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Abstract We describe a new approximation algorithm for the asymmetric maximum
traveling salesman problem (ATSP) with triangle inequality. Our algorithm achieves
approximation factor 35/44 which improves on the previous 31/40 factor of Bläser,
Ram and Sviridenko (Lecture Notes in Computer Science, vol. 3122, pp. 350–359,
2005).
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1 Introduction

The Traveling Salesman Problem and its variants are among the most intensively
researched problems in computer science and arise in a variety of applications. In
its classical version, given a set of vertices V and a symmetric weight function
w : V 2 → R one has to find a Hamiltonian cycle of minimum weight. This problem
is probably the most widely known example of an inapproximable NP-hard problem.
However, there is a lot of research on approximation of several natural variants of
TSP. These variants are still NP-hard, but allow approximation. One of them is the
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maximization version (max-TSP for short), where w is assumed to have only non-
negative values (otherwise min-TSP would reduce to it). There are several variants of
max-TSP, e.g. the weight function can be symmetric or asymmetric, it can satisfy the
triangle inequality or not, etc. (For some results on max-TSP variants see e.g. [2–6].)

In this paper, we are concerned with the variant, where the weight function is
asymmetric (in other words, the graph is directed) and satisfies the triangle inequality.
This variant is often called the semimetric max-TSP.

The first approximation algorithm for this problem was proposed by Kostochka
and Serdyukov [7] in 1985 and had approximation ratio of 3

4 . Quite recently, Kaplan,
Lewenstein, Shafrir and Sviridenko [8] provided a very general and powerful frame-
work for approximating asymmetric TSP variants and gave improved approximation
ratios for 3 different problems: 4

3 log3 n for semimetric min-TSP, 10
13 for semimetric

max-TSP and 2
3 for asymmetric max-TSP. Chen and Nagoya [9] followed the ap-

proach of Kaplan et al. obtaining a slight improvement of approximation ratio for
semimetric max-TSP to 27

35 . Using a different approach, Bläser et al. [1] obtained a
31
40 -approximation algorithm for this problem.

We show that in the case of semimetric max-TSP the ideas of Kaplan et al. can be
combined with a new patching procedure yielding a 35

44 -approximation.

Overview of the Paper The semimetric max-TSP approximation algorithm of Ka-
plan et al. combines two ideas: Kostochka and Serdyukov’s “patching” algorithm for
the same problem and a new framework based on pairs of cycle covers. In Sect. 2 we
briefly review both ideas and the way they can be combined. In Sect. 3 we introduce a
new patching procedure based on Kaplan et al.’s framework. This immediately leads
to a relatively simple 11

14 -approximation for semimetric max-TSP. In Sect. 4 we de-
scribe a more elaborate patching method which improves the approximation ratio to
35
44 by lowerbounding the weight of almost every edge used to form a Hamiltonian
cycle.

2 Preliminaries

Throughout the remainder of this paper we assume all graphs to be directed and
weighted with a nonnegative weight function w satisfying the triangle inequality.

2.1 Kostochka and Serdyukov’s Algorithm

Maximum weight directed cycle cover (possibly containing 2-cycles) can be found in
polynomial time by a reduction to maximum weight perfect matching (see e.g. [10]).
Many approximation algorithms for TSP problems begin with finding a minimum
(maximum) weight cycle cover and then patch it to a Hamiltonian cycle. The follow-
ing theorem shows how this is done in Kostochka and Serdyukov’s algorithm.

Theorem 2.1 Let C = {C1, . . . ,Ck} be a cycle cover in a directed weighted graph G

with edge weights satisfying the triangle inequality. Let mi be the number of edges in
Ci and let wi = w(Ci) be the weight of Ci . Given the cycle cover C , we can find in
polynomial time a Hamiltonian cycle of weight

∑k
i=2(1 − 1

2mi
)wi.
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A slightly weaker version of the above theorem is due to Kostochka and Serdyu-
kov [7]. The version in this paper is taken from Kaplan et al. [8].

The maximum weight cycle cover has weight at least as large as the maximum
weight Hamiltonian cycle. From Theorem 2.1 it follows that

Theorem 2.2 There exists a 3
4 -approximation algorithm for semimetric max-TSP.

