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Abstract Drift analysis is a powerful tool used to bound the optimization time of
evolutionary algorithms (EAs). Various previous works apply a drift theorem going
back to Hajek in order to show exponential lower bounds on the optimization time
of EAs. However, this drift theorem is tedious to read and to apply since it requires
two bounds on the moment-generating (exponential) function of the drift. A recent
work identifies a specialization of this drift theorem that is much easier to apply.
Nevertheless, it is not as simple and not as general as possible. The present paper
picks up Hajek’s line of thought to prove a drift theorem that is very easy to use
in evolutionary computation. Only two conditions have to be verified, one of which
holds for virtually all EAs with standard mutation. The other condition is a bound on
what is really relevant, the drift. Applications show how previous analyses involving
the complicated theorem can be redone in a much simpler and clearer way. In some
cases even improved results may be achieved. Therefore, the simplified theorem is
also a didactical contribution to the runtime analysis of EAs.

Keywords Randomized search heuristics · Evolutionary algorithms ·
Computational complexity · Runtime analysis · Drift analysis

1 Introduction

Theoretical studies of the computational complexity of Evolutionary Algorithms
(EAs) have appeared since the 1990s (see Oliveto, He and Yao [12]). Since then
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various mathematical techniques for the analysis of EAs have been constructed. An
overview of many important tools can be found in Wegener [14].

Recently drift analysis, a technique that goes back to the 1940s (cf. the introduc-
tion in [5]), was introduced for the analysis of EAs by He and Yao [7, 8]. The authors
concentrated on the obtainment of both lower and upper bounds on the expected run-
time of EAs. Concerning lower bounds, Giel and Wegener [4] point out that a drift
theorem on the success probability may also be obtained rather than only the ex-
pected waiting time. In this form the drift theorem has been used several times (e.g.,
Giel and Wegener [4] for maximum matching, Oliveto, He and Yao [11] for vertex
cover, Friedrich, Oliveto, Sudholt and Witt [2] for analyzing population-based EAs
with diversity mechanisms etc.) to prove exponential lower bounds on optimization
times that even hold with probabilities exponentially close to 1. Although the men-
tioned drift theorem has turned out to be very useful, it often leads to tedious and
complicated calculations. This seems to be the price to pay for the sake of keeping
the drift theorem as general as possible. However, by considering the characteristics
of the stochastic processes defined by EAs, it is possible to derive conditions which
are more restrictive but considerably easier to verify. In fact, with similar motivations,
Happ, Johannsen, Klein and Neumann [6] have recently introduced a simplified drift
theorem called “Global Gambler’s Ruin”.

In this paper we present a further simplification of the drift theorem which is par-
ticularly suited for the analysis of EAs. Our proof resembles the argumentation used
by Hajek to verify the conditions of his complicated but general theorem. It seems
that, to a certain extent, many applications of the complicated theorem rely on a his-
torical accident. Hajek himself states simpler but more restrictive conditions which
he claims to be useful in applications. We only slightly tweak these conditions to
make them even easier to verify in the analysis of EAs.

The rest of the paper is structured as follows. Some background on drift analysis
is given in Sect. 2. In Sect. 3 the simplified drift theorem is presented. Afterwards,
we study some exemplary applications to show the strength and elegance of the new
approach. Section 4 contains a warm-up example. In Sect. 5 we show that the sim-
plified drift theorem can also be used in the setting of Happ et al. [6] and that even
significantly stronger results are obtained with shorter proofs. In Sect. 6 we study
the maximum matching problem as an advanced application to show that proofs are
considerably simplified. We finish with some conclusions.

2 Drift Analysis

Hajek introduced drift analysis to provide a flexible technique for proving the sta-
bility of processes frequently encountered in queuing systems [5]. This technique
also turned out to be useful in the analysis of the computational complexity of sim-
ulated annealing for the maximum matching problem [13]. However, only in recent
years was drift analysis adapted to the study of the computational complexity of EAs
[7]. Following Sasaki and Hajek’s ideas for the analysis of simulated annealing, He
and Yao first modelled the process underlying an EA as a Markov chain and then
gave drift conditions for proving upper and lower bounds on the expected runtime of
the EA.
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Given a Markov process {Xt }t≥0 over a search space S and a distance function
g : S → R

+
0 mapping each state to a non-negative real number, the one-step drift at

time t of the Markov process is defined as

�(t) := g(Xt ) − g(Xt+1).

The drift �(t) represents the random decrease in distance to the optimum obtained
by the algorithm in one step at time t . The idea behind drift analysis is quite simple.
If the current process is at distance d from the optimum and at each step there is an
improvement (i.e., a positive drift) towards the optimum of at least δ > 0, then the
optimal solution will be found in at most d/δ steps.

From this idea the following drift theorem for obtaining upper bounds on the run-
time of EAs is derived.

Theorem 1 (Drift Theorem for Upper Bounds) Let {Xt }t≥0 be a Markov process over
a set of states S, and g : S → R

+
0 a function that assigns to every state a non-negative

real number. Let the time to reach the optimum be T := min{t ≥ 0 : g(Xt ) = 0}. If
there exists δ > 0 such that at any time step t ≥ 0 and at any state Xt with g(Xt ) > 0
the following condition holds:

E(g(Xt ) − g(Xt+1) | g(Xt ) > 0) ≥ δ (1)

then

E(T | X0, g(X0) > 0) ≤ g(X0)

δ

and

E(T ) ≤ E(g(X0))

δ
.

