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Abstract Let G = (V G,AG) be a digraph and let S � T be a bipartition of V G.
A bibranching is a subset B ⊆ AG such that for each node s ∈ S there exists a di-
rected s–T path in B and, vice versa, for each node t ∈ T there exists a directed S–t

path in B.
Bibranchings generalize both branchings and bipartite edge covers. Keijsper and

Pendavingh proposed a strongly polynomial primal-dual algorithm that finds a mini-
mum weight bibranching in O(n′(m + n logn)) time (where n := |V G|, m := |AG|,
n′ := min(|S|, |T |)).

Assuming that arc weights are integers we develop a weight-scaling algorithm
of time complexity O(m

√
n logn log(nW)) for the minimum weight bibranching

problem (where W denotes the maximum magnitude of arc weights).

Keywords Branching · Bipartite edge cover · Weight scaling · Primal-dual
algorithm · Blocking augmentation

1 Introduction

In a digraph G, the sets of nodes and arcs are denoted by V G and AG, respectively.
A similar notation is used for paths, cycles, and etc.

Consider a digraph G and a fixed bipartition S � T of V G. A subset B ⊆ AG is
called a bibranching if the following conditions are met:

– for each s ∈ S, set B contains a directed path from s to some node in T ;
– for each t ∈ T , set B contains a directed path from some node in S to t .
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Bibranchings were introduced in [14]. In the present paper we study the minimum
weight bibranching problem, which is as follows:

(BB) Given G, S, T , and arc weights w : AG → R+, find a bibranching B whose
weight w(B) is minimum.

Hereinafter we assume that every real-valued function f : U → R is additively
extended to the family of all subsets of U (denoted by 2U ) by f (A) := ∑

a∈A f (a).
In particular, w(B) denotes the sum of weights of arcs in B .

Minimum weight bibranchings provide a common generalization to a pair of
well-known combinatorial problems. Firstly, if S = {s} then (BB) asks for a min-
imum weight s-branching (a directed tree rooted at s that covers all nodes of G).
An O(m + n logn) algorithm for the latter task is known [9] (here n := |V G| and
m := |AG|; we are assuming throughout the paper that n ≤ m ≤ n2). Another spe-
cial case arises when digraph G only contains S–T arcs (but no T –S, S–S, or T –T

arcs). Then, the definition of a bibranching reduces to that of a bipartite edge cover.
The minimum weight bipartite edge cover problem (call it (EC) for brevity) looks
harder: no strongly polynomial O(mn)-algorithm is known so far. Problem (EC) can
be solved by finding a maximum weight bipartite matching in O(n′(m + n logn))

time [6] (where n′ := min(|S|, |T |)). Keijsper and Pendavingh [13] generalized the
latter shortest-path augmentation method to solve (BB) in the same time bound.

On the other hand, the notion of a bibranching is special case of a directed cut
cover (also known as a dijoin). The latter is a subset of arcs whose contraction makes
a digraph strongly connected, see [15, Sect. 55.1]. Frank studied the minimum weight
dijoin problem and gave an O(n5)-time primal-dual algorithm [5]. Later, this bound
was improved to O(mn2) by Gabow [7]. For the case of non-negative integer weights
Gabow also devised an O(min(m1/2, n2/3) nm log(nW))-time algorithm [8] (here-
inafter W denotes the maximum magnitude of arc weights).

In general, many optimization problems can be solved faster if weights are known
to be integral. The corresponding algorithms (e.g. the above mentioned Gabow’s min-
imum weight dijoin algorithm) are based on scaling techniques and achieve time
bounds that are, in a sense, better than their strongly-polynomial counterparts. An-
other example is a scaling algorithm for bipartite matching problems [11], which runs
in O(m

√
n log(nW)) time. The latter approach can also be adopted to solve (EC) and

leads to the algorithm with the same time bound.
Similar ideas are also applicable to general min-cost flow problems [10]. How-

ever, when the structure of dual solutions becomes non-trivial (i.e. when one needs
exponentially many dual variables) the algorithm and its complexity analysis may be-
come much more involved. A good example is the minimum weight perfect matching
problem in general (non necessarily bipartite) graphs, which is solved by Gabow and
Tarjan in O(m

√
nα(m,n) logn log(nW)) time [12] (where α stands for the inverse

Ackermann function).
Since (BB) involves solving a linear program with inequalities corresponding to

all possible subsets of S and T , our approach is similarly involved. Assuming that
arc weights w are non-negative integers not exceeding W we present a weight scal-
ing algorithm for (BB) that runs in O(m

√
n logn log(nW)) time. It is based on the

general notion of the approximate optimality (see, e.g., [10]), an augmentation pro-
cedure similar to [13], and attracts some additional combinatorial ideas to deal with
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dual solutions during scaling steps. Also, a variant of the blocking augmentation tech-
nique [3] is employed.

Note that the complexity of our algorithm coincides (up to a logarithmic factor)
with that of the best known scaling algorithm [11] for solving a special case of (BB),
namely (EC). Also, our algorithm is faster than Gabow’s one [8], which is not sur-
prising since the latter deals with a more general problem.

The rest of the paper is organized as follows. Section 2 gives the needed formal
background and introduces the linear programming formulation of (BB). Sections 3
and 4 outline a high-level description of the algorithm. Section 5 bounds the number
of primal and dual steps performed by the algorithm. Section 6 discusses the details
of an efficient implementation of the algorithm. Section 7 summarizes the results and
describes a number of open questions.

An extended abstract of this paper [1] earlier appeared at ISAAC 2008.

2 Preliminaries

First, we need some additional definitions and notation. Let G be a digraph and X

be a subset of nodes. Then δin
G(X) (resp. δout

G (X) and γG(X)) denotes the set of arcs
entering X (resp. leaving X and having both endpoints in X). When it is clear from
the context which digraph G is meant, it is omitted from the notation. Also, when
X = {v} write just δin(v) (resp. δout(v)) instead of δin({v}) (resp. δout({v})).

For a digraph G and a subset X ⊆ V G let G[X] denote the subgraph of G induced
by X (i.e. the digraph obtained from G by removing all nodes in V G − X).

By an in- (resp. out-) forest we mean an acyclic set of arcs F such that for each
node v at most one arc in F leaves (resp. enters) v. If no arc in F leaves (resp. enters)
node v then v is said to be a root of F . An in- (resp. out-) forest with a single root
node is called an in- (resp. out-) tree.

Consider a bipartition S � T of V G. For a subset X ⊆ S we put δ(X) := δout(X),
similarly for X ⊆ T we put δ(X) := δin(X). If a ∈ δ(X) then arc a is said to cover X.
For a set A ⊆ AG, the set of nodes covered by A is defined as the union of the sets of
nodes covered by the individual elements of A. Clearly, (BB) prompts for a minimum
weight subset B ⊆ AG that covers every subset in 2S ∪ 2T .

Let us introduce an important notion of contraction. To contract a set X ⊆ V H in
a digraph H one replaces nodes in X by a single complex node (also denoted by X).
Arcs in γ (V H − X) are not affected, arcs in γ (X) are dropped, and arcs in δin(X)

(resp. δout(X)) are redirected so as to enter (resp. leave) the complex node X. The
resulting digraph is denoted by H/X. See Fig. 1 for an example.

Note that H/X may contain multiple parallel arcs. We identify arcs in H/X

with their pre-images in H . If H ′ is obtained from H by an arbitrary sequence
of contractions, then H ′ = H/X1/ . . . /Xk for a certain family of disjoint subsets
X1, . . . ,Xk ⊆ V H (called the maximal contracted sets). Each node in H ′ corre-
sponds to a subset of nodes in H : nodes v ∈ V H − (X1 ∪ . . . ∪ Xk) are called simple
and correspond to singletons {v}. Other nodes are complex and correspond to the
sets Xi .

For a set A ⊆ AG, we write ASS , AST , and AT T to denote the sets of S–S, S–T ,
and T –T arcs in A, respectively. Note that any minimum weight bibranching need not
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Fig. 1 Contraction

contain T –S arcs (as their removal preserves the required connectivity and may only
decrease the total weight). Hence, we assume throughout the paper that G contains
no T –S arcs.

We call a bibranching B basic if B is inclusion-wise minimal, i.e. no proper subset
B ′ ⊂ B is a bibranching. The following observations are easy:

Lemma 1 Any basic bibranching contains at most n arcs.

Proof Let B be a basic bibranching. Suppose that BSS contains a directed cycle C.
There must be an arc a0 ∈ B that leaves V C, let v0 be its tail node. Next, let a1
be the arc in C that leaves v0. Now after resetting B := B − {a1} set B remains a
bibranching, which is a contradiction. Similar reasoning also applies to BT T .

Hence, BSS and BT T are directed forests. Let RS and RT denote the sets of their
roots, respectively. Then, |BSS | = |S| − |RS | and |BT T | = |T | − |RT |.

