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Abstract We study the minimum s-t-cut problem in graphs with costs on the edges
in the context of evolutionary algorithms. Minimum cut problems belong to the class
of basic network optimization problems that occur as crucial subproblems in many
real-world optimization problems and have a variety of applications in several dif-
ferent areas. We prove that there exist instances of the minimum s-t-cut problem
that cannot be solved by standard single-objective evolutionary algorithms in reason-
able time. On the other hand, we develop a bi-criteria approach based on the famous
maximum-flow minimum-cut theorem that enables evolutionary algorithms to find
an optimal solution in expected polynomial time.

Keywords Evolutionary algorithms · Minimum s-t-cuts · Multi-objective
optimization · Randomized search heuristics

1 Introduction

Metaheuristics such as evolutionary algorithms, ant colony optimization, and local
search methods are known to be good problem solvers for a wide range of real-world
optimization problems [23]. Empirical tests confirm that they provide high-quality
solutions within reasonable time for many such problems. Understanding the success
of these metaheuristics from a theoretical point of view has gained increasing interest
in recent years and is an ongoing challenge.

A conference version appeared in GECCO 2008 [17].
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A lot of progress has been made in analyzing simple evolutionary algorithms with
respect to their runtime behavior on artificial pseudo-boolean functions [4, 10] as
well as some well-known combinatorial optimization problems [8, 15, 18, 19, 21,
24]. We contribute to this line of research and study the minimum s-t-cut problem in
a given graph with weights on the edges. This is one of the basic, classical problems in
combinatorial optimization, operations research, and computer science [2]. It is well
known that the problem of computing a minimum s-t-cut can be solved in polynomial
time and is closely related to the problem of computing a maximum flow in a given
graph. Besides the classical s-t-cut problem, there are many other variants of cutting
problems some of which are NP-hard. Examples are the maximum cut problem or
the minimum multicut problem [11]. Evolutionary algorithms have produced good
results for various kinds of difficult cutting problems [5, 14, 20].

We start by considering two single-objective models for the minimum s-t-cut
problem in Sect. 2. One is node-based, the other one is edge-based. In the node based
approach we are searching for a partitioning of the vertices into two subsets, one con-
taining s and the other containing t , such that the cost of the edges connecting the
s- to the t-side of the cut is minimal. In the edge based approach we search for a
subset of edges of minimal costs such that the deletion of those edges disconnects
t from s, i.e., the chosen edges constitute a cut.

It turns out that the two mentioned single-objective approaches do not lead to an
efficient optimization process for basic evolutionary algorithms. We present classes
of graphs with the following undesired property: Once the evolutionary algorithm has
found some suboptimal s-t-cut, it is extremely unlikely that this solution will even-
tually be turned into an optimal solution within a polynomial number of iterations.
The reason is that in the search space consisting of all s-t-cuts there is a second-best
(suboptimal) solution such that the globally optimal solution is far away and thus
very unlikely to be reached within a single step. Moreover, due to the special struc-
ture of the considered graphs, the evolutionary algorithm gets easily trapped in this
second-best locally optimal solution.

Afterwards, in Sect. 3, we examine an edge-based multi-objective model of the
problem that takes the cost of a subset of edges as well as the remaining maximal
s-t-flow after the chosen edges have been removed. This trick helps to somehow
enlarge the actual search space by enhancing infeasible edge sets (whose removal
does not disconnect t from s). The enlarged search space no longer allows for the
undesired situation in the single-objective approach discussed above.

Benefits of such bi-criteria evolutionary algorithms for single-objective optimiza-
tion problems have been observed before. Vertex cover and set cover problems [6]
are similar to our problem in the sense that single-criteria evolutionary algorithms get
easily trapped in locally optimal solutions while a bi-criteria approach successfully
finds the globally optimal solution. A bi-criteria approach for the minimum spanning
tree problem [18] leads to a speed-up for dense graphs compared to single-criteria
approaches.

In order to evaluate a subset of edges with respect to the maximum s-t-flow value
after deletion of those edges, we assume that the evolutionary algorithm has access
to an oracle that can compute the maximum flow value in a graph. Due to the close
relation of maximum s-t-flows and minimum s-t-cuts, this assumption seems to be
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questionable at first sight. We therefore discuss this issue in some more detail in the
following.

We first argue from a theoretical point of view. While an explicitly given maximum
s-t-flow (specified by the flow value on every edge of the graph) directly exposes a
minimum s-t-cut, the maximum flow value alone does not contain any structural
information about a minimum cut besides the minimum cut capacity. In particular,
having access to such an oracle does not render the minimum cut problem entirely
trivial.

From a more practical point of view, having access to such a maximum flow oracle
seems reasonable in certain situations. Consider, for example, a network of water or
oil pipelines. When a leak occurs at some point t of the network, enough pipeline
connections have to be cut off by using stop-cocks such that no more liquid leaks
from the system. On the other hand, it is desirable to keep the number of inactivated
pipeline connections at a minimum in order to keep the negative impact small. In the
described scenario, after cutting off some edges, the remaining flow out of the leak
can be easily observed and is actually the crucial basis for further decision-making.

Finally, in contrast to the basic minimum s-t-cut problem considered here, in more
complex settings the complexity of a minimum cut computation and the related max-
imum flow computation can be considerably different. Consider for a example a mul-
ticommodity flow setting with k source-sink pairs (si , ti ), i = 1, . . . , k. Here, a maxi-
mum multicommodity flow can be computed in polynomial time while the multi-cut
problem which consists of finding a set of edges of minimum cost that disconnects
every sink ti from its associated source si , i = 1, . . . , k, is NP-hard [3]. It is therefore
reasonable to assume that maximum multicommodity flow computations are used as
subroutines when trying to compute a minimum cut disconnecting all source-sink
pairs. As a final example we mention length-bounded flows and cuts. Also in this
situation, the maximum flow value is considerably easier to obtain than a minimum
cut [1].

We continue with the discussion of the result presented in Sect. 3. As both criteria
(the cost of chosen edges and the remaining flow value) admit a number of function
values that is exponential in the input size, the Pareto front explored by the evolution-
ary algorithm is of exponential size and we investigate a multi-objective evolution-
ary algorithm that uses the concept of ε-dominance introduced in [12]. This concept
leads to a partitioning of the two-dimensional objective space into a certain number
of boxes. For each box at most one search point is archived which reduces the popu-
lation size and may lead to faster evolutionary algorithms [9]. The size of the boxes
is determined by a parameter ε which has to be chosen according to the considered
problem. We show that this algorithm performs well for a wide range of ε-values. In
particular, we show that a minimum s-t-cut can be computed in expected polynomial
time using the multi-objective approach. Later on, the results for the multi-objective
approach have been used to show that evolutionary algorithms can approximate the
multi-cut problem in expected polynomial time [16].

