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Abstract Internet search companies sell advertisement slots based on users’ search
queries via an auction. Advertisers have to determine how to place bids on the key-
words of their interest in order to maximize their return for a given budget: this is
the budget optimization problem. The solution depends on the distribution of future
queries. In this paper, we formulate stochastic versions of the budget optimization
problem based on natural probabilistic models of distribution over future queries,
and address two questions that arise.

Evaluation Given a solution, can we evaluate the expected value of the objective
function?

Optimization Can we find a solution that maximizes the objective function in expec-
tation?

Our main results are approximation and complexity results for these two problems
in our three stochastic models. In particular, our algorithmic results show that simple
prefix strategies that bid on all cheap keywords up to some level are either optimal or
good approximations for many cases; we show other cases to be NP-hard.
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1 Introduction

Internet search companies use auctions to sell advertising slots in response to users’
search queries. To participate in these auctions, an advertiser selects a set of keywords
that are relevant or descriptive of her business, and submits a bid for each of them.
Upon seeing a user’s query, the search company runs an auction among the advertisers
who have placed bids for keywords matching the query and arranges the winners in
slots. The advertiser pays only if a user clicks on her ad. Advertiser’s bid affects the
position of the ad, which in turn affects the number of clicks received and the cost
incurred. In addition to the bids, the advertiser specifies a daily budget. When the cost
charged for the clicks reaches the budget, the advertiser’s ads stop participating in the
auctions.

In what follows, we first model and abstract the budget optimization problem, and
then present our stochastic versions, before describing the results.

1.1 Advertiser’s Budget Optimization Problem

We adopt the viewpoint of an advertiser and study the optimization problem she faces.
The advertiser has to determine the daily budget, a good set of keywords, and bids
for these keywords so as to maximize the effectiveness of her campaign. The daily
budget and the choice of keywords are business-specific, so they are assumed to be
given in our problem formulation. Effectiveness of a campaign is difficult to quantify
since clicks resulting from some keywords may be more desirable than others, and
in some cases, just appearing on the results page for a user’s query may have some
utility. For most of the paper, we adopt a common measure of the effectiveness of a
campaign, namely, the number of clicks obtained.1 Further, seen from an individual
advertiser’s point of view, the budgets and bids of other advertisers are fixed for the
day. We develop most of our discussions assuming that each keyword has a single
winning bid amount, which is fixed throughout the day and known in advance. This
models the case of an auction with a single slot, and disregards the possibility of other
advertisers changing their bids or running out of budget.

Our setting is a simplification of the real mechanism for the sponsored search auc-
tions, but it models important aspects of it. Currently, the search engines determine a
minimum reserve price per auction as well as the number of ads that they show. As
their estimates of the reserve price become more accurate, they will be able to show
ads of all advertisers who bid higher than the reserve price. That would be closer
to the situation we model. As another example, advertisers always have to consider
some gross estimate of the behavior of the search engine market. They may simply
partition the possible outcomes of an auction into two groups, depending on whether

1We extend our results to a more general model where clicks for different keywords may have different
values in Sect. 6.1.
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their ad lost the auction completely, or it did appear in some slot, and then consider
the expected costs and numbers of clicks in the second case. In the future, it will
be worthwhile to study more general models that capture the effects of positions in
which the ads appear. We discuss this further in Sect. 6.2, where we mention the
extensions that eliminate some of the assumptions that we make.

Under our assumptions, each keyword i has a single threshold bid amount, such
that any bid below this amount loses the auction and does not get any clicks. Any
bid above the threshold wins the auction, and gets clicks with cost per click equal
to the threshold bid amount.2 In this case the advertiser’s decision for each keyword
becomes binary: whether or not to bid on it above its threshold. We use a vector
of decision variables b, in which each component bi can be integral (bi ∈ {0,1})
or fractional (bi ∈ [0,1]), and indicates whether or not there is a bid on keyword i.
A fractional bid represents bidding for bi fraction of the queries that correspond to
keyword i, or equivalently bidding on each such query with probability bi . Integer
bid solutions are slightly simpler to implement than fractional bids and are more de-
sirable when they exist. For any two vectors, we define the notation 〈x, y〉 = ∑

i xiyi .
Analogously, for three vectors we define 〈x, y, z〉 = ∑

i xiyizi .
Finally, consider the effect of user behavior on the advertiser. We abstract it using

the vector clicks, where clicksi is the number of clicks for queries corresponding
to keyword i. Each such click entails a cost cpci , which is assumed to be known.
Now, the advertiser is budget-constrained, and some solutions may run out of budget,
which decreases the total number of clicks obtained. In particular, the advertiser has
a global daily budget B , which is used to get clicks for all of the keywords. When
the budget is spent, the ads stop being shown, and no more clicks can be bought.
We model the limited budget as follows. Consider a solution b that bids on some
keywords. If the budget were unlimited, then bidding on those keywords would bring
〈clicks, b〉 clicks, which together would cost 〈clicks, cpc, b〉. But when the budget
B is smaller than this cost, the solution runs out of money before the end of the day,
and misses the clicks that come after that point. If we assume that the queries and
clicks for all keywords are distributed uniformly throughout the day and are well-
mixed, then this solution reaches the budget after B/〈clicks, cpc, b〉 fraction of the
day passes, missing (1 − B/〈clicks, cpc, b〉) fraction of the possible clicks for each
keyword. As a result, the number of clicks collected before the budget is exceeded is
〈clicks, b〉 · B/〈clicks, cpc, b〉 in expectation.

Based on the discussion so far, we can now state the optimization problem an
advertiser faces.

Definition 1 BUDGET OPTIMIZATION PROBLEM (BO) An advertiser has a set T

of keywords, with |T | = n, and a budget B . For each keyword i ∈ T , we are given
clicksi , the number of clicks that correspond to i, and cpci , the cost per click of these
clicks. The objective is to find a solution b = (b1, . . . ,bn) with a bid 0 ≤ bi ≤ 1 for
each i ∈ T to maximize

value(b) = γ (〈clicks, cpc, b〉) · 〈clicks, b〉, (1)

2This assumes second-price auctions, where the winner’s cost is the highest bid of others. All our results
also apply to weighted second-price auctions, which are common in search-based advertising.
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where 〈clicks, b〉 is the number of clicks available to the solution, and γ (x) =
min(1,B/x), which is a function of the total cost of these clicks, is a scaling fac-
tor for the case that the budget is exceeded.

Let the average cost per click of a solution be cpc(b) = 〈clicks,cpc,b〉
〈clicks,b〉 . Then the

objective function can be expressed as

value(b) =
{

〈clicks,b〉, if 〈clicks,cpc,b〉 ≤ B,

B/cpc(b), if 〈clicks,cpc,b〉 > B.
(2)

So maximizing value(b) is equivalent to maximizing the number of clicks in case that
we are under budget, and minimizing the average cost per click if we are over budget.
We always assume that the keywords are numbered in the order of non-decreasing
cpci , i.e. cpc1 ≤ cpc2 ≤ · · · ≤ cpcn.

