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Abstract We introduce the novel concept of knowledge states. The knowledge state
approach can be used to construct competitive randomized online algorithms and
study the trade-off between competitiveness and memory. Many well-known algo-
rithms can be viewed as knowledge state algorithms. A knowledge state consists of
a distribution of states for the algorithm, together with a work function which ap-
proximates the conditional obligations of the adversary. When a knowledge state al-
gorithm receives a request, it then calculates one or more “subsequent” knowledge
states, together with a probability of transition to each. The algorithm uses random-
ization to select one of those subsequents to be the new knowledge state. We apply
this method to randomized k-paging. The optimal minimum competitiveness of any
randomized online algorithm for the k-paging problem is the kth harmonic num-
ber, Hk = ∑k

i=1
1
i
. Existing algorithms which achieve that optimal competitiveness

must keep bookmarks, i.e., memory of the names of pages not in the cache. An Hk-
competitive randomized algorithm for that problem which uses O(k) bookmarks is
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presented, settling an open question by Borodin and El-Yaniv. In the special cases
where k = 2 and k = 3, solutions are given using only one and two bookmarks, re-
spectively.

Keywords Competitive analysis · Online algorithms · Task systems ·
Randomization · Paging · Server problem

1 Motivation and Background

In this paper we introduce a new method for constructing randomized online algo-
rithms, which we call the knowledge state method. The purpose of this method is to
address the trade-off between memory and competitiveness. A knowledge state gives
a distribution for the algorithm, while at the same time approximating conditional
obligations of an adversary with a work function. When a knowledge state algorithm
receives a request, it calculates one or more “subsequent” knowledge states, together
with a probability of transition to each. It then moves to a new knowledge state, pos-
sibly “forgetting” information, and thus saving space. Fundamentally, the knowledge
states enable the algorithm to remember limited information while still achieving
competitiveness.

The model is introduced and fully described for the first time in this publication,
but we note that some published algorithms can be seen to be knowledge state algo-
rithms. For example, the algorithm EQUITABLE [1] is a knowledge state algorithm
for the k-paging problem that achieves the optimal randomized competitiveness of Hk

for each k, using only O(k2 logk) memory, as opposed to the prior algorithm, PAR-
TITION [14], which requires unlimited memory as the length of the request sequence
grows. At the other end of the scale, the randomized algorithm RANDOM_SLACK

[12] is an extremely simple knowledge state algorithm which achieves randomized
2-competitiveness for the 2-server problem for all metric spaces, and which achieves
randomized k-competitiveness for the k-server problem on some spaces, including
trees. We also note that RANDOM_SLACK is trackless, meaning that the algorithm
does not keep “track” of any point where it does not have a server. (See the ACM
SIGACT column [6] for a summary of tracklessness; see also [3–5, 7].)

There appears to be a trade-off between competitiveness and memory for ran-
domized online paging algorithms. The randomized k-paging algorithm EQUITABLE

given by Achlioptas et al. [1] is Hk-competitive and uses O(k2 logk) memory. This
competitive ratio is best possible. The randomized algorithm RMARK given by Fiat
et al. [13] is (2Hk − 1)-competitive, but only uses O(k) memory. Borodin and
El Yaniv [9] list as an open question whether there exists an Hk-competitive random-
ized algorithm which requires O(k) memory for k-paging. In this paper we answer
this question in the affirmative.

Chrobak, Koutsoupias and Noga [10] claim that, “From a purely practical stand-
point, non-trackless algorithms are of limited interest as cache replacement strategies,
as they cannot be realistically implemented.” Unfortunately, the best competitiveness
known for a randomized trackless algorithm for general k is 2Hk − 1, achieved by
RMARK [13]. Bein and Larmore [5] have shown that it is not possible for a trackless
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algorithm to achieve Hk-competitiveness if k = 2, and we expect that result to gen-
eralize to higher k. The algorithms in this paper are the result of an effort to provide
optimally competitive randomized algorithms “as close as possible” to trackless.

We give a formal description of the knowledge state method for randomized on-
line algorithms. It is defined using the mixed model of online computation, described
in Sect. 2. In Sect. 2 we also relate the mixed model to the standard models of online
computation, and explain how a behavioral algorithm can be derived from a mixed
model description. Section 3 defines the knowledge state method using the mixed
model. Section 4 gives results for the paging problem. We start with the case k = 2 to
illustrate our method. The algorithm for k = 2 is optimally competitive and uses prov-
ably the smallest amount of memory. We then give a similar result for k = 3. Next the
Hk-competitive randomized algorithm with O(k) memory is given. Section 5 sum-
marizes knowledge state results for the 2-server problem in Cross Polytope Spaces
and for the caching problem in shared memory multiprocessor systems.

2 The Mixed Model of Online Computation

We introduce a new model of randomized online computation which is a generaliza-
tion of both the classic behavioral and distributional models. We assume that we are
given an online problem with states X (also called configurations), a fixed start state
x0 ∈ X , and a set of requests, R. If the current state is x ∈ X and a request r ∈ R
is given, an algorithm for the problem must service the request by choosing a new
state y and paying a cost, which we denote cost(x, r, y). We assume that there is a
“distance” function d on X , and that it is possible to choose to move from state x to
state y at cost d(x, y) at any time, given any request, or no request. We further as-
sume that d(x, x) = 0 and d(x, z) ≤ d(x, y) + d(y, z) for any states x, y, z, and that
cost(u, r, v) ≤ d(u, x)+ cost(x, r, y)+ d(y, v) for any states u,x, y, v and request r .
Examples of online problems satisfying these conditions abound, such as the server
problem, the paging problem, and the CNN problem [9].

Given a request sequence � = r1, . . . , rn, an algorithm must choose a sequence
of states x1, . . . , xn, called the service sequence. The cost of this service sequence is
defined to be

∑n
t=1 cost(xt−1, rt , xt ). An offline algorithm knows � before choosing

the service sequence, while an online algorithm must choose xt without knowledge
of future requests. We will assume that there is an optimal offline algorithm, opt,
which computes an optimal service sequence for any given request sequence. As is
customary we say that a deterministic online algorithm A is C-competitive for a given
number C if there exists a constant K (not dependent on �) such that costA(�) ≤
C · costopt(�) + K for any request sequence �. Similarly, we say that a randomized
online algorithm A is C-competitive for a given number C if there exists a constant
K (not dependent on �) such that Exp(costA(�)) ≤ C ·costopt(�)+K for any request
sequence �, where Exp denotes expected value.

In order to make the description of various models of randomized online compu-
tation more precise, we introduce the following notation. Let � be the set of all finite
distributions on X . If π ∈ � and S ⊆ X , we say that S supports the distribution π

if π(S) = 1. The support of any π ∈ � is defined to be the unique minimal set which
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supports π . By abuse of notation, if the support of π is a singleton {x}, we write
π = x.

An instance of the transportation problem is a weighted directed bipartite graph
with distributions on both parts. Formally, an instance is an ordered quintuple
(A,B, cost, α,β) where A and B are finite non-empty sets, α is a distribution on
A, β is a distribution on B , and cost is a real-valued function on A × B . A solution
to that instance is a distribution γ on A × B such that

1. γ ({a} × B) = α(a) for all a ∈ A.
2. γ (A × {b}) = β(b) for all b ∈ B .

Then cost(γ ) = ∑
a∈A

∑
b∈B γ (a, b)cost(a, b), and γ is a minimal solution if

cost(γ ) is minimized over all solutions, in which case we call cost(γ ) the minimum
transportation cost.

There are three standard models of randomized online algorithms (see, for exam-
ple [9]). We introduce a new model in this paper, which we call the mixed model.
Those three standard models are: distribution of deterministic online algorithms, the
behavioral model, and the distributional model. We very briefly describe the three
standard models.

Distribution of Deterministic Online Algorithms In this model, A is a random vari-
able whose value is a deterministic online algorithm. If the random variable has a
finite distribution, we say that A is barely random.