The outline of the paper is as follows. In Sect. 2, we analyze the single-objective
approaches to the minimum cut problem and show that they do not lead to an efficient
optimization process. In Sect. 3, we present the multi-objective model and prove that
the expected optimization time of this approach is polynomial. Finally, we finish with
some conclusions.
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2 Single-Objective Approach

We consider the following problem. Given a connected directed graph G = (V ,E)

on n + 2 vertices and m edges and a cost function c : E → N+ that imposes positive
integer weights on the edges. Two nodes s, t ∈ V are distinguished. We call s the
source node and t the target node.

An s-t-cut S ⊆ E is a set of edges such that there is no path from s to t when the
edges of S are deleted from E. The cost of a subset of E is defined as the sum of
the costs of its elements. The goal is to find an s-t-cut S ⊆ E of minimum cost. We
denote by cmax = maxe∈E c(e) the largest cost among all edges.

In Sects. 2.1 and 2.2 we investigate two single-objective approaches and consider
the well-known (1 + 1) EA working on bit strings of length n. New search points are
obtained by flipping each bit of the current search point with probability 1/n. The
algorithm can be described as follows.

Algorithm 1 (1 + 1) EA

1. Choose an initial search point x ∈ {0,1}n uniformly at random.
2. Repeat

– create an offspring x′ by flipping each bit of x with probability 1/n.
– if f (x′) ≤ f (x), x := x′.

For our investigations, we are interested in the number of fitness evaluations to
reach an optimal search point. This is called the optimization time of the considered
algorithm. Often the expectation of this value is analyzed and called the expected
optimization time.

We would like to remark that the results of this section also apply to RLS, a local
variant of (1+1) EA. Since this variant flips exactly one bit of x uniformly at random,
the proofs are even simpler than for (1 + 1) EA.

2.1 Node-based Search

We first investigate (1 + 1) EA that searches for a partitioning of the vertices such
that the edges crossing the two partitions constitute a minimum cut.

The search space is {0,1}n, i.e., each bit of a search point x corresponds to one
vertex of V \ {s, t}. If xi = 0, the vertex vi is on the same side of the cut as the
source s whereas xi = 1 assigns vi to the target t . Let S = {s} ∪ {vi |xi = 0} and
T = {t} ∪ {vi |xi = 1}.

The fitness of a search point x is given by

cost(x) =
∑

e∈E∩(S×T )

c(e),

which computes the sum of the cost of all edges leading from S to T . Note that
each search point constitutes a cut, i.e., there are no infeasible solutions using this
approach.

In the following, we present a class of instances where (1+1) EA in the described
setting is not able to find a minimum cut in polynomial time with high probability.
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Fig. 1 Illustration of graph Gk

To simplify the presentation we use real-valued costs on the edges. However, an ap-
propriate scaling can be used to come up with instances where the costs are positive
integers and the following results also hold.

The example is based on graphs Gk that are used as building blocks (see Fig. 1).
The graph Gk consists of a path of k nodes (excluding s and t) connected by edge
pairs. The costs on the edge pairs are increasing from 1 to k. In addition, the very
last edge pair has cost 0, such that assigning all nodes to the source s constitutes the
unique minimum cut of cost 0. On the other hand, assigning all nodes to the target t

is a local optimum of cost 1.
For simplicity, we assume that the bits of a vector from {0,1}k are in the same or-

der as the corresponding vertices on the path from s to t . For example, cost(0k−11) =
k. Furthermore, cost(0k) = 0 and cost(1k) = 1.

We define the notion of a block of bits as follows. A block is a set of consecutive
bits that have the same value. The length of a block is the number of its bits. For
example, x = 0k consists of one single block of 0’s of length k. In the following,
the right-most block of a bit string will play an important role, and we use len(x) to
define the length of that block.

First we prove two simple observations that will be needed later.

Lemma 1 Let len(x) < k. Flipping the bit left of the right-most block increases
len(x) by at least 1 and decreases cost(x) by at least 1.

Proof Let i denote the index of the bit left to the right-most block. Let x′ denote the
bit string obtained from x by flipping xi . Assume x = ∗0, this implies xi = 1.

If xi−1 = x′
i−1 = 0, flipping xi excludes the edges (vi−1, vi) and (vi+1, vi) from

the cut, i.e., cost(x′) = cost(x) − i − (i + 1) ≤ cost(x) − 1. If xi−1 = x′
i−1 = 1, flip-

ping xi excludes the edge (vi+1, vi) from the cut, whereas the edge (vi, vi−1) is in-
cluded. Hence, we have cost(x′) = cost(x) − (i + 1) + i = cost(x) − 1. The case
x = ∗1 is similar. �

Lemma 2 Let x be a search point with len(x) ≥ 2. Provided that only 1-bit flips
occur, all future accepted search points x′ satisfy len(x′) ≥ len(x).

Proof If the left-most bit of the right-most block is flipped, an edge of cost k + 1 −
len(x) is removed from the cut, whereas an edge of cost k+2− len(x) is being added.
Hence, cost(x′) = cost(x)+1 and x′ is not accepted. If the right-most bit of the right-
most block is flipped, an edge of cost k is added to the cut, whereas at most one edge
of cost 0 is removed from the cut. Again, cost(x′) > cost(x) and x′ is not accepted.
If one of the inner bits of the right-most block is flipped, two edges of cost at least
k + 2 − len(x) and k + 3 − len(x) are added to the cut, and no edge is removed. This
implies cost(x′) > cost(x) and x′ is not accepted. �
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Fig. 2 Illustration of graph
G′

k,�

In other words: If x = ∗00 holds, this property is maintained for all future accepted
search points (provided that only 1-bit flips occur). Similarly for x = ∗11.

Now we describe the construction of the graph Gk,� based on Gk . Consider �

copies of Gk and merge all copies of s. Similarly, merge all copies of t . The resulting
graph has k� + 2 nodes and 2�(k + 1) edges. The j -th copy of Gk will be denoted
by Gj . The value costj (x) corresponds to the total cost caused by the edges in Gj

leading from S to T .
For the lower bound on the running time of (1 + 1) EA we choose k = Θ(n1/10)

and � = Θ(n1/10). Furthermore, we add n − k� vertices adjacent to t . The resulting
graph is called G′

k,� (see Fig. 2). In the following we distinguish between the original
Gk,� (called chain part) and the star part. All edges in the star part have cost 1/n.
Adding the star part has the consequence that steps flipping nodes in the flow part
become more unlikely. As there are Θ(n1/5) nodes in the chain part but Θ(n) nodes
in the star part, steps flipping exactly i nodes in the chain part, i a constant, have
probability Θ(n−(4/5)i ) (using similar counting arguments as in [19]).