1.2 Stochastic Versions

Many variables affect the number of clicks that an advertiser receives in a day. Be-
sides the advertiser’s choice of her own budget and keywords which we take to be
given, and the choices made by other advertisers which remain fixed, the main vari-
able in our problem is the number of queries of relevance that users issue on that day,
and the frequency with which the ads are clicked.3 These quantities are not known
precisely in advance. Our premise is that Internet search companies can analyze past
data and provide probability distributions for parameters of interest. They currently
do provide limited amount of information about the range of values taken by these
parameters.4 This motivates us to study the problem in the stochastic setting where
the goal is to maximize the expected value of the objective under such probability
distributions.

In the stochastic versions of our problem, the set of keywords T , the budget B ,
and the cost per click cpci for each keyword are fixed and given, just like in the BO
problem of Definition 1. What is different is that the numbers of clicks clicksi cor-
responding to different keywords are random variables having some joint probability
distribution. But because general joint probability distributions are difficult to rep-
resent and to work with, we formulate the following natural stochastic models. (In
contrast, the problem where clicks is known precisely is called the fixed model from
here on.)

Proportional Model The relative proportions of clicks for different keywords remain
constant. This is modeled by one global random variable for the total number of
clicks in the day, and a fixed known multiplier for each keyword that represents
that keyword’s share of the clicks.

3The nature and number of queries vary significantly. An example in Google Trends shows the spikes in
searches for shoes, flowers and chocolate: http://www.google.com/trends?q=shoes,flowers,chocolate.
4See, for example, the information provided to any AdWords advertiser. See also https://adwords.google.
com/support.

http://www.google.com/trends?q=shoes,flowers,chocolate
https://adwords.google.com/support
https://adwords.google.com/support
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Independent Keywords Model Each keyword comes with its own probability distrib-
ution for the number of clicks, and the samples are drawn from these distributions
independently.

Scenario Model There is an explicit list of N scenarios. Each scenario specifies the
number of clicks for each keyword, and has a probability of occurring. We think
of N as reasonably small, and allow the running time of algorithms to depend
(polynomially) on N .

The scenario model is important for two reasons. For one, market analysts often
think of uncertainty by explicitly creating a set of a few model scenarios, possibly at-
taching a weight to each scenario. The second reason is that the scenario model gives
us an important segue into understanding the fully general problem with arbitrary
joint distributions. Allowing the full generality of an arbitrary joint distribution gives
us significant modeling power, but poses challenges to the algorithm designer. Since
a naive explicit representation of the joint distribution requires space exponential in
the number of random variables, one often represents the distribution implicitly by a
sampling oracle. A common technique, Sampled Average Approximation (SAA), is
to replace the true distribution D by a uniform or non-uniform distribution D̂ over a
set of samples drawn by some process from the sampling oracle, effectively reducing
the problem to the scenario model. For some classes of problems, see e.g. [1–3], it is
known that SAA approximates the original distribution to within an arbitrarily small
error using polynomially many samples. While we are not aware of such bounds ap-
plicable to the budget optimization problem, understanding the scenario model is still
an important step in understanding the general problem.

There are two issues that arise in each of the three stochastic models.

• STOCHASTIC EVALUATION PROBLEM (SE). Given a solution b, can we evalu-
ate E[value(b)] for the three models above? Even this is nontrivial as is typical in
stochastic optimization problems. It is also of interest in solving the budget opti-
mization problem below.

• STOCHASTIC BUDGET OPTIMIZATION PROBLEM (SBO). This is the Budget Op-
timization problem with one of the stochastic models above determining clicks,
with the objective to maximize

E[value(b)] = E[γ (〈clicks, cpc, b〉) · 〈clicks, b〉]. (3)

The expectation is taken over the distribution of clicks.

1.3 Our Results

We present algorithmic and complexity-theoretic results for the SE and SBO prob-
lems.

For SE problems, our results are as follows. The problem is straight-forward to
solve for the fixed and scenario models since the expression for the expected value of
the objective can be explicitly written in polynomial time. For the proportional model,
we give an exact algorithm to evaluate a solution, assuming that some elementary
quantities (such as probability of a range of values) can be extracted from the given
probability distribution in polynomial time. For the independent model, the number
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of possibilities for different click quantities may be exponential in the number of
keywords, and the problem of evaluating a solution is likely to be #P -hard. We give
a PTAS for this case. These evaluation results are used to derive algorithms for the
SBO problem, though they may be of independent interest.

Our main results are for the SBO problem. In fact, all our algorithms produce a
special kind of solutions called prefix solutions. A prefix solution bids on some prefix
of the list of keywords sorted in the increasing order of cost per click (cpci ), i.e.,
on the cheap ones. Formally, an integer prefix solution with bids bi has the property
that there exists some i∗ such that bi = 1 for all i ≤ i∗, and bi = 0 for i > i∗. For
a fractional prefix solution, there exists an i∗ such that bi = 1 for i < i∗, bi = 0 for
i > i∗, and bi∗ ∈ [0,1]. We show:

• For the proportional model, we can find an optimal fractional solution in polyno-
mial time if the distribution of clicks can be described using polynomial number
of points; else, we obtain a PTAS. We get this result by showing that the optimal
fractional solution in this case is a prefix solution and giving an algorithm to find
the best prefix.

• Our main technical contribution is the result for the independent model, where
we prove that every integer solution can be transformed to a prefix solution by
removing a set of expensive keywords and adding a set of cheap ones, while losing
at most half of the value of the solution. Thus, some integer prefix is always a 2-
approximate integer solution. When combined with our PTAS for the evaluation
problem, this leads to a 2 + ε approximation algorithm. We also show that the best
fractional prefix is not in general the optimal fractional solution in this case.

• For the scenario model, we show a negative result that finding the optimum, frac-
tional or integer, is NP-hard. In this case, the best prefix solution can be arbitrarily
far from the optimum.

1.4 Related Work

Together, our results represent a new theoretical study of stochastic versions of budget
optimization problems in search-related advertising. The budget optimization prob-
lem was studied recently [4] in the fixed model, when clicks is known. On one hand,
our study is more general, with the emphasis on the uncertainty in modeling the num-
bers of clicks for different keywords and the stochastic models we have formulated.
We do not know of prior work in this area that formulates and uses our stochastic
models. On the other hand, our study is less general as it does not consider the in-
teraction between keywords that occurs when a user’s search query matches two or
more keywords, which is studied in [4].

Stochastic versions of many optimization problems have been considered, such as
facility location, Steiner trees, bin-packing and LP (see, for example, the survey [3]).
Perhaps the most relevant to our setting is the work on the stochastic knapsack prob-
lem, of which several versions have been studied. Dean et al. [5] consider a version
of the problem in which item values are fixed, and item sizes are independent ran-
dom variables. The realization of an item’s size becomes known once it is placed in
the knapsack, so an algorithm has to select items one at a time, until the knapsack
capacity is exceeded. In [6] and [7], a version of the problem with fixed item values
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and random sizes is considered as well, but there the goal is to choose a valuable
set of items whose probability of exceeding the knapsack capacity is small. Other
authors [8–11] have studied versions with fixed item sizes but random values. Our
SBO problem can be viewed as a version of stochastic knapsack, with keyword costs
and numbers of clicks analogous to item sizes and values, respectively, and the bud-
get playing the role of knapsack capacity. However, our formulation is different from
others in several respects. First, there is no hard capacity constraint, in the sense that,
unlike in knapsack, in our problem bidding on any set of keywords constitutes a fea-
sible solution. The chosen set only affects the value of the objective, whose scaling
factor γ decreases continuously as the cost of keywords increases past the budget.
The second difference is that in our model, both the number of clicks and the cost of
the keywords are random, but their ratio for each particular keyword (item) is fixed
and known. Another difference is that previous work on stochastic knapsack consid-
ers independent distributions of item parameters, whereas two of our models (pro-
portional and scenario) have correlated variables. Furthermore, although the greedy
algorithm which takes items in the order of their value-to-size ratio is well-known and
variations of it have been applied to knapsack-like problems, our analysis proving the
2-approximation result is new.