The first statement was proved by He and Yao [7, 8]. The second statement of
the theorem follows from the first one by using the law of total expectation. Let n

be the length of the strings representing the candidate solutions to an optimisation
problem. If the drift condition, i.e. Condition (1), can be proved for δ = 1/poly(n),
then a polynomial upper bound on the expected runtime can be achieved by applying
Theorem 1.

By using the same idea the other way round, conditions for proving lower bounds
can be obtained. If the expected drift is negative, then the algorithm is moving in ex-
pectation away from the optimum rather than towards it. However, this would not be
enough to prove an exponential lower bound on the runtime. The probability that the
process may perform large jumps towards the optimum must also be low. Following
Hajek’s previous work [5], He and Yao derived two conditions for proving exponen-
tial lower bounds on the expected runtime of an evolutionary algorithm [7]. Later on,
Giel and Wegener noticed that from He and Yao’s proof, a statement on the success
probability could be obtained rather than just a bound on the expected runtime [4].
The latter version of the theorem follows.
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Fig. 1 Illustration of the scenario underlying the drift theorems for lower bounds

Theorem 2 (Drift Theorem for Lower Bounds [4]) Let {Xt }t≥0 be a Markov process
over a set of states S, and g : S → R

+
0 a function that assigns to every state a non-

negative real number. Pick two real numbers a(�) and b(�) which depend on a para-
meter � ∈ R

+ such that 0 < a(�) < b(�) holds and let the random variable T denote
the earliest point in time t ≥ 0 where g(Xt ) ≤ a(�) holds.

If there are constants λ > 0 and D ≥ 1 and a polynomial p(�) taking only positive
values, for which the following four conditions hold

1. Pr[g(X0) ≥ b(�)] = 1
2. b(�) − a(�) = �(�)

3. ∀t ≥ 0 : E[e−λ(g(Xt+1)−g(Xt )) | Xt, a(�) < g(Xt ) < b(�)] ≤ 1 − 1/p(�)

4. ∀t ≥ 0 : E[e−λ(g(Xt+1)−b(�)) | Xt, b(�) ≤ g(Xt )] ≤ D,

then for all time bounds B ≥ 0, the following upper bound on probability holds for
random variable T

Prob(T ≤ B) ≤ eλ(a(�)−b(�)) · B · D · p(�).

Here a(�) and b(�) identify an interval where the drift g(Xt ) − g(Xt+1) typically
is negative, i.e., g(Xt+1) > g(Xt ). Condition 1 means that the starting point X0 must
be on the other side of the interval [a(�), b(�)] compared to the target point, while
Condition 2 states that the length of the interval should be at least of order �. Then,
Condition 3 guarantees that when the process is inside the interval it drifts away
from the target, and Condition 4 assures that there are very low chances that the
algorithm performs long jumps to the other side of the interval. See Fig. 1 for an
illustration. If the four conditions hold then an upper bound on the success probability
in B steps is obtained by applying Theorem 2. If the interval [a(�), b(�)] depends on
the problem size n and B is exponential in n, then the probability that the runtime is
not exponential can be proved to be overwhelmingly small.

This version of the theorem was first used by Giel and Wegener to prove expo-
nential runtime for the (1 + 1)-EA on maximum matching. Since then it has been
used several times for the obtainment of exponential lower bounds (e.g., [2, 11]).
Although the theorem is very powerful, the main drawback in its application is that
an exponential term, namely the moment-generating function of the one-step drift
g(Xt ) − g(Xt+1), has to be bounded to prove whether the conditions are satisfied.
This often leads to very tedious calculations. In the next section the conditions will
be considerably simplified.
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3 The Simplified Drift Theorem

As seen in the previous section, with the aim of proving exponential lower bounds
on first hitting times, usually four conditions to be fulfilled are listed. Interestingly, in
essence, there is only a single inequality, namely the bound on the moment-generating
function of the one-step drift, to be checked for the final statement of the theorem to
hold. By carefully looking at the original presentation by Hajek [5], it follows that
the remaining conditions can be either rephrased or removed. In particular, there is no
need for the following values λ(�) and D(�) to be constant or p(�) to be polynomial.
We only have to make sure that D(�) is defined since otherwise the theorem becomes
meaningless. Hajek’s theorem reads in its most general form for Markov processes
as follows.

Theorem 3 (Hajek [5]) Let X0,X1,X2, . . . be the random variables describing a
Markov process over a state space S and g : S → R

+
0 a function mapping each state

to a non-negative real number. Pick two real numbers a(�) and b(�) depending on
a parameter � such that 0 ≤ a(�) < b(�) holds. Let T (�) be the random variable
denoting the earliest point in time t ≥ 0 such that g(Xt ) ≤ a(�) holds. If there are
λ(�) > 0 and p(�) > 0 such that the condition

E
(
e−λ(�)·(g(Xt+1)−g(Xt )) | a(�) < g(Xt ) < b(�)

) ≤ 1 − 1

p(�)
for all t ≥ 0 (∗)

holds then for all time bounds L(�) ≥ 0

Prob
(
T (�) ≤ L(�) | g(X0) ≥ b(�)

) ≤ e−λ(�)·(b(�)−a(�)) · L(�) · D(�) · p(�),

where D(�) = max{1,E(e−λ(�)·(g(Xt+1)−b(�)) | g(Xt ) ≥ b(�))}.

In the typical applications of Theorem 3 cited above, the main drift Condition (∗)
is proved with p(�) being a polynomial. Having accomplished this, it often easily
follows that D(�) does not grow with �. The values a(�) and b(�) are frequently
chosen linear in the dimension of the search space n such that b(�) − a(�) = �(n)

and � = �(n) while λ(�) is chosen constant. Consequently, choosing L(�) = 2cn,
where c is a sufficiently small constant, the final statement of the theorem boils down
to Prob(T (�) ≤ 2cn) ≤ 2−�(n). This is as desired: even given exponential time, the
probability of finding the optimum (i.e., g(Xt ) ≤ a) is exponentially small w.r.t. the
problem dimensionality.