2.2 The Algorithm of Kaplan et al.

The 2-cycles are the obvious bottleneck of the above approach. If we could find, in
polynomial time, a maximum weight cycle cover with no 2-cycles, we would get
a 5/6-approximation algorithm. Unfortunately, finding such a cover is an NP-hard
problem (see e.g. [11]). Kaplan et al. [8] proposed the following alternative approach.

Theorem 2.3 Let G = (V ,E) be a directed weighted graph. We can find in poly-
nomial time a pair of cycle covers C1, C2 such that (i) C1 and C2 share no 2-cycles,
(ii) total weight w(C1) + w(C2) of the two covers is at least 2OPT, where OPT is the
weight of the maximum weight Hamiltonian cycle in G.

We will call such pairs of cycle covers nice pairs of cycle covers.

Observation 1 (Kaplan et al.) In the above theorem, we can assume that the graph
consisting of all the 2-cycles of C1 and C2 does not contain oppositely oriented cycles.
For if it does contain such cycles, say C and its opposite Ĉ, we can remove all the
2-cycles forming C and Ĉ from C1 and C2 and instead add C to C1 and Ĉ to C2.

Theorem 2.4 There exists a 10
13 -approximation algorithm for semimetric max-TSP.

The proof of the above theorem can be found in [8]. Since our approach extends
that of Kaplan et al., we include it here for completeness. Let us first introduce a
few definitions. A bi-path is a pair of oppositely oriented paths, i.e. a path and its
opposite. As a special case, a bi-edge is a single edge together with its opposite edge,
i.e. a 2-cycle. A bi-cycle is a pair of oppositely oriented cycles. Finally, a Hamiltonian
bi-cycle is a pair of oppositely oriented Hamiltonian cycles.

Proof of Theorem 2.4 Let C1, C2 be a nice pair of cycle covers. Applying Theorem 2.1
to C1 and C2, we get two Hamiltonian cycles H1, H2 with total weight w(H1) +
w(H2) ≥ 3

4W2 + 5
6W3+, where W2 is the total weight of 2-cycles in C1 and C2 and

W3+ is the total weight of all the other cycles.
Another way to construct a Hamiltonian cycle using C1 and C2 is to consider the

graph H consisting of all the 2-cycles of C1 and C2. It follows from Observation 1
that H is a union of disjoint bi-paths. We can patch these bi-paths arbitrarily to get a
Hamiltonian bi-cycle Ĥ of weight w(Ĥ ) ≥ W2.

Picking the heaviest cycle out of H1, H2 and the two cycles of Ĥ gives a Hamil-
tonian cycle of weight at least 1

2 max{ 3
4W2 + 5

6W3+,W2}. Since W2 + W3+ ≥ 2OPT,
easy calculation (or solving a corresponding linear program) shows that the weight
of this heaviest cycle is at least 10

13 OPT. �



Algorithmica (2011) 59: 240–255 243

3 Spanning Bi-paths and 11/14-approximation

Kaplan et al.’s algorithm (see Theorem 2.4) balances two solutions. The first one is
based on Kostochka and Serdyukov’s algorithm and the second one on Kaplan et
al.’s approach of constructing a nice pair of cycle covers. However, from these cycle
covers they pick only the 2-cycles. The basic idea of our approach is to partially
incorporate longer cycles into this second solution by constructing additional bi-paths
and/or extending existing ones.

Remark 3.1 Cycles of length > 2 do not contain pairs of opposite edges. Hence, not
all the new bi-path edges will belong to some cycle.

Let P be a family of disjoint bi-paths. We say that set of bi-edges S is allowed
w.r.t. P , if S is disjoint from P and the union of the edge sets of P and S is a family
of disjoint bi-paths (in particular adding S does not create a bi-cycle in P ). A bi-edge
e is allowed w.r.t. P if {e} is allowed w.r.t. P , otherwise e is forbidden.

