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Abstract Speed scaling is a power management technique that involves dynami-
cally changing the speed of a processor. This gives rise to dual-objective scheduling
problems, where the operating system both wants to conserve energy and optimize
some Quality of Service (QoS) measure of the resulting schedule. Yao, Demers, and
Shenker (Proc. IEEE Symp. Foundations of Computer Science, pp. 374–382, 1995)
considered the problem where the QoS constraint is deadline feasibility and the objec-
tive is to minimize the energy used. They proposed an online speed scaling algorithm
Average Rate (AVR) that runs each job at a constant speed between its release and
its deadline. They showed that the competitive ratio of AVR is at most (2α)α/2 if a
processor running at speed s uses power sα . We show the competitive ratio of AVR
is at least ((2 − δ)α)α/2, where δ is a function of α that approaches zero as α ap-
proaches infinity. This shows that the competitive analysis of AVR by Yao, Demers,
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and Shenker is essentially tight, at least for large α. We also give an alternative proof
that the competitive ratio of AVR is at most (2α)α/2 using a potential function ar-
gument. We believe that this analysis is significantly simpler and more elementary
than the original analysis of AVR in Yao et al. (Proc. IEEE Symp. Foundations of
Computer Science, pp. 374–382, 1995).

Keywords Speed scaling · Voltage scaling · Scheduling · Online algorithms · Power
management

1 Introduction

Current processors produced by Intel and AMD allow the speed of the processor to
be changed dynamically. Intel’s SpeedStep and AMD’s PowerNOW technologies al-
low the Windows XP operating system to dynamically change the speed of such a
processor to conserve energy. In this setting, the operating system must not only have
a job selection policy to determine which job to run, but also a speed scaling policy to
determine the speed at which the job will be run. In current CMOS based processors,
the speed satisfies the well-known cube-root-rule, that the speed is approximately the
cube root of the power. Energy consumption is power integrated over time. The oper-
ating system is faced with a dual objective optimization problem as it both wants to
conserve energy, and optimize some Quality of Service (QoS) measure of the result-
ing schedule.

The first theoretical worst-case study of speed scaling algorithms was in the sem-
inal paper [6] by Yao, Demers, and Shenker. Their QoS objective was deadline fea-
sibility and the objective was to minimize the energy used. More precisely, each job
i has a release time ri when it arrives in the system, a work requirement wi , and a
deadline di by which the job must be finished. If job i runs at constant speed s, then
it completes in wi/s units of time. In this setting, an optimal job selection policy is
Earliest Deadline First (EDF). They assumed a speed to power function P(s) = sα ,
where α > 1 is some constant. If the cube-root rule holds, then α = 3. Yao, Demers,
and Shenker [6] showed that the optimal energy feasible schedule is found by a sim-
ple greedy algorithm that we call YDS.

Yao, Demers, and Shenker [6] also proposed an online speed scaling algorithm,
Average Rate (AVR). Conceptually, AVR runs each job i at speed wi/(di − ri)

throughout interval [ri , di], independent of other jobs. This spreads the work of each
job as evenly over time as possible. By the convexity of the speed to power function,
this even spreading is energy optimal if the instance consists of only one job. The
speed of the processor at any time t is then just the sum of the speeds of the jobs
active at that time, that is

∑
i:t∈[ri ,di ]

wi

di−ri
. AVR is an appealing speed scaling algo-

rithm because in some sense it is perfectly fair to all jobs, and each job runs as if it
were the only job in the instance.

Yao, Demers, and Shenker [6] showed that the competitive ratio, with respect to
energy, of AVR is at least αα . They also showed that the competitive ratio of AVR,