Happ et al. [6] present a simplified version of the drift theorem called “Global
Gambler’s Ruin” with conditions that are much easier to check. The main simplifi-
cation introduced to prove Condition (∗) of the original theorem is as follows: as-
suming S = N0 and g = id, they demand the existence of a constant δ > 1 such that,
given Xt = i, the condition Prob(Xt+1 = i + j) ≥ δj Prob(Xt+1 = i − j) holds for
all j ≥ 1. Intuitively, this means that for every step length j , there is a bias (drift)
towards increasing the state by j compared to decreasing it by j ; moreover, this bias
increases exponentially w.r.t. j . In an application to an EA with fitness-proportional
selection, it turns out that the new condition is relatively easy to verify. The drawback
is that a(�) and b(�) have to be chosen carefully to establish the exponential bias δj
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for all j . Moreover, the new theorem by Happ et al. [6] contains an additional condi-
tion on—in essence—the moment-generating function E(δ−(Xt+1−Xt ) | Xt ≥ b(�)) in
order to bound the value D(�) of the original theorem. Despite being relatively easy
to verify, both conditions seem stronger than needed for our purpose.

Our main contribution is another simplification of the drift theorem, which is par-
ticularly suited for the stochastic processes described by evolutionary algorithms and
even easier to apply than the version by Happ et al. [6]. With the aim of proving that
the process does not pass the interval [a, b] within the state space N0 in exponential
time if started above state b, we intuitively need the following two conditions:

• Assuming to be in the interval at time t , there must be a drift, an expected displace-
ment, towards increasing the state, more precisely, there must be some constant
ε > 0 such that

∑
j∈Z

j · Prob(Xt+1 = i + j | Xt = i) ≥ ε for all i in the inter-
val. There seems to be no need for the drift to be bounded in the same manner for
every j or even to increase with j .

• Drift alone is not enough. Considering exponentially long phases, the probability
must be exponentially small to leave the interval towards the optimum using large
jumps. The random step length towards the optimum has to exhibit an exponential
decay. This follows from Prob(Xt+1 = i − j | Xt = i) ≤ r/(1 + δ)j for two con-
stants δ, r > 0 and all i > a, i.e., within and outside the interval. We will see that
this form of the second condition always holds for standard bit flip mutations.

Besides, we will need a technical condition regarding the absolute convergence of
the power series appearing in the following proof. Since we usually consider finite
search spaces, we restrict the state space of the Markov process to a finite set and
obtain such convergence for free. Weaker conditions could be proven if applications
in infinite search spaces are desired.

Finally, we introduce a simplification which is simply a matter of notation. Instead
of considering arbitrary state spaces S and mapping them to non-negative reals via
the distance function g : S → R

+
0 , we identify the random variables Xt , t ≥ 0, behind

the Markov process with the random outcomes of the distance functions themselves.
In order to capture a broad class of distance functions, we allow any finite subset of
the non-negative reals rather than only integral values. Now we are ready to state and
prove our simplified drift theorem. Note that unlike the perspectives in Theorems 1
and 2, we are interested in bounding Xt+1 − Xt , the random increase in distance;
hence positive values drive us away from the target.

Theorem 4 (Simplified Drift Theorem) Let Xt , t ≥ 0, be the random variables de-
scribing a Markov process over a finite state space S ⊆ R

+
0 and denote �t(i) :=

(Xt+1 − Xt | Xt = i) for i ∈ S and t ≥ 0. Suppose there exist an interval [a, b] in the
state space, two constants δ, ε > 0 and, possibly depending on � := b − a, a func-
tion r(�) satisfying 1 ≤ r(�) = o(�/log(�)) such that for all t ≥ 0 the following two
conditions hold:

1. E(�t(i)) ≥ ε for a < i < b,

2. Prob(�t (i) ≤ −j) ≤ r(�)

(1+δ)j
for i > a and j ∈ N0.

Then there is a constant c∗ > 0 such that for T ∗ := min{t ≥ 0 : Xt ≤ a | X0 ≥ b} it
holds Prob(T ∗ ≤ 2c∗�/r(�)) = 2−�(�/r(�)).
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In the conference version of this paper [10], r(�) was only allowed to be a constant,
i.e., r(�) = O(1). In this case, the final statement of the theorem is even simpler as
we get

Prob(T ∗ ≤ 2c∗�) = 2−�(�).

In fact, the new and slightly more general version of the simplified drift theorem as
presented here has been recently found useful for the analysis of a population based
evolutionary algorithm using fitness-proportional selection [9].

Proof We will apply Theorem 3 for suitable choices of its variables, some of which
might depend on the parameter � = b − a denoting the length of the interval [a, b].
Moreover, we set g := id. The following argumentation is also inspired by Hajek’s
work [5].

Fix t ≥ 0 and some i such that a < i < b. Let Z := {s − i | s ∈ S} be the finite
set containing all possible changes of the state number (in particular negative and
fractional values are possible) and denote pj := Prob(�t (i) = j) for j ∈ Z. To prove
Condition (∗), it is sufficient to identify values λ := λ(�) > 0 and p(�) > 0 such
that

S(λ) :=
∑

j∈Z

e−λjpj ≤ 1 − 1

p(�)
.