The following is the skeleton of the algorithm, that we will develop in the remain-
der of the paper:

Algorithm 1 MAIN ALGORITHM

1: Let C1, C2 be a nice pair of cycle covers
2: Let P be the family of bi-paths constructed in Kaplan et al.’s Algorithm
3: Mark all 2-cycles as processed
4: for all unprocessed cycles C in C1 and C2 do
5: use C to construct a heavy set S of bi-edges, allowed w.r.t. P

6: P := P ∪ S

7: mark C as processed
8: end for
9: arbitrarily patch P to a Hamiltonian bi-cycle

Let the bi-degree of a vertex v in a family P of bi-paths, denoted as degP (v), be
the number of bi-edges in P incident with v (and not the number of edges). In the
above algorithm S will always be chosen in such a way that the following is satisfied:

Invariant 1 For any vertex v, degP (v) is not greater than the number of processed
cycles containing v.

Remark 3.2 Note that Invariant 1 implies that any vertex has bi-degree at most 2
because every vertex belongs to exactly two cycles.

How do we construct a heavy set of bi-edges S using a cycle C? In this section, S

will contain only a single bi-edge e with both ends in C. When choosing S = {e}, we
could pick e to be any of the bi-edges allowed w.r.t. P . However, we want e to have
a large weight.
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Fig. 1 The proof idea of
Lemma 3.3. The weight of the
path 1,2,3,8,7,6,4,5 upperbounds
the weight of the path 1,2,3,4,5
and the weight of the path
5,4,6,7,8,3,2,1 upperbounds the
weight of the path 5,6,7,8,1

Let C be a cycle and let the vertices of C be numbered 1, . . . , k along the cycle.
A bi-path T is plane w.r.t. C if T does not contain two bi-edges u1u2, v1v2 such
that u1 < v1 < u2 < v2 (intuitively, this means that there is a plane embedding of
the graph C ∪ T such that C bounds the infinite face). We say that T is a plane
spanning bi-path of C if T is plane w.r.t. C and is incident with all vertices of C.
Plane spanning bi-paths are interesting because they have large weight.

Lemma 3.3 Let T be a plane spanning bi-path of a cycle C. Then w(T ) ≥ w(C).

Proof Let the vertices of C be numbered 1, . . . , k clockwise and let T = v1, . . . , vk

be a plane spanning bi-path of C. W.l.o.g. we can assume that v1 = 1. Then for every
two vertices 1 ≤ u < w ≤ vk , u has to appear on T before w, because otherwise the
part of T connecting v1 and w would intersect the part connecting u and vk . Similarly,
for every two vertices vk ≤ u ≤ w, w has to appear on T before u. In other words,
vertices 1, . . . , vk appear on T in increasing order, and vertices vk, . . . , k appear on
T in decreasing order (see Fig. 1.)

Bi-path T can be decomposed into two directed paths T1, T2, where T1 begins in
v1 and ends in vk , and T2 begins in vk and ends in v1. Also, let Q1 be the directed
path 1,2, . . . , vk and let Q2 be the directed path vk, vk + 1, . . . , k,1, i.e. Q1 is a part
of C from 1 to vk and Q2 is the part of C from vk back to 1.

Vertices 1, . . . , vk appear on T1 in increasing order, so w(Q1) ≤ w(T1) by using
the triangle inequality. Similarly, vertices vk, . . . , k appear on T2 in increasing order,
so w(Q2) ≤ w(T2). We have

w(C) = w(Q1) + w(Q2) ≤ w(T1) + w(T2) = w(T ). �

Observation 2 Consider an execution of the Main Algorithm and let C be an un-
processed cycle. If P satisfies Invariant 1, then every vertex on C has bi-degree at
most 1. It follows that forbidden bi-edges between vertices of C are the ones that
connect two endpoints of some bi-path in P . In particular, these forbidden bi-edges
form a matching (i.e. are not incident).

Lemma 3.4 Consider an execution of the Main Algorithm, let C be an unprocessed
cycle, and let P satisfy Invariant 1. Then, there exists T , a plane spanning bi-path
w.r.t. C, whose all bi-edges are allowed w.r.t. P .