Algorithmica (2011) 60: 877–889 879

with respect to energy, is at most (2α)α/2. We now outline this upper bound competi-
tive analysis of AVR. A job is defined to be of type A if the optimal schedule is always
ahead of AVR on this job. A job is defined to be of type B if AVR is always ahead
of the optimal schedule on this job. A schedule is bitonic if every job is of type A or
type B. Reference [6] observes that there is a worst-case instance that is bitonic, and
that the competitive ratio of AVR is at most 2α−1 times the competitive ratio of AVR
on instances of jobs of just one type (A or B). Reference [6] then considers instances
consisting only of type-A jobs. Reference [6] then introduces an auxiliary objective
function that is related to, but is not exactly, the energy used. In a somewhat involved
reduction, [6] shows that with respect to this auxiliary objective, there is a worst-case
instance where the optimal schedule is non-preemptive, each job starts when it is re-
leased, and the spans of the jobs are nested (where the span of job i is the interval
[ri , di]). When α = 2, [6] then shows that for such instances, optimizing the auxil-
iary objective function can be represented in terms of the eigenvalues of a particular
tree-induced matrix, and shows how to bound the largest eigenvalue for such tree-
induced matrices. Reference [6] states that this argument can be readily generalized
to an arbitrary α, and using Hölder’s inequality, give a bound on the �p norm of a
certain tree-induced matrix that would replace the eigenvalue argument used in the
α = 2 case.

So the natural question left open is, “What is the exact competitive ratio of AVR?”
Based on simulation results, [6] conjectured that the competitive ratio of AVR is
exactly αα . That is, that the lower bound in [6] is correct, and intuitively, that AVR
can not simultaneously be losing badly on both type-A and type-B jobs. In the case
that the cube-root rule holds, αα = 33 = 27 is the best known competitive ratio for
any online algorithm. If the conjecture from [6] was true, this would be evidence
in favor of adopting the AVR speed scaling policy. Not only would AVR have the
best known competitive ratio in the case that the cube-root rule holds, but AVR is
appealingly fair to all jobs.

Unfortunately, in Sect. 4, we show that the upper bound on the competitive ratio
from [6] is essentially tight, at least for larger α. More precisely, we show that AVR
has competitive ratio at least ((2−δ)α)α/2, where δ is a function of α that approaches
zero as α approaches infinity. In the case obeying the cube-root rule, we get a lower
bound of approximately 48 on the competitive ratio of AVR.

In Sect. 5, we give an alternative proof that the competitive ratio of AVR is at
most (2α)α/2. Our analysis uses a potential function argument. We believe that this
analysis is significantly simpler and more elementary than the original analysis of
AVR in [6]. Our competitive analysis of AVR branches off from the analysis in [6]
outlined above after the observation that the competitive ratio of AVR is at most
2α−1 times the competitive ratio of AVR on jobs of just one type. We give a potential
function argument that AVR is αα-competitive on type-A jobs. We include a complete
analysis of AVR in this paper, including the elements of the analysis from [6] that we
use. In principle, verifying this analysis requires only basic algebra, except that some
basic calculus is used to verify the positivity/negativity of certain polynomials over
particular ranges.
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2 Other Related Results

There are now enough speed scaling papers in the literature that it is not practical to
survey all such papers here. We limit ourselves to those papers most related to the
results presented here. Surveys that cover speed scaling include [4, 5].

Yao, Demers, and Shenker [6] also proposed another online speed scaling algo-
rithm, Optimal Available (OA). The algorithm OA runs at the optimal speed (which
can be computed using the YDS algorithm) assuming the current state and that no
more jobs will be released in the future. Reference [6] showed that the competitive
ratio of OA is at least αα . Using a potential function analysis, Bansal, Kimbrel, and
Pruhs [3] showed that OA is actually αα-competitive.

Bansal, Kimbrel, and Pruhs [3] also introduced an online speed scaling algo-
rithm that we call BKP. Intuitively, BKP tries to mimic the offline YDS sched-
ule in some way. Formally, at time t BKP runs at speed e v(t) where v(t) =
maxt ′>t

w(t,et−(e−1)t ′,t ′)
e(t ′−t)

and w(t, t1, t2) is the amount of work that has release time

at least t1, deadline at most t2, and that has already arrived by time t . Reference [3]
showed that BKP is simultaneously O(1)-competitive for total energy, maximum
temperature (assuming cooling obeys Newton’s law), maximum power, and maxi-
mum speed. Specifically, [3] showed that the competitive ratio of BKP with respect
to energy is at most 2(α/(α − 1))αeα . Reference [2] introduce another algorithm
qOA and show that it is 4α/(2

√
eα ) competitive. Reference [2] give a lower bound

of eα−1/α. on the competitive ratio of any deterministic algorithm.
Albers, Müller, and Schmelzer [1] consider the problem of finding energy-efficient

deadline-feasible schedules on multiprocessors. Reference [1] showed that the offline
problem is NP-hard, and gave O(1)-approximation algorithms. Reference [1] also
gave online algorithms that are O(1)-competitive when job deadlines occur in the
same order as their release times.

