cost is n/k times O(k1−εm) which also
yields a O(mn1−ε + n2+o(1)) time Boolean matrix multiplication algorithm.

Chan [6] describes a simple reduction from the rectangular Boolean matrix multi-
plication problem to the fully dynamic subgraph connectivity problem. It is similar in
spirit to our reduction. The details, and the problems involved, are different, however.

As a final remark we note that we have reduced the APSP problem and the Boolean
matrix multiplication problem to offline versions of incremental or decremental SSSP
problem. It will thus be difficult to obtain improved algorithms for partially dynamic
SSSP problems even if all the update and query operations are given in advance.

3 Fully Dynamic All-Pairs Shortest Paths

In this section we obtain a new fully dynamic algorithm for the all-pairs shortest
paths problem in unweighted directed graphs. The algorithm relies on ideas of [15]
and [21]. We rely on following result of [15] and a simple observation of [30]:

Theorem 3.1 (Henzinger and King [15]) There is a randomized decremental all-
pairs shortest-paths algorithm for directed unweighted graphs whose total running

time, over all deletions, is O(
mn2 logn

t
+ mn log2 n) and whose query time is O(t),

where m and n are the number of edges and vertices in the initial graph, and t ≥ 1

is a parameter. (In particular, for t ≤ n/ logn, the total running time is O(
mn2 logn

t
).)

Every result returned by the algorithm is correct with a probability of at least 1−n−c,
where c is a parameter set in advance.

Lemma 3.2 (Ullman and Yannakakis [30]) Let G = (V ,E) be a directed graph on n

vertices. Let 1 ≤ k ≤ n, and let S be a random subset of V obtained by selecting each
vertex, independently, with probability p = (c lnn)/k. (If p ≥ 1, we let S be V .) If p

is a path in G of length at least k, then with a probability of at least 1 − n−c, at least
one of the vertices on p belongs to S.

The new algorithm works in phases as follows. In the beginning of each phase,
the current graph G = (V ,E) is passed to the decremental algorithm of [15] (The-
orem 3.1). A random subset S of the vertices, of size (cn lnn)/k, is chosen, where
k is a parameter to be chosen later and c is a constant. The standard BFS algorithm
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is then used to build shortest paths trees to and from all the vertices of S. If w ∈ V ,
we let Tin(w) be a tree of shortest paths to w, and Tout(w) be a tree of shortest paths
from w. The set C is initially empty.

An insertion of a set E′ of edges, all touching a vertex v ∈ V , said to be the
center of the insertion, is handled as follows. First if |C| ≥ t , where t is a second
parameter to be chosen later (in the proof of Theorem 3.3), then the current phase
is declared over, and all the data structures are reinitialized. Next, the center v is
added to the set C, and the first k levels of shortest paths trees T̂in(v) and T̂out(v),
containing shortest paths to and from v, are constructed. The trees T̂in(v) and T̂out(v)

are constructed and maintained using the algorithm of [10] (Theorem 2.3). Finally,
shortest paths trees Tin(w) and Tout(w), for every w ∈ S, are constructed from scratch.
(Note that we use T̂in(v) and T̂out(v) to denote the trees associated with a vertex
v ∈ C, and Tin(w) and Tout(w), without the hats, to denote the trees of a vertex w ∈ S.
The former are decrementally maintained, up to depth k, while the later are rebuilt
from scratch following each update operation.)

A deletion of an arbitrary set E′ of edges is handled as follows. First, the edges
of E′ are removed from the decremental data structure initialized at the beginning of
the current phase, using the algorithm of [15] (Theorem 3.1). Next, the algorithm of
[10] (Theorem 2.3) is used to update the shortest paths trees T̂in(v) and T̂out(v), for
every v ∈ C. Finally, the trees Tin(w) and Tout(w), for every w ∈ S, are again rebuilt
from scratch.

A distance query Query(u, v), asking for the distance d(u, v) from u to v in the
current version of the graph, is handled using the following three stage process. First,
we query the decremental data structure, that keeps track of all delete operations
performed in the current phase, but ignores all insert operations, and get an answer �1.
We clearly have d(u, v) ≤ �1, as all edges in the decrementally maintained graph are
also edges of the current graph. Furthermore, if there is a shortest path from u to v

in the current graph that does not use any edge that was inserted during the current
phase, then d(u, v) = �1.