Set BST covers all nodes in RS ∪RT . Moreover, BST is an inclusion-wise minimal
arc set with the above property. For each node v ∈ RS ∪RT one can fetch an arbitrary
arc av from BST that covers v. The constructed arc set {av | v ∈ RS ∪ RT } covers all
nodes in RS ∪ RT and, hence, coincides with BST . Therefore, |BST | ≤ |RS | + |RT |.

Summing the above, one gets |B| ≤ (|S| − |RS |) + (|T | − |RT |) + |RS | + |RT | =
|S| + |T | = n, as required. �

Lemma 2 For each bibranching B a basic bibranching B ′ ⊆ B can be found in
O(m) time.

Proof Firstly, we compute the strongly-connected components of BSS in O(m) time,
see [2]. For each component C in BSS there must be at least one arc a0 that leaves
V C. Let v0 be the tail node of a0. Applying the depth-first search we construct a
spanning in-tree T in C (i.e. V T = V C, AT ⊆ AC) rooted at v0 and reset B :=
(B − AC) ∪ AT .

Once this is done for each component C, set BSS is decycled and B remains a
bibranching. Similar procedure is applied to BT T . Totally these manipulations take
O(m) time. Now BSS and BT T are directed forests.

Next, if a node v ∈ S is covered by arcs from both BSS and BST , then the former
arc can be removed from BSS . Similarly, we process the set BT T . Now BSS and BT T
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are inclusion-wise minimal (that is, no arc can be removed from these sets without
breaking the required connectivity of B).

It remains to deal with BST . To this aim, we scan its elements one after another.
Let (u, v) be the current arc to be examined (u ∈ S, v ∈ T ). Node u (resp. v) is a root
in BSS (resp. in BT T ). If both u and v are covered by at least two arcs in BST then
we remove (u, v) from B .

To carry out this cleanup efficiently, for each root node v we keep a counter that
is equal to the number of arcs in BST covering v. Using these counters, processing
each arc in BST takes O(1) time.

Clearly, the resulting set B is inclusion-wise minimal. �

Now let us deal with the linear programming formulation of (BB). Consider the
following program:

minimize
∑

(w(a)x(a) : a ∈ AG)

subject to x : AG → R+,

x(δ(X)) ≥ 1 for each X ∈ 2S ∪ 2T .

(2.1)

The program dual of (2.1) is:

maximize
∑(

π(X) : X ∈ 2S ∪ 2T
)

subject to π : 2S ∪ 2T → R+,

wπ(a) ≥ 0 for each a ∈ AG.

(2.2)

Here wπ := w − ϑπ are the reduced weights of arcs w.r.t. π , and the function
ϑπ : AG → R+ is defined by

ϑπ(a) :=
∑

(π(X) : a covers X) . (2.3)

It is known [14] (see also [15, Sect. 54.6]) that (2.1) describes the upper convex
hull of the incidence vectors of all bibranchings in G. Hence, finding a bibranching of
the minimum weight (under the assumption w ≥ 0) amounts to finding a 0,1-solution
to (2.1).

Weak duality for (2.1) and (2.2) implies that
∑

a w(a)x(a) ≥ ∑
X π(X) holds for

every pair of admissible solutions x and π . By strong duality, the latter turns into
equality if x and π are optimal. Moreover, (2.1) is known to be totally dual integral
(see [15, Sect. 54.6]), that is, if all weights w are integers then there exists an optimal
integer solution to (2.2). Hence, the polyhedron determined by (2.1) is integral.

The complementary slackness conditions for (2.1) and (2.2) (giving rise to an op-
timality criterion for solutions x and π ) are viewed as:

(CS1) x(a) > 0 for a ∈ AG implies wπ(a) = 0.
(CS2) π(X) > 0 for X ∈ 2S ∪ 2T implies x(δ(X)) = 1.

For a set B ⊆ AG and a function π : 2S ∪ 2T → R+ we say that B is π -consistent
if π(X) > 0 implies |B ∩ δ(X)| ≤ 1 for each X ∈ 2S ∪ 2T . Consistency is closely



Algorithmica (2011) 61:898–922 903

related to the complementary slackness conditions, in particular, if B is a bibranching
then its π -consistency is just (CS2).

Lemma 3 For an arbitrary function π : 2S ∪ 2T → R+ and a set B ⊆ AG one has

ϑπ(B) ≥
∑

(π(X) : B covers X) .

Additionally, if B is π -consistent then the above inequality turns into equality.

Proof Taking (2.3) into account, one needs to prove the following:

∑

a∈B

∑
(π(X) : a covers X) ≥

∑
(π(X) : B covers X) .

The latter is obvious since for each term π(X) occurring on the right there must be at
least one such term on the left. Moreover, equality is only possible if for each subset
X ∈ supp(π) that is covered by B , X is actually covered by a unique arc in B . This
is exactly π -consistency of B . �

3 Algorithm

Recall that a family F of subsets is called laminar if for all X,Y ∈ F either X ⊆ Y ,
or Y ⊆ X, or X ∩ Y = ∅.

The algorithm maintains a laminar family F ⊆ 2S ∪ 2T and a function π : 2S ∪
2T → Z+. For X ∈ F , the shell S(X) of X is the graph obtained from G[X] by
contracting all proper maximal subsets Y ⊂ X, Y ∈ F . Let Ḡ denote the digraph
obtained by contracting all maximal sets of F in G. Put S̄ (resp. T̄ ) to be the image
of S (resp. T ) in Ḡ under these contractions. Let S0

π (X) denote the subgraph of S(X)

consisting of arcs a with wπ(a) = 0.
For a set of nodes Y in Ḡ (or in S(X) for X ∈ F ) we write Ỹ to denote the

corresponding pre-image subset in V G. When Y = {y} we write just ỹ instead of {̃y}.
We introduce the following set of properties:

(D1) π(X) > 0 and |X| > 1 imply X ∈ F .
(D2) S0

π (X) has a directed Hamiltonian cycle for each X ∈ F .
(D3) wπ(a) ≥ 0 for each a ∈ AG.

Property (D1) claims that every non-singleton subset that is assigned a positive
dual is contracted. Property (D2) introduces an additional structural property of π

that is necessary to uncontract Ḡ back into G and restore the bibranching. Finally,
property (D3) states that π is a feasible solution to (2.2).

Next, the algorithm maintains a subset B̄ ⊆ AḠ, which will be referred to as a
partial bibranching. We associate the following properties with B̄:

(P1) Set B̄SS (resp. B̄T T ) forms a directed in- (resp. out-) forest in digraph G[S̄]
(resp. in digraph G[T̄ ]).

(P2) If a ∈ B̄SS ∪ B̄T T then wπ(a) = 0; if a ∈ B̄ST then wπ(a) ≤ 1.
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(P3) If v ∈ V Ḡ is covered by more than one arc in B̄ then v is a simple node and
π(ṽ) = 0 (cf. (CS2)).

Property (P1) is required mostly by technical reasons that will become evident
later. Property (P2) may be regarded as a relaxation of (CS1). Property (P3) corre-
sponds to (CS2).

In what follows, we shall use the procedure called EXPAND. It relies on prop-
erty (D2), expands a maximal contracted subset X ∈ F , and simultaneously extends
the current partial bibranching B̄ .

For simplicity’s sake suppose X ⊆ S, the other case is symmetric. Firstly, di-
graph Ḡ is partly uncontracted by undoing the contraction of X. Let X′ denote the
set of nodes arising from X during this uncontraction. Note that if there is an arc
a ∈ B̄ that covers v before the uncontraction then the latter arc is unique by (P3). If a

does not exist, we extend B̄ by adding all arcs of the Hamiltonian cycle C mentioned
in (D2) except one, which is chosen arbitrarily. This way, the resulting B̄ covers all
nodes in X′ except one. If a exists then, again, all arcs of C except one, call it b,
are added to B̄ . The latter arc b shares its tail node with a. The resulting B̄ cov-
ers all nodes in X′. Clearly, in both cases the number of uncovered nodes does not
change during EXPAND. Also, properties (P1)–(P3) are maintained. Figure 2 shows
an example.

The algorithm for solving (BB) employs bit scaling and works as follows. Let
w0 : AG → Z+ denote the input weight function. A certain current weight function
w : AG → Z+ is maintained. Initially w := 0, π := 0, F := ∅. In particular, no subset
is contracted in G, so Ḡ = G. Also, B̄ is initialized with an arbitrary bibranching in
Ḡ (= G) obeying property (P1) (the one obtained from AG via Lemma 2 will do). In
case B̄ does not exist, the algorithm halts.

Each scaling step takes a weight function w from the previous iteration, a
bibranching B̄ ⊆ AḠ in Ḡ, a function π , and a collection F altogether obeying prop-
erties (P1)–(P3), (D1)–(D3). The i-th (1 ≤ i ≤ l) scaling step deals with the weights
w(a) := �w0(a)/2l−i�, a ∈ AG. Here l := �logW� + 1 denotes the length of the
binary representation of the largest arc weight W . Less formally, this means that at
every next scaling step one more bit of the binary representation of the original weight
function w0 is taken in account.