3 Formal Problem Statement

A problem instance consists of n jobs. Job i has a release time ri , a deadline di > ri ,
and work wi > 0. In the online version of the problem, the scheduler learns about a
job only at its release time; at this time, the scheduler also learns the exact work re-
quirement and the deadline of the job. We assume that time is continuous. A schedule
specifies for each time a job to be run and a speed at which to run the job. The speed
is the amount of work performed on the job per unit time. A job with work w run at
a constant speed s thus takes w

s
time to complete. More generally, the work done on

a job during a time period is the integral over that time period of the speed at which
the job is run. A schedule is feasible if for each job i, work at least wi is done on job
i during [ri , di]. Note that the times at which work is performed on job i do not have
to be contiguous. If a job is run at speed s, then the power is P(s) = sα for some
constant α > 1.

The energy used during a time period is the integral of the power over that time
period. Our objective is to minimize the total energy used by the schedule.
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If A is a scheduling algorithm, then A(I) denotes the schedule output by A on
input I . A schedule is R-competitive for a particular objective function if the value
of that objective function on the schedule is at most R times the value of the objective
function on an optimal schedule. An online scheduling algorithm A is R-competitive,
or has competitive ratio R, if A(I) is R-competitive for all instances I .

For a schedule T , let sT ,j (t) denote the speed job j runs at time t in the schedule T ,
and let sT (t) = ∑

j sT ,j (t) denote the speed of the processor at time t in schedule T .
If U is a subcollection of jobs, let sT ,U (t) denote the sum of the speeds of the jobs in
U at time t in the schedule T . We will also substitute an algorithm for a schedule in
this notation. So for example, sAVR(t) is the speed of the algorithm AVR at time t . We
use OPT to denote a particular optimal schedule. We say that job i is active between
its release time and its deadline. We call wi/(di − ri) the density of job i since this is
the job’s work divided by the length of the interval in which it is active.

Algorithm AVR: At all times t , run the earliest-deadline job at speed sAVR(t) =∑
i

wi

di−ri
, where the sum is over jobs i active at time t .

Consider a fixed optimum schedule OPT. A job is said to be of type A if

∫ t

rj

sOPT,j (t)dt ≥
∫ t

rj

wj

di − ri
dt for all rj ≤ t ≤ dj .

Intuitively, these are the jobs that OPT runs consistently ahead of their density. Sim-
ilarly, the jobs of type B are those that OPT runs consistently behind their density,
meaning they satisfy

∫ t

rj

sOPT,j (t)dt ≤
∫ t

rj

wj

di − ri
dt for all rj ≤ t ≤ dj .

In general, a job need not be of either type (or it can also be of both types, in which
case OPT executes exactly as in AVR). We say an instance is bitonic if every job is
of type A, type B, or both (in which case it is arbitrarily assigned one of the types).
A simple observation (Lemma 5) shows that if AVR is c-competitive for bitonic in-
stances, then it is also c-competitive in general.

4 The Lower Bound

We give an instance on which AVR uses up at least ((2 − δ)α)α/2 times the energy
used by an energy optimum solution, where δ is a function of α that tends to zero as
α increases.

Instance Description: For convenience we will work with a continuous version of
the job instance. We say that work arrives at rate a(t) at time t to mean that a(t)dt

units of work arrive during the infinitesimally small interval [t, t + dt].
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The instance consists of two sets of jobs A and B . The work in A arrives during
the time interval [0,1 − ε], at rate

a(t) = 1

(1 − t)1/α

and all the work in A has deadline 1. Here ε > 0 is an arbitrarily small but fixed
constant. The work in B arrives during the interval [1 − 1/c,1 − ε/c] (where c is a
constant that will be set to α − 1 later) at rate

b(t) = c

c1/α(1 − t)1/α

and the work in B arriving at time t has deadline 1 + c(1 − t).
Before proceeding with the formal proof, we give some intuition. The rate that

type A work arrives increases rapidly from time 0 to time 1 − ε. When type A work
is almost finished arriving, type B work starts arriving, and continues arriving a bit
after the type A work stops arriving. The rate that type B work arrives is a constant
factor larger than the rate that type A work arrives, but has a much later deadline.
The optimal schedule will complete type A work at the rate that it arrives, and then
process type B work at as even rate as possible, from the time that type A work stops
arriving, until the deadline for the type B work. In Lemma 1 we calculate the cost
of this optimal schedule. So intuitively the optimal strategy processes as little work
as possible during the critical time interval [1 − 1/c,1 − 1/ε] when both type A
and type B work is arriving. However, since AVR processes work at an even rate,
it processes too much work during this critical interval. In Lemma 2 we calculate
the cost to AVR during this critical interval. We then obtain our lower bound on the
competitive ratio of AVR by computing the ratio of these two calculations.