Using the series expansion for eλj = ∑∞
k=0(λj)k/k!, we have

S(λ) =
∑

j∈Z

∞∑

k=0

(−λj)k

k! pj = 1 +
∑

j∈Z

(−λj) · pj +
∞∑

k=2

∑

j∈Z

(−λj)k

k! pj ,

where all series converge absolutely for any λ > 0 since we are dealing with a finite
state space and thus a finite Z; however, their limits might depend on the largest state
number. The first sum in the last expression equals −λE(�t(i)), and the double sum
is non-negative since ex − (1 + x) ≥ 0 for every (also negative) x ∈ R. Using this
together with the first condition of the theorem, i.e., the bound on the drift, we obtain
for all γ ≥ λ

S(λ) ≤ 1 − λE(�t(i)) + λ2

γ 2

∞∑

k=2

∑

j∈Z

(−γj)k

k! pj ≤ 1 − λε + λ2 ·
∑

j∈Z e−γjpj

γ 2
︸ ︷︷ ︸

=:C(γ )

.

Given any γ > 0, choosing λ := min{γ, ε/(2C(γ ))} results in

S(λ) ≤ 1 − λε + λ · ε

2C(γ )
· C(γ ) = 1 − λε

2
= 1 − 1

p(�)
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with p(�) := 2/(λε) = 	(1/λ) since only λ but not ε is allowed to depend on �.
Choosing γ := ln(1 + δ/2), which does not depend on � since δ is a constant, yields

C′(γ ) :=
∑

j∈Z

e−γjpj =
∑

j∈Z:
j≥0

(1 + δ/2)−j · pj +
∑

j∈Z:
j<0

(1 + δ/2)−j · pj

≤
∑

j∈Z
j≥0

pj +
∑

j∈Z:
j<0

(1 + δ/2)−j · pj ≤ 1 +
∑

j∈N0

(1 + δ/2)j+1 · Prob(�t (i) ≤ −j),

where the last inequality follows by means of
∑

j∈Z pj = 1 and
∑

j ′∈Z∩[−j−1,−j ] pj ′ ≤ Prob(�t (i) ≤ −j) for any integral j as well as (1 + δ/2)j
′ ≤

(1 + δ/2)j+1 for j ′ ≤ j + 1. Now, exploiting the second condition, we get

C′(γ ) ≤ 1 + r(�) ·
∑

j∈N0

(1 + δ/2)j+1

(1 + δ)j
= 1 + r(�) ·

(
1 + δ

2

)
·
∑

j∈N0

(
1 − δ/2

1 + δ

)j

= 1 + r(�) ·
(

1 + δ

2

)
·
(

2 + 2

δ

)
≤ r(�) · (4 + δ + 2/δ),

where r(�) ≥ 1 is used. Hence C(γ ) ≤ r(�)(4 + δ + 2/δ)/ln2(1 + δ/2), which
means C(γ ) = O(r(�)) since δ is a constant. By our choice of λ, we have λ ≥
ε/(2C(γ )) = �(1/r(�)) since also ε is a constant. Since p(λ) = 	(1/λ), we know
p(�) = O(r(�)), too. Condition (∗) of Theorem 3 has been established along with
these bounds on p(�) and λ = λ(�).

To bound the probability of a success within L(�) steps, we still need a bound on
D(�) = max{1,E(e−λ(Xt+1−b) | Xt ≥ b)}. If 1 maximizes the expression then D(�) ≤
r(�) follows. Otherwise,

D(�) = E(e−λ(Xt+1−b) | Xt ≥ b) ≤ E(e−λ(Xt+1−Xt ) | Xt ≥ b)

=
∑

j∈Z

e−λj · Prob(�t (i) = j | Xt ≥ b) ≤ 1

+
∑

j∈Z
j<0

e−λj · Prob(�t (i) = j | Xt ≥ b)

≤ 1 +
∑

j∈Z
j<0

e−γj · Prob(�t (i) = j | Xt ≥ b)

for i ≥ b, where the first inequality follows from Xt ≥ b, the second one since we are
dealing with a probability distribution, and the third one since γ ≥ λ. The last term
can be bounded as in the above calculation leading to C′(γ ) = O(r(�)) since that
estimation holds for arbitrary i ≥ a due to the second condition. Hence, in any case
also D(�) = O(r(�)). Altogether, we have
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e−λ(�)·� · D(�) · p(�) = e−�(1/r(�))·� · O((r(�))2)

= e−�(�/r(�))+O(log(r(�))) = 2−�(�/r(�)),

where the last simplification follows since r(�) = o(�/log(�)) by prerequisite. Choos-
ing L(�) = 2c∗�/r(�) for some sufficiently small constant c∗ > 0, Theorem 3 yields

Prob(T (�) ≤ L(�)) ≤ L(�) · 2−�(�/r(�)) = 2−�(�/r(�)),

which proves the theorem. �

We repeat that r(�), which is only relevant for the second condition of the theorem,
can be bounded from above by a constant in most applications to the well-known
(1 + 1)-EA. In the context of population-based EAs, a union bound over the number
of individuals can nevertheless entail values for r(�) which grow slowly with the
population size. This was the case in the analysis of a population based evolutionary
algorithm using fitness-proportional selection [9].