Next, we try to find a shortest path from u to v that passes through one of the
insertion centers contained in C. For every w ∈ C, we query T̂in(w) for the distance
from u to w and T̂out(w) for the distance from w to v, and add these two numbers. (If
d(u,w) > k, then u is not contained in T̂in(w) and the distance from w to u, in the
present context, is taken to be ∞. The case d(w,v) > k is handled similarly.) By tak-
ing the minimum of all these numbers we get a second answer that we denote by �2.
Again, we have d(u, v) ≤ �2. Furthermore, if d(u, v) ≤ k, and there is a shortest path
from u to v in the current graph that passes through a vertex that was an insertion
center in the current phase of the algorithm, then d(u, v) = �2.

Finally, we look for a shortest path from u to v that passes through a vertex of S.
This is done in a similar manner by examining the trees associated with the vertices
of S. The answer obtained using this process is denoted by �3. (If there is no path from
u to v that passes through a vertex of S, then �3 = ∞.) The final answer returned by
the algorithm is min{�1, �2, �3}.

A formal description of the new algorithm is given in Fig. 2. The algorithm is
initialized by a call Init(G, k, t), where G = (V ,E) is the initial graph and k and t

are parameters to be chosen later. Such a call is also made at the beginning of each
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Fig. 2 The new fully dynamic all-pairs shortest paths algorithm for unweighted directed graphs

phase. A set E′ of edges, centered at v, is added to the graph by a call Insert(E′, v).
A set E′ of edges is deleted by a call Delete(E′). A query is answered by calling
Query(u, v). A call Build-Trees(S) is used to (re)build shortest paths trees to and
from the vertices of S.

The call Init-Dec(G, t), in line 1 of Init, initializes the decremental algorithm
of [15]. (Recall that we maintain the current graph at the beginning of each phase
using a decremental algorithm.) Procedure Delete-Dec is used to delete edges using
the decremental data structure and procedure Query-Dec is used to answer queries
using the decremental data structure. The call Random(V , (cn lnn)/k), in line 3,
chooses the random sample S. The call Build-Trees(S), in line 4, construct the short-
est paths trees Tin(w) and Tout(w), for every w ∈ S. A call Init-Tree(T̂in(v),E, k)

(line 4 of Insert) is used to initialize the decremental maintenance of the first k levels
of a shortest paths tree T̂in(v) to v. Such a tree is updated, following a deletion of
a set E′ of edges, using a call Delete-Tree(T̂in(v),E′) (line 4 of Delete). A query
Query-Tree(T̂in(w),u) (line 2 of Query) is used to find the distance from u to w in
the tree T̂in(w). If u is not in T̂in(w), the value returned is ∞. Such a tree-distance
query is easily handled in O(1) time. The out-trees T̂out(v) are handled similarly.
Finally a call BFS(Tin(w),E) (line 2 of Build-Trees) is used to construct a standard,
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static, shortest paths tree to w. Distances in such trees are again found by calling
Query-Tree(Tin(w),u) (line 3 of Query).

Theorem 3.3 Let t ≤ n/ logn. The fully dynamic all-pairs shortest paths algorithm

of Fig. 2 handles each insert or delete operation in O(
mn2 logn

t2 +km+ mn logn
k

) amor-

tized time, and answers each distance query in O(t + n logn
k

) worst-case time. Each
result returned by the algorithm is correct with a probability of at least 1 − 2n−c. By
choosing k = (n logn)1/2 and (n logn)1/2 ≤ t ≤ n3/4(logn)1/4 we get an amortized

update time of O(
mn2 logn

t2 ) and a worst-case query time of O(t).

Proof The correctness proof follows from the arguments outlined along side the de-
scription of the algorithm. As each estimate �1, �2 and �3 obtained while answering
a distance query Query(u, v) is equal to the length of a path in the graph from u to v,
we have d(u, v) ≤ �1, �2, �3. We show that at least one of these estimates is equal,
with very high probability, to d(u, v).

If there is a shortest path from u to v that does not use any edge inserted in the
current phase, then d(u, v) = �1, assuming that the estimate �1 returned by the decre-
mental data structure is correct. The error probability here is only n−c.