Behavioral Online Algorithms In this model A uses randomization at each step to
pick the next configuration. We assume that A has memory. Let M be the set of
all possible memory states of A. We define a full state of A to be an ordered pair
k = (x,μ) ∈ X × M. Let μ0 ∈ M be the initial memory state, and let μt be the
memory state of A after servicing the first t requests.

Then A uses randomization to compute kt = (xt ,μt ), the full state after t steps,
given only kt−1 and rt . A behavioral algorithm can then be thought of as a function
on X × M × R whose values are random variables in X × M.

Distributional Online Algorithms If π,π ′ ∈ �, let S be the support of π and S ′ be
the support of π ′. If r ∈ R, we define cost(π, r,π ′) to be the minimum transportation
cost of the transportation problem (S, S ′, costr , π,π ′), where costr = cost( , r, ) :
X × X → R.

A distributional online algorithm A is then defined as follows.

1. There is a set M of memory states of A. There is a start memory state μ0 ∈ M.
2. A full state of A is a pair k = (π,μ) ∈ � × M. The initial full state is k0 =

(π 0,μ0), where π 0 = x0.
3. For any given full state k = (π,μ) and request r , A deterministically computes

a new full state k′ = (π ′,μ′), using only the inputs π , μ, and r . We write
A(π,μ, r) = (π ′,μ′) or alternatively A(k, r) = k′. Thus, A is a function from
� × M × R to � × M.

4. Given any input sequence � = r1, . . . , rn, A computes a sequence of full states
A(�) = k1, . . . , kn, following the rule that kt = (πt ,μt ) = A(kt−1, rt ) for all
t ≥ 1. Define costA(�) = ∑n

t=1 cost(πt−1, rt , πt ).
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We note that a distributional online algorithm, despite being a model for a randomized
online algorithm, is in fact deterministic, in the sense that the full states {kt } are
computed deterministically.

The following theorem is well-known. (It is, for example, implicit in Chap. 6
of [9].)

Theorem 1 All three of the above models of randomized online algorithms are equiv-
alent, in the following sense. If A1 is an algorithm of one of the models, there exist
algorithms A2, A3, of each of the other models, such that, given any request sequence
�, the cost (or expected cost) of each Ai for � is no greater than the cost (or expected
cost) of A1.

The Mixed Model The mixed model of randomized algorithms is a generalization
of both the behavioral model and the distributional model. A mixed online algo-
rithm chooses a distribution at each step, but, as opposed to a distributional algorithm,
which must make that choice deterministically, can use randomization to choose the
distribution.

A mixed online algorithm A for an online problem P = (X , R, d) is defined as
follows. As before, let � be the set of finite distributions on X .

1. There is a set M of memory states of A. There is a start memory state μ0 ∈ M.
2. A full state of A is a pair k = (π,μ) ∈ � × M. The initial full state is k0 =

(π 0,μ0), where π 0 = x0.
3. For any given full state k = (π,μ) and request r , there exists a finite set of full

states k1, . . . , km and probabilities λ1, . . . , λm, where
∑m

i=1 λi = 1, such that if the
current full state is k and the next request is r , A uses randomization to compute
a new full state k′ = (π ′,μ′), by selecting k′ = ki for some i. The probability that
A selects each given ki is λi . We call the {ki} the subsequents and the {λi} the
weights of the subsequents, for the request r from the full state k.

A is a function on �× M × R whose values are random variables in �× M. We
can write A(π,μ, r) = (π ′,μ′). Alternatively, we write A(k, r) = k′. For fixed k

and r , we regard k′,π ′, and μ′ as random variables.
4. Given any input sequence � = r1, . . . , rn, A computes a sequence of full

states A(�) = (π1,μ1), . . . , (πn,μn), following the rule that kt = (πt ,μt ) =
A(kt−1, rt ) for all t > 1. Note that, for all t > 0, kt , πt , and μt are random
variables.

Computing the cost of a step of a mixed model online algorithm A is somewhat tricky.
We note that it might seem that

∑m
i=1 λicost(π, r,πi) would be that cost; however,

this is an overestimate.
Let k = (π,μ) ∈ � × M and let r ∈ R. Let S ⊆ X be the support of π . Let

{ki = (πi,μi)} be the subsequents and {λi} the weights of the subsequents, for the
request r from the full state k. Let S̄ ⊆ X be the union of the supports of the {πi}.
Define π̄ = ∑m

i=1 λiπi . Note that π̄ ∈ �, and its support is S̄ . Define costA(k, r) =
cost(π, r, π̄).

Finally, if � = r1, . . . , rn is the input request sequence, and the sequence of full
states of A is k1, . . . , kn, we define costA(�) = ∑n

t=1 costA(kt−1, rt ).
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We now prove that the mixed model for randomized online algorithms is equiva-
lent to the three standard models.

Lemma 1 If A is a mixed online algorithm, there is a behavioral online algorithm
Ã such that, for any request sequence �, Exp(costÃ(�)) = Exp(costA(�)), and such

that the space complexity of Ã is asymptotically the same as the space complexity
of A.

Proof A memory state of Ã will be a full state of A, i.e., we could write M̃ ⊆
�× M. By a slight abuse of notation, we also define a full state of Ã to be an ordered
triple (x,π,μ) ∈ X × � × M such that (π,μ) is a full state of A and π(x) > 0.
Intuitively, Ã keeps track of its true state x ∈ X , while remembering the full state
(π,μ) of an emulation of A.

For clarity of the proof, we introduce more complex notation for some of the
quantities defined earlier. Let π,σ ∈ �, μ,ν ∈ M, and r ∈ R. If (π,μ) is a full
state of A, define λπ,μ,r,σ,ν to be the probability that A(π,μ, r) = (σ, ν), i.e., the
conditional probability that A chooses (σ, ν) to be the next full state, given that
the current full state is (π,μ) and the request is r . We assume that there can be
at most finitely many choices of (σ, ν) for which λπ,μ,r,σ,ν > 0. In case (π,μ)

is not a full state of A, then λπ,μ,r,σ,ν is defined to be zero. If (π,μ) is a full
state of A and r ∈ R, write π̄π,μ,r = ∑

σ∈�,ν∈M λπ,μ,r,σ,ν · σ ∈ �, and choose
a finite distribution γπ,μ,r on X × X which is a minimal solution to the trans-
portation problem (X , X , costr , π, π̄π,μ,r ), where costr (x, y) = cost(x, r, y). Thus
π(x) = ∑

y∈X γπ,μ,r (x, y) for x ∈ X ; π̄π,μ,r (y) = ∑
x∈X γπ,μ,r (x, y) for y ∈ X ;

and costA(π,μ, r) = ∑
x∈X ,y∈X γπ,μ,r (x, y)cost(x, r, y).

We now formally describe the action of the behavioral algorithm Ã. The initial full
state of Ã is (x0, k0) = (x0,π 0,μ0). Given that the full state of Ã is (x,π,μ) and the
next request is r ∈ R, and given any (y, σ, ν) ∈ X ×�× M, we define �x,π,μ,r,y,σ,ν ,
the probability that Ã chooses the next full state to be (y, σ, ν), as follows:

If π̄π,μ,r (y) = 0, then �x,π,μ,r,y,σ,ν = 0.

Otherwise, �x,π,μ,r,y,σ,ν = γπ,μ,r (x,y)·σ(y)·λπ,μ,r,σ,ν

π(x)·π̄π,μ,r (y)
.

Let � be a given request sequence. We now prove that Exp(costÃ(�)) =
Exp(costA(�)). For any t ≥ 0 and any full state (π,μ) of A, define pt(π,μ) to be
the probability that the full state of A is (π,μ) after t steps. Additionally, if x ∈ X ,
define qt (x,π,μ) to be the probability that the full state of Ã is (x,π,μ) after t

steps.
To prove the lemma we consider first the following two claims:

Claim 1 For any t ≥ 0, x ∈ X , π ∈ �, and μ ∈ M, qt (x,π,μ) = pt(π,μ) · π(x).

Claim 2 For any t ≥ 0, π ∈ �, and μ ∈ M,
∑

x∈X qt (x,π,μ) = pt(π,μ).