In the latter paper, there was also need for a fractional state space S ⊆ [0,N]. If the
state space is integral, i.e., S = {0,1, . . . ,N}, then the first condition of the theorem
follows if

Prob(�t (i) = j) ≥ (1 + ε) · Prob(�t (i) = −j) for all j ≥ 1

and additionally Prob(�t (i) = 0) ≤ 1 − ε. Hence, we can obtain a corollary from
our Simplified Drift Theorem that reminds of the “Global Gambler’s Ruin” by Happ
et al. [6] by using a bias towards increasing states separately for every step size j .
However, in contrast to the latter theorem, we do not demand the bias to grow with j

since we use a factor (1 + ε) for every j instead of (1 + ε)j as in [6].
Our Simplified Drift Theorem can therefore easily be applied to Randomized Lo-

cal Search (RLS) on the search space {0,1}n, which flips only one bit per iteration.
Then Condition 2 is trivially fulfilled for r(�) = O(1) and the theorem breaks down
to the classical Gambler’s Ruin Theorem where only steps of size 1 are allowed (see
also [6]). However, the generalized drift technique was previously used to obtain
lower bounds on the first hitting time of the (1 + 1)-EA, which can flip several bits in
a step. Then the original Gambler’s Ruin Theorem does not apply. For maximization
problems, the (1 + 1)-EA is defined as follows.

(1 + 1)-EA
• Choose uniformly at random an initial bit string x ∈ {0,1}n;
• Repeat the following steps until a termination criterion is satisfied:

1. Create x′ by flipping each bit in x with probability p := 1/n;
2. Replace x with x′ if f (x′) ≥ f (x).

In the rest of the paper we will show that proofs regarding lower bounds on the
runtime of the (1 + 1)-EA that hold with overwhelming probability 1 − 2−�(b−a) are
really easy to obtain by using the proposed drift theorem. Our proofs are universal
enough to apply, after some tiny changes, also for RLS.
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4 An Application for the (1 + 1)-EA

In this section we present a first application of Theorem 4 as a warm-up example.
We choose the Needle-in-a-haystack function which is well known to be hard for
EAs [3]. However, we also show by simple arguments that the (1 + 1)-EA is even
at distance almost n/2 from its optimum for an exponential number of steps. The
whole search space consists of a plateau except for one point representing the global
optimum. W.l.o.g. we choose the optimum to be the point represented by the bit string
of all ones. The function is the following:

NEEDLEn(x) =
{

1 if x = 1n, and
0 otherwise.

Theorem 5 Let η > 0 be constant. Then there is a constant c > 0 such that with
probability 1 − 2−�(n) the (1 + 1)-EA on NEEDLEn creates only search points with
at most n/2 + ηn ones in 2cn steps.

Proof Let Xt denote the number of zeroes in the bit string at time step t . We set a :=
n/2−2γ n and b := n/2−γ n, where γ := η/2. Such a value for b is suitable because
by Chernoff bounds the probability that the initial bit string has less than n/2 − γ n

zeroes is 2−�(n). Now we use the proposed Simplified Drift Theorem for the rest of
the proof. It therefore remains to check that the two conditions of Theorem 4 hold.

Given a string in state i < n/2 − γ n, i.e., with i zeroes, let �(i) denote the ran-
dom increase of the number of zeroes. Condition 1 holds if E(�(i)) ≥ ε for some
constant ε > 0. Since the (1 + 1)-EA flips 0-bits and 1-bits independently, an ex-
pected number of i/n 0-bits and (n − i)/n 1-bits is flipped. Hence,

E(�(i)) = n − i

n
− i

n
= n − 2i

n
≥ 2γ.

So we can choose ε = 2γ for Condition 1 to hold.
Condition 2 is: Prob(�(i) ≤ −j) ≤ r(b−a)/(1+δ)j for j ∈ N0. In order to reach

state i − j or less from state i, at least j bits have to flip. Hence

Prob(�(i) ≤ −j) ≤
(

n

j

)(
1

n

)j

≤ 1

j ! ≤ 2 ·
(

1

2

)j

,

which proves the condition for δ = 1 and r(b−a) = 2 even independently of i and of
selection. So from Theorem 4 it follows for a constant c∗ > 0 that the global optimum
is found in 2c∗(b−a) = 2cn steps, where c := c∗(b − a)/n > 0 is a different constant,
with probability at most 2−�(b−a) = 2−�(n). �

Previous analyses of the (1 + 1)-EA on NEEDLEn by direct approaches [3] or
arguments from black-box complexity [1] did not show that the optimization process
is at distance almost n/2 for an exponential number of steps.
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5 An Application for the (1 + 1)-EA with Fitness-proportional Selection

Recently Happ et al. [6] have presented a simplified drift theorem called Global Gam-
bler’s Ruin. They introduced the new theorem to prove that the (1 + 1)-EA using
fitness-proportional selection requires exponential runtime for optimizing ONEMAX

and linear functions in general. The algorithm considered by theses authors works as
follows:

(1 + 1)-EA with Fitness-proportional Selection ((1 + 1)-EAprop)
• Choose uniformly at random an initial bit string x ∈ {0,1}n;
• Repeat the following steps until a termination criterion is satisfied:

1. Create x′ by flipping each bit in x with probability p := 1/n;
2. Replace x with x′ with probability f (x′)/(f (x′) + f (x)).

A pseudo-boolean function f : {0,1}n → R is called linear if it can be written as
f (x1, . . . , xn) = w0 + w1x1 + · · · + wnxn with coefficients wi ≥ 0, 0 ≤ i ≤ n. In the
special case w1 = · · · = wn = 1 and w0 = 0 we obtain the ONEMAX function count-
ing the number of ones of the bit string. Concerning linear functions, Happ et al. [6]
prove that with overwhelming probability only search points with at most 0.97n ones
are created by the (1 + 1)-EAprop after an exponential number of steps. We show that
Theorem 4 can be used for this purpose and that it can lead to significantly stronger
results. We remark that the following proof also holds for fitness-proportional RLS,
where the stronger statement is already known [6].

Theorem 6 Let 0 < η ≤ 1/4 and η be constant. Then there is a constant c > 0 such
that with probability 1 − 2−�(n) the (1 + 1)-EAprop for linear functions only creates
search points with at most 2n/3 + ηn ones in 2cn steps.