Suppose therefore that there is a shortest path p from u to v that uses at least one
edge that was inserted during the current phase. Let w be the latest vertex on p to
serve as an insertion center. If d(u, v) ≤ k, then the correct distance from u to v will
be found while examining the trees T̂in(w) and T̂out(w).

Finally, suppose that d(u, v) ≥ k. Let p be a shortest path from u to v in the current
graph. By Lemma 3.2, with a probability of at least 1−n−c the path p passes through
a vertex of w of S, and the correct distance will be found while examining the trees
Tin(w) and Tout(w).

We next analyze the complexity of the algorithm. By Theorem 3.1, the total cost

of maintaining the decremental data structure is O(
mn2 log2 n

t
). As each phase is com-

posed of at least t update operations, this contributes O(
mn2 log2 n

t2 ) to the amortized
cost of each update operation. Each insert operation triggers the creation (or recre-
ation) of two decremental shortest paths trees that are maintained only up to depth k.
By Theorem 2.3 the total cost of maintaining these trees is only O(km). (Note that
this also covers the cost of all future operations performed on these trees.) Finally,
each insert or delete operation requires the rebuilding of (cn lnn)/k shortest paths
trees at a total cost of O(

mn logn
k

). The total amortized cost of each update operation

is therefore O(
mn2 logn

t2 + km + mn logn
k

), as claimed. Each query is handled by the

algorithm in O(t + n logn
k

): The estimate �1 is obtained in O(t) time by querying the
decremental data structure. The estimate �2 is obtained in O(t) by considering all
the trees associated with C. Finally the estimate �3 is obtained in O(

n logn
k

) time by
examining all the trees associated with S.

By examining these bounds it is obvious that k = (n logn)1/2 is the optimal choice
for k. By choosing t in the range (n logn)1/2 ≤ t ≤ n3/4(logn)1/4, we get a tradeoff
between the update and query times. The fastest update time of O(m(n logn)1/2) is
obtained by choosing t = n3/4(logn)1/4. �
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4 An Incremental SSSP Algorithm and Greedy Spanners

A simple algorithm for incrementally maintaining a single-source shortest-paths tree
from a source vertex s up to distance k is given in Fig. 3. The edge weights are
assumed to be non-negative integers. The algorithm may be seen as an incremental
variant of the algorithm of [10]. It is also similar to an algorithm of Ramalingam and
Reps [20]. The algorithm is brought here for completeness.

For each vertex v ∈ V , d[v] is the current distance from s to v, p[v] is the parent
of v in the shortest paths tree, and N [v] are the vertices that can be reached from v

by following an outgoing edge. The integer weight of an edge (u, v) is denoted by
wt(u, v). As described, the algorithm works on directed graphs. It is easy to adapt it
to work on undirected graphs. (We simply need to scan each edge in both directions.)

Theorem 4.1 The algorithm of Fig. 3 incrementally maintains a shortest-paths tree
from a source vertex s up to distance k in a directed graph using a total number of
O(km) operations, where m is the number of edges in the final graph. Each distance
query is answered in O(1) time.

Proof It is easy to see that the algorithm correctly maintains the distances from s.
The complexity is O(km) as each edge (u, v) is rescanned only when the distance
from s to u decreases, and this happens at most k times. �

We next define the notion of spanners.

Definition 4.2 (Spanners [17]) Let G = (V ,E) be a weighted undirected graph, and
let t ≥ 1. A subgraph G′ = (V ,E′) is said to be a t-spanner of G if and only if for
every u,v ∈ V we have δG′(u, v) ≤ t ·δG(u, v).

The greedy algorithm of Althöfer et al. [1] for constructing sparse spanners of
weighted undirected graphs is given in Fig. 4. For every integer k ≥ 2, it constructs

Fig. 3 A simple incremental SSSP algorithm
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Fig. 4 A greedy algorithm for
constructing spanners

a (2k − 1)-spanner with at most n1+1/k edges. This is an essentially optimal tradeoff
between stretch and size. The algorithm is reminiscent of Kruskal’s algorithm for the
construction of a minimum spanning tree algorithm. A naive implementation of this
algorithm requires O(mn1+1/k) time.