Theorem 1 With probability 1 − o(1), the optimization time of (1 + 1) EA on G′
k,�

is 2Ω(n1/10).

Proof We consider a typical run consisting of different phases of length n7/5 and
show that a local optimal solution which is not globally optimal is reached with prob-
ability 1 − o(1). As the chain part consists only of Θ(n1/5) nodes while the total
number of nodes is n (excluding s and t), mutation steps flipping at least two bits in
the chain part do not occur with probability 1−O(n−8/5n7/5) = 1−o(1) within these
phases. Let xj be the part of a search point x which consists of the bits corresponding
to the nodes of Gj .

Claim With probability 1 −o(1), after n7/5 steps a search point x has been obtained
for which the following two statements hold.

1. For each Gj either xj = ∗00 or xj = ∗11 holds.
2. For at least one Gj , xj = ∗11 holds.

Proof The probability that a fixed xj of the initial search point does not match ∗11
is 3/4. These events are independent for each component Gj . Hence, the probability
that there is no j , 1 ≤ j ≤ � such that xj of the initial search point matches ∗11
is (3/4)�. Thus, the second statement holds with probability 1 − o(1) for the initial
search point. By Lemma 2, the statement holds with at least the same probability at
the end of the phase.
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Consider any component Gj . If xj = ∗00 or xj = ∗11 for the initial search point,
by the same lemma, this property holds at the end of the phase. Suppose xj = ∗01 or
xj = ∗10. The probability that the two right-most bits of xj are not flipped within a
phase of n7/5 steps is at most (1 − 1/n)(2n7/5) = O(e−2n2/5

).
There are � = Θ(n1/10) components which implies that with probability 1 −

O(n1/10e−2n2/5
) = 1 − o(1), xj = ∗00 or xj = ∗11 holds for each j at the end of

the phase. �

Claim With probability 1 − o(1), after additional n7/5 steps a search point x has
been obtained for which the following two statements hold.

1. For each Gj either xj = 0k or xj = 1k holds.
2. For at least one Gj , xj = 1k holds.

Proof With probability 1 − o(1) only such mutation steps occur that flip no bits or
exactly one bit in the chain part. Mutation steps that flip no bits in the chain part are
irrelevant for the claim and can be ignored.

Now consider the mutation steps where exactly one bit in the chain part is flipped.
Due to the choice of 1/n for the cost of the star edges, the fitness change caused
by the star part is at most (n − k�)/n < 1. The fitness changes by at least 1 when
flipping exactly one bit in the chain part. Hence, changes in the star part do not affect
the statements given in Lemmas 2 and 1.

There is a sequence of at most n1/5 1-bit flips in the chain part that results in a
search point x fulfilling the first statement: For each component Gj flip the bit left to
the right-most block. By Lemma 1, such steps are accepted. By Lemma 2, the length
of the right-most block does not decrease. The probability of a particular 1-bit flip
in the chain part in the next mutation step is at least 1/(2en). Hence, the expected
time until a search point fulfilling the first statement is reached is upper bounded by
O(n6/5). Using Markov’s inequality, the probability of having reached such a search
point within a phase of n7/5 steps is 1 − o(1).

There is at least one component Gj with xj = ∗11 at the end of the first phase. By
Lemma 2 and the first statement, xj = 1k holds at the end of the second phase. �

Claim With probability 1 − o(1), after additional n7/5 steps a search point x has
been obtained for which the following three statements hold.

1. For each Gj either xj = 0k or xj = 1k holds.
2. For at least one Gj , xj = 1k holds.
3. All bits corresponding to nodes in the star part are set to 1.

Proof After having reached a search point where for each Gj either xj = 0k or
xj = 1k holds, bit flips affecting the chain part are only accepted if they flip at least
k flow nodes. This is exponentially unlikely during a phase of n7/5 steps. Hence the
first two statements are fulfilled at the end of the phase.

Within this phase all bits corresponding to star nodes are set to 1 with probability
1 − o(1) using similar fitness layer arguments as before. �
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After having reached a search point where the three properties of the preceding
claim hold, we consider one fixed component Gj with xj = 1k . This component can
only be turned into an optimal component by flipping all bits of Gj in a single mu-
tation step. The probability for this event is O(n−k). The expected waiting time for
such a step is Ω(nk) = 2Ω(k logn). Using Markov’s inequality once more, the opti-
mization time is 2Ω(k) with probability 1 − o(1) as all failure probabilities during our
typical run have been shown to be o(1). �

An integral cost vector can be obtained by multiplying all edge costs by n. Theo-
rem 1 also applies to the modified cost vector.

We want to remark that Theorem 1 also applies to undirected graphs. A pair of
oppositely directed edges of equal cost behaves exactly as a single, undirected edge
of the same cost.

2.2 Edge-based Search

Now we consider an approach that searches for a set of edges which represents a
minimum cut. Therefore we work with bit strings of length m = |E| in (1 + 1) EA
and flip each bit with probability 1/m in the mutation operator. For a search point
x ∈ {0,1}m, the set E(x) := {ei ∈ E | xi = 1} denotes the subset of E corresponding
to the 1’s in x. Note that not every search point represents an s-t-cut.

As not every search point of the underlying search space represents a feasible so-
lution, we have to penalize search points that do not represent an s-t-cut. For a search
point x, we do this by considering the value of a maximum flow that can be sent
from s to t after having taken out the chosen edges. Note that the flow value is 0
iff x represents a cut. To be more precise, the fitness of a search point x ∈ {0,1}m is
given by f (x) := cost(x)+α flow(x) for some α > 1, where cost(x) := ∑

e∈E(x) c(e)

and flow(x) denotes the maximum value of an s-t-flow in the graph G(x) :=
(V ,E \ E(x)). The capacity of an edge e ∈ E equals its cost c(e). The fitness func-
tion should be minimized. Note that flow(x) vanishes if and only if E(x) contains
an s-t-cut of G. Hence, flow(x) is a penalty term that penalizes bitstrings that do not
correspond to a feasible solution. If E(x) contains an s-t-cut of G, the fitness func-
tion equals the value of the corresponding cut. A factor α ≤ 1 is unsuitable, since the
empty set would have smaller (or equal) fitness than the global optimum.