We prove Claims 1 and 2 by simultaneous induction on t . If t = 0, both claims are
trivial by definition. Now, suppose t > 0. We verify Claim 1 for t . By the inductive
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hypothesis, Claim 2 holds for t − 1. Write r = rt . Let y,σ, ν ∈ X ×�× M. If (σ, ν)

is not a full state of A or σ(y) = 0, we are done. Otherwise, recall that π̄π,μ,r (y) =∑
x∈X γπ,μ,r (x, y) for all y ∈ X , and we obtain

qt (y, σ, ν) =
∑

(x,π,μ)∈X ×�×M
qt−1(x,π,μ)�x,π,μ,r,y,σ,ν

=
∑

(x,π,μ)∈X ×�×M,π(x)>0,π̄π,μ,r (y)>0

pt−1(π,μ)π(x)

· γπ,μ,r (x, y) · σ(y) · λπ,μ,r,σ,ν

π(x) · π̄π,μ,r (y)

=
∑

(x,π,μ)∈X ×�×M,π̄π,μ,r (y)>0

pt−1(π,μ) · γπ,μ,r (x, y) · σ(y) · λπ,μ,r,σ,ν

π̄π,μ,r (y)

= σ(y) ·
∑

(π,μ)∈�×M,π̄π,μ,r (y)>0

(

pt−1(π,μ) · λπ,μ,r,σ,ν

·
∑

x∈X

γπ,μ,r (x, y)

π̄π,μ,r (y)

)

= σ(y) ·
∑

(π,μ)∈�×M,π̄π,μ,r (y)>0

pt−1(π,μ) · λπ,μ,r,σ,ν

= σ(y) ·
∑

(π,μ)∈�×M
pt−1(π,μ) · λπ,μ,r,σ,ν = σ(y) · pt(σ, ν)

which verifies Claim 1 for t . Claim 2 for t follows trivially.
For the conclusion of the lemma, let t > 0, and let r = rt . We use Claim 1 for

t − 1. Recall that π̄π,μ,r = ∑
σ∈�,ν∈M λ(π,μ, r, σ, ν) · σ for any full state (π,μ)

of A. Then

Exp
(

costtÃ

)
=

∑

π,σ∈�,μ,ν∈M,x,y∈X
qt−1(x,π,μ) · �x,π,μ,r,y,σ,ν · cost(x, r, y)

=
∑

π,σ∈�,μ,ν∈M,x,y∈X
π(x)>0,σ (y)>0

pt−1(π,μ) · π(x)

· γπ,μ,r (x, y) · σ(y) · λπ,μ,r,σ,ν

π(x) · π̄π,μ,r (y)
· cost(x, r, y)

=
∑

π∈�,μ∈M,x,y∈X

(

pt−1(π,μ) · γπ,μ,r (x, y) · cost(x, r, y)

·
∑

σ∈�,ν∈M,σ (y)>0

λπ,μ,r,σ,ν · σ(y)

π̄π,μ,r (y)

)
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=
∑

π∈�,μ∈M,x,y∈X
pt−1(π,μ) · γπ,μ,r (x, y) · cost(x, r, y)

=
∑

π∈�,μ∈M

(

pt−1(π,μ) ·
∑

x,y∈X
γπ,μ,r (x, y) · cost(x, r, y)

)

=
∑

π∈�,μ∈M
pt−1(π,μ) · costA(π, r, π̄π,μ,r )

=
∑

π∈�,μ∈M
pt−1(π,μ) · costA(π,μ, r) = Exp

(
costtA

)
.

Finally, we note that A must remember not only its memory state μ, but also its
distribution. Thus, the space complexity of Ã is asymptotically equal to the space
complexity of A. �

Theorem 2 If A is a mixed model online algorithm for an online problem P , there
exist algorithms A1, A2, and A3 for P , of each of the standard models, such that,
given any request sequence �, the cost (or expected cost) of each Ai for � is no
greater than the cost (or expected cost) of A.

Proof From Lemma 1 and Theorem 1. �

Corollary 1 If there is a C-competitive mixed model online algorithm for an online
problem P , there is a C-competitive online algorithm for P for each of the three
standard models of randomized online algorithms.

3 Knowledge State Algorithms

Let X be the set of configurations of an online problem. We say that a function
ω : X → R is Lipschitz if ω(y) ≤ ω(x) + d(x, y) for all x, y ∈ X . A work function
is a non-negative Lipschitz function X → R. If S ⊆ X , we say that S supports ω

if, for any y ∈ X there exists some x ∈ S such that ω(y) = ω(x) + d(x, y). If ω is
supported by a finite set, then there is a unique minimal set supp(ω) which supports
ω, which we call the support of ω. (All work functions considered in this paper have
finite support.) If the minimum value of a work function is zero, we say it is an offset
function. If ω is a work function, we define ω̄ = ω − minω, the offset of ω.

The simplest example of a work function is a cone. If x ∈ X , define χx(y) =
d(x, y) for all y ∈ X . Then χx , which we call the cone on x, has support {x}.

If � is a request sequence, we define a work function ω� , which we call the work
function of �. If x, y ∈ X , let costopt(x,�, y) be minimum cost of servicing the re-
quest sequence �, starting at configuration x, and ending at configuration y. For
any x, define ω�(x) = costopt(x

0, �, x), where x0 is the start configuration, and let
costopt(x

0, �) = minx costopt(x
0, �, x), the minimum cost of servicing �. Similarly,

the offset function of � is defined to be ω̄� = ω� − costopt(x
0, �). We will omit the

parameter x0 in our notation if the start state is understood.



Algorithmica (2011) 60: 653–678 661

We define an offset function ω to be reachable if there is some request sequence
� such that ω̄� = ω.

Lemma 2 Suppose ω and ω′ are work functions, and S supports ω. Then ω(x) ≥
ω′(x) for all x ∈ X if and only if ω(y) ≥ ω′(y) for all y ∈ S .

Proof One direction of the proof is trivial. Suppose ω(y) ≥ ω′(y) for all y ∈ S . Let
x ∈ X . There exists y ∈ S such that ω(x) = ω(y) + d(y, x) ≥ ω′(y) + d(y, x) ≥
ω′(x). �

If ω is a work function and r ∈ R is a request, we define (ω ∧ r)(y) =
minx∈X {ω(x) + cost(x, r, y)}. We also define ω ∧ r = ω ∧ r . We refer to “∧” and
“ ∧ ” as update and offset update, respectively. The following lemma eases the com-
putation of update in our applications.

Lemma 3 If ω is supported by S , then (ω ∧ r)(y) = minx∈S {ω(x) + cost(x, r, y)}.

Proof Trivially, (ω ∧ r)(y) ≤ minx∈S {ω(x) + cost(x, r, y)}. Pick z ∈ X such that
(ω ∧ r)(y) = ω(z) + cost(z, r, y). Pick x ∈ S such that ω(z) = ω(x) + d(x, z). Then

(ω ∧ r)(y) = ω(z) + cost(z, r, y) = ω(x) + d(x, z) + cost(z, r, y)

≥ ω(x) + cost(x, r, y) ≥ (ω ∧ r)(y)

and we are done. �

We can compute ω ∧ � by repeated updates. The following lemma is well-known.
(See, for example, [11].)

Lemma 4 If � = r1, . . . , rn, let �t = r1, . . . , rt for all t ≤ n. Then ω0(x) = d(x0, x)

for all x ∈ X and ω�t = ω�t−1 ∧ rt for all t > 0.

Knowledge States A knowledge state is an ordered pair k = (π,ω), where π is a
distribution on X and ω is a work function on X .

We have used the word “support” in two different ways—the support of a work
function, and the support of a distribution. Combining these two, we obtain a third
meaning of the term: we say that S ⊆ X supports the knowledge state (π,ω) if S
supports π in the distribution sense, and also S supports ω in the work function sense.
For each x ∈ X , let κx = (x,χx) be the knowledge state supported by the singleton
set {x}. We call κx the cone knowledge state over x.