In the following lemmas we will bound the drift before and after selection sepa-
rately. Afterwards, we will add the results of the lemmas together and prove Theo-
rem 6 by applying our Simplified Drift Theorem.

For this purpose, we set a := n/3 − 2γ n and b := n/3 − γ n, where γ := η/2 ≤
1/8. Given a current number of a < i < b zeroes, let �(i) and �sel(i) denote the ran-
dom change in this number before and after the application of the fitness-proportional
selection operator, respectively. Furthermore, let �+(i) := �(i) · 1{�(i) > 0} and
�−(i) := −�(i) · 1{�(i) < 0} be the positive and the negative contributions to the
drift such that �(i) = �+(i) − �−(i). The notion 1{E} for an event E represents
the indicator random variable of the event.

We first note that both the drift before and after selection are mostly determined
by “small” steps of size at most r = γ n/4. To this end, we prove in the following
lemma that considering only such steps introduces an exponentially small absolute
error. Here the abbreviation 1r := 1{|�(i)| ≤ r} is useful.

Lemma 1 Let r := γ n/4. Then E(�(i) · 1r ) ≥ E(�(i)) − 2−�(n) and also
E(�sel(i) · 1r ) ≥ E(�sel(i)) − 2−�(n).
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Proof Flipping at least r bits in a step has a probability of at most
(

n

r

)(
1

n

)r

≤ 1

r! ,

and, altogether, at most n bits can flip. Using Stirling’s formula and that γ is a positive
constant, we obtain

E(�(i) · 1r ) ≥ E(�(i)) − 1

r! · n = E(�(i)) − 1

(γ n/4)! · n = E(�(i)) − 2−�(n)

and accordingly

E(�sel(i) · 1r ) ≥ E(�sel(i)) − 2−�(n). �

Now, in Lemma 2, the expected negative drift before the application of the se-
lection operator will be considered, and the ratio of positive and negative drift will
be bounded from below. Then, in Lemma 3, the effects of the fitness-proportional
selection will be considered.

Lemma 2 E(�−(i)) ≥ 1/36. Moreover, E(�+(i)) ≥ (2 + 6γ ) · E(�−(i)).

Proof Using the arguments from the proof of Theorem 5, we start with

E(�(i)) = n − 2i

n
≥ n − 2(n/3 − γ n)

n
= n/3 − 2γ n

n
= 1

3
+ 2γ

as a bound on the drift before selection.
We proceed by bounding E(�−(i)) from below and (as needed later) also from

above. By considering only the expected number of flipping bits among the i ≤ b

0-bits, we get

E(�−(i)) ≤ b

n
= n/3 − γ n

n
= 1

3
− γ.

On the other hand, we get a lower bound by considering the i ≥ a different mutations
flipping only one 0-bit and no other bit. Each of these mutations has probability
(1/n) · (1 − 1/n)n−1. Hence,

E(�−(i)) ≥ a

n
·
(

1 − 1

n

)n−1

=
(

1

3
− 2γ

)(
1 − 1

n

)n−1

≥ 1/3 − 2γ

e
≥ 1

36
,

where the last inequality follows from γ ≤ 1/8. This proves the first statement of the
lemma.

To prove the second statement, we use the bounds E(�−(i)) ≤ 1/3 and E(�(i)) ≥
1/3 + 2γ derived above and the linearity of expectation. Hence,

E(�+(i))

E(�−(i))
= E(�(i) + �−(i))

E(�−(i))
= E(�(i))

E(�−(i))
+ E(�−(i))

E(�−(i))
≥ 2 + 6γ,

or, equivalently, E(�+(i)) ≥ (2 + 6γ ) · E(�−(i)). �
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Lemma 3 Let x′ be the random offspring produced by mutation of an arbitrary
search point x. The selection probability s(x′) := f (x′)/(f (x) + f (x′)) for x′ is
lower bounded by 1/2 − γ /4 − 2−�(n) and upper bounded by 1.

Proof The upper bound 1 is trivial. For the lower bounds, we pessimistically as-
sume all zeroes of the current search point x to have coefficients 0. This implies
f (x′) ≤ f (x) for all offspring x′ of x. Hence, the selection probability for arbitrary
but fixed x′ is at least

s(x′) := f (x′)
f (x′) + f (x)

≥ f (x′)
2f (x)

,

which is linear in f (x′). We now turn to considering x′ as a random object created by
the probabilistic mutation operator. The aim is to relate the expectation of f (x′) with
the value f (x). Again we consider at most r = γ n/4 flipping bits, which, as shown
in Lemma 1, introduces an error of at most 2−�(n). Let us pessimistically assume ex-
actly r flipping bits and denote by F the corresponding event. Moreover, all flipping
bits are imagined as 1-bits. If a random subset of r out of n− i bits flips, each bit flips
(not independently) with probability r/(n− i). Let us pessimistically assume w0 = 0
for the constant coefficient of f . Then each coefficient with contribution to f (x) is
derated by an expected factor of r/(n − i). Using the linearity of expectation and
of the fitness function f , the expected offspring value eF (x′) := E(f (x′) | F) under
assumption F is therefore at least f (x)(1 − r

n−i
).

Our aim is to obtain a lower bound on the selection probability s(x′ | F) for a
random offspring x′ assuming the event F . To this end, we apply the law of total
probability and decompose the probability space according to the events {x′ = y},
y ∈ {0,1}n. Hence,

s(x′ | F) =
∑

y∈{0,1}n
s(x′ | x′ = y) · Prob(x′ = y | F).