Fig. 2 Application of EXPAND. Arcs in B̄ are grayed; the common tail of arcs a and b is marked
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At the beginning of each scaling step the previous weights w(a), a ∈ AG, are
doubled and some of them are increased by 1 (namely, those having 1 at the corre-
sponding position of the binary representation of w0(a)). Changing weights w may
lead to violation of the above properties (P1)–(P3), (D1)–(D3) so the goal of the
scaling step is to restore them. The necessary details will be given in Sect. 4.

Weights w are iteratively scaled, as explained above, until achieving the equal-
ity w = w0. Totally it takes l scaling steps. Next, we put t := �logn� + 1 and per-
form t additional scaling steps, doubling w each time. Finally, the algorithm applies
Lemma 4 to construct the final bibranching in G.

Lemma 4 Suppose properties (D1)–(D3), (P1)–(P3) hold for F , π , and B̄ . Also,
suppose each node in Ḡ is covered by some arc in B̄ . Then, there exists a π -consistent
basic bibranching B in G such that: wπ(a) = 0 for each a ∈ BSS ∪BT T and wπ(a) ≤
1 for each a ∈ BST .

Proof Property (P1) implies that B̄ is acyclic. Also, B̄ covers every node in Ḡ, there-
fore B̄ is a bibranching in Ḡ. Applying EXPAND to the elements of F (in an appro-
priate order) one gets a π -consistent bibranching B in G. Removing an appropriate
subset from it, we get the desired basic bibranching. �

Let us prove that this general scheme is correct. Put Π := ∑
X π(X) and estimate

the weight of an optimal bibranching as follows.

Lemma 5 w(B) ≥ Π holds for any bibranching B in G.

Proof By definition, B covers each subset in 2S ∪ 2T . Hence, by Lemma 3 and (D3)
one has w(B) = wπ(B) + ϑπ(B) ≥ ∑

X π(X) = Π , as required. �

Lemma 6 If B is a basic π -consistent bibranching in G such that wπ(a) ≤ 1 for all
a ∈ B then w(B) ≤ Π + n.

Proof By Lemmas 1 and 3 one has w(B) = wπ(B) + ϑπ(B) ≤ n + ∑
X π(X) =

n + Π . �

Theorem 1 The algorithm constructs a minimum weight bibranching.

Proof Let B̄ , w, and π denote the corresponding objects after the last scaling
step. Put B to be a basic bibranching obtained from B̄ by Lemma 4. Let Bmin be
a minimum weight bibranching (w.r.t. w or, equivalently, w0). One may assume
by Lemma 2 that Bmin is basic. Lemmas 5 and 6 imply that w(Bmin) ≥ Π and
w(B) ≤ Π + n respectively, so w(Bmin) ≤ w(B) ≤ w(Bmin) + n. Recall that each
of the last t scaling steps doubles arc weights. Since all initial weights w0 are inte-
gers, w(a) is divisible by 2t for each a ∈ AG. Hence, so are w(B) and w(Bmin). The
choice of t implies n < 2t , therefore w(B) = w(Bmin), so B is optimal. �
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4 Scaling Step

Each scaling step consists of the following four stages: doubling stage, shell stage,
ST-stage, and TS-stage.

First, the doubling stage is executed: arc weights w are multiplied by 2 and some
of them are increased by 1, as described in Sect. 3. Also, duals π are doubled. Put
F := supp(π) and B̄ := ∅ (hence, any previous bibranching is discarded). As earlier,
let Ḡ denote the digraph obtained from G by contracting all maximal sets in F . Ob-
viously, properties (D1), (D3), (P1)–(P3) now hold. One needs to solve the following
two tasks:

– restore property (D2) by ensuring that each graph S0
π (X), X ∈ F , contains a di-

rected Hamiltonian cycle;
– construct a bibranching B̄ in Ḡ obeying properties (P1)–(P3).

The shell stage is executed to deal with (D2). The algorithm scans the sets in F
choosing an inclusion-wise minimal unscanned set at each iteration. Let X ∈ F be
the current set to be scanned. Procedure NORMALIZE-SHELL(X) is called to adjust
duals π and ensure (D2) for X or remove X from supp(π) and also from F .

Suppose X ⊆ S, the case X ⊆ T is analogous. NORMALIZE-SHELL performs a
series of iterations similarly to the minimum weight branching algorithm [4, 9].

More precisely, it maintains a directed in-forest FS containing all nodes of X

and consisting of some arcs a with wπ(a) = 0. Initially the forest is trivial: V FS :=
V S(X) and AFS := ∅. If S(X) consists of a single node then property (D2) is restored
for X, NORMALIZE-SHELL(X) terminates.

Otherwise, an arbitrary tree W in FS is picked. Let r be the root of W . Suppose
that all arcs leaving r (in S(X)) have positive reduced weights. Put

μ1 := min
(
wπ(a) : a ∈ δout

S(X)(r)
)

, μ2 := π(X), μ := min(μ1,μ2).

Adjust the duals as follows:

π(r̃) := π(r̃) + μ,

π(X) := π(X) − μ.

These adjustments decrease the reduced weights of all arcs in S(X) leaving r by μ

(see Fig. 3). If one had π(r̃) = 0 prior to the adjustment then r̃ gets added to supp(π),
in this case the algorithm also adds r̃ to F . By the choice of unscanned sets for
NORMALIZE-SHELL, property (D2) holds for r̃ and all its subsets in F (if any). Set r̃

is also marked as scanned, so NORMALIZE-SHELL is never called for it.
If π(X) = 0 holds after the adjustment then set X vanishes from supp(π), we

remove X from F and halt NORMALIZE-SHELL(X). We also say that set X dissolves
during the execution of the shell stage.

Now suppose that there is an arc a ∈ δout
S(X)(r) such that wπ(a) = 0. Two cases are

possible. Firstly, a may connect W with another tree W ′ in FS . Then, a is added to
FS thus linking W and W ′. Secondly, a may connect r to a node in the very same
tree W . In this case, a cycle of arcs with zero reduced weights is discovered. Let Y be
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Fig. 3 Dual adjustment during
the shell stage. Dashed arcs have
positive reduced weights

the set of nodes of this cycle (in S(X)). The algorithm contracts Y in S(X), adds Ỹ to
F , and marks Ỹ scanned. Note that π(Ỹ ) = 0 holds at this point. Next, the algorithm
proceeds by picking a tree W in FS and repeating the above steps.

Once NORMALIZE-SHELL(X) is called for all sets X ∈ F (in an appropriate or-
der), property (D2) gets restored. The normalization procedure for a subset X ⊆ T is
the same except for the fact that it considers sets δin rather than δout.

The remaining part of the scaling step builds a bibranching B̄ in Ḡ that satisfies
properties (P1)–(P3). Firstly, the ST-stage is executed. It starts with B̄ = ∅ and applies
a certain augmenting path approach aiming to update B̄ so that it covers all the subsets
of 2S̄ . Next, S and T parts are exchanged and a similar TS-stage is executed, thus
completing the scaling step.

We shall only describe the ST-stage since the TS-stage is essentially symmetric.
However, due to the generic nature of the description we cannot make any additional
assumptions about the set B̄ at the beginning of the stage. In particular, we cannot
assume that B̄ is empty.

For the duration of the ST-stage, we impose the following additional property:

(D4) Each maximal contracted set X ⊆ T , X ∈ F obeys |X| > 1 and π(X) > 0.

If (D4) fails at the beginning of the stage then EXPAND routine is iteratively ap-
plied to the maximum contracted subsets X ⊆ T with π(X) = 0.

Similarly to the shell stage, a directed in-forest FS obeying V FS = S̄ is maintained
in digraph Ḡ. The latter forest obeys the following conditions:

(S1) wπ(a) = 0 holds for each a ∈ AFS .
(S2) wπ(a) > 0 holds for each root node r ∈ S̄ and an S̄–S̄ arc a leaving r .
(S3) B̄SS ⊆ AFS .

Forest FS is initially constructed by putting V FS := S̄ and AFS := B̄SS (the latter
set forms a directed in-forest according to (P1)). Next, NORMALIZE-FOREST routine
is applied to ensure (S2). The latter works as follows. If (S2) fails for a root node r

and an S̄–S̄ arc a leaving r then two cases are possible, similarly to the shell stage.
Firstly, a may connect a tree W of FS rooted at r with another tree W ′ in FS . Then,
a is added to FS thus linking W and W ′. Secondly, a may connect r to a node in the
very same tree W . In this case, a cycle consisting of arcs with zero reduced weights
is discovered. Let Y denote the set of nodes of this cycle (in Ḡ). The algorithm puts
B̄ := B̄ \ γ (Y ), AFS := AFS \ γ (Y ), contracts Y in Ḡ, and adds Ỹ to F . Note that at
this point π(Ỹ ) = 0 holds.

This completes the description of NORMALIZE-FOREST.
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Once forest FS obeying (S1)–(S3) is ready, we construct an auxiliary digraph H ,
which will be used for blocking augmentation. Put V H := V Ḡ and proceed as fol-
lows:

– if a /∈ B̄ is an S̄–T̄ arc with wπ(a) = 0 then add a to H as a forward arc;
– if a ∈ B̄ is an S̄–T̄ arc with wπ(a) = 1 then reverse the direction of a and it to H

as a backward arc.