Let dE′(u, v) (δE′(u, v)) be the unweighted (weighted) distance between u and v

in G(V,E′). We consider a variant of the algorithm in which line 3 is replaced by
line 3′. For every edge (u, v) ∈ E, the original algorithm checks whether δE′(u, v) >

(2k − 1)wt(u, v), i.e., whether the weighted distance from u to v in the subgraph
composed of the edges already selected to the spanner is at most 2k − 1 times the
weight wt(u, v) of the edge. The modified version of the algorithm asks, instead,
whether dE′(u, v) > 2k − 1, i.e., whether the unweighted distance between u and v

in the subgraph (V ,E′) is greater than 2k − 1. We now claim:

Theorem 4.3 The modified version of the greedy spanner algorithm still produces a
(2k − 1)-spanner with at most n1+1/k edges for any weighted graph on n vertices.

Proof The claim follows from a simple modification of the correctness proof of the
greedy algorithm. If an edge (u, v) is not selected by the modified algorithm, then
dE′(u, v) ≤ 2k − 1. As the edges are scanned in an increasing order of weight, all
the edges on the shortest path connecting u and v in (V ,E′) are of weight at most
wt(u, v), and therefore δE′(u, v) ≤ (2k−1)·wt(u, v). Thus, the edge (u, v) is also not
selected by the original algorithm. The edge set returned by the modified algorithm is
therefore a superset of the edge set returned by the original algorithm, and is therefore
a (2k − 1)-spanner of G.

The proof that the set of edges E′ returned by the original algorithm is of size at
most n1+1/k relies only on the fact that the girth of G′ = (V ,E′) is at least 2k + 1.
This also holds for the set E′ constructed by the modified algorithm, as we never add
to E′ an edge that would form a cycle of size at most 2k. Hence, the size of the set
E′ returned by the modified algorithm is also at most n1+1/k . �

Theorem 4.4 The modified greedy algorithm of Fig. 4 can be implemented to run in
O(kn2+1/k) time.

Proof We use the algorithm of Fig. 3 to maintain a tree of shortest-paths, up to dis-
tance 2k − 1, from each vertex of the graph. As the spanner contains at most n1+1/k
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edges, the total cost of maintaining each one of these trees is only O(kn1+1/k), and
the total cost of the algorithm is O(kn2+1/k), as claimed. �

Discussion There are several other algorithms for constructing sparse spanners of
weighted graphs. In particular, a randomized algorithm of Baswana and Sen [2] con-
structs a (2k − 1)-spanner with O(kn1+1/k) edges in O(km) expected time. A ran-
domized O(kmn1/k) algorithm for constructing such spanners is described in [29].
Roditty, Thorup and Zwick [24] gave a deterministic algorithm with running time
of O(kmn1/k). Why then insist on a faster implementation of the greedy algorithm?
The answer is that the greedy algorithm constructs slightly sparser spanners. It pro-
duces (2k − 1)-spanners with at most n1+1/k edges (no big-O is needed here). When
k is non-constant, this is significant. When we let k = logn, the greedy algorithm
produces an O(logn)-spanner containing only O(n) edges. All other algorithms pro-
duce spanners with �(n logn) edges. It is, of course, an interesting open problem
whether such spanners can be constructed even faster.

Another interesting property of the (original) greedy algorithm, shown by [7], is
that the total weight of the edges in the (2k − 1)-spanner that it constructs is at most
O(n(1+ε)/k ·wt(MST (G))), for any ε > 0, where wt(MST (G)) is the weight of
the minimum spanning tree of G. Unfortunately, this property no longer holds for
the modified greedy algorithm. Again, it is an interesting open problem to obtain an
efficient spanner construction algorithm that does have this property.

An efficient implementation of a different variant of the greedy algorithm, in the
setting of geometric graphs, is described in [13].

5 Concluding Remarks and Open Problems

We presented a simple reduction from the static APSP problem for weighted graphs to
offline partially dynamic SSSP problem for weighted graphs, and a simple reduction
from the Boolean matrix multiplication problem to the offline partially dynamic SSSP
problem for unweighted graphs.

An interesting issue to explore is whether faster partially dynamic SSSP algo-
rithms may be obtained if approximate answers are allowed. (For steps in this direc-
tion, but for the approximate dynamic APSP problem, see [3, 4, 22].)
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