Lemma 1 On the instance above, the optimal algorithm uses total energy at most
2 ln(1/ε).

Proof It suffices to give some feasible schedule that uses energy 2 ln(1/ε). Consider
the schedule that completes all jobs in A by running at speed a(t) during [0,1 − ε].
The energy usage is

∫ 1−ε

0
(a(t))αdt = [− ln(1 − t)]1−ε

0 = ln(1/ε).

For jobs in B , note that they are released before time 1 and have deadlines in
[1 + ε,2]. Consider any time x ∈ [1 + ε,2]. The jobs with deadline in [1 + ε, x] are
released during [1 − x−1

c
,1 − ε

c
]. Their total amount of work is

∫ 1−ε/c

1−(x−1)/c

b(t)dt =
∫ 1−ε/c

1−(x−1)/c

c

c1/α(1 − t)1/α
dt.

Let y = 1 + c(1 − t). Then dy = −c · dt , and the amount of work equals
∫ 1−ε/c

1−(x−1)/c

c

c1/α(1 − t)1/α
dt =

∫ 1+ε

x

−1

(y − 1)1/α
dy =

∫ x

1+ε

1

(y − 1)1/α
dy.
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Therefore, consider the schedule that processes jobs in B at speed b̂(y) = 1
(y−1)1/α

continuously during [1 + ε,2]. For any x ∈ [1 + ε,2], the amount of work done by
time x equals the amount work with deadline by x. So the schedule completes each
job in B by its deadline. The energy usage to complete all jobs in B is

∫ 2

1+ε

(b̂(t))αdt = [ln(y − 1)]2
1+ε = ln(1/ε).

Since the intervals of execution of work in A and B do not overlap, the total energy
used is 2 ln(1/ε) and the lemma follows. �

Lemma 2 On the instance above, AVR uses total energy at least αα(1+ c

c1/α(c+1)
)α ×

ln(1/ε) + K , where K is a constant independent of ε.

Proof Consider the work in A. The work released at time t is scheduled by AVR
uniformly during the interval [t,1]. Thus, at any time x ∈ [0,1], the density due to
work in A is

dena(x) =
∫ x

0
a(t) · 1

1 − t
dt =

∫ x

0

1

(1 − t)1/α
· 1

1 − t
dt = α

(
1

(1 − x)1/α
− 1

)

.

Now consider the work in B . Note that for work released at time t , the duration
between its release time and deadline is 1 + c(1 − t) − t = (c + 1)(1 − t). Thus, at
any time x ∈ [1 − 1

c
,1 − ε

c
], the density due to work in B is

denb(x) =
∫ x

1−1/c

c

c1/α(1 − t)1/α
· 1

(c + 1)(1 − t)
dt

= c

c1/α(c + 1)
· α

(
1

(1 − x)1/α
− c1/α

)

.

During the interval [1− 1
c
,1− ε], AVR runs at speed equal to the total density due

to work in A and B . Therefore, the energy usage of AVR is at least

∫ 1−ε

1−1/c

(dena(t) + denb(t))
α dt

=
∫ 1−ε

1−1/c

(

α

(

1 + c

c1/α(c + 1)

)

· 1

(1 − t)1/α
− α

2c + 1

c + 1

)α

dt. (1)

Let Y = 1 + c

c1/α(c+1)
. Note that for all t ∈ [1 − 1

c
,1 − ε], we have that 1 − t ≤ 1/c

and hence

2c + 1

c + 1
· (1 − t)1/α

Y
≤ 2c + 1

c + 1
· 1

c1/α
· c1/α(c + 1)

c1/α(c + 1) + c
≤ 2c + 1

(c + 1) + c
= 1.
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Then, by factoring αY 1
(1−t)1/α , the right side of (1) can be written as