A knowledge state algorithm A is a randomized algorithm in the mixed model,
whose full state is a knowledge state. Formally:

1. There is a set of knowledge states K = K A, which includes the cone knowledge
state κx for all x ∈ X .

2. A move is defined to be an ordered pair (k, r) ∈ K × R. For each move (k, r), there
is a subsequent vector A(k, r) = (k1, . . . , km,λ1, . . . , λm), for some m (which may
depend on k and r), such that
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(a) The {λi} are probabilities, i.e., λi ≥ 0 for all i, and
∑

λi = 1.
(b) For each i, ki = (πi,ωi) ∈ K.

We call the ki the subsequents of the move, and we call λi the weight of the subse-
quent ki .

We define the algorithm cost and the estimated optimal cost of the move (k, r) as
follows. Recall that k = (π,ω), and ki = (πi,ωi).

1. costA(k, r) = cost(π, r,
∑

λiπi), the transportation cost.
2. est_costopt(k, r) = minx∈X (ω ∧ r(x) − ∑

λiωi(x)).

A knowledge state algorithm services a request sequence � = r1, r2, . . . , rn by pick-
ing a sequence of knowledge states, k0k1, . . . , kn, as follows.

1. k0 is the cone knowledge state over x0.
2. For each 1 ≤ t ≤ n, let A(kt−1, rt ) = (k1, . . . , km,λ1, . . . , λm). Using randomiza-

tion, A chooses kt ← ki for some i, where each ki is chosen with probability λi .

We define

costtA(�) = costA

(
kt−1, rt

)
,

est_costtopt(�) = est_costopt

(
kt−1, rt

)
,

costA(�) =
n∑

t=1

costtA(�),

est_costopt(�) =
n∑

t=1

est_costtopt(�).

Note that the above costs are random variables. Note also that the definition of costA

agrees with the definition of the cost of a mixed model algorithm given in Sect. 2.
We say that A is C-ks-competitive if there is a constant K such that

Exp(costA(�)) ≤ C · Exp
(
est_costopt(�)

) + K

for any request sequence �.

Lemma 5 Given a request sequence � = r1, . . . , rn, let kt = (π t ,ωt) be the service
computed by A. Then, Exp(est_costopt(�) + ωn(x)) ≤ cost�opt(x) for all x ∈ X .

Proof Let x0, x1, . . . , xn = x ∈ X be the optimal service of � that ends in x.
By definition of optimal cost,

∑n
t=1 cost(xt−1, rt , xt ) = costopt(x).

By definition of estimated optimal cost, Exp(est_costtopt(�) + ωt(xt )) ≤
Exp((ωt−1 ∧ rt )(xt )) for all t .

By definition of update, Exp((ωt−1 ∧ rt )(xt )) ≤ Exp(ωt−1(xt−1))+cost(xt−1, rt , xt )

for all t .
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Recall that ω0(x0) = 0. Combining the above, we have

Exp
(
est_costopt(�) + ωn(x)

) =
∑

1≤t≤n

Exp
(

est_costtopt(�) + ωt(xt ) − ωt−1(xt−1)
)

≤
∑

1≤t≤n

Exp
((

ωt−1 ∧ rt
)
(xt ) − ωt−1(xt−1)

)

≤
∑

1≤t≤n

(
cost(xt−1, rt , xt )

)

= cost�opt(x)

and we are done. �

Lemma 6 If a knowledge state algorithm A is C-ks-competitive, then A is C-
competitive.

Proof Let K be the constant given in the definition of C-ks-competitiveness for any
request sequence �, Exp(costA(�)) ≤ C · Exp(est_costopt(�))+K ≤ C · costopt(�)+
K , by Lemma 5. �

We now define a ks-potential, for a given knowledge state algorithm A. Let �

be a real-valued function on knowledge states. Let C ≥ 1. Then we say that � is a
C-ks-potential for A if

1. �(k) ≥ 0 for any k.
2. If k = (π,ω) is the current knowledge state and r is the next request, let

{ki = (πi,ωi)} be the subsequents of that request, and {λi} the weights of the
subsequents. Let ��(k, r) = ∑m

i=1 λi�(πi,ωi) − �(π,ω). Then

costA(k, r) + ��(k, r) ≤ C · est_costopt(k, r).

Lemma 7 If a knowledge state algorithm A has a C-ks-potential, then A is C-
competitive.

Proof The proof follows easily from the definition of a C-ks-potential and Lemmas 5
and 6 by straightforward arguments. Let � = r1, . . . , rn be a request sequence. Let
k1, . . . , kn be the sequence of knowledge states of A given the input �, where kt =
(πt ,ωt ). Let �t = �(kt ), a random variable for each t . Note that �0 is a constant.
Let �t� = ��(kt−1, rt ). Note that Exp(�t�) = Exp(�t −�t−1). Let x ∈ X be the
configuration of the optimal algorithm after n steps. Then

C · costopt(�) − Exp(costA(�))

≥ C · Exp
(
ωn(x) + est_costopt(�)

) − Exp(costA(�))

= C · Exp

(

ωn(x) +
n∑

t=1

est_costtopt(�)

)

− Exp

(
n∑

t=1

costtA(�)

)
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= Exp

(

C · ωn(x) +
n∑

t=1

(
C · est_costtopt(�) − costtA(�)

)
)

= Exp

(

C · ωn(x) + �n +
n∑

t=1

(
C · est_costtopt(�) − costtA(�) − �t�

)
)

− �0

≥ Exp
(
C · ωn(x) + �n

) − �0 ≥ −�0.

The first inequality above is from Lemma 5. The last two inequalities are from the
definition of a C-ks-potential. It follows that Exp(costA(�)) ≤ C · costopt(�) + �0,
and, by Lemma 6, we are done. �

4 Knowledge State Algorithms for the Paging Problem

We now consider the k-paging problem for fixed k ≥ 2, which we formally define
below.

1. There is a set of pages, Q.
2. We define a k-set to be a set of exactly k pages. Let X be the set of all k-sets. If the

configuration of an algorithm is X ∈ X , that means that the pages that constitute
X are in the cache.

3. The initial configuration is the initial cache, which we call X0.
4. If X,Y ∈ X , then d(X,Y ) = ‖X,Y‖ is the cost of changing the cache from X to

Y , the cardinality of X − Y , since we assume that it costs 1 to eject a page and
bring in a new page.

5. A task is simply the request that a particular page move to the cache, and thus
R = Q, the set of all pages. If a page r is requested, the algorithm must ensure that
r is in the cache at some point as it moves between configurations; for example,
the algorithm could move r into the cache, and then move it back out.1 Thus, for
any X,Y ∈ X and any r ∈ Q, we have

cost(X, r,Y ) =
⎧
⎨

⎩

2 if X = Y, r /∈ X,

‖X,Y‖ if r ∈ X or r ∈ Y,

‖X,Y‖ + 1 otherwise.

Without loss of generality, there are never two consecutive requests to the same page.

Bar Notation for the Paging Problem Koutsoupias and Papadimitriou completely
characterize reachable offset functions for the k-paging problem [14, 15].

Lemma 8 Every offset function ω is supported by a set of configurations on which ω

is zero. Furthermore, there exists an ordered k-tuple of sets of pages (L1,L2, . . . ,Lk)

called the sequence of layers of ω such that

1This seems unnecessary, and in fact, without loss of generality, no algorithm will move a page out of the
cache after it is requested. But the fact that this is move is permitted is necessary for our analysis.
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1. |L1| = 1. (Without loss of generality, L1 = {r}, where r is the last request point.)
2. Li ∩ Lj for all 1 ≤ i, j ≤ k with i �= j .
3. If X ∈ X , then X ∈ supp(ω) if and only if |X ∩ ⋃

i≤j Li | ≥ j for all 1 ≤ j ≤ k.

We call Li the ith layer of ω. Let (L1,L2, . . . ,Lk) be the sequence of layers of
a reachable offset function ω. If x ∈ ⋃

1≤i≤k Li , we say that x is a supporting page
of ω; otherwise, we say that x is an external page.

We define the layer type of ω to be the sequence (|L1|, |L2|, . . . , |Lk|). The se-
quence of layers of ω need not be unique, but the layer type is.