Recently, Chakrabarty et al. [12] considered an online knapsack problem with
the assumption of small element sizes, and Babaioff et al. [13] considered an online
knapsack problem with a random order of element arrival, both motivated by bidding
in advertising auctions. The difference with our work is that these authors consider
the problem in the online algorithms framework, and analyze the competitive ratios
of the obtained algorithms. In contrast, our algorithms make decisions offline, and
we analyze the obtained approximation ratios for the expected value of the objec-
tive. Also, our algorithms base their decisions on the probability distributions of the
clicks, whereas the authors of [13] and [12] do not assume any advance knowledge
of these distributions. The two approaches are in some sense complementary: online
algorithms have the disadvantage that in practice it may not be possible to make new
decisions about bidding every time that a query arrives, and stochastic optimization
has the disadvantage of requiring the knowledge of the probability distributions.

Also motivated by advertising in search-based auctions, Rusmevichientong and
Williamson [14] have studied the keyword selection problem, where the goal is to
select a subset of keywords from a large pool for the advertiser to choose to bid.
Their model is similar to our proportional model, but the proportions of clicks for
different keywords are unknown. An adaptive algorithm is developed that learns the
proportions by bidding on different prefix solutions, and eventually converges to near-
optimal profits [14], assuming that various parameters are concentrated around their
means. The difference with our work is that we consider algorithms that solve the
problem in advance, and not by adaptive learning, and work for any arbitrary (but
pre-specified) probability distributions.

There has been a lot of other work on search-related auctions in the presence of
budgets, but it has primarily focused on the game-theoretic aspects [15, 16], strategy-
proof mechanisms [17, 18], and revenue maximization [19, 20].
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1.5 Map

We briefly discuss the fixed case first, and then focus on the three stochastic models
in the following sections; in each case, we solve both evaluation and BO problems.
Finally, we present some extensions of our work and state a few open problems.

2 Fixed Model

For the BO problem in the fixed model, a certain fractional prefix, which is easy
to find, is the optimal solution. The algorithm is analogous to that for the fractional
knapsack problem. We find the maximum index i∗ such that

∑
i≤i∗ clicksicpci ≤ B .

If i∗ is the last index in T , we set bi = 1 for all keywords i. Otherwise find a fraction
α ∈ [0,1) such that

∑
i≤i∗ clicksicpci + α · clicksi∗+1cpci∗+1 = B , and set bi = 1 for

i ≤ i∗, bi∗+1 = α, and bi = 0 for i > i∗ + 1.

Theorem 2 In the fixed model, the optimal fractional solution for the BO problem
is the maximal prefix whose cost does not exceed the budget, which can be found in
linear time.

The integer version of this problem is NP-hard by reduction from KNAPSACK.

3 Proportional Model

In the proportional model of SBO, we are given q, the click frequency for keywords,
with

∑
i∈T qi = 1. The total number of clicks is denoted by a random variable C, and

has a known probability distribution. The number of clicks for a keyword i is then
determined as clicksi = qi · C. The objective is to maximize the expected number of
clicks, given by expression (3).

Theorem 3 The optimal fractional solution for the SBO problem in the proportional
model is a fractional prefix solution.

Proof We use an interchange argument to show that any solution can be transformed
into a prefix solution without decreasing its value. Consider a solution b. If b is not
a prefix solution, then there exist keywords i and j with i < j , bi < 1, and bj > 0.
Choose the smallest such i and the largest such j . We will decrease the bid on j and
increase the bid on i, thus making the solution closer to a prefix, while maintaining
the cost and the number of clicks that it obtains. If qi · cpci = 0, set bi = 1 and
continue. Otherwise pick the maximum δi, δj > 0 that satisfy

δi ≤ 1 − bi , δj ≤ bj , δi = qj cpcj

qicpci

δj .

We assign b′
i = bi +δi , b′

j = bj −δj , and b′
k = bk for k /∈ {i, j}. The resulting solution

b′ satisfies 〈q, cpc, b′〉 = 〈q, cpc, b〉 and 〈q, b′〉 ≥ 〈q, b〉:
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〈q,cpc,b′〉 − 〈q,cpc,b〉 = qicpciδi − qj cpcj δj = 0,

〈q,b′〉 − 〈q,b〉 = qiδi − qj δj = qj

(
cpcj

cpci

− 1

)

δj ≥ 0.

So for any specific value C = c, the objective function of the solution does not de-
crease, value(b′) = γ (c〈q, cpc, b′〉) · c〈q, b′〉 ≥ value(b). Therefore, the expected
value over C does not decrease either, E[value(b′)] ≥ E[value(b)]. As a result of
the transformation, either b′

i = 1 or b′
j = 0, so the process terminates after a finite

number of steps, resulting in a prefix solution with expected value at least that of the
original one. �

We now show how to solve the evaluation problem efficiently in the proportional
model, and then use it to find the best prefix, which by Theorem 3 is the optimal
fractional solution to SBO.

3.1 Evaluating a Solution

Assuming that the distribution for C is given in such a way that it is easy to evaluate
Pr[C > c∗] and

∑
c≤c∗ c · Pr[C = c] for any c∗, we show how to find E[value(b)] for

any given solution b without explicitly going through all possible values of C and
evaluating the objective function for each one.

The solution b may be under or over budget depending on the value of C. De-
fine a threshold c∗ = B/〈q, cpc, b〉, so that if C > c∗, the solution exceeds the
budget, and otherwise it does not. Notice that in the proportional model, cpc(b) =
〈q, cpc, b〉/〈q, b〉 is independent of C. Then using expression (2) for value(b), the
objective becomes easy to evaluate:

E[value(b)] = 〈q, b〉
∑

c≤c∗
c · Pr[C = c] + B

cpc(b)
Pr[C > c∗]. (4)

Here the first part of the expression accounts for the cases when the budget is not
exceeded, and the solution obtains all the available clicks. The second part accounts
for the cases when the total cost exceeds B , and the solution spends the entire budget
at the average rate of cpc(b) per click.

3.2 Finding the Optimal Prefix

It is nontrivial to find the best fractional prefix solution for the proportional case, and
we mention two approaches that do not work. One simple way to find a prefix in the
proportional model is to convert it to a fixed case problem by setting the number of
clicks for each keyword to its expectation. This approach fails on an example with two
keywords and two possible values of C: a likely value of zero and a small-probability
large value. Another approach is some greedy procedure that lengthens the prefix
while the solution improves. This does not work either, because the expected value
of the solution as a function of the length of prefix can have multiple local maxima.