∫ 1−ε

1−1/c

ααYα 1

1 − t

(

1 − 2c + 1

c + 1
· (1 − t)1/α

Y

)α

dt

≥
∫ 1−ε

1−1/c

ααYα

1 − t

(

1 − α
2c + 1

c + 1
· (1 − t)1/α

Y

)

dt as 1 − αx ≤ (1 − x)α for x ≤ 1

=
∫ 1−ε

1−1/c

ααYα

(
1

1 − t
− Z(1 − t)(1/α)−1

)

dt where Z = α(2c + 1)

Y (c + 1)

= ααYα
[
− ln(1 − t) + αZ(1 − t)1/α

]1−ε

1−1/c

= ααYα

(

− ln ε + αZε1/α + ln
1

c
− αZ

(
1

c

)1/α)

≥ ααYα ln(1/ε) + ααYα

(

ln
1

c
− αZ

(
1

c

)1/α)

since ε > 0.

Since α, c,Y and Z are independent of ε the lemma follows. �

Theorem 3 The competitive ratio of AVR is at least ((2 − δ)α)α/2, where δ is a
function of α that tends to zero as α increases.

Proof By Lemmas 1 and 2, when ε tends to zero, the competitive ratio of AVR

is at least ((1 + c1−1/α

c+1 )α)α/2. Putting c = α − 1, the competitive ratio is at least

((1 + (α−1)1−1/α

α
)α)α/2, which equals ((2 − δ)α)α/2 where δ = 1 − (α−1)1−1/α

α
.

Note that for large α (in particular for α ≥ 2, we have that

δ = 1 − (α − 1)−1/α α − 1

α

= 1 − e(−1/α) ln(α−1)

(

1 − 1

α

)

≤ 1 −
(

1 − 1

α
ln(α − 1)

)(

1 − 1

α

)

using ex ≥ 1 + x for x < 0

= ln(α − 1)

α
+ 1

α
− ln(α − 1)

α2
. (2)

Hence δ approaches zero as α approaches infinity. �

We remark that our bound ((2 − δ)α)α/2 is asymptotically 2α−1αα−1/2−o(1) for
large α, and hence within α1/2+o(1) of the best known upper bound. To see this,
by (2), we obtain that

lim
α→∞

(
α

lnα

)

δ ≤ lim
α→∞

(
ln(α − 1)

lnα
+ 1

lnα
− ln(α − 1)

α lnα

)

= 1.
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Similarly,

δ ≥ 1 − α1−1/α

α
= 1 − 1

e(lnα/α)
≥ 1 − 1

1 + 1
α

lnα
= lnα

α + lnα
,

and hence

lim
α→∞

(
α

lnα

)

δ ≥ lim
α→∞

α

α + lnα
= 1.

Thus the expression (2 − δ)ααα/2 = 2α−1αα(1 − δ/2)α ≈ 2α−1ααα−δα/(2 lnα) =
2α−1ααα−1/2−o(1).

5 An Elementary Proof that AVR is 2α−1αα-Competitive

This section gives a complete elementary proof that AVR is 2α−1αα-competitive.
This proof uses some elements of the analysis of AVR in [6] and some variations on
elements of the analysis of OA in [3]. We start with the analysis of AVR on instances
consisting of only type-A jobs. Recall that a job is type A if the optimal schedule is
always ahead of AVR on this job, and is type B if AVR is always ahead of the optimal
schedule on this job. The analysis for general instances then follows along the same
lines as in [6], and is included here for completeness.

Lemma 4 For instances consisting of only type-A jobs, AVR is αα-competitive with
respect to energy.

Proof We use an amortized local competitiveness argument. At any time t , either a
task arrives or finishes, or else an infinitesimal interval of time dt elapses and AVR
consumes sAVR(t)αdt units of energy. We will define a potential function φ(t) that
satisfies the following properties:

• The potential function φ(t) has value 0 before any jobs arrive and after the last
deadline.

• The potential function φ(t) does not increase as a result of AVR completing a job,
OPT completing a job, or the release of a job.

• At any time t ,

sAVR(t)α + dφ(t)

dt
≤ ααsOPT(t)α. (3)

Integrating (3) over time and using the other two stated properties, we can conclude
the desired result. For a more detailed treatment of amortized local competitiveness
arguments, see [5].