Algorithmica (2011) 59: 240–255 245

Fig. 2 Finding a plane bi-path
avoiding forbidden bi-edges

Proof The bi-path T is constructed as follows. First, for each edge (u, v) of cycle C

put bi-edge uv in T whenever it is allowed. Note that at this point T already contains
all vertices of C (because forbidden bi-edges with endvertices on C form a matching).
Let k be the number of forbidden bi-edges corresponding to edges in E(C). If k = 0
we remove any bi-edge from T and we are done. Otherwise enumerate the endvertices
of the k bi-edges on C from v1 to v2k along the cycle C. Finally, for every i =
1, . . . , k − 1 add bi-edge viv2k−i to T . (See Fig. 2). All these bi-edges are allowed
since their endvertices are endvertices of distinct forbidden bi-edges and forbidden
bi-edges with ends on C form a matching. Also, T forms a bi-path, since all its
vertices are of bi-degree 2 except for vk and v2k , which are of bi-degree 1. Finally,
bi-path T is plane: the only bi-edges that may cross are chords of C, however, for
any pair of such distinct chords viv2k−i , vjv2k−j either i < j < 2k − j < 2k − i or
j < i < 2k − i < 2k − j . This proves the claim. �

Theorem 3.5 Let C1 and C2 be a nice pair of cycle covers of G. Then, there exists
a Hamiltonian bi-cycle in G with weight at least

∑∞
i=2

Wk

k−1 , where Wk is the total
weight of k-cycles in C1 and C2.

Proof We use the Main Algorithm. The bi-cycle returned by this algorithm contains
all bi-edges corresponding to all 2-cycles for a total weight of W2. When processing
a cycle C of length k ≥ 3, we use Lemma 3.4 to construct T , a plane spanning bi-path
w.r.t. C, whose all bi-edges are allowed w.r.t. P . Then we set S = {e}, where e is the
heaviest bi-edge of T . By Lemma 3.3 w(e) ≥ w(C)

k−1 , which proves the claim. �

Theorem 3.6 There exists a 11
14 -approximation algorithm for semimetric max-TSP.

Proof As in the proof of Theorem 2.4 we construct a nice pair of cycle covers C1, C2
and use Theorem 2.1 to get Hamiltonian cycles H1, H2 with total weight

w(H1) + w(H2) ≥
∞∑

i=2

(

1 − 1

2k

)

Wk.

Next, by Theorem 3.5 to get two more Hamiltonian cycles H3, H4 with total weight

w(H3) + w(H4) ≥
∞∑

i=2

1

k − 1
Wk.
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Picking the heaviest cycle out of all the Hi gives a Hamiltonian cycle H of weight

w(H) ≥ 1

2
max

{ ∞∑

i=2

(

1 − 1

2k

)

Wk,

∞∑

i=2

1

k − 1
Wk

}

.

It turns out that we can substitute both inifinite sums with the following finite sums,
without changing the resulting approximation ratio:

w(H) ≥ max

{
3

8
W2 + 5

12
W3 + 7

16
W4 + 9

20
W5 + 11

24
W6+,

1

2
W2 + 1

4
W3 + 1

6
W4 + 1

8
W5

}

.

Now we are going to lowerbound w(H) in terms of OPT, using the fact that∑∞
i=2 Wk ≥ 2OPT. Clearly, to this end we can solve the following linear program:

minimize W with

W ≥ 3

8
W2 + 5

12
W3 + 7

16
W4 + 9

20
W5 + 11

24
W6+,

W ≥ 1

2
W2 + 1

4
W3 + 1

6
W4 + 1

8
W5,

W2 + W3 + W4 + W5 + W6+ ≥ 2OPT,

Wi ≥ 0.

After solving it we get an optimal solution of value W = 11
14 OPT for W2 = 8

7 OPT,
W3 = 6

7 OPT, and Wi = 0 for i ≥ 4. �

4 Making Ends Meet and 35/44-approximation

In this section we introduce two improvements. First, we will add more than one
bi-edge to the family P of bi-paths, while processing a single cycle C. This is pos-
sible if C is long enough. Moreover, recall that in the last step of the algorithm from
the previous section we construct a Hamiltonian cycle by patching the bi-paths with
arbitrary bi-edges. The endvertices of these bi-edges could belong to distinct cycles
and we do not lowerbound their weight in any way. The second improvement we are
going to present here is to partially incorporate the patching process into the main
algorithm in order to be able to lowerbound this weight. We use this approach for
processing short cycles.