The best prefix can be found by producing a list of O(n + t) prefixes (out of
infinitely many possible ones) containing the optimum, and then evaluating each of
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them as described in Sect. 3.1. Here t is the number of possible values of C. If t is not
polynomial in n, the probability that C falls between successive powers of (1+ε) can
be combined into buckets, yielding a PTAS for the problem. The algorithm divides
the set of all prefixes into intervals in such a way that within a given interval, the
objective function is continuous and differentiable, as it does not contain any sudden
jumps resulting from reaching the budget or starting to bid on a new keyword. As a
result, within any such interval, the function is simple to analyze, and attains at most
one local maximum. So it suffices to evaluate the prefixes at the interval boundaries,
as well as the unique best ones inside the intervals.

Theorem 4 The optimal fractional solution to SBO problem in the proportional
model can be found exactly in time O(n + t), where t is the number of possible
values of C, or approximated by a PTAS.

Proof We mark some points in the space of possible prefixes. First, we mark all
the integer prefixes. Then, for each value c of C that has non-zero probability, we
mark the threshold prefix b that exactly spends the budget for C = c, i.e. such that
c · 〈q, cpc, b〉 = B . This partitions the space of prefixes into intervals. Notice that for
any two prefix solutions b and b′ inside of the same interval I , the set of positive-
probability values of C that cause these solutions to exceed the budget is the same.
Call this set C>

I :

C>
I = {c|Pr[C = c] > 0 and c · 〈q,cpc,b〉 > B}

= {c|Pr[C = c] > 0 and c · 〈q,cpc,b′〉 > B}.
Now we show how to find the optimal prefix solution inside an interval defined by

the marked points. Consider such an interval I , and suppose that all prefix solutions
inside I bid bj = 1 for j < i, bj = 0 for j > i, and bi ∈ (α,β) for some 0 ≤ α <

β ≤ 1. Then the objective function for solutions in this interval becomes (analogously
to (4))

(∑

j<i

qj + biqi

) ∑

c/∈C>
I

c · Pr[C = c] + B · Pr[C ∈ C>
I ] ·

∑
j<i qj + biqi

∑
j<i qj cpcj + biqicpci

,

which we have to maximize over the possible values of the variable bi . This can be
done by taking the derivative of this expression with respect to bi and setting it to
zero, which has at most one solution on the interval (α,β). If this solution exists, we
add it to a set of interesting points. To obtain the overall optimum, we evaluate all
prefixes defined by marked and interesting points.

In the case that t is not polynomial in n, we obtain a PTAS for the problem. For a
given constant ε, define a new random variable C′ such that Pr[C′ = 0] = Pr[C = 0]
and Pr[C′ = (1 + ε)k] = Pr[(1 + ε)k ≤ C < (1 + ε)k+1] for integer k ≥ 0. Then run
the above algorithm using C′ for the total number of clicks, and return the optimal
prefix found by it. We note that the number of distinct values in the support of C′ is
O(logCmax), where Cmax is the maximum possible value of C, and thus polynomial
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in the input size. We now show that the solution returned by this algorithm is within
a factor (1 + ε) of optimum.

Let b∗ be the optimal solution, and let b be the solution found by the algorithm.
We prove the following inequalities, which imply the result:

EC[value(b)] ≥ EC′ [value(b)] ≥ EC′ [value(b∗)] ≥ 1

1 + ε
EC[value(b∗)].

The middle one follows from optimality of b under the distribution of C′. For a
value c, let us denote by 	c
 the nearest value in the support of C′ that is less than or
equal to c. Thus, 	C
 has the same distribution as C′. We also note that for any α ≥ 1,
γ (x/α) = min(1, αB/x) ≤ min(α,αB/x) = αγ (x). So, to prove the first inequality,
we have

EC′ [value(b)] = EC[γ (	C
 · 〈q,cpc,b〉) · 	C
 · 〈q,b〉]

≤ EC

[
C

	C
γ (C · 〈q,cpc,b〉) · 	C
 · 〈q,b〉
]

= EC[value(b)].
And for the last inequality, using the fact that γ is monotone non-increasing,

EC′ [value(b∗)] = EC[γ (	C
 · 〈q,cpc,b∗〉) · 	C
 · 〈q,b∗〉]

≥ EC

[

γ (C · 〈q,cpc,b∗〉) · 	C

C

C · 〈q,b∗〉
]

≥ 1

1 + ε
EC[value(b∗)]. �

4 Independent Model

In the independent model of SBO, there is a probability distribution for the number
of clicks for each keyword i ∈ T . These distributions can be different for different
keywords. The key distinguishing feature of this model is that for i �= j , the vari-
ables clicksi and clicksj are independent. This model is more complex than the ones
discussed so far. A three-keyword example shows the following.

Theorem 5 In the independent model of the SBO problem, the optimal fractional
solution may not be a prefix solution.

Proof We give an example with three keywords in which the optimal solution bids
on the first and third keywords, and gets more clicks than any (even fractional) prefix
solution. The idea is that the second and third keywords cost about the same, but the
third one is better because it always comes in the same quantity, whereas the second
one has high variance. Let cpc1 = 0, cpc2 = 1, cpc3 = 1; clicks1 = 1 with probabil-
ity 1, clicks2 = (0 or 1) with probability 1

2 each, and clicks3 = 1 with probability 1;
B = 1. The optimal solution is b1 = b3 = 1 and b2 = 0, which always gets 2 clicks.
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The best prefix solution is b1 = b2 = b3 = 1, which gets 2 or 1.5 clicks with proba-
bility 1

2 each, or only 1.75 clicks in expectation. The example can be modified so that
the third keyword is strictly more expensive than the second one. �

In Sect. 4.2 we prove that some integer prefix is a 2-approximate integer solution.
But finding the best integer prefix requires the ability to evaluate a given solution,
which in this model is likely to be #P -hard. In Sect. 4.1, we develop a PTAS, based
on dynamic programming, for evaluating a solution. Combined, these two results
imply a (2 + ε)-approximation for the SBO problem in the independent model.

4.1 Evaluating a Solution in the Independent Model

In this section we present a PTAS for the SE problem in the independent model. We
are given an instance of the SBO problem, and an (integer or fractional) solution b.
For a keyword i ∈ T , let Ci = {cli |Pr[clicksi = cli] > 0} be the set of values that
clicksi can take. For now we assume that

∑
i |Ci | is polynomial in the size of the

input, and later show how to remove this assumption. Let the vector b−i be equal
to b, except with the entry bi replaced by zero (and similarly for other vectors). By
some algebraic manipulation, one can show the following.

Claim 6

E[value(b)]
=

∑

i∈T

∑

cli∈Ci

Pr[clicksi = cli]bicli
∑

d≥0

γ (d + clicpcibi )Pr[〈clicks,cpc,b−i〉 = d].

In this expression, bicli is the number of clicks from keyword i, and the expression
in the third sum is the expected value of the scaling factor γ , with respect to d , the
total cost of clicks from other keywords.