Before we can define the potential function we need to introduce some notation.
Let t0 denote the current time and ti denote the time of the ith deadline occurring
after t0. Then let Ii denote the interval of time [ti , ti+1). Let τi = ti+1 − ti be the
length of interval Ii . Let si denote the speed at which AVR will work during interval
Ii if no new jobs arrive. This can be computed by summing the densities of active
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jobs whose deadline is at or after time ti+1. Let wAVR,i = siτi denote the amount of
work that AVR plans to complete during interval Ii . Let wOPT,i be the portion of the
work AVR allocates to interval Ii that OPT has not yet completed. Because all jobs
are of type A, all work that is unfinished by OPT is also unfinished by AVR. Without
loss of generality, we assume that when OPT is working on a job j , work is removed
from the term wOPT,i that contains work from job j with the smallest index i. That
is, OPT removes work from the earlier intervals first.

We define the potential function φ(t) as follows:

φ(t) = α
∑

i≥0

sα−1
i (wAVR,i − αwOPT,i ). (4)

This potential function is a slight modification of the potential function used in [3]
to analyze the algorithm OA. The difference is that the potential function in [3] uses
wOPT,i to denote the work of jobs unfinished for OPT with deadline in Ii .

Now we show that φ has the claimed properties. This function is clearly 0 when
there are no active jobs. The completion of a job by OPT also has no effect since the
potential is a continuous function of wOPT,i . The situation when AVR completes a
job is slightly more complicated. Observe that a job completes under AVR if and only
if the size of the interval I0 shrinks to 0, i.e. when the current time t0 becomes equal
to t1, which shifts all the indices. At the moment this happens AVR has completed
all the work allocated to I0 and hence wAVR,0 = 0. Because all jobs are of type A,
OPT has also completed the work allocated to I1 so wOPT,0 = 0. Thus, the potential
is continuous even in this case. (This is the only time we use that all the jobs are of
type A.)

Arrival Case: The next case to consider is when a new job j arrives. First observe
that adding a zero work job with deadline dj does not change the value of the potential
function φ. Thus, we may assume that the new job’s deadline is tk for some k. Let
y be the density of the new job. Then the release increases the density of intervals
I0, I1, . . . , Ik−1 by y, increasing the weight of interval Ii by yτi for 0 ≤ i ≤ k − 1.
This changes the potential function by

�φ = α

k−1∑

i=0

(
wAVR,i + yτi

τi

)α−1 (
(wAVR,i + yτi) − α(wOPT,i + yτi)

)

− α

k−1∑

i=0

(
wAVR,i

τi

)α−1

(wAVR,i − αwOPT,i ). (5)

This expression can be rearranged into

k−1∑

i=0

α

τα−1
i

(
(wAVR,i + yτi)

α−1(wAVR,i − αwOPT,i − (α − 1)yτi)

− wα−1
AVR,i (wAVR,i − αwOPT,i )

)
.
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By making the substitutions q = wAVR,i , δ = yτi and r = wOPT,i each term of this
sum becomes a quantity shown to be at most 0 by Lemma 8.

Working case: We now consider times when no job arrives, and no jobs complete.
Each si , including s0, remains fixed during this time. We have to show

sAVR(t0)
α − ααsOPT(t0)

α + dφ(t)

dt
≤ 0 (6)

or equivalently,

sα
0 − ααsOPT(t0)

α + d

dt

(

α
∑

i≥0

sα−1
i (wAVR,i − αwOPT,i )

)

≤ 0. (7)

As AVR works, wAVR,0 is decreasing at rate s0, and wAVR,i remains fixed for all
i ≥ 1. Since OPT takes work from a single interval Ii , only one of the wOPT,i changes;
let it be wOPT,k . Then (7) is equivalent to

sα
0 − ααsOPT(t0)

α + (−αsα−1
0 s0 + α2sα−1

k sOPT(t0)) ≤ 0.

Since a job active during one interval is also active in all earlier intervals, sk ≤ s0 and
it suffices to show that

(1 − α)sα
0 + α2sα−1

0 sOPT(t0) − ααsOPT(t0)
α ≤ 0.

Substituting z = s0/sOPT(t0) gives

(1 − α)zα + α2zα−1 − αα ≤ 0. (8)

Let u(z) be the polynomial on the left hand side of inequality (8). Note that u(0) =
−αα and u(+∞) = −∞. In addition, the derivative of u(z) is 0 at only the point
z = α. Since u(α) = 0, we conclude that u(z) is non-positive for z ≥ 0, which holds
because of the definition of z. This establishes inequality (6). �

Lemma 4 and the argument of Yao, Demers, and Shenker [6] proves the 2α−1αα-
competitiveness of AVR. We now give their argument for completeness.