In the following, we present a class of instances for which (1 + 1) EA fails to
explore a minimum cut in polynomial time with high probability. Again, we use real-
valued costs on the edges to simplify the presentation. The instances are based on the
graph Hk (see Fig. 3). Hk consists of k + 1 edges from s to v with cost 1 and k edges
from v to t with cost 1 + ε. Choosing ε > 1

k
implies that the minimum s-t-cut of Hk

is given by the set of 1-edges. The set of (1 + ε)-edges is another cut of larger cost.
Requiring ε < 2

k
will turn out to be useful later.

Let a(x) denote the cardinality of E(x) intersected with the set of 1-edges, and
let b(x) := |E(x)| − a(x). Then cost(x) = a(x) · 1 + b(x) · (1 + ε) and flow(x) =
min{k + 1 − a(x), (k − b(x))(1 + ε)}. Note that the global optimum corresponds to
a(x) = k + 1 and b(x) = 0, whereas a(x) = 0 and b(x) = k is a local optimum of
strictly larger value.
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Fig. 3 Illustration of graph Hk

First we characterize the dependence of flow(x) on a(x) and b(x).

Proposition 1 If b(x) ≥ a(x) + 1, then flow(x) = (k − b(x))(1 + ε). If b(x) ≤
a(x) − 1, then flow(x) = k + 1 − a(x).

Proof If b(x) ≥ a(x) + 1 holds, then (k − b(x))(1 + ε) ≤ (k − a(x) − 1)(1 + ε) ≤
k − 1 − a(x)+ εk. Since ε < 2

k
, we have (k − b(x))(1 + ε) < k + 1 − a(x). If b(x) ≤

a(x) − 1 holds, then (k − b(x))(1 + ε) ≥ (k − a(x) + 1)(1 + ε) > k + 1 − a(x). �

In the case that only 1-bit flips occur the following slightly stricter precondition is
maintained throughout the run of (1 + 1) EA.

Lemma 3 If b(x) ≥ a(x) + 2 for some search point x, then this property also holds
for all future accepted search points, provided that only 1-bit flips occur.

Proof Let x′ denote the search point constructed from x. Since x′ differs from x by
one bit, we have b(x′) ≥ a(x′)+1. By Proposition 1, the flow(·) value depends solely
on b(·), and it holds that

flow(x′) = flow(x) +

⎧
⎪⎨

⎪⎩

−(1 + ε) if b(x′) = b(x) + 1,

0 if b(x′) = b(x),

(1 + ε) if b(x′) = b(x) − 1.

For the cost(·) component it holds that

cost(x′) = cost(x) +

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 + ε if b(x′) = b(x) + 1,

−(1 + ε) if b(x′) = b(x) − 1,

1 if a(x′) = a(x) + 1,

−1 if a(x′) = a(x) − 1,

0 otherwise.

(1)

Note that α > 1. Hence, we can summarize that f (x′) ≤ f (x) holds if and only if
a(x′) = a(x) − 1 or b(x′) = b(x) + 1. This implies that 1-bit-flips are only accepted
if they decrease a(x) or increase b(x), and hence, b(x′) ≥ a(x′) + 2 holds if x′ is
accepted. �

In a similar way we obtain the following result.
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Fig. 4 Illustration of graph
H ′

k,�

Lemma 4 If a(x) ≥ b(x) + 2 for some search point x, then this property also holds
for all future accepted search points, provided that only 1-bit flips occur.

Proof Let x′ denote the search point constructed from x. Since x′ differs from x by
one bit, we have a(x′) ≥ b(x′)+1. By Proposition 1, the flow(·) value depends solely
on a(·), and it holds that

flow(x′) = flow(x) +

⎧
⎪⎨

⎪⎩

−1 if a(x′) = a(x) + 1,

0 if a(x′) = a(x),

1 if a(x′) = a(x) − 1.

For the cost(·) component (1) holds. Note that α > 1. Hence, we can summarize that
f (x′) ≤ f (x) holds if and only if a(x′) = a(x) + 1 or b(x′) = b(x) − 1. This implies
that 1-bit flips are only accepted if they increase a(x) or decrease b(x), and hence,
a(x′) ≥ b(x′) + 2 holds if x′ is accepted. �

Now we describe the construction of the graph Hk,l based on Hk . Consider l copies
of Hk and merge all copies of s. Similarly, merge all copies of t . The resulting graph
has l +2 nodes and l(2k +1) edges. The j -th copy of Hk will be denoted by Hj . The
values aj (x) and bj (x) correspond to the cardinality of E(x) intersected with the set
of 1- and (1 + ε)-edges in Hj , respectively.

For the lower bound on the running time of (1 + 1) EA we choose k = Θ(n4/10)

and � = Θ(n1/10). Furthermore, we add a clique of n − l − 1 vertices (one vertex
being t). The resulting graph is called H ′

k,� (see Fig. 4). In the following we distin-
guish between the original Hk,� (called bundle part) and the clique part. All edges
in the clique part have cost δ where 0 < δ ≤ (α − 1)/n2. Adding the clique has the
consequence that steps flipping edges in the bundle part become more unlikely. As
there are Θ(n1/2) edges in the bundle part but Θ(n2) edges in the clique part, steps
flipping exactly i edges in the bundle part, i a constant, have probability Θ(n−(3/2)i )

(using similar counting arguments as in [19]).

Theorem 2 With probability 1 − o(1), the optimization time of (1 + 1) EA on H ′
k,�

is 2Ω(n1/10).

Proof We consider a typical run consisting of different phases of length n5/2 and
show that a local optimal solution which is not globally optimal is reached with prob-
ability 1 − o(1).

Claim With probability 1 − o(1) for each j , 1 ≤ j ≤ �, |aj (x) − bj (x)| ≥ 2 holds
for the initial search point x.



Algorithmica (2011) 59: 323–342 333

Proof Each component Hj contains exactly 2k + 1 edges that can be either chosen
or not. Let xj be the part of a search point x which consists of the bits corresponding
to these edges. Clearly, xj has 2k + 1 bits and the search space Xj for Hj is of
size 22k+1. In the following, we count the number of search points in Xj where
|aj (x) − bj (x)| < 2 holds. For aj (x) − bj (x) = 0 the number of search points in Xj

is given by

k∑

i=0

(
k

i

)(
k + 1

i

)
≤

(
k

k/2

) k∑

i=0

(
k + 1

i

)
= O(k−1/222k+1).

For the case aj (x) − bj (x) = −1 we get

k∑

i=1

(
k

i

)(
k + 1

i − 1

)
= O(k−1/222k+1).

For the case aj (x) − bj (x) = 1 we get

k∑

i=0

(
k

i

)(
k + 1

i + 1

)
= O(k−1/222k+1).