The bar notation for ω is the string of symbols L1 |L2 | · · ·Lk |. We allow each set
to be written without commas or braces. For example, if k = 3, L1 = {a}, L2 = {b},
and L3 = {c, d}, we write ω = a |b | c d |. In this case, the layer type of ω is (1,1,2).

If ω = L1 |L2 | · · ·Lk | and page r is requested, we can compute the bar notation
for ω ∧ r .

ω ∧ r =
⎧
⎨

⎩

r |L2 | · · · |Lj−1 |Lj ∪ Lj+1 − {r} |Lj+2 | · · · |Lk | if r ∈ Lj for j < k,

r |L2 | · · · |Lk−1 | if r ∈ Lk,

r |L1 ∪ L2 |L3 | · · · |Lk | + 1 otherwise, i.e., if r is external.

For example, if a, b, c, d , e, f , and g are distinct pages, then

a |b c |d e |f g | ∧ d = d |a |b c | e f g |,
a |b c |d e | ∧ d = d |a |b c |,

a |b | c d | ∧ e = e |a b | c d | + 1.

We refer the reader to the rules of updating given above, and to [1, 15], to verify
the above equations.

Given an offset function ω, two supporting pages a and b are equivalent if supp(ω)

is invariant under exchange of a and b. We say that (k, r) is a lazy move if r is a
supporting page of k, and that r is a lazy request. Note that if r is a lazy request, then
ω ∧ r = ω ∧ r is also an offset function; in fact, supp(ω ∧ r) ⊆ supp(ω) in that case.
But if r is an external page, then the minimum value of ω ∧ r is 1, since the new page
must be brought into the cache at a cost of 1. In that case, ω ∧ r = ω ∧ r + 1.

Bookmarks for the k-Paging Problem Suppose that A is a knowledge state algo-
rithm for the k-paging problem. At any given step, the current knowledge state will
be of the form (π,ω), where ω is an offset function. Suppose that the layer se-
quence of ω is (L1,L2, . . . ,Lk), i.e., ω has layer type (|L1|, |L2|, . . . , |Lk|). Let
S = S(ω) = ⋃

Li , the set of supporting pages of ω, and suppose that |S(ω)| = m.
We can assume that π is supported by S. An actual implementation of A will be a
behavioral algorithm B, as described in the proof of Lemma 1. We can assume that
the probability that B contains any external page is zero. At any given step, B has k

pages in its cache, but it must remember the function ω, which means it must keep
track of the m − k pages that are known but not in the cache. We will say that B’s
memory must contain m − k bookmarks, one for each known page which is not in its
cache.
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Initially, the support of the offset function is simply the set of pages in the cache.
But, after n requests, the support of the offset function ω could grow to as many
as k + n pages, requiring n bookmarks, if B needs to remember ω entirely. It is
quite impractical to implement a paging algorithm whose memory requirements are
unbounded. Fortunately, Achlioptas et al. [1] prove that the optimal competitiveness
of Hk can be achieved with finite memory. Their algorithm, EQUITABLE, which we
describe in Sect. 4.3, uses O(k2 log k) bookmarks regardless of the length of the
request sequence.

In this paper, we improve on that result. We first present an algorithm for the
2-paging problem that requires one bookmark, and an algorithm for the 3-paging
problem that requires two bookmarks. In Sect. 4.3, we define an algorithm for the
k-paging problem, for general k, that requires 2k bookmarks.

4.1 An Optimally Competitive Knowledge State Algorithm for the 2-Paging
Problem with One Bookmark

We now give a knowledge state algorithm, K2, for the 2-paging problem, which uses
only one bookmark, and whose competitiveness is H2 = 3

2 .

1. The set of knowledge states of K2 is K = {Aa,b} ∪ {Ba,b,c}, where
(a) Aa,b = ({a, b}, a |b |) for any distinct pages a, b. Note that Aa,b is the cone

knowledge state over {a, b}.
(b) Ba,b,c = ( 1

2 {a, b} + 1
2 {a, c}, a |b c |) for any distinct pages a, b, c.

There can be more than one name for the same knowledge state, since the bar
notation of an offset function is not unique. In particular, Aa,b = Ab,a , and
Ba,b,c = Ba,c,b .

2. For any distinct pages a, b, c, r :
(a) If the knowledge state is Aa,b , a request to either a or b is trivial. If the knowl-

edge state is Ba,b,c , a request to a is trivial. K2 services trivial requests by
doing nothing. Without loss of generality, there are never any trivial requests.

(b) K2(Aa,b, r) = (Br,a,b,1). This move is illustrated in Fig. 1.
(c) K2(Ba,b,c, b) = (Ab,a,1). This move is illustrated in Fig. 2.
(d) K2(Ba,b,c, r) = (Br,a,b,Br,a,c,Br,b,c, 1

3 , 1
3 , 1

3 ). This move is illustrated in
Fig. 3.

We now prove the 3
2 -competitiveness of K2. Define

1. �(Aa,b) = 0.
2. �(Ba,b,c) = 1

2 .

Lemma 9 � is a 3
2 -ks-potential for K2.

Proof We need to prove that each move of K2 satisfies the inequalities given in the
definition of ks-competitiveness in Sect. 3. Trivially, �(k) ≥ 0. We need to verify that

costK2(k, r) + ��(k, r) ≤ C · est_costopt(k, r)

holds for each of the three non-trivial moves.
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Fig. 1 Move (Aa,b, r)

Fig. 2 Move (Ba,b,c, b)

Fig. 3 Move (Ba,b,c, r)

Case I: (k, r) = (Aa,b, r), where r /∈ {a, b}.
Since K2 must eject a page, costK2(k, r) = 1. Since r is an external page, ω ∧ r =
r |a b | + 1, and thus est_costopt(k, r) = 1. Thus

costK2(A
a,b, r) + �(Br,a,b) = 3

2
= �(Aa,b) + 3

2
est_costopt(A

a,b, r)

and we are done.

Case II: (k, r) = (Ba,b,c, b).

The probability is 1
2 that the cache contains b, and 1

2 that it does not; thus
costK2(B

a,b,c, b) = 1
2 . Since Ba,b,c ∧ b = Ab,a , we have est_costopt = 0. Thus

costK2(B
a,b,c, b) + �(Ab,a) = 1

2
= �(Ba,b,c) + 3

2
est_costopt(B

a,b,c, b)

and we are done.

Case III: (k, r) = (Ba,b,c, r), where r /∈ {a, b, c}.
Since K2 must eject a page, costK2(k, r) = 1. To compute est_costopt(B

a,b,c, r), we
compute ω ∧ r and ω̄ = ∑

i
ωi . ω ∧ r = r |a b c | + 1. It suffices to compute that

function on supp(ω̄) = {{r, a}, {r, b}, {r, c}}. Since ω1({r, a}) = 0, ω2({r, a}) = 0, and
ω3({r, a}) = 1, we have ω̄({r, a}) = 1

3 . Similarly, ω̄({r, b}) = ω̄({r, c}) = 1
3 . Thus,
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est_cost(Ba,b,c, r) = 2
3 . Thus

costK2(B
a,b,c, r) + �� = 1 = 3

2
est_costopt(B

a,b,c, r)

and we are done. �

Theorem 3 K2 is 3
2 -competitive.

Proof From Lemmas 6, 7, and 9. �

In Figs. 1, 2, and 3, each knowledge state is shown as a rectangle containing the
offset function written in bar notation. The probability that a given page is in the
cache is indicated by a number under the name of the page.

We note that the number of known pages, i.e., pages contained in a support con-
figuration, is never more than three. The number three is minimal, as given by the
theorem below:

Theorem 4 There is no knowledge state algorithm for the 2-paging problem that is
3
2 -competitive as a knowledge state algorithm, and which never has more than two
known pages, i.e., no bookmarks.