4.1 Long Cycles

Lemma 4.1 Let P be a family of disjoint bi-paths satisfying Invariant 1 and let C

be an unprocessed cycle of length at least 5. Then there exists an allowed family of
bi-edges S, such that (i) after processing C, the family P ∪ S satisfies Invariant 1,
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Fig. 3 Coloring a bi-path
spanning a 5-cycle. Crossed out
edges are forbidden

(ii) w(S) ≥ 1
4w(C), (iii) if |C| ≤ 7 then w(S) ≥ 1

3w(C), (iv) if |C| = 5 then w(S) ≥
1
2w(C).

Proof In order to keep Invariant 1 satisfied, we make S a set of vertex-disjoint al-
lowed bi-edges with endvertices in C. Let Q be the plane bi-path spanning C with
no forbidden bi-edges, which exists by Lemma 3.4. We color the bi-edges of Q with
two colors: a and b, so that incident bi-edges get distinct colors. Adding all bi-edges
of one color, say a, to P may create one or more bi-cycles (note that such a bi-cycle
contains at least two bi-edges from Q). For each such bi-cycle we pick one bi-edge
from Q and we recolor it to a new color c. Similarly, we recolor some bi-edges from
b to d .

It is clear that each of the four color classes is an allowed family of bi-edges. Let
S be the heaviest of these four sets. Clearly w(S) ≥ 1

4w(Q). Since w(Q) ≥ w(C) by
Lemma 3.3, we get (ii).

Now, let |C| ≤ 7. Again, we find the bi-path Q and we 2-color it. Suppose that
adding all the bi-edges of color a to P gives a bi-cycle. Since there are at most 3
bi-edges colored a and any bi-cycle contains at least 2 such bi-edges, we can only
get one such bi-cycle. Similarly, at most one bi-cycle is formed by P and bi-edges
colored b. Suppose that both bi-cycles exist (the remaining cases are trivial). We need
to recolor one (colored) bi-edge from each cycle to a new color, so that the recolored
bi-edges are not adjacent.

Let us start at one end of Q and go along Q until we encounter a colored cycle
bi-edge. Assume w.l.o.g. that its color is a. Then, we can recolor both this bi-edge
and the furthest cycle bi-edge colored b to a new color c. Clearly, each of the three
color classes is an allowed family of bi-edges. Again, we let S be the heaviest of
them, obtaining w(S) ≥ 1

3w(C).
Finally, consider the case of |C| = 5. W.l.o.g. we can assume that there are two

forbidden bi-edges with endvertices on C (if not, we can just “forbid” additional bi-
edges). Figure 3 shows all three possible configurations of these bi-edges together
with our choice of the bi-path Q in each case. As before, we 2-color Q, and then set
S to be the heavier of the two color classes. This gives w(S) ≥ 1

2w(C). Observe that
in each case both color classes contain a bi-edge with an endvertex not adjacent to
a forbidden bi-edge. Such a bi-edge cannot be a part of a bi-cycle in P ∪ S, so S is
allowed. �

4.2 Short Cycles

To get the approximation ratio better than 11
14 we need to extract more weight from

the 3- and 4-cycles when constructing the bi-paths in the Main Algorithm. Unfortu-
nately, it turns out that it is impossible to take more than one bi-edge from each such



248 Algorithmica (2011) 59: 240–255

Fig. 4 Case 1 in the proof of
Lemma 4.4 (x is the other end of
the bi-path beginning in v,
x �∈ {a, b, c})

cycle. Note however, that when only a single bi-edge is put into P when processing a
cycle C, at least one vertex v of C becomes a loose end, i.e. degP (v) is smaller than
the number of processed cycles containing v.

Remark 4.2 If degP (v) = 0 and both cycles containing v have already been
processed, we consider v to be two loose ends.

We can link loose ends from distinct cycles without violating Invariant 1. Surpris-
ingly, it is possible to lowerbound the weight of such links. First let us see how loose
ends are created.