As a result, the problem of finding E[value(b)] reduces to evaluating, for any
given i and cli , the expression

s(i, cli ) =
∑

d≥0

γ (d + clicpcibi )Pr[〈clicks, cpc, b−i〉 = d]. (5)

Lemma 7 For any constant ε > 0, there is a polynomial-time algorithm that finds a
value s′ such that s(i, cli ) ≤ s′ ≤ (1 + ε)s(i, cli ).

Proof We build a dynamic programming table that estimates Pr[〈clicks, cpc, b−i〉
= d] as a function of d . Fix an ordering of elements in T − {i} and construct a
table P indexed by j and d , where P(j, d) is the probability that the total cost of
the first j elements is d . To make sure the table is of polynomial size, scale the
costs so that the minimum non-zero value of clicksj · cpc

j
for any j is 1, and restrict

the possible values of d to 0 and (1 + ε
n
)k for non-negative integers k. If we let

M = ∑
j∈T max{clj · cpcj |clj ∈ Cj } be the maximum possible cost of all the clicks,



1034 Algorithmica (2010) 58: 1022–1044

then the number of values of d in the table is at most log1+ε/n M = O(n
ε

logM),
which is polynomial in the size of the input.

The table is initialized with P(0,0) = 1 and other entries equal to zero. Then for
each keyword j ∈ T − {i}, each possible number of clicks clj ∈ Cj , and each entry
P(j − 1, d) in the previous row, we update P(j, 	d + clj · cpcj 
) = P(j, 	d + clj ·
cpcj 
) + Pr[clicksj = clj ] · P(j − 1, d). Here the operator 	 
 represents rounding
down to the next available value of d . After filling the table, the algorithm outputs the
value of expression (5) as determined by probabilities in the last row of the table.

To bound the error incurred by rounding down the costs, consider a particular
vector cl−i that specifies a number of clicks for each j ∈ T −{i}. As a result of a series
of updates, its probability Pr[clicks−i = cl−i] = ∏

j �=i Pr[clicksj = clj ] contributes to

some entry of the last row of the table P , say to the one with d ′ = (1 + ε
n
)k . This d ′

is an estimate of d∗ = 〈cl−i , cpc, b〉, the total cost of keywords other than i. Since
we only rounded down, we have d ′ ≤ d∗. Now note that since the intervals between
successive powers of (1 + ε

n
) are increasing, the biggest amount that we could have

lost during any one rounding is (1 + ε
n
)k+1 − (1 + ε

n
)k = ε

n
(1 + ε

n
)k = ε

n
· d ′. Since

we performed the rounding during at most n updates, we have that the true value
d∗ ≤ d ′ +n · ε

n
·d ′ = (1+ε)d ′. So we have that the estimated cost d ′ is d∗

1+ε
≤ d ′ ≤ d∗.

What remains in order to show that the algorithm evaluates expression (5) accu-
rately is to take γ into account. Since γ (x) is monotone non-increasing,

γ

(
d∗

1 + ε
+ clicpcibi

)

≥ γ
(
d ′ + clicpcibi

) ≥ γ
(
d∗ + clicpcibi

)
.

But notice that for any α ≥ 1, γ (x/α) = min(1, αB/x) ≤ min(α,αB/x) = αγ (x).
So

γ

(
d∗

1 + ε
+ clicpcibi

)

≤ γ

(
d∗ + clicpcibi

1 + ε

)

≤ (1 + ε) · γ (
d∗ + clicpcibi

)
.

So we have that

γ
(
d ′ + clicpcibi

) ∈ [1,1 + ε] · γ (
d∗ + clicpcibi

)
.

So evaluating expression (5) using entries from the dynamic programming table
instead of the true costs and probabilities incurs a multiplicative error of at most
(1 + ε). �

If the input distributions are represented implicitly, such that
∑

i |Ci | is not poly-
nomial in the input size, then we first convert them into distributions with polynomial
number of points by combining the probability mass between successive powers of
(1 + ε′) into buckets (rounding down). Then we run the above algorithm for discrete
distributions so as to obtain a (1 + ε′)-approximation for the rounded instance. This
will be a (1+ ε′)2-approximation for the original instance, so if ε′ is chosen such that
(1 + ε′)2 ≤ (1 + ε), we obtain the desired (1 + ε)-approximation.

Theorem 8 There is a PTAS for the stochastic evaluation problem in the independent
keywords model.
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4.2 Prefix is a 2-Approximation

In this section we show that for any instance of the SBO problem in the indepen-
dent model, there exists an integer prefix solution whose expected value is at least
half that of the optimal integer solution. In particular, any integer solution b can be
transformed into a prefix solution bV without losing more than half of its value.

We have E[value(b)] = ∑
cl Pr[clicks = cl]γ (〈cl, cpc, b〉) · 〈cl, b〉, where the

vector cl ranges over possible values of clicks. Let S = {i | bi = 1} be the set of
keywords that b bids on, and define i∗(b) as the minimum index i∗ such that key-
words up to i∗ account for at least half of this value:

∑

cl

Pr[clicks = cl]γ (〈cl, cpc, b〉)
∑

i∈S,i≤i∗
cli ≥ 1

2
E[value(b)]. (6)

Theorem 9 For any integer solution b to the SBO problem with independent
keywords, there exists an integer prefix solution bV such that E[value(bV )] ≥
1
2E[value(b)]. In particular, the solution bV bidding on the set V = {i | i ≤ i∗(b)}
has this property.

The idea of the proof is to think of the above prefix solution as being obtained in
two steps from the original solution b. First, we truncate b by discarding all keywords
after i∗. Then we fill in the gaps in the resulting solution in order to make it into a
prefix. To analyze the result, we first show that all keywords up to i∗ are relatively
cheap, and that the truncated solution (called bU ) retains at least half the value of the
original one (Claim 10). Then we show that filling in the gaps preserves this guaran-
tee. Intuitively, two good things may happen: either clicks for the new keywords don’t
come, in which case we get all the clicks we had before; or they come in large quan-
tity, spending the budget, which is good because they are cheap. Lemma 11 analyzes
what happens if new clicks spend α fraction of the budget.

Let i∗ = i∗(b). To analyze our proposed prefix solution bV , we break the set V

into two disjoint sets U and N . U = V ∩ S = {i ≤ i∗ | i ∈ S} is the set of cheapest
keywords that get half the clicks of b. The new set N = V \ S = {i ≤ i∗ | i /∈ S} fills
the gaps in U . Let bU and bN be the solutions that bid on keywords in U and N

respectively.
Define the average cost per click of solution b as

cpc∗ =
∑

cl Pr[clicks = cl]γ (〈cl, cpc, b〉)〈cl, cpc, b〉
∑

cl Pr[clicks = cl]γ (〈cl, cpc, b〉)〈cl, b〉 = E[min(〈cl, cpc, b〉,B)]
E[value(b)] ,

where the numerator is the average amount of money spent by b, and the denominator
is the average number of clicks obtained. A useful fact that follows is that

E[value(b)] ≤ B

cpc∗ . (7)

We make two observations about bU and i∗.