A node v ∈ S̄ is said to be initial if B̄ does not cover v. A node v is called final if
any of the following cases applies:

(F1) v ∈ T̄ is a simple node obeying π(ṽ) = 0.
(F2) v ∈ T̄ and v is covered by a T̄ –T̄ arc in B̄ (the latter is unique by (P1)).
(F3) v ∈ T̄ and v is not covered by B̄ .
(F4) v ∈ S̄ and v is an inner node in FS .
(F5) v ∈ S̄ and v is covered by at least two S̄–T̄ arcs in B̄ .

A directed node-simple path in H connecting an initial node to a final node (with
all intermediate nodes neither initial nor final) is called augmenting.

Note that a node may simultaneously be initial and final. This happens when one
has an uncovered node v ∈ S̄ that is an inner node in FS . In this case node v forms a
trivial augmenting path of zero length.

The ST-stage consists of an alternating sequence of steps of two types. Firstly,
suppose that there exists an augmenting path P in H from an initial node s to a final
node t . In this case, a primal step is possible. Its goal is to update B̄ so as to decrease
the number of uncovered nodes in S̄ while not increasing the number of uncovered
nodes in T̄ . (Note that we have to make this additional remark regarding the T̄ part
because we are going to carry out the TS-stage similarly to the ST- one. Hence, we
do not want any new uncovered nodes to appear.)

Given an augmenting path P , we replace the current primal solution B̄ with the
symmetric difference B̄ �A(P ), where A(P ) denotes some set of arcs corresponding
to P . The latter set A(P ) is constructed as follows. First, we add arcs that correspond
to arcs of P (both forward and backward). In case of bipartite matchings and edge
covers these are enough, however we still have S–S and T –T arcs that need to be
taken care of. We perform adjustments depending on the type of node t . In cases (F1),
(F3), and (F5) we do nothing. In case (F2) we add to A(P ) the unique arc in B̄T T

that covers t . Consider case (F4). If t is not covered by B̄SS then we add to A(P ) the
unique arc in FS that leaves t .

Lemma 7 The augmentation of B̄ along P preserves properties (P1)–(P3), (D1)–
(D4), and (S1)–(S3). The set of nodes in V Ḡ not covered by B̄ strictly decreases. The
set of initial nodes strictly decreases. The set of final nodes does not increase. The
arc set of H decreases by AP .

Proof Consider property (P1). We argue that arc sets B̄SS and B̄T T correspond to
certain directed forests after the augmentation. This is achieved by an obvious case
splitting according to the type of t . Cases (F1), (F3), (F5): sets B̄SS and B̄T T are
not changed. Case (F2): set B̄SS is not changed, set B̄T T decreases by a single arc.
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Case (F4): set B̄T T is not changed, set B̄SS may receive an additional arc from FS .
In all these cases set B̄T T does not increase and also B̄SS ⊆ AFS holds after the
augmentation (the latter also proves (S3)).

Consider property (P2). Clearly, it is sufficient to check only those arcs that are
added to B̄ . Let a denote such an arc. If a is an S̄–T̄ arc then it is forward in P . Hence,
wπ(a) = 0 holds by construction of H . Otherwise, a is a S̄–S̄ arc and case (F4) from
the definition of a final node applies. Then, a ∈ AFS so (P2) follows from (S1).

Consider property (P3). For each node v ∈ V Ḡ put c(v) (resp. c′(v)) to be the
number of arcs in B̄ that cover v before (resp. after) the augmentation along P .
Clearly, c′(v) > c(v) is only possible for an initial or final node v. More precisely,
c′(s) = 1 holds, which satisfies (P3). Next, for the final node t one has c′(t) > c(t)

only in cases (F1) and (F3). In the former we have π(t̃) = 0, in the latter c′(t) = 1.
Both are admissible.

Properties (D1)–(D4) are preserved since dual variables π are not changed. Prop-
erties (S1) and (S2) are preserved since neither π nor FS is changed. Property (S3) is
shown to hold by the above case splitting.

An easy case splitting shows that c(v) ≥ 1 implies c′(v) ≥ 1 for an arbitrary node
v ∈ V Ḡ. Also, c(s) = 0 and c′(s) = 1. Hence, the set of covered nodes increases by
at least s.

The latter also implies that the set of initial nodes strictly decreases. As for the
final nodes, consider a node v ∈ V Ḡ and perform the usual case splitting. Cases (F1),
(F4): the status of v is not changed. Case (F2): v may only leave the set of final
nodes (as B̄T T cannot increase). Case (F3): similarly to the above (as the set of nodes
covered by B̄ may only increase). Case (F5): we claim that the augmentation cannot
produce any new final nodes of this type. Indeed, for the contrary to happen one
should have c(v) ≤ 1 and c′(v) ≥ 2. But c-value of a node in S̄ may only increase
for s and c′(s) = 1, which is a contradiction. Hence, the set of final nodes may only
decrease.

Dealing with changes in AH is straightforward: construction of H implies that
once an S̄–T̄ arc is added to or removed from B̄ , it vanishes from AH . All other S̄–T̄

arcs (not appearing in P ) do not change their statuses. �

Note, that in order to achieve the desired time bound one cannot recompute path P

from scratch each time. Taking into account the monotonicity of the sets of initial and
final nodes, and the arc set of H , the blocking augmentation technique is applied (see,
e.g., [3]). The latter computes, one by one, a sequence of augmenting paths and stops
when there are no such paths left. Each of these paths is used for augmenting B̄ , as
explained above. A more careful analysis will be given in Sect. 6.

A dual step is carried out when no more augmenting paths can be found. Each
dual step consists of a sequence of dual updates. Let S̄0 (resp. T̄0) denote the set of
nodes in S̄ (resp. T̄ ) that are reachable in H from initial nodes. We shall need the
following easy but important observation:

Lemma 8 At each dual step all nodes in S̄0 are roots of FS .

Proof If v ∈ S̄0 is an inner node of FS then v is both reachable and final, namely, it
has type (F4). This contradicts the absence of an augmenting path. �
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Calculate the value of the adjustment parameter μ as follows:

μ1 := min
(
π(ṽ) : v ∈ T̄0

)
,

μ2 := min
(
wπ(a) : a = (u, v) ∈ AḠ, u ∈ S̄0, v ∈ S̄

)
,

μ3 := min
(
wπ(a) : a = (u, v) ∈ AḠ, u ∈ S̄0, v ∈ T̄ − T̄0

)
, (4.1)

μ4 := min
(
1 − wπ(a) : a = (u, v) ∈ B̄, u ∈ S̄ − S̄0, v ∈ T̄0

)
,

μ := min(μ1,μ2,μ3,μ4).

Clearly, (P2) implies that μ ≥ 0 and μ4 ∈ {0,1,∞} (moreover, case μ4 = 0 is not
possible, see Lemma 9 below).

The dual update is performed as follows. Firstly, put:

π(ṽ) := π(ṽ) + μ for each v ∈ S̄0,

π(ṽ) := π(ṽ) − μ for each v ∈ T̄0.

If wπ(a) = 0 holds for some a = (u, v) ∈ AḠ, u ∈ S̄0, v ∈ S̄ after the update, then
node u must be a root of FS and property (S2) fails. Procedure NORMALIZE-FOREST

is called to restore it. This might lead to a contraction inside S̄.
Symmetrically, uncontractions in T̄ are possible. The latter happen when the dual

update decreases the dual π(ṽ) of some complex node v ∈ T̄ down to zero. This
change violates (D4), so EXPAND is called to ensure it. (Note, that there might be
multiple such calls per dual update since expansion of the top-most contracted subset
ṽ may reveal additional contracted subsets with zero dual.)

After the dual update, sets S̄0 and T̄0 are incrementally recalculated, see Sect. 6. It
will be shown later in Lemma 9 that these sets may only increase. This sequence of
updates terminates when some final node becomes reachable, in which case a primal
step is possible. The description of the dual step is now complete.

Lemma 9 If no augmenting path exists in H then 0 < μ < ∞. The dual update
preserves properties (P1)–(P3), (D1)–(D4), and (S1)–(S3). The set of initial nodes
does not change. The set of final nodes does not decrease. Let R0 denote the set of
arcs in H that belong to some path from an initial node. Then, either the dual update
leads to creation of a final node of type (F2) or does not decrease R0.

Proof First suppose that μ = 0, hence one of μ1, . . . ,μ4 is zero. We proceed by an
obvious case splitting.

1. If μ1 = 0 then π(ṽ) = 0 holds for some node v ∈ T̄ . By (D4) the latter node
is simple. Hence, v is a reachable final node of type (F1), which contradicts the
absence of an augmenting path.

2. If μ2 = 0 then there is a reachable node v ∈ S̄0 that is covered by an S̄–S̄ arc a

with wπ(a) = 0. By Lemma 8, all reachable nodes in S̄ are roots of FS . Hence,
we get a contradiction with (S2).