Hence, the probability that |aj (x) − bj (x)| < 2 holds for the initial search point x is
upper bounded by

O(k−1/222k+1)

22k+1
= O(k−1/2) = O(n−2/10).

There are � = Θ(n1/10) such components which implies that with probability
1 − O(n1/10 · n−2/10) = 1 − O(n−1/10) = 1 − o(1), |aj (x) − bj (x)| ≥ 2 holds for
each j , 1 ≤ j ≤ �, of the initial search point x. �

The property of the previous claim does not only hold if the initial search point is
chosen uniformly at random. For example, if (1 + 1) EA is started from the empty
set, the claimed property holds after an additional phase of n5/2 steps with probability
1 − o(1).

We consider phases consisting of n5/2 steps. As the bundle part consists
only of Θ(n1/2) edges while the total number of edges is Θ(n2), mutation
steps flipping at least two bits in the bundle part do not occur with probability
1 − O(n5/2n−3) = 1 − o(1) within these phases.

Claim With probability 1 −o(1), after n5/2 steps a search point x has been obtained
for which the following two statements hold.

1. For each Hj either bj (x) = k and aj (x) = 0 or bj (x) = 0 and aj (x) = k + 1
holds.

2. For at least one Hj , bj (x) = k and aj (x) = 0 holds.
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Proof With probability 1 − o(1) only such mutation steps occur that flip no bits or
exactly one bit in the bundle part. Mutation steps that flip no bits in the bundle part
are irrelevant for the claim and can be ignored.

Now consider the mutation steps where exactly one bit in the bundle part is flipped.
Due to the choice of δ ≤ α−1

n2 for the cost of the clique edges, the fitness change
caused by the clique part is at most (n − l − 1)(n − l − 2)δ < α − 1. The different
cases examined in Lemmas 3 and 4 show that the fitness changes by at least α − 1
when flipping exactly one bit in the bundle part. Hence, changes in the clique part do
not affect the statements given in Lemmas 3 and 4.

Let

rj =
{

k − bj (x) + aj (x) if bj (x) ≥ aj (x) + 2,

k + 1 − aj (x) + bj (x) if aj (x) ≥ bj (x) + 2,

and let r = ∑�
j=1 rj be the sum over the values rj for the components Hj . Due to

Lemmas 3 and 4, steps decreasing the value of r are accepted while steps increasing
the value of r are rejected. The value r decreases with probability at least r/(em) in
the next mutation step. Considering the different values of r , the expected time until
a search point with r = 0 has been reached is upper bounded by

n1/2∑

r=1

(em/r) = O(m logn).

Using Markov’s inequality, the probability of having reached a search point where
r = 0 holds within a phase of n5/2 steps is 1 − o(1).

After initialization bj (x) ≥ aj (x) + 2 holds for at least one Hj with probability
1 − o(1). This implies that for this component the local optimum where bj (x) = k

and aj (x) = 0 is reached with probability 1 − o(1) within the considered phase of
n5/2 steps. �

Claim With probability 1 − o(1), after additional n5/2 steps a search point x has
been obtained for which the following three statements hold.

1. For each Hj either bj (x) = k and aj (x) = 0 or bj (x) = 0 and aj (x) = k + 1
holds.

2. For at least one Hj , bj (x) = k and aj (x) = 0 holds.
3. All bits corresponding to edges in the clique part are set to 0.

Proof After having reached a search point where for each Hj either bj (x) = k and
aj (x) = 0 or bj (x) = 0 and aj (x) = k+1 holds, bit flips affecting the bundle part are
only accepted if they flip at least 2k + 1 bundle edges. This is exponentially unlikely
during a phase of n5/2 steps. Hence the first two statements are fulfilled at the end of
the phase.

Within this phase all bits corresponding to edges in the clique part are set to 0 with
probability 1 − o(1) using similar fitness layer arguments as before. �

After having reached a search point where the three properties of the preceding
claim hold, we consider one fixed component Hj where bj (x) = k and aj (x) = 0.
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This component can only be turned into an optimal component by flipping all bits
of Hj in a single mutation step. The probability for this event is O(m−2k−1). The
expected waiting time for such a step is Ω(m2k+1) = 2Ω((2k+1) logm). Using Markov’s
inequality once more, the optimization time is 2Ω(k) with probability 1 − o(1) as all
failure probabilities during our typical run have been shown to be o(1). �

The example of this section can be modified as follows to obtain integral costs.
Let β

γ
be a rational lower bound on α − 1. We choose ε := 3

2k
and δ := β

γ
n−2. Finally

we multiply all edge costs with 2kγ n2. The resulting cost vector is integral and the
coefficients are polynomially bounded in the input size (for fixed α). Theorem 2 also
applies to the modified cost vector.

We want to remark that Theorem 2 also applies to undirected graphs. Replacing a
directed edge in H ′

k,� by an undirected edge does not effect cost(x) nor flow(x).

3 Multi-objective Approach

Let G = (V ,E) denote a directed or undirected graph with a cost function c :
E �→ N+ on the edges and s, t ∈ V two distinguished nodes. In the multi-
objective setting we consider an edge-based approach using the fitness function f :
{0,1}m �→ N

2+, f (x) = (cost(x),flow(x)), where cost(x) := ∑
e∈E(x) c(e) and

flow(x) denotes the value of a maximum s-t-flow in G(x) := (V ,E \ E(x)). Again,
the capacity of an edge e ∈ E equals its cost c(e). Instead of combining cost(x) and
flow(x) into one single value as in the single-objective setting, we consider both com-
ponents separately. The objectives have to be minimized. Let F := flow(0m) denote
the value of a maximum s-t-flow in G. Note that F ≤ C := m · cmax. The goal is to
find a search point x with f (x) = (F,0).

The objective space is depicted in Fig. 5. A simple observation about the structure
of the search space is given in the following proposition.

Proposition 2 For any search point x ∈ {0,1}m it holds that flow(x) + cost(x) ≥ F .
Furthermore, flow(x)+ cost(x) = F if and only if E(x) is a subset of some minimum
cut.

Fig. 5 Objective space of the
fitness function
f (x) = (cost(x),flow(x))
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Proof Assume flow(x) + cost(x) < F holds for some x ∈ {0,1}m. By the definition
of flow(·), there exists a maximum flow in G(x) of value flow(x). This maximum flow
induces a minimum cut in G(x) of the same value. The union of the edges crossing
this cut and the edges in E(x) is a cut for the original graph G and the value of this
cut is flow(x) + cost(x) < F . Since F is the value of a maximum flow for G, this is
a contradiction to the maximum-flow minimum-cut theorem.