We already know the lower bound s(x′ | x′ = y) ≥ f (x′ | x′ = y)/(2f (x)). Thereby,

s(x′ | F) =
∑

y∈{0,1}n
f (x′ | x′ = y)

2f (x)
· Prob(x′ = y | F) = eF (x′)

2f (x)
,

and we are ready to apply the lower bound on the expectation eF (x′) developed
above. Thus,

s(x′ | F) ≥ eF (x′)
2f (x)

≥ 1

2

(
1 − r

n − i

)
= 1

2
− r

2(n − i)
= 1

2
− γ n/4

2(n − i)
≥ 1

2
− γ

4
,

where the last inequality follows from n − i ≥ n/2. Taking into consideration the
error brought in by assuming F , we have s(x′) = s(x′ | F) − 2−�(n) = 1/2 − γ /4 −
2−�(n). �

Now we are ready to apply the Simplified Drift Theorem to bound the total drift.
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Proof of Theorem 6 First we prove Condition 1 of the Simplified Drift Theorem.
Applying Lemma 3 yields

E(�sel(i)) ≥
(

1

2
− γ

4

)
· E(�+(i) · 1r ) − E(�−(i) · 1r ) − 2−�(n)

using the upper and lower bounds on the selection probability and taking into
consideration the error brought in by flipping at most r bits. We proceed by fill-
ing in the lower bound E(�−(i)) ≥ 1/36 as well as the inequality E(�+(i)) ≥
(2 + 6γ )E(�−(i)) obtained in Lemma 2 together with our prerequisite γ ≤ 1/8.
Hence,

E(�sel(i)) ≥
(

1

2
− γ

4

)
· (2 + 6γ ) · E(�−(i) · 1r ) − E(�−(i) · 1r ) − 2−�(n)

≥
(

5γ

2
− 3γ 2

2

)
· E(�−(i) · 1r ) − 2−�(n) ≥ 37γ

16
· 1

36
− 2−�(n) ≥ γ

16

for n large enough. This bounds the drift for general linear functions by a constant as
desired for the satisfaction of Condition 1 of Theorem 4. The proof of Condition 2
carries over from the proof of Theorem 5. �

For the linear function ONEMAX, stronger results can be obtained as stated in the
following theorem.

Theorem 7 Let 0 < η ≤ 1/4 and η be constant. Then there is a constant c > 0 such
that with probability 1−2−�(n) the (1+1)-EAprop for ONEMAX only creates search
points with at most n/2 + ηn ones in 2cn steps.

Proof We follow the proof idea of Theorem 6. With ONEMAX, the situation is sim-
pler. Since f equals the number of ones, we can bound from above the probability of
accepting a string x′ with up to r more ones than x by

s(x′ | F) ≤ f (x′ | F)

2f (x)
≤ f (x) + r

2f (x)
≤ f (x)(1 + γ /2)

2f (x)
= 1

2
+ γ

4

for all search points x such that f (x) ≥ n/2, i.e., search points with at most n/2
zeroes.

Setting a := n/2 − 2γ n and b := n/2 − γ n, similar calculations as in Lemma 2 of
Theorem 6 yield the following three bounds for the drift before selection:

E(�(i)) = n − 2i

n
≥ n − 2(n/2 − γ n)

n
= 2γ n

n
= 2γ,

E(�−(i)) ≤ b

n
= n/2 − γ n

n
= 1

2
− γ ≤ 1

2

and

E(�+(i))

E(�−(i))
= E(�(i))

E(�−(i))
+ E(�−(i))

E(�−(i))
≥ 2γ

1/2
+ 1 ≥ 1 + 4γ.
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Finally, by using the lower bounds on s(x′) and E(�−(i)) presented in the proof
of Theorem 6 (recall that γ ≤ 1/8), we obtain

E(�sel(i)) ≥
((

1

2
− γ

4

)
(1 + 4γ ) −

(
1

2
+ γ

4

))
· E(�−(i) · 1r ) − 2−�(n)

≥
(

3γ

2
− γ 2

)
· E(�−(i) · 1r ) − 2−�(n) ≥ γ · 1

36
− 2−�(n) ≥ γ

40

for n large enough in the same manner as in the proof of Theorem 6.
Again, the proof of Condition 2 of Theorem 4 carries over from the proof of The-

orem 5. �

6 An Advanced Application: Maximum Matching

This section presents an application of the Simplified Drift Theorem in combinatorial
optimization, more precisely for the analysis of the (1 + 1)-EA on the well-known
maximum matching problem. Giel and Wegener [4] considered the graph depicted in
Fig. 2 consisting of � “columns” and h “rows”. They proved that the (1 + 1)-EA has
an expected optimization time which is exponential in the number of graph edges in
the worst case. One of the crucial parts of their proof is represented by the following
theorem.

Theorem 8 Starting with an almost perfect matching with an augmenting path of
length �, the probability that the (1 + 1)-EA finds the perfect matching of the Gh,�

graph within 2c� steps, c > 0 an appropriate constant, is bounded by 2−�(�) if h ≥ 3.

Proof An almost perfect matching is just one fitness level away from the global opti-
mum. In order to find the maximum matching, the edges of the only augmenting path
in the graph have to be either inverted or the path has to be shortened to its minimum
(i.e., three adjacent edges not belonging to the matching are obtained). If the latter
case happens, then the extra edge may be added by just using one bit flip. Given an
almost perfect matching, the length of the augmenting path changes if at least two
adjacent edges flip on either side of the augmenting path. The augmenting path may
be lengthened or shortened. In the former case the process drifts away from the opti-
mum while in the latter case it heads towards it. To apply Theorem 4, we set a := 0
and b := ��/2− 1. The random variable Xt , t ≥ 0, is obtained by taking the random
length of the augmenting path at time t , dividing it by 2 and rounding the result up.
In this way, we obtain a process on the state space {0,1, . . . , ��/2}.