3. If μ3 = 0 then there exists an S̄–T̄ arc a = (u, v) such that u ∈ S̄0, v ∈ T̄ − T̄0,
wπ(a) = 0. Two subcases are to be considered. Suppose a ∈ B̄ . Then either u is
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reached by a (hence v is also reachable—a contradiction) or u is reached by some
other S̄–T̄ arc belonging to B̄ (hence u is a final node of type (F5), which is again
a contradiction). On the other hand, if a /∈ B̄ then a is a forward arc in H , so v

must be reachable, which is false.
4. Suppose μ4 = 0. There exists an arc a = (u, v) ∈ B̄ such that u ∈ S̄ − S̄0, v ∈ T̄0,

wπ(a) = 1. Then a is a backward arc in H and u is reachable.

In all these cases one has a contradiction proving that μ > 0.
Now suppose that μ = ∞ so each of the corresponding sets in (4.1) is empty.

We argue that Ḡ has no bibranching, which is not possible since G has one. Indeed,
μ1 = ∞ implies T̄0 = ∅. Consider an arbitrary initial node s ∈ S̄0 (there must be
one, since otherwise the ST-stage is complete). It is not covered by an S̄–S̄ arc (for
otherwise μ2 < ∞). Also, it is not covered by an S̄–T̄ arc. (otherwise its head must
be in T̄ = T̄ − T̄0 and, therefore, μ3 < ∞). Hence, δout

Ḡ
(s) = ∅ and Ḡ admits no

bibranching.
Note that the dual update may perform contractions in Ḡ[S̄] and uncontractions in

Ḡ[T̄ ] and, hence, change the node set of the current digraph Ḡ. Therefore, some care
is needed when proving the monotonicity of the sets of initial and final nodes.

Firstly, a node is initial if it belongs to S̄ and is not covered by B̄ . The dual update
does not change B̄ . When a subset X ⊆ S̄ is contracted during NORMALIZE-FOREST

call, it may contain at most one initial node, namely, the root node of the correspond-
ing tree (by Lemma 8). The complex node generated by this contraction also becomes
initial. In this sense, the set of initial nodes does not change.

Now consider the set of final nodes. An uncontraction may happen to a complex
node v ∈ T̄0 when π(ṽ) drops to zero. In this case v ∈ T̄0 so v cannot be final. Hence,
uncontractions do not destroy existing final nodes. Additional final nodes of types
(F1) and (F4), however, may appear. The former case (F1) happens when the dual
π(ṽ) becomes zero for some simple node v ∈ T̄0 or v is a complex node that, after
expansion via the call to EXPAND, reveals some simple nodes with zero dual. The
latter case (F4) is possible as NORMALIZE-FOREST may link a pair of trees and,
hence, produce a new inner node in S̄.

Next, we prove the required properties of R0. Dealing with the change of π is
simple. Let a be an arc belonging to a path P in H from an initial node. Then all
nodes of P are reachable, hence the arcs of P correspond to S̄0–T̄0 arcs of Ḡ. The
reduced weights of these arcs are not affected, hence all arcs of P (in particular,
a) remain present in H . Therefore, as long as no contractions or uncontractions are
performed, R0 may only increase. Contractions in S̄ are also safe since they cannot
destroy connectivity in H . Uncontractions in T̄ are more tricky. Suppose that the dual
π(ṽ) associated to a reachable complex node v ∈ T̄ drops to zero. EXPAND is applied
to v thus replacing it with some set of nodes, say X′. Before the uncontraction, v

was the head of at least one arc a1 = (u, v) ∈ AH such that u is also reachable.
Moreover, there could be an arc a2 = (v,w) ∈ AH . (Note that multiple arcs a1 may
exist in H but at most one arc a2 is possible since it corresponds to an S̄–T̄ arc in
B̄ and the latter is unique by (P3).) After the uncontraction arcs a1 and a2 need not
share a common endpoint (which was v). Hence, the uncontraction could potentially
break the connectivity in H and, therefore, decrease set R0. We argue that in this
case the dual step completes since a final node of type (F2) is created. Indeed, let v′
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be the tail of a2 after the uncontraction. Now B̄ is extended by adding the arc set
of a directed out-tree that covers X′ and is rooted at v′. If a1 ends in v′ (after the
uncontraction) then a1 and a2 still share an endpoint and the connectivity in H is
preserved. Otherwise, a1 ends in some inner node of B̄T T and, hence, its head is a
reachable final node of type (F2).

Validity of properties (D1) and (D2) is clear. Property (D3) is preserved by the
choice of μ and the structure of the dual adjustment. Property (D4) is ensured by the
calls to EXPAND.

Consider property (S1). By Lemma 8 no inner node of FS is a member of S̄0. For
the subgraph G[S̄], the dual step only changes the reduced weights of arcs leaving
nodes in S̄0. Therefore, no arc in AFS changes its reduced weight. Property (S2)
follows since the dual updates make calls to NORMALIZE-FOREST. Also, such a call
is the only way of changing B̄ and FS during the dual step. Hence, property (P1)
remains valid. Property (S3) is trivially preserved.

Consider property (P2). Since B̄SS ⊆ AFS and property (S1) is preserved,
wπ(a) = 0 holds for all a ∈ B̄SS . The dual update may only decrease the reduced
weight of an arc a = (u, v) ∈ B̄T T if u ∈ T̄ − T̄0 and v ∈ T̄0. But existence of a

would imply that v is a reachable final node of type (F2), which is a contradiction.
Hence, the reduced weights of T̄ –T̄ arcs in B̄ remain zero. Finally, consider an arc
a = (u, v) ∈ B̄ST and suppose that the dual update increases wπ(a). The latter is
only possible if u ∈ S̄ − S̄0 and v ∈ T̄0. Therefore, μ4 ≤ 1 by (4.1). Since μ > 0 this
implies μ = μ4 = 1 and hence wπ(a) increases from 0 to 1, which is admissible.

Consider property (P3). Adjustments (4.2) only increase duals for subsets corre-
sponding to nodes in S̄. Let v ∈ S̄ be such a node. Moreover, suppose that v is covered
by at least two arcs in B̄ . If v ∈ S0, then v is a root of FS (by Lemma 8). Therefore,
by (S3) node v is covered by at least two S̄–T̄ arcs in B̄ and, hence, v is a final node
of type (F5), which is a contradiction with the absence of an augmenting path. So one
has v ∈ S̄ − S̄0 and the dual update preserves the corresponding dual π(ṽ). �

If an augmenting path arises after these changes, the dual step completes and a
primal step is executed. Otherwise, the next value of μ is calculated and the process
of changing π proceeds.

The algorithm changes B̄ , π , and F by executing primal and dual steps alternat-
ingly. It stops when B̄ covers all nodes in S̄. Then, the parts S̄ and T̄ are exchanged
and the TS-stage runs until B̄ covers both S̄ and T̄ . This way, the requested bibranch-
ing B̄ is constructed, the scaling step completes.

5 Complexity Analysis

In this section we present a high-level efficiency analysis of the algorithm. Our im-
mediate goal is to prove an O(

√
n) bound for the number of primal and dual steps

during each scaling step. Hereinafter w, π0, F0, and Ḡ0 denote the corresponding
objects after the doubling stage. Similarly, we use notation π1, F1, and Ḡ1 when
referring to the state immediately after the shell stage.
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Lemma 10 There exists a basic π1-consistent bibranching B1 in G obeying
wπ1(B1) ≤ 6n.

Proof Let B̄0 be a bibranching in Ḡ0 that was constructed by the previous scaling
step. In case of the first scaling step one has G0 = G; we put B̄0 to be an arbitrary
bibranching in G. By removing an appropriate set of arcs from B̄0 one may assume
that B̄0 is basic, see Lemma 2. Property (P2) and the structure of the doubling stage
imply that wπ0(a) ≤ 3 holds for each a ∈ B̄0.

We now gradually transform the digraph Ḡ0 into Ḡ1 and, simultaneously, B̄0 into
a bibranching B̄1 in Ḡ1 such that wπ1(B̄1) is small and (P3) holds for B̄ := B̄1,
π := π1. Note that this construction of B̄1 is independent from the algorithm.

Let us denote the current digraph by Ḡ and the current bibranching by B̄ . Initially,
Ḡ := Ḡ0 and B̄ := B̄0. The difference between Ḡ0 and Ḡ1 is that some maximal sets
in supp(π0) may dissolve during the shell stage. The corresponding dissolved nodes,
therefore, are replaced by certain subgraphs.

We enumerate the nodes of Ḡ0, let v be the current one. If ṽ /∈ supp(π0) then v is
a simple node (ṽ = {v}), it remains simple in Ḡ1. No change is applied to Ḡ and B̄ .
Note that the reduced weights of arcs covering v are not changed during the shell
stage and, thus, do not exceed 3.