Lemma 4.3 Let P be a family of disjoint bi-paths satisfying Invariant 1 and let C be
an unprocessed k-cycle. Then there exists an allowed family of bi-edges S such that
(i) w(S) ≥ 1

k−1w(C), (ii) after processing C family P ∪ S satisfies Invariant 1, and
(iii) the number of loose ends increases by k − 2.

Proof We use the approach described in the proof of Theorem 3.5, i.e. S = {e} where
e is the heaviest bi-edge of the plane spanning bi-path of C. All the vertices of C

except for the two endvertices of e become loose ends. �

The following two lemmas show how loose ends can be used to extract more
weight from 3-cycles and 4-cycles.

Lemma 4.4 Let P be a family of disjoint bi-paths satisfying Invariant 1 with at
least 2 loose ends and let C be an unprocessed 3-cycle. Then there exists an allowed
family of bi-edges S such that (i) w(S) ≥ 3

4w(C), (ii) after processing C, the family
P ∪ S satisfies Invariant 1, and (iii) the number of loose ends decreases by 1.

Proof Our plan here is to make S contain one bi-edge with both endvertices in C

and one bi-edge linking the remaining vertex of C with one of the loose ends. This
obviously satisfies (ii) and (iii). We only need to guarantee that S is allowed and that
it has weight at least 3

4w(C). We consider one of the following two cases, depending
on whether or not there exists a loose end v that is not connected to C with a bi-path
in P (this bi-path might have length 0 in which case one of the vertices of C is a
loose end).

Case 1. There exists such v. Let a, b, c be the vertices of C and suppose Q = abc is
a plane spanning bi-path of C with no forbidden bi-edges. Consider two possibilities
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Fig. 5 Case 2 in the proof of
Lemma 4.4

for S: S1 = {ab, cv} (ab and cv denote bi-edges here) and S2 = {bc, av}. Both are
allowed. For example, if we add S1 to P , cv lies on a bi-path (not a bi-cycle) because
v is not connected with C in P , and ab by itself cannot form a bi-cycle because it is
allowed as a bi-edge of Q. Similar argument works for S2. We also have

w(S1) + w(S2) = w(ab) + w(bc) + w(cv) + w(va) ≥ w(ab) + w(bc) + w(ca)

≥ 1

2
[(w(ab) + w(bc)) + (w(bc) + w(ca)) + (w(ca) + w(ab))]

≥ 3

2
w(C),

where the second inequality follows from the triangle inequality and the last inequal-
ity follows from Lemma 3.3. Taking S to be the heavier of S1 and S2 we get the
required lower bound of 3

4w(C).

Case 2. Such v does not exists, so we have two loose ends u, v connected to two
different vertices of C, say u connected to a, and v connected to b. Let c be the
remaining vertex of C. Notice that all bi-edges of C are allowed. For if any of them,
call it xy, were not allowed, then x and y would be connected with a bi-path in P ,
and that cannot happen, since we know that either the bi-path starting in x or the
bi-path starting in y ends in a loose end.

Consider the two solutions defined in the previous case: S1 = {ab, cv} and
S2 = {bc, av}. They are both allowed. For example, adding S1 to P forms a bi-path
. . . cv . . . ba . . . u ending in a loose end u, so no bi-cycles are formed. Similar argu-
ment works for S2. The weight argument is the same as in Case 1. �

Lemma 4.5 Let P be a family of disjoint bi-paths satisfying Invariant 1 with at
least 2 loose ends and let C be an unprocessed 4-cycle. Then there exists an allowed
family of bi-edges S such that (i) w(S) ≥ 1

2w(C), (ii) after processing C, the family
P ∪ S satisfies Invariant 1, and (iii) the number of loose ends does not change.

Proof Our plan is to make S contain two bi-edges with both endvertices on C or one
bi-edge with both endvertices on C and one bi-edge linking a vertex of C with one of
the loose ends. This satisfies (ii) and (iii) and again we only need to guarantee that S

is allowed and that it has weight at least 1
2w(C). We consider the same two cases as

in the previous lemma.