Proof If a knowledge state algorithm for the 2-paging problem never has more than
two known pages, then it can have no bookmarks, hence is trackless. By Theorem 2 of
[4], there is no 3

2 -competitive trackless online algorithm for the 2-paging problem. �

4.2 An Optimally Competitive Knowledge State Algorithm for the 3-Paging
Problem with Two Bookmarks

We now give a knowledge state algorithm, K3, for the 3-paging problem, which uses
only two bookmarks, and whose competitiveness is H3 = 11

6 .

1. The set of knowledge states of K3 is K = {Aa,b,c} ∪ {Ca,b,c,d} ∪ {Da,b,c,d,e} ∪
{Ea,b,c,d,e} ∪ {Fa,b,c,d,e}, where
(a) Aa,b,c = ({a, b, c}, a |b | c |) for any distinct pages a, b, c. Note that Aa,b,c is

the cone knowledge state over {a, b, c}.
(b) Ba,b,c,d = ( 1

3 {a, b, c} + 1
3 {a, b, d} + 1

3 {a, c, d}, a |b c |d |) for any distinct
pages a, b, c, d .

(c) Ca,b,c,d = ( 1
2 {a, b, c} + 1

2 {a, b, d}, a |b | c d |) for any distinct pages a, b, c, d .
(d) Da,b,c,d,e = ( 1

6 {a, b, c} + 1
6 {a, b, d} + 1

6 {a, b, e} + 1
6 {a, c, d} + 1

6 {a, c, e} +
1
6 {a, d, e}, a |b c d | e |) for any distinct pages a, b, c, d, e.

(e) Ea,b,c,d,e = ( 1
3 {a, b, c} + 1

3 {a, b, d} + 1
3 {a, b, e}, a |b | c d e |) for any distinct

pages a, b, c, d, e.
(f) Fa,b,c,d,e = ( 1

3 {a, b, c} + 1
6 {a, b, d} + 1

6 {a, b, e} + 1
6 {a, c, e} + 1

6 {a, d, e},
a |b c |d e |) for any distinct pages a, b, c, d, e.

2. Moves of K3 are as follows. In the list below, we assume that distinct letters
represent distinct pages.
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Table 1 Moves with one subsequent

Move Subsequent

(Aa,b,c, r) Br,a,b,c

(Ba,b,c,d , b) Cb,a,c,d

(Ba,b,c,d , c) Cc,a,b,d

(Ba,b,c,d , d) Cd,a,b,c

(Ba,b,c,d , r) Dr,a,b,c,d

(Ca,b,c,d , c) Ac,a,b

(Ca,b,c,d , d) Ad,a,b

Move Subsequent

(Ca,b,c,d , r) F r,a,b,c,d

(Da,b,c,d,e, b) Eb,a,c,d,e

(Da,b,c,d,e, c) Ec,a,b,d,e

(Da,b,c,d,e, d) Ed,a,b,c,e

(Da,b,c,d,e, e) Ee,a,b,c,d

Move Subsequent

(Ea,b,c,d,e, c) Ac,a,b

(Ea,b,c,d,e, d) Ad,a,b

(Ea,b,c,d,e, e) Ae,a,b

(F a,b,c,d,e, b) Eb,a,c,d,e

(F a,b,c,d,e, c) Ec,a,b,d,e

(F a,b,c,d,e, d) Cd,a,b,c

(F a,b,c,d,e, e) Ce,a,b,c

(a) Trivial moves are (Aa,b,c, a), (Aa,b,c, b), (Aa,b,c, c), (Ba,b,c,d , a), (Ca,b,c,d ,

a), (Ca,b,c,d , b), (Da,b,c,d,e, a), (Ea,b,c,d,e, a), (Ea,b,c,d,e, b), and (F a,b,c,d,e,

a). Without loss of generality, there are never any trivial requests.
(b) Any move where the requested page is known, or where there are fewer than

five known pages, has just one subsequent. The table lists (see Table 1) all
such moves. Some moves are equivalent; equivalences classes are separated
by empty lines.

(c) There are three cases where there are five pages and the request is to an exter-
nal page.

i. K3(Da,b,c,d,e, r) = (Dr,a,b,c,d ,Dr,a,b,c,e,Dr,a,b,d,e,Dr,a,c,d,e,Dr,b,c,d,e,
1
5 , 1

5 , 1
5 , 1

5 , 1
5 ).

ii. K3(Ea,b,c,d,e, r) = (Ar,a,b,1).
iii. K3(F a,b,c,d,e, r) = (Br,a,b,c,F r,a,b,d,e,F r,a,c,d,e,F r,b,c,d,e, 1

4 , 1
4 , 1

4 , 1
4 ).

We now prove the 11
6 -competitiveness of K3. Define

1. �(Aa,b,c) = 0.
2. �(Ba,b,c,d ) = 5

6 .

3. �(Ca,b,c,d ) = 1
2 .

4. �(Da,b,c,d,e) = 5
3 .

5. �(Ea,b,c,d,e) = 1.
6. �(Fa,b,c,d,e) = 4

3 .

Lemma 10 � is an 11
6 -ks-potential for K3.

Proof We need to prove that each move of K3 satisfies the inequalities given in the
definition of ks-competitiveness in Sect. 3. Trivially, �(k) ≥ 0. We need to verify that

costK3(k, r) + ��(k, r) ≤ 11

6
· est_costopt(k, r)

holds for each of the twelve equivalence classes of non-trivial moves.
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Case I: (k, r) = (Ba,b,c,d , b). Since this is a lazy request, est_costopt = 0. costK3 = 1
3 ,

the probability that b is not in the cache. Thus

costK3(B
a,b,c,d , b) + �(Cb,a,c,d ) = 5

6
= �(Ba,b,c,d ).

Case II: (k, r) = (Ca,b,c,d , c). Since this is a lazy request, est_costopt = 0. costK3 = 1
2 ,

the probability that c is not in the cache. Thus

costK3(C
a,b,c,d , c) + �(Ac,a,b) = 1

2
= �(Ca,b,c,d ).

Case III: (k, r) = (Da,b,c,d,e, b). Since this is a lazy request, est_costopt = 0. costK3 =
1
2 , the probability that b is not in the cache. Thus

costK3(D
a,b,c,d,e, b) + �(Eb,a,c,d,e) = 3

2
<

5

3
= �(Da,b,c,d,e).

Case IV: (k, r) = (Ea,b,c,d,e, c). Since this is a lazy request, est_costopt = 0. costK3 =
2
3 , the probability that c is not in the cache. Thus

costK3(E
a,b,c,d,e, c) + �(Ac,a,b) = 2

3
< 1 = �(Da,b,c,d,e).

Case V: (k, r) = (F a,b,c,d,e, b). Since this is a lazy request, est_costopt = 0. costK3 =
1
3 , the probability that b is not in the cache. Thus

costK3(F
a,b,c,d,e, b) + �(Eb,a,c,d,e) = 4

3
= �(Fa,b,c,d,e).

Case VI: (k, r) = (F a,b,c,d,e, d). Since this is a lazy request, est_costopt = 0. costK3 =
2
3 , the probability that d is not in the cache. Thus

costK3(F
a,b,c,d,e, d) + �(Cd,a,b,c) = 7

6
<

4

3
= �(Fa,b,c,d,e).

Case VII: (k, r) = (Aa,b,c, r), where r /∈ {a, b, c}.
Since K3 must eject a page, costK3(k, r) = 1. Since r is an external page, ω ∧ r =
r |a b c | + 1 = Br,a,b,c + 1, and thus est_costopt(k, r) = 1. Thus

costK3(A
a,b,c, r) + �(Br,a,b,c) = 11

6
= �(Aa,b,c) + 11

6
est_costopt(A

a,b,c, r).