Next, suppose ṽ ∈ supp(π0). We assume that ṽ ⊆ S (the other case is symmetric).
Property (P3) implies that in Ḡ0 node v is covered by a unique arc, say a0 ∈ B̄0. Let
the tail of a0 in G be w. Applying (D2) iteratively, we construct an in-tree W in G

such that: (i) W is rooted at w; (ii) V W = ṽ; (iii) arc set A := AW ∪ {a0} is π0-
consistent; (iv) every arc a ∈ AW was of zero reduced weight prior to the doubling
stage. Clearly, wπ0(a) ≤ 3 holds for every a ∈ A.

Update Ḡ and B̄ as follows. First, uncontract ṽ completely and add AW to B̄ .
Since node w is reachable from every node in ṽ by arcs in AW , it follows that B̄

remains a bibranching. Next, contract the maximal sets X ∈ supp(π1) such that X ⊆ ṽ

and update B̄ accordingly. Let v̄ denote the image of ṽ under these contractions. (It is
possible that the whole set ṽ gets contracted again, this happens when ṽ ∈ supp(π1);
in this case ṽ did not dissolve during the call NORMALIZE-SHELL(ṽ).)

The above contractions may remove some arcs from B̄ (more precisely, exactly
those arcs whose head and tail nodes are simultaneously contained in the same max-
imal contracted set). However, B̄ remains a bibranching since contraction of an arbi-
trary subset of S- or T -part of the digraph preserves the required connectivity. Finally,
we apply Lemma 2 and remove all redundant arcs from B̄ (in an arbitrary way) turn-
ing it into a basic bibranching.

Recall that initially v was covered by the unique arc a0. Now v is expanded into
some set of nodes, namely v̄, and some arcs from γ (ṽ) are added to B̄ . Since B̄ is
basic, every node in v̄ is covered by a unique arc from B̄ . This way, (P3) follows
for B̄ .

Let us estimate the total reduced weight wπ1 of all newly added arcs in B̄ (in-
cluding arc a0). To this aim, we bound wπ1(A) (since B̄ receives some subset of arcs
from A and reduced weights of the omitted arcs are non-negative). We consider the
following two subfamilies of supp(π0) and supp(π1):

F0 := {X ∈ supp(π0) | X ⊆ ṽ}, F1 := {X ∈ supp(π1) | X ⊆ ṽ}.
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During NORMALIZE-SHELL(ṽ), each time the dual variable corresponding to a set
X ⊆ ṽ is increased by μ, the dual variable corresponding to some other set Y ⊆ ṽ is
decreased by the same value μ. Hence,

∑
(π0(X) : X ∈ F0) =

∑
(π1(X) : X ∈ F1) .

Recall that A is π0-consistent. Hence, by Lemma 3 it follows that

wπ0(A) = w(A) − ϑπ0(A) = w(A) −
∑

(π0(X) : X ∈ F0) ,

wπ1(A) = w(A) − ϑπ1(A) ≤ w(A) −
∑

(π1(X) : X ∈ F1) .

Therefore,

wπ1(A) ≤ wπ0(A) ≤ 3|A| = 3|ṽ|.
The above procedure is applied to each node v ∈ V Ḡ0 and eventually stops with

Ḡ = Ḡ1. The final set B̄ is denoted by B̄1. Let us estimate its reduced weight
wπ1(B̄1). First, B̄1 gets at most n arcs that cover simple nodes in Ḡ0; each of those
arcs has a reduced weight not exceeding 3. Second, each complex node v ∈ V Ḡ0
generates a set of arcs with total reduced weight not exceeding 3|ṽ|. Summing these
bounds, one gets:

wπ1(B̄1) ≤ 3n + 3n = 6n.

Finally, to get the desired bibranching B1 in G we apply EXPAND routine and
extend B̄1 into the maximal contracted sets of Ḡ1. This step only adds arcs of zero
reduced weight wπ1 . Hence, wπ1(B1) = wπ1(B̄1) ≤ 6n holds. �

Lemma 11 Let π : 2S ∪ 2T → R+ be an arbitrary feasible dual solution (that is, wπ

is non-negative) and B ⊆ AG be an arbitrary π -consistent arc set. Define

Δ(π,π1,B) :=
∑(

π(X) − π1(X) : X is not covered by B
)
.

Then Δ(π,π1,B) ≤ 6n + wπ(B).

Proof Consider the duals π1 (at the moment just before the ST-stage) and a basic
π1-consistent bibranching B1 constructed in Lemma 10. Put

Q :=
∑

a∈AG

(
χB1(a) − χB(a)

)(
wπ1(a) − wπ(a)

)
.

(Here χU denotes the incidence vector of an arc set U , i.e. the function that equals 1
on U and 0 on AG − U .)

Taking equalities wπ = w − ϑπ and wπ1 = w − ϑπ1 into account one gets

Q =
∑

a∈AG

(
χB1(a) − χB(a)

)(
ϑπ(a) − ϑπ1(a)

)

= ϑπ(B1) + ϑπ1(B) − ϑπ1(B1) − ϑπ(B).
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Since B is π -consistent and B1 is π1-consistent and covers each set in 2S ∪ 2T ,
Lemma 3 implies

Q ≥
∑(

π(X) : X is covered by B1
) +

∑(
π1(X) : X is covered by B

)

−
∑(

π1(X) : X is covered by B1
) −

∑(
π(X) : X is covered by B

)

=
∑(

π(X) : X is not covered by B
) −

∑(
π1(X) : X is not covered by B

)

=
∑(

π(X) − π1(X) : X is not covered by B
) = Δ(π,π1,B).

On the other hand, since wπ and wπ1 are non-negative

Q =
∑

a∈AG

(
χB1(a) − χB(a)

)(
wπ1(a) − wπ(a)

)

≤
∑

a∈AG

χB1(a)wπ1(a) + χB(a)wπ(a)

= wπ1(B1) + wπ(B) ≤ 6n + wπ(B).

Now the claim follows by transitivity. �

Lemma 12 Each scaling step executes O(
√

n) primal and dual steps. Totally, these
dual steps execute O(n) dual updates.

Proof Let B̄ ⊆ AḠ denote the current partial bibranching in the current digraph Ḡ

and π be the current duals at some intermediate moment during an ST-or a TS-stage.
Firstly, we prove that wπ(B̄) ≤ n. Indeed wπ(B̄) does not exceed the number of

S̄–T̄ arcs in B̄ (by property (P2)). The latter may only increase by 1 on each primal
step. The total number of primal steps does not exceed n (since each of these steps
decreases the set of uncovered nodes).

Next, similarly to Lemma 4 we apply EXPAND routine, and extend B̄ to a π -
consistent set B ⊆ AG. The latter obeys wπ(B) = wπ(B̄) ≤ n.

Consider a set X ⊆ V G and suppose that π(X) < π1(X). It follows from the
structure of the algorithm that B covers X. Indeed, when the dual π(ṽ) decreases
(for v ∈ V Ḡ), B̄ covers v for otherwise v is a reachable final node of type (F3) and
the dual adjustment is not possible. Also, if B̄ covers v then B covers ṽ and all its
subsets. This proves that all the terms in Δ(π,π1,B) are non-negative.

Consider the ST-stage. Let k be the number of dual steps performed so far. Initially,
all nodes in S̄ are not covered by B̄ . Then, during the course of the algorithm the
number of uncovered nodes in S̄ decreases. For each i (1 ≤ i ≤ k) let ui

1, . . . , u
i
li

denote the uncovered nodes in S̄ during the i-th dual step.
For each fixed i, the sets ũi

1, . . . , ũ
i
li

are pairwise disjoint. Moreover, for each

set ũi
j , i < k, 1 ≤ j ≤ li , there are exactly two possibilities: (i) node ui

j gets covered

during the upcoming primal step and, hence, ũi′
j ′ ∩ ũi

j = ∅ for each i′ > i and 1 ≤
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j ′ ≤ li′ ; or (ii) node ui
j gets incorporated into some contracted set at the next dual

step, hence, ũi
j ⊆ ũi+1

j ′ for some 1 ≤ j ′ ≤ li+1.
Therefore, we may associate a forest F with the above sets as follows. Nodes

of F are pairs (i, j), where 1 ≤ i ≤ k, 1 ≤ j ≤ li (hence, nodes of F correspond
to the uncovered nodes in S̄ at different moments of time during the course of the
execution). Pair (i, j) is an immediate descendant of (i + 1, j ′) in F if ũi

j ⊆ ũi+1
j ′ .

Let H1, . . . ,Hlk be the trees of F (rooted at pairs (k,1), . . . , (k, lk)). All these
trees are of height k. We argue that for each tree Hj and each level i (1 ≤ i ≤ k)
there exists a pair (i, j) in tree Hj such that B does not cover ũi

j . This follows from

the way B is constructed from B̄ . Indeed, let EXPAND be applied to uncontract a set
X ⊆ V G and update the current partial bibranching (call it A). Additionally, suppose
A does not cover X. After uncontraction X gives rise to a set of nodes X′ (following
notation from Sect. 3). Then, the updated partial bibranching A′ covers all nodes in
X′ except one.