We consider a current Xt -value of i, where i ≤ ��/2 − 1. Usually there are 2h

edges adjacent to the augmenting path, h at each side, that flipped together with the

Fig. 2 The Gh,� graph (in this
case h = 3 and � = 11) with an
almost perfect matching and its
augmenting path between u

and v



384 Algorithmica (2011) 59: 369–386

first edge belonging to the path would lengthen it. However, if the augmenting path
starts at the beginning of the graph (or at the other end), then there are only h such
edges (actually this shows that the length of the augmenting path is not enough to
describe the underlying Markov process exactly, yet it gives good enough bounds).
In this case, the probability of increasing the Xt -value by 1, i.e., lengthening the
augmenting path of length 2i − 1 by 2, is only bounded by

p1(i) ≥ h

m2

(
1 − 1

m

)m−2

,

where m is the number of edges of the graph. Here we use that i ≤ ��/2− 1, i.e., the
augmenting path can still be lengthened. On the other hand, the probability to shorten
the augmenting path with a move of length 1 is bounded from above by (see [4])

p−1(i) ≤ 2

m2

(
1 − 1

m

)m−2

+ 3

m4
.

Since most other mutations of the (1+1)-EA will be rejected in this setting due to
worse fitness, we use the condition Crel that a step is relevant, meaning it is accepted
and changes the current state. The probability prel of a relevant step is bounded ac-
cording to

1

m2

(
1 − 1

m

)m−2

≤ prel ≤ 2h + 2

m2
.

The lower bound holds because, unless the optimum has been found, there always are
two edges that when flipped lenghten or shorten the augmenting path (i.e., the edges
at the extremities of the augmenting path). The upper bound holds because there are at
most 2h+2 couples of edges that, if flipped, lenghten or shorten the augmenting path
(i.e., h at each extremity lengthening the path and 1 at each extremity shortening it).
The probability that more than two bits flip and the step is relevant is lower because
at least one of the 2h + 2 couples considered in the bound has to be flipped anyway.

Let R(i) = (�(i) | Crel) denote the random increase of the Xt -value in relevant
steps, given a current value of i. It suffices to concentrate on the contribution of steps
of length 1, i.e., we consider R1(i) := R(i) · 1{|R(i)| ≤ 1}. We obtain

E(R1(i)) = p1(i)

prel
− p−1(i)

prel
≥

h

m2 · (1 − 1
m

)m−2

2h+2
m2

−
2

m2 · (1 − 1
m

)m−2 + 3
m4

2h+2
m2

= (h − 2)(1 − 1
m

)m−2

2h + 2
− 3

m2(2h + 2)
≥ 1

8 · e − O(m−2)

since h ≥ 3 while the unconditional decrease �−
>1(i) = −�(i) · 1{�(i) < −1}, for

negative steps of length greater than 1, in expectation is at most

E(�−
>1(i)) ≤

∞∑

j=2

j · p−j (i) ≤
∞∑

j=2

j · (j + 1) · 1

m2j
≤ 6

m4
+

∞∑

j=3

2m2

m2j
= O(m−4)
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because p−j ≤ (j + 1)/m2j [4]. Hence, the total conditional drift is

E(R(i)) ≥ E(R1(i)) − E(�−
>1(i))

prel
≥ 1

8 · e − O(m−2) − O(m−4) · em2

= 1

8 · e − O(m−2)

and Condition 1 is proved. Condition 2, with δ = 1 and r = 8, follows from

p−j

prel
≤ min

{
1,

j + 1

m2j
· em2

}
≤ min

{
1,

1

m2j−7

}
≤ 8 ·

(
1

2

)j

for m ≥ 2. From Theorem 4, the proof follows. �

The bounds on pj (i) by Giel and Wegener [4] do not imply pj (i) ≥ p−j (i) for
every j , hence the theorem by Happ et al. [6] does not apply with these bounds.
Without further work on the bounds for pj (i), it is crucial but also sufficient to focus
on the effect of steps of length 1.

7 Conclusion

A simplified drift-analysis theorem has been introduced for proving lower bounds
on the runtime of EAs that hold with high probability. The two hypotheses of the
theorem are easy to check for stochastic processes such as those described by EAs.
The first condition holds if the distance to the optimum increases in expectation by
at least a constant amount. In other terms, there is a drift leading away from the
optimum. The second condition describes an exponential decay in the probabilities
of advancing towards the optimum that depends on the step size. Such a condition
is trivially fulfilled for the (1 + 1)-EA with standard mutation and many other EAs
with a mutation operator that exhibits enough locality. The simplified drift theorem
allowed us to redo previous analyses with significantly reduced effort.

For scenarios where bounding the drift directly is more intricate a corollary of the
simplified theorem might be used. It is sufficient to decompose the drift into the ef-
fects of steps of a given length and to prove a bias leading away from the optimum
for every step length. In fact, also Happ et al. [6] exploited a similar idea. Our corol-
lary, though, seems to be easier to verify since we do not require the bias to increase
with the step length. Moreover, compared to the latter work, we do not require that
the length of the drift interval [a, b] is �(n). Our generalization is necessary, for
example, in the study by Friedrich et al. [2] where b − a = 3

√
n. To the best of our

knowledge all previous applications of drift analysis to evolutionary computation can
be proven in a considerably simpler shape with the proposed simplified drift theorem.
As a result, not only is Theorem 4 considered as an important didactical contribution
to the runtime analysis of EAs, but we also believe it will turn out to be useful in
future work.
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