Case VIII: (k, r) = (Ba,b,c,d , r), where r /∈ {a, b, c, d}. Since K3 must eject a page,
costK3(k, r) = 1. Since r is an external page, ω ∧ r = r |a b c d | + 1 = Dr,a,b,c,d + 1,
and thus est_costopt(k, r) = 1. Thus

costK3(B
a,b,c,d , r) + �(Dr,a,b,c,d ) = 8

3
= �(Ba,b,c,d ) + 11

6
est_costopt(B

a,b,c,d , r).
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Case IX: (k, r) = (Ca,b,c,d , r), where r /∈ {a, b, c, d}. Since K3 must eject a page,
costK3(k, r) = 1. Since r is an external page, ω∧ r = r |a b | c d |+1 = F r,a,b,c,d +1,
and thus est_costopt(k, r) = 1. Thus

costK3(C
a,b,c,d , r) + �(F r,a,b,c,d ) = 7

3
= �(Ca,b,c,d ) + 11

6
est_costopt(C

a,b,c,d , r).

Case X: (k, r) = (Da,b,c,d,e, r), where r /∈ {a, b, c, d, e}. Since K3 must eject a
page, costK3(k, r) = 1. Since r is an external page, ω ∧ r = r |a b c d e | + 1. Av-
eraging the five subsequents, we obtain ω̄(X) = 2

5 for each X ∈ supp(ω ∧ r), hence
est_costopt(k, r) = 3

5 . Since all subsequents have the same potential as the start con-
figuration, �� = 0. Thus

costK3(D
a,b,c,d,e, r) + �� = 1 <

11

10
= 11

6
est_costopt(D

a,b,c,d,e, r).

Case XI: (k, r) = (Ea,b,c,d,e, r), where r /∈ {a, b, c, d, e}. Since K3 must eject a page,
costK3(k, r) = 1. Since r is an external page, ω ∧ r = r |a b | c d e | + 1, while ω̄ =
r |a |b |. Checking each X ∈ supp(ω ∧ r), we verify that est_costopt(k, r) = 0. Thus

costK3(E
a,b,c,d,e, r) + �(Ar,a,b) = 1 = �(Ea,b,c,d,e).

Case XII: (k, r) = (F a,b,c,d,e, r), where r /∈ {a, b, c, d, e}. Since K3 must eject a
page, costK3(k, r) = 1. Since r is an external page, ω ∧ r = r |a b c |d e | + 1. Aver-
aging over the four subsequents and checking all X ∈ supp(ω ∧ r), we find that the
minimum value of (ω ∧ r)(X) − ω̄(X) is 1

2 . Averaging the potentials of the subse-
quents, we find that Exp(��) = − 1

6 . Thus

costK3(F
a,b,c,d,e, r) + Exp(��) = 5

6
<

11

12
= 11

6
est_costopt(F

a,b,c,d,e, r).

Thus, the inequality holds for every move, and we are done. �

Theorem 5 K3 is 11
6 -competitive.

Proof From Lemmas 6, 7, and 10. �

4.3 Knowledge State Algorithms for the k-Paging Problem for General k

We start by reviewing the algorithm EQUITABLE given by Achlioptas, Chrobak, and
Noga [1].

The Algorithm EQUITABLE This algorithm is a randomized algorithm for the k-
paging problem that is Hk-competitive and has space complexity O(k2 logk). We
briefly review EQUITABLE; the reader is referred to [1] for further details.

Fix k. For the offset function ω = L1 |L2 | · · ·Lk |, let πω be the distribution on
k-sets of pages given in [1]. That distribution, which we call the EQUITABLE dis-
tribution, and denote πω , can be described by defining a randomized algorithm for
choosing the cache, X:
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1. Initialize X to be the empty set.
2. Let T = ⋃

Li , the set of known pages.
3. Execute the following loop until |X| = k:

(a) Select x ∈ T uniformly at random.
(b) Delete x from T .
(c) If |(X ∪ {x}) ∩ Li | ≥ i + |X| + 1 − k for all 1 ≤ i ≤ k (i.e., if X ∪ {x} is a

subset of some member of supp(ω)) then X ← X ∪ {x}.
From [1] we have:

Lemma 11 X ∈ supp(ω) ⇐⇒ πω(X) > 0.

EQUITABLE is defined as a knowledge state algorithm, as follows.

1. Let M = �5k2Hk�. Let K be the set of all knowledge states of the form kω =
(πω,ω), where ω is a reachable offset function for the k-paging problem which
has at most M supporting pages.

2. We define EQUITABLE(kω, r) for any kω ∈ K and any page r , as follows.
(a) If r is a supporting page of ω, or if ω has fewer than M supporting pages, we

let kω ∧ r ∈ K be the single subsequent of the move (kω, r).
(b) Otherwise, i.e., if ω has exactly M supporting pages and r is an external page,

let the subsequents of the move (kω, r) be the set of cone knowledge states
{κX : X ∈ supp(ω ∧ r)}. Let the weight of the subsequent κX be πω ∧ r (X).

Theorem 6 EQUITABLE requires O(k2 logk) bookmarks.

Proof There are never more than M − k bookmarks. �

We refer the reader to [1] for the proof of the main result:

Theorem 7 EQUITABLE is Hk-competitive.

The New Algorithm K_EQUITABLE We will now describe an Hk-competitive (thus
optimally competitive) algorithm for the k-paging problem, which keeps track of only
3k pages. We call the algorithm K_EQUITABLE. As described above, the algorithm
EQUITABLE is a knowledge state algorithm, though it was not defined in these terms
in [1]. The set of knowledge states of K_EQUITABLE is a proper subset of the set of
knowledge states of EQUITABLE.

K_EQUITABLE is defined as a knowledge state algorithm, as follows.

1. Let M = 3k. Let K be the set of all knowledge states of the form kω = (πω,ω),
where ω is a reachable offset function for the k-paging problem which has at most
M supporting pages. (The distribution πω is the EQUITABLE distribution defined
above.)

2. We define K_EQUITABLE(kω, r) for any kω ∈ K and any page r , as follows.
(a) If r is a supporting page of ω, or if ω has fewer than M supporting pages, we

let kω ∧ r ∈ K be the single subsequent of the move (kω, r).
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(b) Otherwise, i.e., if ω has exactly M supporting pages and r is an external page,
write ω = L1|L2| · · · |Lk−1|Lk|. The move (kω, r) has just one subsequent,
which is kω̃, where ω̃ = r|L1|L2| · · · |Lk−1|.

For convenience we introduce the following notation: If ω = L1|L2| · · · |Lk−1|Lk|,
we define Si = ⋃

1≤j≤i Lj . Thus, Sk is the set of all supporting pages of ω. Let
mi = |Si |.

We define the function � to be the cost EQUITABLE or K_EQUITABLE incurs
on a sequence of lazy requests ending when |Sk| = k. This is well defined due to
the following observations given in [1]: For an offset function ω and page x, define
px = pω

x
to be the probability that the page x is in the cache, given that the distribution

is πω . Equivalently let px = ∑
{X∈Sk |x∈X} πω(X). Note that px > 0 ⇐⇒ x ∈ Sk .

Observation 1 If x ∈ Li and y ∈ Lj , where i ≤ j , then px ≥ py .

Observation 2 For any offset function, all sequences of lazy requests ending when
|Sk| = k have the same cost.

Define � = �(ω) as follows:

� =
k∑

i=2

(mi

i
+ Hi−1 − Hmi−1 − 1

)
.

We define � = � +�. We will show that � is an Hk-ks-potential for K_EQUITABLE,
i.e., that

cost + �� + �� ≤ Hk · est_costopt

for any given move, where cost = costK_Equitable for that move.
In the discussion below, unprimed variables denote the values before a given re-

quest. Primed variables are the values after that request. Recall that mi ≥ i.

Lemma 12 On a lazy request r ∈ Lj , cost + �� + �� ≤ Hk · est_costopt .

Proof Since � is the cost for EQUITABLE to serve a lazy sequence of requests ending
in a cone, on a lazy request cost + �� = 0, by the definition of � . Also, for a lazy
request est_costopt = 0. Thus, it suffices to show that �� < 0. We have

�� =
k∑

i=2

(
m′

i

i
− Hm′

i−1 − mi

i
+ Hmi−1

)

=
j∑

i=2

(
mi−1 + 1 − mi

i
− Hmi−1 + Hmi−1

)

=
j∑

i=2

⎛

⎝mi−1 + 1 − mi

i
+

mi−1∑

�=mi−1+1

1

�

⎞

⎠



674 Algorithmica (2011) 60: 653–678

≤
j∑

i=2

⎛

⎝mi−1 + 1 − mi

i
+

mi−1∑

�=mi−1+1

1

i

⎞

⎠

= 0.