Fix a tree Hj and a level i (1 ≤ i ≤ k). Let j the be the index corresponding to
an uncovered set ũi

j , as constructed above. Node ui
j was initial (at the corresponding

moment of time) and, hence, reachable. Therefore, π(ũi
j ) was increased during the

corresponding dual step. Pair (i, j) contributes the term π(X) − π1(X) for X := ũi
j

to Δ(π,π1,B). Summing over all levels i (but keeping Hj fixed) one concludes that
Hj contributes

∑
μ to Δ(π,π1,B), where

∑
μ is the sum of the dual adjustments

μ performed by the algorithm during the ST-stage.
Now summing over all the trees H1, . . . ,Hlk one gets

Δ(π,π1,B) ≥
∑

μ · lk. (5.1)

On the other hand, by Lemma 11

Δ(π,π1,B) ≤ 6n + wπ(B) ≤ 7n. (5.2)

Therefore,
∑

μ · lk ≤ 7n. This implies
∑

μ = O(n) and, hence, as each dual
update changes the duals by at least 1, the total number of the latter is O(n), as
claimed. Moreover, each dual step executes at least one dual update, hence k · lk ≤ 7n.
After �√n� dual steps at most O(

√
n) nodes in S̄ remain uncovered. To cover these

remaining nodes O(
√

n) primal steps are sufficient (as each such step decreases the
number of uncovered nodes by 1). Primal and dual steps are executed alternatingly,
hence, the bound of O(

√
n) holds for both of them.

Next, consider the state after k dual steps in the TS-stage and let, as earlier, π and
B̄ ⊆ AḠ denote the current duals and the current partial bibranching, respectively.
Put B ⊆ AG to be the result of expanding B̄ . We have shown earlier that there are
no negative terms in Δ(π,π1,B). Moreover, the very same argument (with S̄ and T̄

exchanged) applies, so one may consider subsets ũi
j ⊆ T similarly to the ST-stage.

Since each of these sets ũi
j corresponds to an uncovered node in T̄ at some interme-

diate moment and the algorithm may only decrease duals of sets that are covered, it
follows that none of π(ũi

j ) is changed during the ST-stage. Thus, (5.1) and (5.2) hold

for the TS-stage as well, and the latter completes after executing O(
√

n) primal and
dual steps and O(n) dual updates. �
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Applying ideas from [4, 6, 9, 13] one can implement the shell stage, the primal,
and the dual steps to run in O(m logn) time each. The necessary details are given
in the upcoming Sect. 6. Since the total number of scaling steps is (�logW� + 1) +
(�logn� + 1) = O(log(nW)) (see Sect. 3) we conclude as follows:

Theorem 2 The running time of the algorithm is O(m
√

n logn log(nW)).

6 Implementation Details

In this section we discuss the details of an O(m
√

n logn log(nW))-time implemen-
tation. In particular, we indicate how the shell stage, the primal, and the dual steps
can be carried out in O(m logn) time each.

Let us start with the shell stage. Family F gives rise to a contraction forest that is
denoted by F̂ . The leafs of F̂ correspond to (and are identified with) the nodes in G.
All other (inner) nodes of F̂ correspond to (and are identified with) the elements of F .
The “child–parent” relation in F̂ is defined in a natural way. To make contractions
and uncontractions efficient, digraph Ḡ and S(X) for X ∈ F are never maintained
explicitly. Instead, contraction forest essentially encodes the difference between G

and these graphs. The values π(X), X ∈ F , are attached directly to the nodes of F̂ .
For a non-leaf node X ∈ V F̂ the children of X in F̂ are regarded as nodes of S(X).
To make EXPAND efficient, we store the arc set of the corresponding Hamiltonian
cycle in S0

π(X).
Dealing with arcs is slightly more difficult. One can easily see that the S–T arcs

may be ignored for the duration of the shell stage. We call a node X ∈ V F̂ active if
either X is a root node in F̂ or X has an unscanned ancestor Y in F̂ . For each active
node X we maintain a list A(X) of certain arcs in G. This list contains all S–S or
T –T arcs a ∈ AG such that the image of a is present in S(Y ) (if Y is the ancestor of
X) or Ḡ (if X is a root node) and covers X. Also, A(X) may contain additional arcs
from γG(X). The latter arcs are called dead, the algorithm drops them once they are
discovered, see below.

These lists are constructed as follows. Given an S–S or T –T arc a = (u, v) ∈ AG,
u,v ∈ V G, consider the leafs u and v in F̂ . If u and v are in different contraction
trees then a appears in Ḡ only. We add a to A(U) (if a is an S–S arc) or A(V ) (if a

is a T –T arc). Here U (resp. V ) is the root node of the subtree containing u (resp. v).
Otherwise (u and v are in the same tree), let W be the least common ancestor (LCA)
of u and v in F̂ . Then, for an S–S arc a it is attached to the child of W such that
u is its descendant. Similarly, if a is a T –T arc then we attach a to the child of W

such that v is its descendant. Plenty of methods are known to solve the above LCA
problem, we may apply any of them that requires O(logn) time per query.

For consistency, we regard the leafs of F̂ as scanned regardless the fact that the
corresponding singleton sets never appear in F . Hence, the set of scanned nodes in
F̂ is closed under taking descendants. Let F̂0 denote the subforest of F̂ consisting of
all scanned nodes. Hence, at the beginning of the shell stage F̂0 only contains leafs
that correspond to the nodes of G. During the course of the shell stage other scanned
nodes may appear in F̂ ; these nodes are added to F̂0. We use a forest of dynamic
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trees [16] here. For each leaf x ∈ V F̂0, the root node r(x) of the corresponding tree
in F̂0 and the value σ(x) that is the sum of duals π(Y ) for all nodes Y on the path
from x to r(x) in F̂0 can be computed in O(logn) time per request. Also, updating
a single dual attached to a node of F̂0, adding an edge (or a node) to F̂0 or removing
an edge (or a node) from F̂0 costs O(logn) amortized time. Totally, maintenance
of F̂0 takes O(n logn) time for the whole shell stage (only O(n) contractions and
uncontractions are possible, only O(n) edges and nodes are totally added to F̂0 and
removed from F̂0).

These lists A(X) enable the algorithm to access the appropriate set of outcoming
(for X ⊆ S) or incoming (for X ⊆ T ) arcs at any point with no additional overhead
(except that caused by the presence of dead arcs). Next we explain how the algorithm
deals with reduced arc weights and computes the values of μ. To this aim, consider
an invocation NORMALIZE-SHELL(X), where X denotes the current node of F̂ to be
scanned. Set X is still unscanned but all its descendants are already scanned. Accord-
ing to our definition the children of X in F̂ are identified with the nodes of S(X);
these are some active nodes. For each such child Y the algorithm turns A(Y) into a
meldable priority queue, e.g. into a leftist heap (see, e.g., [17]). Each heap insertion
costs O(logn) time units. We use reduced weights as keys in these heaps. The latter
are calculated as follows. Consider an arc a = (u, v) ∈ A(Y). The algorithm takes the
initial value of w(a) and then adjusts it by subtracting σ(u) (for the case X ⊆ S) or
σ(v) (for the case X ⊆ T ). (One must recall here that S–T arcs are ignored and may
not appear in A(Y).)

To compute the value of μ during a dual adjustment, the algorithm fetches an arc
a = (u, v) ∈ AG with the minimum reduced weight from the appropriate heap. If this
arc is dead (which can be detected in O(logn) time by making a query to the forest
of dynamic trees and comparing r(u) and r(v)) it is discarded and another attempt is
made. Fetching an arc with the minimum key costs O(logn) time.

One can easily adjust the implementation of the leftist heap in such a way that
is supports decreasing all its keys in O(1) time. Instead of storing the actual keys
in nodes of a leftist heap we store certain “delta values” there. The actual key that
corresponds to a node v is the sum of deltas on the path from the root node to v.
Changing all keys in a heap can be carried out by changing the delta value assigned
to its root. Also, these deltas may be handled by the standard heap melding operation
(see [17]) with no additional overhead.

Recall that the shell state grows a certain forest in the current shell digraph S(X).
When arc a is picked, two cases are possible. Namely: (i) either arc a connects a
pair of distinct trees; or (ii) arc a forms a cycle. To distinguish between these cases
a disjoint set union (DSU) data structure [2] is employed. It keeps the partition of
V S(X) into the node sets of trees of the said forest. The total time to maintain DSU
is O(m logn) (assuming any reasonable implementation).

Dealing with the case (i) is straightforward. In case (ii) the set of nodes of S(X)

to be contracted is easily constructed in time proportional to its size. Forests F̂ and
F̂0 are adjusted to reflect the creation of a new active set, say Y ⊆ V G. All children
of Y are already scanned. Node Y ∈ V F̂ is also marked as scanned. To construct
A(Y) one melds the heaps of the children of Y (these heaps are no longer needed
since they correspond to inactive nodes). Note that this is exactly the point where a
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dead arc may appear in a list. Altogether, heap management during contractions take
O(n logn) time for the whole shell stage.