Now suppose flow(x) + cost(x) = F holds. By the same arguments, there is a
cut in G that contains E(x). Since the value of this cut equals F , it is a mini-
mum cut. Conversely, suppose E(x) is a subset of some minimum cut S. Then
S \ E(x) is a minimum cut in G(x) with value flow(x) as otherwise S would not
be a minimum cut in G. Hence, F = ∑

e∈S c(e) = ∑
e∈E(x) c(e) + ∑

e∈S\E(x) c(e) =
cost(x) + flow(x). �

We denote by L := {x ∈ {0,1}m | flow(x) + cost(x) = F } the set of search points
whose objective vectors lie on the line given by the two objective values (0,F ) and
(F,0). Due to Proposition 2 these search points represent subsets of edges of a mini-
mum cut.

Examples for simple multi-objective evolutionary algorithms (MOEAs) that have
been analyzed before are SEMO and GSEMO [7, 13, 18]. The GSEMO algorithm
can be described as follows. Note that the fitness function f is vector-valued and the
≤-comparison is to be understood component-wise.

Algorithm 2 GSEMO (Global Simple Evolutionary Multi-objective Optimizer)

1. Choose x ∈ {0,1}m uniformly at random.
2. Determine f (x) and initialize P := {x}.
3. Repeat

– choose x ∈ P uniformly at random.
– create an offspring x′ by flipping each bit of x with probability 1/m.
– keep P unchanged, if there is an x′′ ∈ P such that f (x′′) ≤ f (x′) and f (x′′) �=

f (x′).
– otherwise, exclude all x′′ with f (x′) ≤ f (x′′) and add x′ to P .

Note that the values of both components cost(·) and flow(·) of the fitness function
can be exponential in the input size, which implies that GSEMO has to cope with a
Pareto front of exponential size. As long as the costs on the edges are polynomially
bounded in the number of vertices, we can show that GSEMO is able to compute a
minimum cut in expected polynomial time when using the objective functions men-
tioned above.

Theorem 3 The expected time until GSEMO working on the fitness function f con-
structs a minimum cut is O(Fm(logn + log cmax)).

Proof The population size is upper bounded by F as GSEMO keeps at each time at
most one solution per fixed flow value. First we consider the time until 0m has been
included into the population. Afterwards we study the time to reach a minimum cut.
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We apply the method of the expected multiplicative cost decrease [19] with respect
to the cost value. Let x ∈ P be the solution in the population with the smallest cost.
Consider a mutation step that selects x and performs an arbitrary 1-bit flip. Such a step
is called a good step. The probability of a good step is lower bounded by Ω(1/F ).

Each step removing an edge from the solution x leads to a new solution with
smaller cost and is accepted. Steps adding an edge to x do not change the minimum
cost. Therefore, a randomly chosen 1-bit flip decreases the minimum cost on average
by a factor of at least 1 − 1/m. This holds independently of previous steps. Hence,
after N good steps, the expected minimum cost value is bounded from above by
(1 − 1/m)N · cost(x). Since cost(x) ≤ C, we obtain the upper bound (1 − 1/m)N ·C.

If N := 
(ln 2) · m · (logC)�, this bound is at most 1
2 . Since the minimum cost

is not negative, by Markov’s inequality, the probability that the bound is less than
1 is at least 1/2. The minimum cost is an integer implying that the probability of
having found the search point 0m is at least 1/2. Therefore, the expected number of
good steps until the search point 0m is found is bounded by 2N = O(m logC) =
O(m(logn + log cmax)). Since the probability of a good step is Ω(1/F ), in expecta-
tion a total number of O(Fm(logn + log cmax)) steps are needed to find 0m.

Now we bound the time until a minimum cut has been constructed. Once again
we apply the method of the expected multiplicative cost decrease, now with respect
to the flow value. Note that solutions in L are Pareto-optimal which implies that
minx∈P∩L flow(x) does not increase.

Let x be the solution with the smallest flow value in P ∩ L. A mutation step that
selects x and performs an arbitrary 1-bit flip is called a good step. The probability
of a good step is lower bounded by Ω(1/F ). Due to Proposition 2, the set E(x) is
a subset of a minimum cut. A minimum cut and therefore a solution with objective
vector (F,0) can be obtained by including the remaining edges of the corresponding
minimum cut. Therefore, a randomly chosen 1-bit flip decreases the minimum flow
value in P ∩ L on average by a factor of at least 1 − 1/m.

Hence, after N good steps, the expected minimum flow value is bounded from
above by (1 − 1/m)N · flow(x). Since flow(x) ≤ F ≤ C, this is at most (1 − 1/m)N ·
C. Using the method of the expected multiplicative cost decrease the expected time
until a minimum cut has been obtained is O(Fm(logn+ log cmax)) which proves the
theorem. �

The previous result for GSEMO also holds for the local variant SEMO which con-
structs the new search point x′ by flipping exactly one bit of x uniformly at random.

The upper bound given for GSEMO is pseudo-polynomial in the input size. In
the following we consider a MOEA that ensures diversity by using the concept of ε-
dominance introduced by Laumanns et al. [12]. This leads to a population whose size
is polynomially bounded with respect to the given input and results in a polynomial
upper bound on the expected optimization time. The objective space is partitioned
into axes-parallel boxes and each box includes at each generation at most one search
point. It turns out that in our setting it is sufficient to partition the objective space with
respect to the flow-value. Hence, we use stripes instead of boxes.

We partition the objective space into stripes with respect to the flow value by using
the function b : {0,1}m �→ N with b(x) := �log1+ε(1+flow(x))�, where ε, 0 < ε ≤ 1,
is a parameter that determines the size of the stripes. Let B := maxx∈{0,1}m b(x).
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Now the DEMO algorithm can be described as follows.

Algorithm 3 DEMO (Diversity Evolutionary Multi-objective Optimizer)

1. Choose x ∈ {0,1}m uniformly at random.
2. Determine f (x) and initialize P := {x}.
3. Repeat

– choose x ∈ P uniformly at random.
– create an offspring x′ by flipping each bit of x with probability 1/m.
– keep P unchanged, if there is an x′′ ∈ P such that f (x′′) ≤ f (x′) and

f (x′′) �= f (x′) or if there is an x′′ ∈ P such that b(x′′) = b(x′) and cost(x′′) +
flow(x′′) < cost(x′) + flow(x′).

– otherwise, exclude all x′′ where f (x′) ≤ f (x′′) or b(x′′) = b(x′) and add x′
to P .