Claim 10 E[value(bU)] ≥ 1
2E[value(b)] and cpci∗ ≤ 2cpc∗.
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Proof A keyword in U does not necessarily contribute exactly the same number of
clicks when it appears as part of solution U as it does when it is part of the solution S.
However, in U it contributes at least as much. Namely, for any cl, γ (〈cl, cpc, bU 〉) ≥
γ (〈cl, cpc, b〉). So

E[value(bU)] =
∑

cl

Pr[clicks = cl]γ (〈cl,cpc,bU 〉)〈cl,bU 〉

≥
∑

cl

Pr[clicks = cl]γ (〈cl,cpc,b〉)
∑

i∈U

cli ≥ 1

2
E[value(b)]

by definitions of U and i∗.
For the second part, we note that, since i∗ is defined as the minimum index sat-

isfying (6), for i < i∗ we have
∑

cl Pr[clicks = cl]γ (〈cl, cpc, b〉)∑
i∈S,i<i∗ cli <

1
2E[value(b)], and therefore for i ≥ i∗,

∑
cl Pr[clicks = cl]γ (〈cl, cpc, b〉) ×

∑
i∈S,i≥i∗ cli ≥ 1

2E[value(b)]. Now, using the fact that cpci ≥ cpci∗ for i ≥ i∗, we
get

cpc∗ =
∑

cl Pr[clicks = cl]γ (〈cl,cpc,b〉)〈cl,cpc,b〉
E[value(b)]

≥
∑

cl Pr[clicks = cl]γ (〈cl,cpc,b〉)∑
i∈S,i≥i∗ cpci∗cli

E[value(b)] ≥ 1

2
cpci∗ ,

where we factor out cpci∗ and then use the minimality of i∗ as discussed above. �

Now we state the main lemma.

Lemma 11 Fix a value cl of clicks, and let α = min(B, 〈cl, cpc, bN 〉)/B . Then

γ (〈cl, cpc, bV 〉) · 〈cl, bV 〉 ≥ α
B

2cpc∗ + (1 − α)γ (〈cl, cpc, bU 〉) · 〈cl, bU 〉.

Proof The idea here is that α is the fraction of the budget spent by the new keywords
(ones from set N ). So (1 − α) fraction of the budget can be used to buy (1 − α)

fraction of clicks that bU was getting, and α fraction is spent on keywords (whether
from U or N ) that cost at most 2cpc∗. A more formal analysis follows.

If 〈cl, cpc, bN 〉 ≥ B , then 〈cl, cpc, bV 〉 ≥ B , so γ (〈cl, cpc, bV 〉) =
B/〈cl, cpc, bV 〉, and

γ (〈cl,cpc,bV 〉) · 〈cl,bV 〉 = B · 〈cl,bV 〉
〈cl,cpc,bV 〉 ≥ B

cpci∗
≥ B

2cpc∗ ,

which proves the lemma for the case of α = 1. Intuitively, in this case the whole
budget is spent, and since all keywords in V cost at most 2cpc∗ (by Claim 10), V

gets at least B
2cpc∗ clicks. For the rest of the proof assume that 〈cl, cpc, bN 〉 < B .

Then α = 〈cl, cpc, bN 〉/B < 1.
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Another simple case is 〈cl, cpc, bV 〉 ≤ B . Then γ (〈cl, cpc, bV 〉) = 1, the budget
is not exceeded, and V collects all the clicks from U and N :

γ (〈cl,cpc,bV 〉) · 〈cl,bV 〉 = 〈cl,bN 〉 + 〈cl,bU 〉

≥ 〈cl,cpc,bN 〉
2cpc∗ + (1 − α)γ (〈cl,cpc,bU 〉)〈cl,bU 〉.

Now consider the case when 〈cl, cpc, bV 〉 > B . Then γ (〈cl, cpc, bV 〉) =
B/〈cl, cpc, bV 〉. Here at most α fraction of the budget is used for the new keywords
from N , which cost at most 2cpc∗ per click, and the remaining budget is able to buy
(1 − α) fraction of the clicks that bU was getting.

Let cpc(bU) = 〈cl, cpc, bU 〉/〈cl, bU 〉, and similarly for bN . Then

B

cpc(bU)
= B

〈cl, cpc, bU 〉 〈cl, bU 〉 ≥ γ (〈cl, cpc, bU 〉)〈cl, bU 〉. (8)

Now,

γ (〈cl,cpc,bV 〉) · 〈cl,bV 〉
= γ (〈cl,cpc,bV 〉) · (〈cl,bU 〉 + 〈cl,bN 〉)
= 〈cl,cpc,bU 〉

〈cl,cpc,bV 〉 · B

cpc(bU)
+ 〈cl,cpc,bN 〉

〈cl,cpc,bV 〉 · B

cpc(bN)

= (1 − α)B

cpc(bU)
+

[ 〈cl,cpc,bU 〉
〈cl,cpc,bV 〉 − (1 − α)

]
B

cpc(bU)
+ 〈cl,cpc,bN 〉

〈cl,cpc,bV 〉 · B

cpc(bN)

≥ (1 − α)B

cpc(bU)
+

[ 〈cl,cpc,bU 〉
〈cl,cpc,bV 〉 − (1 − α)

]
B

2cpc∗ + 〈cl,cpc,bN 〉
〈cl,cpc,bV 〉 · B

2cpc∗

≥ (1 − α)γ (〈cl,cpc,bU 〉) · 〈cl,bU 〉 + α
B

2cpc∗ ,

where the first inequality follows because cpc(bU) ≤ 2cpc∗, cpc(bN) ≤ 2cpc∗, and
the quantity in square brackets is non-negative. The second inequality follows by
combining terms with B

2cpc∗ and using (8). �

Proof of Theorem 9 We now use the above results to prove the theorem. Let clicksU

be the vector clicks restricted to the set U . Here the independence of keywords be-
comes crucial. In particular, what we need is that the number of clicks that come for
keywords in U is independent of the number of clicks for keywords in N . So the prob-
ability Pr[clicksV = clV ] is the product of Pr[clicksU = clU ] and Pr[clicksN = clN ].
Notice that α of Lemma 11 depends only on keywords in N , and is independent of
what happens with keywords in U . So here we call it αN . We have

E[value(bV )]
=

∑

clV

Pr[clicksV = clV ] · γ (〈cl,cpc,bV 〉) · 〈cl,bV 〉



1038 Algorithmica (2010) 58: 1022–1044

≥
∑

clN

∑

clU

Pr[clicksN = clN ]Pr[clicksU = clU ]

×
[

αNB

2cpc∗ + (1 − αN)γ (〈cl,cpc,bU 〉) · 〈cl,bU 〉
]

=
∑

clN

Pr[clicksN = clN ]

×
[

αNB

2cpc∗ + (1 − αN)
∑

clU

Pr[clicksU = clU ]γ (〈cl,cpc,bU 〉) · 〈cl,bU 〉
]

≥
∑

clN

Pr[clicksN = clN ] · 1

2
E[value(b)] = 1

2
E[value(b)],

bounding both B
2cpc∗ and E[value(bU)] by 1

2E[value(b)] using inequality (7) and
Claim 10. �

Theorem 9 combined with PTAS for the evaluation problem in the independent
model (Theorem 8) gives a simple algorithm for finding a (2 + ε)-approximate solu-
tion: evaluate each integer prefix using the PTAS and output the one with maximum
value.