NORMALIZE-SHELL(X) may stop for two reasons. It either restores property (D2)
for set X or decreases π(X) down to zero and, hence, dissolves X. Consider the latter
case. Set X is removed from F̂ , so all of its children are attached to the ancestor
of X (if any). Also, the algorithm scans the arcs in A(X) and attaches them to the
appropriate children of X. Namely, let a = (u, v) be an arc in A(X). Then r(u) (for
X ⊆ S) or r(v) (for X ⊆ T ) is exactly the node of F̂ where a belongs. Any arc in
G may be scanned this way at most once. Also each arc in G is fetched from the
appropriate heap during the shell stage at most once. Hence, each shell stage totally
takes O(n logn + m logn) = O(m logn) time, as claimed.

Next, consider the ST-stage (the TS-stage is similar). Now the S–T arcs of G must
be taken into account. Forest F̂ , DSU for FS are maintained as a forest of dynamic
trees similarly to the shell stage. In particular, values r(v) and σ(v), v ∈ V G, can be
computed in O(logn) time per request. Note that these values enable us to check if
an arc a ∈ AG is present in Ḡ and also to compute its endpoints in Ḡ and the reduced
weight in O(logn) time.

Let us first deal with the S-part of the G. For each root node X ∈ V F such that
X ⊆ S we maintain two lists. List AS(X) (resp. AT (X)) contains all S–S (resp. S–T )
arcs in AG whose images leave X in Ḡ. Also, these lists may contain dead arcs (those
belonging to γG(X)). When a subset of nodes in S̄ gets contracted in Ḡ, a new root
node, say Y , is formed in F̂ ; its lists AS(Y ) and AT (Y ) are constructed by merging
the corresponding lists of its children in F̂ (in time proportional to the number of lists
to be merged). Similar to the shell stage, these merges may produce dead arcs, which
are discarded once fetched; this incurs O(m logn) of total time overhead (each arc
costs O(logn) and may be discarded at most once).

We now explain how the auxiliary digraph H is constructed and maintained during
the ST-stage. As usual, the node set of H just coincides with the set of roots of F̂ .
To check if a node in H is initial and to distinguish cases (F2), (F3), and (F5) in
the definition of a final node the algorithm maintains, for each node v in T̄ and each
inner (w.r.t. forest FS ) node v in S̄, a counter indicating the number of arcs in B̄ that
cover v. Checking for cases (F1) and (F4) is straightforward.

Consider a primal step. To construct H we scan the lists AT (v) for all v ∈ S̄ and
choose the arcs with zero reduced weight. Also, we scan the current partial bibranch-
ing B̄ and add the appropriate backward arcs to H . Altogether this takes O(m logn)

time (O(logn) time per arc). At each primal step the blocking path method [3] is
applied to H . We construct, in O(m) total time, the required set of augmenting paths,
one path at a time. Augmenting B̄ along each of these paths P in O(|AP |) time is
easy. Hence, each primal step is carried out in O(m logn) time.

Finally, we consider a dual step. One can maintain sets S̄0 and T̄0 in H incremen-
tally as follows. At the beginning of the dual step the algorithm constructs H and
computes the sets S̄0 and T̄0 explicitly in O(m) time. When a new arc (u, v) appears
in H the algorithm checks if u is known to be reachable. In the latter case node v is
declared reachable as well (i.e. added either to S̄0 or T̄0). Processing each new arc in
H takes O(1) time, therefore the whole maintenance of S̄0 and T̄0 costs O(m) for
each dual step.
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However, there are complications that are caused by contractions and uncontrac-
tions. These operations are applied to Ḡ and hence can also change the node set of
H . We need to take them into account and update S̄0 and T̄0 appropriately.

Dealing with a contraction of a subset X ⊆ S̄ is fairly easy. As explained earlier,
we update the DSU corresponding to FS . The newly created complex node is reach-
able iff at least one node in X was reachable before the contraction.

Dealing with uncontractions in T̄ is more tricky. Let EXPAND be called for a
reachable complex node v ∈ T̄ and replaces it with a set of nodes X′. One has to
decide which nodes in X′ are reachable. Consider the arc set R0 as in the statement
of Lemma 9. Let R1 be the set of S–T arcs than generate forward arcs in R0. The
members of R1 are arcs in H , however they may be regarded as arcs in G. Lemma 9
indicates that R1 only increases (with a possible exception of the last dual update
that calls EXPAND and creates a final node of type (F2)). The algorithm maintains
R1, which takes O(m) time for the whole dual step. Also, for each node u ∈ T the
algorithm keeps the number of arcs in R1 entering u (recall that we regard elements
of R1 as arcs in G). Now a node u ∈ T̄ is reachable if and only if there exists a
node u′ ∈ ũ such that u′ has a positive counter of R1-arcs. These R1-counters can
be maintained and for each u existence of u′ can be checked in O(logn) time by a
simple augmentation of F̂ .

Therefore, we process the uncontraction of v as follows. Firstly, we remove v from
T̄0 (since v is no longer present in Ḡ and H ). Next, the elements of X′ are scanned
and reachable nodes among them are selected and added to T̄0, as explained above.
If a final node of type (F2) is discovered, the dual step completes. (In this case we do
not know the actual set of reachable nodes as the connectivity in H could get broken,
see the proof of Lemma 9. However, this is unimportant since the upcoming primal
step will compute H from scratch anyway.) Otherwise, the set of reachable nodes is
correctly updated.

Processing each new arc in H and updating S̄0 and T̄0 costs O(1) time. Process-
ing each new arc in R1 costs O(logn) amortized time (as it involves updating the
counters in F̂ ). Dealing with contractions and uncontractions takes O(n logn) time.
Therefore, O(m logn + n logn) = O(m logn) time is sufficient to maintain S̄0 and
T̄0 during each dual step.

During the dual step the potentials of nodes in S̄0 are increased by μ and the
potentials of nodes in T̄0 are decreased by μ, see (4.2). A trivial modification to
the bookkeeping of duals allows making these changes in O(1). The bottleneck of
the dual step comes from the maintenance of sets S̄0, T̄0 and computation of the
appropriate adjustment parameters μ, see (4.1).

First, a priority queue Q1 is organized that stores the duals corresponding to the
nodes in T̄0. Computing a single value of μ1 takes O(logn) time. By Lemma 12 each
dual step executes O(n) dual updates, hence each dual step takes O(n logn) time for
computing μ1 and maintaining Q1.

Second, lists AS(X) are turned into leftist heaps (reduced arcs weights are re-
garded as keys). A second-order priority queue Q2 is organized that captures, for
each node v ∈ S̄0, the minimum from the corresponding heap AS(v). The total time
for computing μ2 and maintaining Q2 is again O(n logn). If the adjustment produces
an arc a ∈ AS(X) with zero reduced weight this arc is extracted and examined. If a is
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dead, it is skipped. Otherwise, (S2) property fails and NORMALIZE-FOREST routine
applies as described in Sect. 4.

Third, let us focus on computing μ3. To this aim, the algorithm maintains a priority
queue Q3 that contains the S–T arcs (u, v) such that u ∈ S̄0 and v ∈ T̄ − T̄0 and,
possibly, some other arcs. Queue Q3 is incrementally constructed by scanning the
nodes in u ∈ S̄0 and examining their lists AT (u). Each arc that is added to Q3 takes
O(logn) time for computing its reduced weight. Also, as the algorithm progresses,
more nodes get added to T̄0, hence certain previously added arcs no longer enter
T̄ − T̄0. These arcs are considered dead; a usual lazy cleanup is used. As earlier, the
algorithm regards reduced weights as keys in Q3. An arc may be added to Q3 and a
minimum may be extracted from Q3 in O(logn) time. Also, all keys in Q3 may be
decreased by μ in O(1) time (using the earlier mentioned delta encoding for storing
keys). Hence, working with Q3 during each dual step takes O(m logn) time.

Fourth, consider μ4. To compute it in O(1) one needs to maintain a bipartition of
B̄ST into a pair of lists: B̄0

ST (consisting of arcs with zero reduced weight) and B̄1
ST

(consisting of arcs with the reduced weight equal to 1). As only O(n) dual updates
are totally possible, the total time needed to deal with μ4 is O(n).

Therefore, each dual step totally takes O(n logn+n+m logn) = O(m logn) time,
as claimed.

7 Conclusions

We have studied the minimum weight bibranching problem and devised an efficient
combinatorial weight-scaling algorithm for it. Regardless of the fact that bibranchings
do not seem to be reducible to network flows, our results indicate that this problem
can benefit from the blocking augmentation strategy.

The major open question here is if the time bound of O(m
√

n logn log(nW)) can
be further improved.

It seems likely that one may replace m logn term by m + n logn. However, this
would require using more involved data structures than just dynamic trees and meld-
able heaps. A good starting point for this might be [9] where an O(m + n logn) time
algorithm for the optimal branching problem is given.

It is also tempting to improve the bound for the case when one part of the graph
is much larger than the other. This change will require a more careful analysis of the
number of primal and dual steps (as compared to what we did in Sect. 5).
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