Lemma 5 [6] Among those instances on which AVR has it worst-case competitive
ratio, there is a bitonic instance.

Proof Consider a worst-case instance I that is not bitonic. We explain how to trans-
form I into another worst-case instance that is bitonic. There must be a job i that
is of neither type A nor type B. By the definition of the types, there has to be some
times s, u, with s < u, for which one of AVR or OPT is ahead of the other on job i

at time s, but behind at time u. By the intermediate value theorem, there must be a
time t ∈ (s, u) where AVR and OPT have completed an equal amount of work w on
job i. We say that the lead changes at such a time t . We now create a new instance
I ′ from I by replacing job i with two jobs: one with work w released at time ri with
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deadline t , and one with work wi − w released at time t with deadline di . It is easy
to see that both AVR and OPT always run at the same speed in I ′ that they did in I .
This transformation however reduces the number of lead changes by one. Since there
can only be a bounded number of lead changes between YDS = OPT and AVR, a
bounded number of applications of this transformation leads to a bitonic instance. �

Lemma 6 [6] AVR is 2α−1αα-competitive on bitonic instances.

Proof Sketch Given a bitonic instance, let A be the set of type-A jobs and B be
the others. Let AVRA and AVRB denote the energy attributable to A and B in the
AVR schedule, respectively. Define OPTA and OPTB similarly with reference to the
schedule OPT.

Next observe that the roles of type-A jobs and type-B jobs can be swapped by re-
versing time and swapping the release time and deadline for each job. Both YDS and
AVR give the same schedule to the forward and backwards versions so Lemma 4 im-
plies that AVR is simultaneously αα-competitive with respect to energy attributable
to type-A jobs and energy attributable to type-B jobs.

The proof follows by combining the schedules for the jobs of different types. The
optimal cost is clearly at least OPTA + OPTB . To bound the cost of AVR, define
sAVR,A(t) and sAVR,B(t) as the speed of AVR on type-A and type-B jobs respectively.
Then the cost of AVR is at most

∫

sAVR(t)αdt =
∫

(
sAVR,A(t) + sAVR,B(t)

)α
dt

≤
∫

2α−1 (
sAVR,A(t)α + sAVR,B(t)α

)
dt

= 2α−1 (AVRA + AVRB)

≤ 2α−1αα(OPTA + OPTB),

which gives the desired ratio. �

Thus we reach our final theorem, which is an immediate consequence of Lem-
mas 4, 5, and 6.

Theorem 7 AVR is 2α−1αα-competitive.

The following lemma from [3] was used in the proof of Lemma 4:

Lemma 8 [3] Let q, r, δ ≥ 0 and α ≥ 1. Then (q + δ)α−1(q − αr − (α − 1)δ) −
qα−1(q − αr) ≤ 0.

Proof The lemma is equivalent to showing that

(q − αr)[(q + δ)α−1 − qα−1] − (q + δ)α−1(α − 1)δ ≤ 0.
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Since [(q + δ)α−1 − qα−1] ≥ 0, it suffices to show that

q[(q + δ)α−1 − qα−1] − (q + δ)α−1(α − 1)δ ≤ 0.

Let δ = zq , which implies z ≥ 0. The left hand side of the above becomes

qα[(1 + z)α−1 − 1] − qα[(1 + z)α−1(α − 1)z].
Factoring out qα and differentiating the rest with respect to z gives

((α − 1)(1 + z)α−2[1 − (α − 1)z] + (1 + z)α−1(−α + 1))

= ((α − 1)(1 + z)α−2[1 − (α − 1)z − (1 + z)]
= −α(α − 1)z(1 + z)α−2.

This is non-positive since α > 1 and z ≥ 0. Thus, the expression is maximized at
z = 0, where it has value 0. This implies the result. �

6 Conclusion

Even though AVR is not optimally competitive, one could imagine situations where
a system designer might still adopt AVR because AVR is in some sense fair to each
job. This is analogous to the reason that Processor Sharing (Round Robin) is adopted
in some systems even though Processor Sharing is known not to have the best com-
petitive ratio for the standard QoS measures.
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