The inequality follows from the fact that � ≥ mi−1 + 1 ≥ i for each index � in the
summation. �

Lemma 13 On an external request r /∈ Sk , where mk < 3k, then �� ≤ ∑k
i=2

1
mi

.

Proof If k = 1 then � = � ′ = 0 which shows that the lemma is true for k = 1.
Assume k > 1 and that the lemma is true for k − 1.

For every page x �= r , px ≥ p′
x
, since r is the only page that gains mass. Since

pr = 0, p′
r = 1,

∑
x∈Sk

(px − p′
x) = 1, and |Sk| = mk , there must be an item x ∈ Sk

for which px − p′
x
≤ 1/mk .

If x ∈ L1, pick y ∈ L2. We have py ≤ px , but p′
y
= p′

x
since x and y are equivalent

for ω′. Hence it follows py − p′
y
≤ px − p′

x
. Thus, without loss of generality, x /∈ L1.

Let this page x ∈ Lj be the first item in the lazy request sequence which defines
� and � ′. Define the following offset functions:

ω = L1|L2| · · · |Lk|,
ω′ = r|L1 ∪ L2|L3| · · · |Lk|,

ω ∧ x = x|L1|L2| · · · |Lj−1|Lj ∪ Lj+1 − {x}| · · · |Lk|,
ω′ ∧ x = x|r|L1 ∪ L2|L3| · · · |Lj−1|Lj ∪ Lj+1 − {x}| · · · |Lk|,
ωdropx = L1|L2| · · · |Lj−1|Lj ∪ Lj+1| · · · |Lk|,
ω′

dropx = r|L1 ∪ L2|L3| · · · |Lj−1|Lj ∪ Lj+1| · · · |Lk|.
Now we notice that

�� ≤ 1

mk

+ �(ω′ ∧ x) − �(ω ∧ x)

= 1

mk

+ �(ω′
dropx) − �(ωdropx)

≤ 1

mk

+
k−1∑

i=2

1

mi

=
k∑

i=2

1

mi

,

where the third line follows from the inductive hypothesis. �

Lemma 14 On an external request r /∈ Sk , if mk < 3k,

cost + �� + �� ≤ Hk · est_costopt.



Algorithmica (2011) 60: 653–678 675

Proof Since r /∈ Sk , m′
i = mi + 1. Given Lemma 13, it follows that

cost + �� + �� ≤ 1 +
k∑

i=2

1

mi

+
k∑

i=2

(
m′

i

i
− Hm′

i−1 − mi

i
+ Hmi−1

)

= 1 +
k∑

i=2

1

mi

+
k∑

i=2

(
mi + 1

i
− Hmi

− mi

i
+ Hmi−1

)

=
k∑

i=1

1

i

= Hk · est_costopt. �

Lemma 15 On an external request r /∈ Sk when mk = 3k,

cost + �� + �� ≤ 0.

Proof An alternative way to implement this step is to place r in Lk and then request r .
We can easily compute �� during this step. However, it is easier to compute cost +
�� when r is added to Lk , and then on the request, separately. The cost of this move
is then separated into two parts.

When r is placed into Lk , the distribution must be adjusted and the lazy potential
changes. The transportation cost necessary to adjust the distribution is p′

r . Since the
cost on all lazy sequences is the same, we can compute the change in potential by
considering a sequence which begins with some page x ∈ Lk . From Observation 1,
cost + �� = px − p′

x
+ p′

r
= px ≤ k

mk
.

When r is requested, then cost + �� = 0 because � is the lazy potential. So it
suffices to show that k

mk
+ �� is no more than 0. We have

cost + �� + �� ≤ k

mk

+
k∑

i=2

(
m′

i

i
− Hm′

i−1 − mi

i
+ Hmi−1

)

= 1

3
+

k∑

i=2

(
mi−1 + 1 − mi

i
− Hmi−1 + Hmi−1

)

≤ 1

3
+

(
k − mk

k
− Hk−1 + Hmk−1

)

= −5

3
+ H3k−1 − Hk−1

≤ 0.

To see the second inequality, first consider the case that mi = i for all 2 ≤ i ≤ k − 1,
the minimum possible values. In this case, we have equality. We can now verify that if
we increase the value of any mi for 2 ≤ i ≤ k − 1, the difference between the formula
on the third line and the formula on the second line does not decrease. �
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Theorem 8 K_EQUITABLE is an Hk-competitive, O(k) memory, randomized algo-
rithm for the k-paging problem.

Proof The number of supporting pages is never more than 3k, and thus the mem-
ory is O(k). Lemmas 12, 14, and 15 show that cost + �� + �� ≤ Hk · est_costopt

for every move. Note that � + � is initially 0 and never negative. When we sum
over every request, we show that costK_Equitable(�) ≤ Hk · costopt(�) for any request
sequence �. �

5 Summary of Further Results

One of the most challenging problems in online algorithms is to determine the exact
randomized competitiveness of the k-server problem, that is, the minimum competi-
tiveness of any randomized online algorithm for the server problem. Even in the case
k = 2 it is not known whether its competitiveness is lower than 2, the known value
of the deterministic competitiveness. This is surprising, since it seems intuitive that
randomization should help. For the randomized 2-server problem we note that for the
special case of the line, Bartal et al. [2] have given a randomized algorithm with a
competitive ratio of better than 2. Unfortunately, the approach is specific to the line,
using methods which do not appear to generalize to all metric spaces. Recently in [8],
Bein et al. have designed a knowledge state algorithm with a competitive ratio of 19

12
over Cross Polytope Spaces, and proved it is optimal against the oblivious adversary.
Cross Polytope Spaces have been studied extensively starting as early as the 19th
century; see Schläfli [16], as well as Fig. 4. They are part of a larger category M2,4,
consisting of all metric spaces such that

• all distances are 1 or 2,
• d(x, y) + d(y, z) + d(z, x) ≤ 4.

We note that paging can be modeled as a server problem in uniform spaces. Thus
M2,4 is “one step up” from uniform spaces and further work would focus on M3,6
and so forth.

Another result motivated by an application involved multiprocessor caching sys-
tems [7]. Multiprocessor systems with a global shared memory provide logically uni-
form data access. To hide latencies when accessing global memory, each processor
makes use of a private cache. Several copies of a data item may exist concurrently
in the system. To guarantee consistency when updating an item a processor must in-
validate copies of the item in other private caches. To exclude the effect of classical
paging faults, one assumes that each processor knows its own data access sequence,
but does not know the sequence of future invalidations requested by other proces-
sors. Performance of a processor with this restriction can be measured against the
optimal behavior of a theoretical omniscient processor, using competitive analysis.
In [7], Bein et al. have given a 4

3 -competitive randomized knowledge state algorithm
for this problem for cache size of 2 and have also proved a matching lower bound;
thus this online algorithm is best possible. In addition, a lower bound of 3

2 on the
competitiveness for larger cache sizes was shown.
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Fig. 4 The class M2,4 and its relation to uniform and hamming metric spaces

In this paper we have given an Hk-competitive randomized online algorithm for
the k-paging problem which keeps track of only 3k pages. For large k, Lemma 15
can be improved to αk where α ≈ 2.2572 satisfies α2 − α − α ln(α) = 1.

For k = 2, we have shown that keeping track of three pages (i.e., using one book-
mark) suffices to obtain an optimally competitive randomized algorithm, and for
k = 3, we have shown that keeping track of five pages (i.e., using two bookmarks)
suffices. We emphasize that we have not proven, nor do we believe, 3k to be the
minimum number of pages needed for any particular k. In fact, we conjecture that a
stronger result holds than the upper bound from this paper:

Conjecture 1 There exists a randomized online algorithm for paging which is Hk-
competitive and uses o(k) bookmarks.

Acknowledgement We thank the two referees for many helpful comments, which have improved the
paper.
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