Similar to the GSEMO algorithm, DEMO discards a new search point x′ if it is
dominated by a search point x′′ ∈ P with different objective vector. Additionally,
x′ is discarded if there is a search point x′′ ∈ P which falls in the same stripe and
is closer to the line through (0,F ) and (F,0). If this is not the case, as before, all
dominated search points in the population are removed. Additionally, we ensure that
the population contains at most one search point for each stripe.

The following upper bound on the population size of DEMO can be shown in a
similar way as in [12].

Proposition 3 The maximum population size of DEMO is bounded by B =
O(ε−1 logC).

Proof Since the b(·) value is a non-negative integer and the population contains at
most one search point per stripe, the population size is bounded by B . We have B ≤
log(1 + F)/ log(1 + ε) ≤ 2 log(1 + F)/ε for 0 < ε ≤ 1. Since F ≤ C, we obtain
B = O(ε−1 logC). �

Lemma 5 The expected time until DEMO working on the fitness function f con-
structs a search point x′′ ∈ L is O(mε−1(log2 n + log2 cmax)).

Proof We prove the result by considering the expected multiplicative decrease of
Δ(x) := flow(x) + cost(x) − F . Let x = argminz∈P Δ(z). Assume that x /∈ L, i.e.,
Δ(x) > 0. Note that Δ(x) does not increase.

Consider a mutation step that selects x and performs an arbitrary 1-bit flip. Such
a step is called a good step and its probability is lower bounded by Ω(1/B). Denote
by E′(x) ⊆ E(x) the set of edges that do not belong to a fixed minimum cut of G.
All 1-bit flips regarding the edges of E′(x) are accepted and in total lead to a solution
x′′ ∈ L. We do not consider the remaining 1-bit flips to measure the improvement
towards a solution x′′ ∈ L and assume that they reduce the sum of the flow and cost
value by zero. Therefore, a randomly chosen 1-bit flip decreases the value Δ(x) on
average by a factor of at least 1 − 1/m.
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Hence, after N good steps, the expected value of Δ(x) is bounded from above by
(1 − 1/m)N · C. Using the method of the expected multiplicative cost decrease the
expected time until x′′ with Δ(x′′) = 0, i.e., x′′ ∈ L, has been discovered is

O(mB logC) = O(mε−1 log2 C) = O(mε−1(log2 n + log2 cmax)).

This concludes the proof. �

In the following, we show that we can obtain from each search point x ∈ L which
does not describe a minimum cut a search point x′ ∈ L with b(x′) < b(x) by flipping
a specific bit if the value of ε is chosen in an appropriate way. Using this property we
are able to show that DEMO is able to compute a minimum cut efficiently.

Proposition 4 Let ε ≤ 1/m and x ∈ L be a search point with flow(x) > 0. Then there
exists a 1-bit flip leading to a search point x′ ∈ L with b(x′) < b(x).

Proof Let y := flow(x). By Proposition 2, the set E(x) is a subset of some mini-
mum cut E(x∗). Since flow(x) > 0, E(x) is a proper subset. Hence, there exists at
least one 1-bit flip leading to a search point x′ with flow(x′) + cost(x′) = F and
flow(x′) < flow(x). Among all such search points, consider a point x′ that minimizes
y′ := flow(x′).

Let k := |E(x∗)| − |E(x)| ≤ m. Since y′ was minimal, y′ ≤ (1 − 1
k
)y holds. Since

ε ≤ 1
m

≤ 1
k

and k ≤ y, we have

(1 + ε)(1 + y′) ≤ 1 + ε + (1 + ε)

(
1 − 1

k

)
y

≤ 1 + y

k2
+

(
1 + 1

k

)(
1 − 1

k

)
y = 1 + y.

This implies 1 + log1+ε(1 + y′) ≤ log1+ε(1 + y), and finally b(x′) < b(x). �

Theorem 4 Choosing ε ≤ 1/m, the expected time until DEMO working on the fitness
function f constructs a minimum cut is O(mε−2(log2 n + log2 cmax)).

Proof Due to Lemma 5 a search point x ∈ L has been included into the population
after an expected number of O(mε−1(log2 n+ log2 cmax)) steps. Hence, it is sufficient
to consider the search process after having found a search point x ∈ L.

The archiving strategy of DEMO guarantees that each strip containing a search
point from P ∩ L will contain such a (maybe different) search point in all future
generations. Therefore, minx∈P∩L b(x) will never increase during the run of the al-
gorithm.

Since the population size is bounded by B , the probability of picking a search
point x ∈ L with minimal b-value among the search points in L is Ω(1/B). By
Proposition 4, there exists at least one 1-bit flip leading to a search point x′ ∈ L with
b(x′) < b(x). The probability to generate such a search point x′ is Ω(1/m). After at
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most B such steps, the b-value is zero implying that we have found a minimum cut.
Hence, the expected time to obtain a minimum cut is

O(B2m) = O(mε−2 log2 C) = O(mε−2(log2 n + log2 cmax)).

This concludes the proof. �

Note that the upper bound is O(m3(log2 n+ log2 cmax)) for ε = Θ(1/m) and poly-
nomial as long as ε = 1/poly(m) for a polynomial poly(m).

The analysis of Theorem 4 was split into two phases: the first phase ends with
the construction of a solution x ∈ L. The total runtime is dominated by the runtime
required for the second phase, which is a factor of ε−1 larger than the runtime of the
first phase. A better bound for the overall runtime can be proved using the following,
slightly more powerful algorithm.

Algorithm 4 Modified DEMO

1. Choose x ∈ {0,1}m uniformly at random.
2. Determine f (x) and initialize P := {x}.
3. Repeat

– choose x ∈ P uniformly at random.
– create an offspring x′ by flipping each bit of x with probability 1/m.
– keep P unchanged, if there is an x′′ ∈ P such that f (x′′) ≤ f (x′) and

f (x′′) �= f (x′) or if there is an x′′ ∈ P such that b(x′′) = b(x′) and flow(x′′) +
cost(x′′) < flow(x′) + cost(x′) or if there is an x′′ ∈ P such that b(x′′) = b(x′)
and flow(x′′) + cost(x′′) = flow(x′) + cost(x′) and flow(x′′) < flow(x′).

– otherwise, exclude all x′′ where f (x′) ≤ f (x′′) or b(x′′) = b(x′) and add x′
to P .

Compared to DEMO, a new rule for ties w.r.t. the sum of flow and cost value
within the same stripe has been added. The modified version prefers solutions with
smaller flow value, that is, solutions whose objective vector is close to the optimum
(F,0). This ensures that minx∈P∩L flow(x) never increases during a run of the mod-
ified DEMO algorithm, which is not true for the original DEMO algorithm. This
property is used to prove a tighter runtime bound.