Theorem 12 There is a (2 + ε)-approximation algorithm for the SBO problem in the
independent model, which runs in time polynomial in n, 1

ε
, and logM , where M is

the maximum possible cost of all clicks.

5 Scenario Model

In the scenario model, we are given T , B and costs cpc as usual. The numbers of
clicks are determined by a set of scenarios � and a probability distribution over it.
The reason this model does not capture the full generality of arbitrary distributions
is that we assume that the number of scenarios, N , is relatively small, in the sense
that algorithms are allowed to run in time polynomial in N . On the other hand, if,
for example, we express the independent model in terms of scenarios, their number
would be exponential in the number of keywords.

The evaluation of a given solution in the scenario model does not present a prob-
lem, as it can be done explicitly in time polynomial in N , by evaluating each scenario
and taking the expectation. Nevertheless, this is the most difficult model for SBO that
we consider. We show two negative results.

Theorem 13 The SBO problem is NP-hard in the scenario model.

Proof We show that finding the optimal solution, either integer or fractional, to the
SBO problem in the scenario model is NP-hard.
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The reduction is from CLIQUE. We are given an instance of the CLIQUE problem
with a graph G containing n nodes and m edges, and a desired clique size k. We use
G and k to construct an instance I of SBO problem and a number V such that there
is a solution to I with expected value of at least V if and only if G contains a clique
of size k.

To specify I , let us construct a new bipartite graph H = (L ∪ R,E′) whose right
side R contains n nodes corresponding to nodes of G, and whose left side L con-
tains m nodes corresponding to edges of G. A node in L corresponding to an edge
(u, v) is connected to nodes in R that correspond to its endpoints u and v. We first
describe the idea of the construction, and later show how to set the parameters to
make it work. There will be three parameters, small positive values ε and δ, and a
large value t .

All nodes of H are keywords, expensive ones on the left, with cpci = 1 for i ∈ L,
and cheap ones on the right, with cpci = ε for i ∈ R. The budget is K = (

k
2

)
. The

goal will be to force a solution to select K nodes from L that are incident to at
most k nodes in R, which corresponds to finding a set of k vertices with K edges
in G, i.e. a k-clique. The scenarios in the SBO problem are as follows. There is a
high-probability scenario σ0 in which one click comes for each keyword in L. This
scenario is sufficiently likely (occurs with probability 1 − δ) that any integer solution
to SBO has to bid for at least K of these keywords. Notice that since K is the budget,
it does not make sense to bid on any more than K keywords. In addition to σ0, there
are n scenarios σ1 · · ·σn, each occurring with probability δ/n. Scenario σi contains
K/ε clicks for keyword i ∈ R and a large number t of clicks for each of i’s neighbors
from L.

We now explain the intuition for why there is a good integrally-bidding solution
for our SBO instance if and only if the graph G contains a k-clique. By the way we
constructed the low-probability scenarios, if a solution does not bid on any neighbors
of i ∈ R, then in scenario σi it would spend its whole budget on K/ε cheap clicks
at cost ε each, thus obtaining many clicks. However, if it bids on any neighbors of i,
then most of the budget will be spent on the expensive clicks from L, resulting in
few clicks overall. So bidding on a keyword l from L effectively ruins the scenarios
containing l’s neighbors in R. Recall that the high probability of scenario σ0 forces
any good integral solution to bid on exactly K keywords from L. As a result, if G

contains a k-clique, then it is possible to select K keywords corresponding to edges
of G that ruin only k scenarios corresponding to nodes of G. However, if there is no
k-clique, then bidding on any K keywords on the left ruins at least k + 1 scenarios,
thus producing a solution with a lower value.

We now show how to set the parameters of the construction and prove that the
reduction works even if fractional bidding on keywords is allowed. First, assume that
G contains a k-clique. Then a solution b to I , with bi = 1 for all i ∈ R and bi = 1 for
the K keywords in L that correspond to edges of the clique, achieves the expected
value of at least

V = (1 − δ) · K + δ(n − k)

n
· K

ε
,

where the first term is the value from scenario σ0, and the second term is the value
from scenarios σi such that node i in G is not in the clique. Such scenarios are
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unaffected by the selected nodes in L and therefore get K/ε clicks each. There is
additional value from scenarios σi for i in the clique, but we disregard it for this
lower bound. Thus we get the following claim.

Claim 14 If G contains a k-clique, then there exists a solution b to I such that
E[value(b)] ≥ V .

To ensure that if there is no k-clique in G, then value V cannot be achieved by any
bids, we set the parameters as follows.

1. Select ε such that 0 < ε < 1
k+1 .

2. Select δ > 0 small enough that 1−δ
2 − kδK

nε
> 0. This is possible because the limit

of the expression on the left as δ → 0 is 1
2 .

3. Let α = 1
2m

.

4. Choose t large enough that (k + 1)
K/ε+αt
K+αt

< 1
ε
. This is possible because

limt→∞(k + 1)
K/ε+αt
K+αt

= k + 1 < 1
ε

by the choice of ε.

Claim 15 If E[value(b)] ≥ V for some fractional solution b to the constructed in-
stance I , then there must be at least K keywords i ∈ L such that bi ≥ α.

Proof Notice that
∑

i∈L bi ≥ (K − 1 + mα) implies that |{i ∈ L|bi ≥ α}| ≥ K , be-
cause bi ’s are always at most 1.

What remains to show is that if
∑

i∈L bi < K − 1 + mα = K − 1
2 , then

E[value(b)] < V . This follows from the way we defined the parameters. Notice
that δ K

ε
is an upper bound on the value that any solution can obtain from scenarios

σ1 · · ·σn. Then

E[value(b)] < (1 − δ)

(

K − 1

2

)

+ δK

ε
= V − 1 − δ

2
+ k

n

δK

ε
< V,

where the last inequality follows from the choice of δ. �

Claim 16 Let X = {i ∈ L | bi ≥ α}. If H contains at least (k + 1) nodes in R that
have neighbors in X, then E[value(b)] < V .

Proof For a node i ∈ R, let αi = ∑
j∈Ni

bj , where Ni ⊆ L is the set of neighbors
of i. Assuming that there are at least (k + 1) nodes i ∈ R such that αi ≥ α, we show
that E[value(b)] < V . The value of a solution is always maximized by bidding on all
keywords in R, because that maximizes the number of cheap clicks. So without loss
of generality, we assume that bi = 1 for all i ∈ R.

In a given scenario σi , the number of clicks available to b is K
ε

+ αit , where K/ε

clicks come from keyword i, and αit come from its neighbors in L. The total cost in
this scenario is K + αit , where K is the cost of the cheap clicks and αit is the cost
of the expensive ones. Using (1 − δ)K as an upper bound on the value obtained from
σ0, and remembering that the budget is K , we have
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E[value(b)] ≤ (1 − δ)K + Kδ

n

∑

i∈R

K/ε + αit

K + αit

≤ (1 − δ)K + Kδ

n

[

(k + 1) · K/ε + αt

K + αt
+ (n − k − 1) · 1

ε

]

< V,

where we use the fact that the fraction in the sum increases with decreasing αi , bound
αi by α for (k + 1) of the terms and by 0 for the others, and use the choice of t for
the final inequality. �

Clearly, if there is no k-clique in G, then every K edges in G will be incident
on at least k + 1 nodes. So from the preceding two claims, we may conclude that
if G does not contain a k-clique, then no solution to I has expected value of V or
more. Together with Claim 14, this proves that SBO problem in the scenario model
is NP-hard. �

Our second negative result for the scenario model rules out the possibility of ob-
taining an approximation by using a prefix solution.