Theorem 5 Choosing ε ≤ 1/m, the expected time until modified DEMO working on
the fitness function f constructs a minimum cut is O(mε−1(log2 n + log2 cmax)).

Proof Lemma 5 also applies to modified DEMO, but some modification in the proof
is needed to take the modified tie-break-criterium into account. Instead of considering
an arbitrary fixed minimum s-t-cut of G, let C be a minimum s-t-cut of G which
maximizes c(E(x) ∩ C). Define E′(x) := E(x) \ C. This modification ensures that
1-bit flips regarding the edges of E′(x) do not only not increase Δ(x), but actually
decrease Δ(x), and hence, are accepted. Thus, Lemma 5 also applies to the modified
DEMO and it is sufficient to consider the search process after having found a search
point x ∈ L.
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Let x be the solution with the smallest flow value in P ∩ L. Consider a mutation
step that selects x and performs an arbitrary 1-bit flip. Such a step is called a good
step. The probability of a good step is lower bounded by Ω(1/B). Due to Proposi-
tion 2, the solution x is a subset of a minimum cut. A minimum cut and therefore
a solution with objective vector (F,0) can be obtained by including the remaining
edges of the corresponding minimum cut. Therefore, a randomly chosen 1-bit flip de-
creases the minimum flow value in P ∩ L on average by a factor of at least 1 − 1/m.

Hence, after N good steps, the expected minimum flow value is bounded from
above by (1 − 1/m)N · flow(x). Since flow(x) ≤ F ≤ C, we obtain the upper bound
(1 − 1/m)N · C. Using the method of the expected multiplicative cost decrease the
expected time until a minimum cut has been obtained is bounded by

O(Bm(logn + log cmax)) = O(mε−1(log2 n + log2 cmax))

which proves the theorem. �

4 Conclusions

The computation of a minimum s-t-cut for a given weighted graph arises in several
applications and many constrained variants are difficult to solve. We have studied
how evolutionary algorithms can cope with this problem. Our investigations show
that single-objective approaches fail to achieve optimal solutions. In contrast to this
the proposed multi-objective approach points out the connection between the two
contrasting objectives cost and feasibility. This approach leads to a polynomial run-
time as long as the objective space is polynomially bounded. To overcome the latter
problem we apply the concept of ε-dominance which leads to an expected polyno-
mial runtime. The upper bounds given in this paper depend on the value of the largest
cost cmax of the given input and make use of the expected multiplicative cost de-
crease. Recently, it has been shown how to obtain upper bounds that are independent
of the largest cost value when using this method [22]. However, these insights do
lead to such bounds as the objective function is not linear [22] and it remains an open
problem to achieve upper bounds that are independent of cmax.

We believe that the gained insights might turn out to be useful for solving NP-
hard variants of the problem in the context of multicommodity flow networks. In
this context, computing a maximum flow is a relatively easy problem while finding
a minimum cut is NP-hard. In a subsequent work we want to apply our bi-criteria
approach in order to solve the NP-hard minimum multicut problem.

Acknowledgement Joachim Reichel and Martin Skutella were supported by the Deutsche Forschungs-
gemeinschaft (DFG) as part of the Collaborative Research Center “Computational Intelligence” (SFB 531).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.



342 Algorithmica (2011) 59: 323–342

References

1. Baier, G.: Flows with path restrictions. Ph.D. Thesis, TU Berlin (2003)
2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT

Press, Cambridge (2001)
3. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of

multiterminal cuts. SIAM J. Comput. 23, 864–894 (1994)
4. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithm. Theor.

Comput. Sci. 276, 51–81 (2002)
5. Duarte, A., Sánchez, Á., Fernández, F., Cabido, R.: A low-level hybridization between memetic algo-

rithm and VNS for the max-cut problem. In: Proc. of GECCO ’05, pp. 999–1006 (2005)
6. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by

randomized search heuristics using multi-objective models. In: Proc. of GECCO ’07, pp. 797–804
(2007)

7. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In: Proc. of CEC ’03,
pp. 1918–1925. IEEE Press, New York (2003)

8. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Proc. of
STACS ’03, pp. 415–426 (2003)

9. Horoba, C., Neumann, F.: Benefits and drawbacks for the use of epsilon-dominance in evolutionary
multi-objective optimization. In: Proc. of GECCO ’08, pp. 641–648 (2008)

10. Jansen, T., Wegener, I.: Evolutionary algorithms—how to cope with plateaus of constant fitness and
when to reject strings of the same fitness. IEEE Trans. Evol. Comput. 5(6), 589–599 (2001)

11. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 3rd edn. Springer, Berlin
(2005)

12. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary
multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)

13. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective evolutionary algorithms
on pseudo-boolean functions. IEEE Trans. Evol. Comput. 8(2), 170–182 (2004)

14. Liang, K.-H., Yao, X., Newton, C.S., Hoffman, D.: A new evolutionary approach to cutting stock
problems with and without contiguity. Comput. Oper. Res. 29(12), 1641–1659 (2002)

15. Neumann, F.: Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum
spanning tree problem. Eur. J. Oper. Res. 181(3), 1620–1629 (2007)

16. Neumann, F., Reichel, J.: Approximating minimum multicuts by evolutionary multi-objective algo-
rithms. In: Proc. of PPSN’08, pp. 72–81 (2008)

17. Neumann, F., Reichel, J., Skutella, M.: Computing minimum cuts by randomized search heuristics.
In: Proc. of GECCO ’08, pp. 779–786 (2008)

18. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization.
Nat. Comput. 5(3), 305–319 (2006)

19. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum span-
ning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

20. Puchinger, J., Raidl, G.R., Koller, G.: Solving a real-world glass cutting problem. In: Proc. of EvoCOP
’04, pp. 165–176. Springer, Berlin (2004)

21. Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimization problems. In: Proc. of
GECCO ’07, pp. 947–954 (2007)

22. Reichel, J., Skutella, M.: On the size of weights in randomized search heuristics. In: Proc. of FOGA
’09, pp. 21–28. ACM, New York (2009)

23. Siarry, P., Michalewicz, Z. (eds.): Advances in Metaheuristics for Hard Optimization. Natural Com-
puting Series. Springer, Berlin (2008)

24. Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In:
Proc. of STACS ’05, pp. 44–56 (2005)


	Computing Minimum Cuts by Randomized Search Heuristics
	Abstract
	Introduction
	Single-Objective Approach
	Node-based Search
	Edge-based Search

	Multi-objective Approach
	Conclusions
	Acknowledgement
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