Theorem 17 The gap between the optimal fractional prefix solution and the optimal
(integer or fractional) solution to the SBO problem in the scenario model can be
arbitrarily large.

Proof We give an example in which the ratio between the value of the optimal solu-
tion and the value of any prefix solution can be arbitrarily large. The example con-
tains n scenarios and 2n keywords, numbered 1 through 2n. The cost per click of
keywords increases exponentially, with cpci = ci , for some constant c > 1. There is
a budget B > 0. Say that the n scenarios are numbered σ = 1 to n. In scenario σ ,
only keywords 2σ − 1 and 2σ receive clicks, and they receive B/c2σ−1 clicks each.
The probabilities of scenarios increase exponentially, and they are equal to αc2σ−1

for scenario σ (α is chosen to make the probabilities sum to 1). The idea here is that
in each scenario, there are two types of clicks, cheap and expensive (clicks for the
even-numbered keywords are c times more expensive than for their preceding odd-
numbered keywords), and there are enough cheap clicks to spend the whole budget.
So for a particular scenario σ , the best thing to do is to bid only on the cheap keyword
2σ − 1, which gets B/c2σ−1 clicks. Bidding on both keywords exceeds the budget
and decreases the number of clicks to 2

c+1 (B/c2σ−1). Since the sets of keywords that
receive clicks in different scenarios are disjoint, the optimal solution overall (which
happens to be integer) is to bid on all the odd-numbered keywords, but not the even-
numbered ones. This gets the maximum number of clicks for each scenario individu-
ally, and therefore gets the maximum number of clicks in expectation. The expected
number of clicks for the optimal solution is therefore

∑

σ

αc2σ−1 · B

c2σ−1
= nαB.
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Now consider some prefix solution for this example, either integer or fractional,
and the keyword i∗ such that bi = 1 for i < i∗ and bi = 0 for i > i∗. Let σ ∗ = �i∗/2�
be the scenario containing clicks for keyword i∗. Intuitively, the prefix solution ruins
the scenarios numbered less than σ ∗ because it bids for both keywords in them, and
it ruins the scenarios numbered greater than σ ∗ because it does not bid at all for the
keywords in them. As a result, a prefix solution can do well in at most one scenario.
It gets the small number of clicks, 2

c+1 (B/c2σ−1), for scenarios σ < σ ∗, and it gets 0

clicks for scenarios σ > σ ∗. It may get up to B/c2σ ∗−1 clicks for σ ∗. So the value of
a prefix solution is at most

∑

σ<σ ∗
αc2σ−1 · 2

(c + 1)

B

c2σ−1
+ αc2σ ∗−1 · B

c2σ ∗−1
≤ nαB

(
2

c + 1
+ 1

n

)

,

which can be arbitrarily far from OPT = nαB as c and n increase. �

6 Extensions

6.1 Extension to Click Values

Here we show that our results easily generalize to the case when the clicks from
different keywords have different values to the advertiser. For example, a weight as-
sociated with a keyword might represent the probability that a user clicking on the ad
for that keyword will make a purchase.

For each keyword i, we are given a weight wi which is the value of a click as-
sociated with this keyword, and we would like to maximize the weighted number of
clicks obtained:

E[value(b)] = E
[
γ (〈clicks, cpc, b〉) · 〈w, clicks, b〉] .

Obviously, the keywords with wi = 0 can be just discarded. Now we make a substitu-
tion of variables, defining clicks′

i = wiclicksi and cpc′
i = cpci/wi . Substituting them

into the objective function,

E[value(b)] = E
[
γ (〈clicks′, cpc′, b〉) · 〈clicks′, b〉] ,

we see that the problem reduces to the original unweighted SBO instance, with dif-
ferent keyword parameters. The proportional, independent, and scenario models of
click arrival maintain their properties under this transformation, only some of the
distributions for the numbers of clicks have to be scaled.

6.2 Extension to Multiple-Slot Auctions

We now sketch the extension of our results to the case when there are multiple slots,
and in particular, we assume the Generalized Second Price (GSP) auction currently
used by search-related advertising engines. When advertising slots are allocated by
a second-price auction with multiple slots, the bid amount for a keyword determines
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the position of the corresponding ads, which affects the number of clicks obtained for
this keyword and the cost per click of these clicks. When a user clicks on the ad in
slot i, the advertiser at slot i is charged the bid amount of the advertiser at slot i + 1
(or, typically, a slightly larger amount).

For a particular keyword and a k-slot auction in which it participates, there are k

threshold bid amounts that determine the position into which the ad is placed. This in
turn determines the probability of a click (clickthrough rate) and the cost per click for
this keyword, both of which can be viewed as monotone non-decreasing step func-
tions of the bid amount. This information can be visualized on a plot called a land-
scape (a detailed description of landscapes appears in [4]). Landscapes for multiple
auctions for the same keyword can be combined into an aggregate landscape.

Some of our results extend to the model with such aggregate landscapes. Roughly
speaking, a keyword with a landscape can be viewed as a list of several simple indi-
vidual keywords with an additional constraint that a solution has to bid on some prefix
of this list. Choosing such a prefix, which possibly consists of more than one of these
simple keywords, then translates into placing a single bid for the real keyword. For
the fixed and proportional models, the optimal solutions without landscapes are prefix
solutions anyway (by Theorems 2 and 3), so if we solve the problem as in the one-slot
case, the solution will automatically satisfy the prefix constraint for keywords with
landscapes, which means that it will also be optimal for the multiple-slot problem.
In the independent model, however, the approximation ratio of 2 for the prefix solu-
tions (Theorem 9), that we prove for the one-slot case, does not extend to the case
of landscapes. This is because some of the “keywords” are no longer independent,
but are actually the different bidding options for the same keyword. In fact, a prefix
solution can be arbitrarily bad compared to the optimal solution, by an example that
is very similar to one in Theorem 17. The only difference is that, instead of keywords
2i − 1 and 2i being coupled by occurring in the same scenario, they are coupled by
representing the landscape of the same keyword. The negative results (Theorems 13
and 17) about the scenario model of course still hold for the more general case of
multiple-slot auctions.

7 Concluding Remarks

We have initiated the study of stochastic version of budget optimization. We obtained
approximation results via prefix bids and showed hardness results for other cases.
A lot remains to be done, both technically and conceptually. Technically, we need
to extend the results to the case when there are interactions between keywords, that
is, two or more of them apply to a user query and some resolution is needed. Also,
we need to study online algorithms, including online budget optimization. Further,
we would like to obtain some positive approximation results for the scenario model,
which seems quite intriguing from an application point of view. The conceptual chal-
lenge is one of modeling. Are there other suitable stochastic models for search-related
advertising, that are both expressive, physically realistic and computationally feasi-
ble?
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