Case 1. There exists a loose end v not connected to C in P .
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Let C = abcd and let Q be a plane spanning bi-path of C with no forbidden bi-
edges. We consider all solutions of the following form: a bi-edge of Q and a bi-edge
connecting one of the remaining vertices of C and v. There a six such solutions since
Q has 3 bi-edges and there are always 2 remaining vertices. All these solutions are
allowed. That is because the bi-path edge is allowed by itself, and the linking edge
cannot form a cycle in P since v is not connected with C in P .

Let us now bound the total weight of these six solutions. Consider a pair of solu-
tions corresponding to a single bi-edge of Q, say xy. The total weight of these two
solutions is 2w(xy) + w(vz) + w(vw) ≥ 2w(xy) + w(zw) (by triangle inequality),
where z, w are the two remaining vertices. So we get twice the weight of the bi-path
bi-edge and the weight of the complementary bi-edge. Now, notice that for any plane
spanning bi-path Q of a 4-cycle, the complementary bi-edges of bi-edges of Q also
form a plane spanning bi-path. It follows from Lemma 3.3 that the total weight of all
six solutions is at least 3w(C). Taking S to be the heaviest of the six solutions gives
the required lower bound of 1

2w(C).

Case 2. Such v does not exists, so we have two loose ends u, v connected to two
different vertices of C. Let C = abcd . We have two cases.

Case 2a. v and u are connected to two successive cycle vertices, say u is connected
to a and v is connected to b. Consider two solutions: S1 = {da, bc} and S2 = {ab, cv}
(here cv is a dummy bi-edge, added only to keep the number of loose ends constant
for simplicity). Both solutions are allowed, because if we add any of them to P , each
of the added bi-edges lies on a bi-path ending in a loose end. Also w(S1) + w(S2) ≥
w(C) by Lemma 3.3, because {da, bc, ab} is a plane spanning bi-path of C.

Case 2b. v and u are connected to opposite cycle vertices, say u is connected to a

and v is connected to c. Consider two solutions: S1 = {ab, cd} and S2 = {ad, bc}.
The rest of the argument is the same as in the previous Case 2a. �

For technical reasons, that will become clear in the proof of Theorem 4.9, the very
last cycle needs to be processed even more effectively. This is possible, because when
processing the last cycle we can make P a Hamiltonian bi-cycle. To deal with this
special case we use the following lemmas.

Lemma 4.6 Let P be a family of disjoint bi-paths satisfying Invariant 1 with exactly
1 loose end. Assume that all cycles have been processed except for one 3-cycle C.
Then there exists an allowed family of bi-edges S such that (i) P ∪S is a Hamiltonian
bi-cycle, (ii) w(S) ≥ 3

4w(C).

Proof Let C = abc. All vertices of G have bi-degree 2 in P except for a, b, c and
the loose end v, which all have bi-degree 1 (it might happen that v is one of a, b, c,
then it has bi-degree 0). It easily follows that two of the vertices of C, say a and b

are connected with a bi-path in P and similarly c and v are connected with a bi-path
in P (it might happen that c and v are the same vertex). We consider two solutions:
S1 = {ac, bv} and S2 = {bc, av}. It’s easy to see that both solutions complete P to a
Hamiltonian bi-cycle.
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An argument similar to the one in the proof of Lemma 4.4 gives a lower bound of
3
4w(C) on the weight of the heavier of S1 and S2 which ends the proof. �

Lemma 4.7 Let P be a family of disjoint bi-paths satisfying Invariant 1 with exactly
2 loose ends. Assume that all cycles have been processed except for one 4-cycle C.
Then there exists an allowed family of bi-edges S such that (i) P ∪S is a Hamiltonian
bi-cycle, (ii) w(S) ≥ 2

3w(C).

Proof Let C = abcd and u, v be the loose ends. By analyzing the bi-degrees of all
vertices of G in P we arrive in one of the following two cases.

Case 1. u and v are connected to two vertices of C in P . The vertices u and v are
connected to may either be successive or opposite vertices on C.

Case 1a. u and v are connected to two successive vertices on C, say u is connected
to a and v is connected to b. In this case c and d are also connected with a bi-
path in P . We consider four solutions S1 = S2 = {ad, bc,uv}, S3 = {ab, cu, dv} and
S4 = {ab, cv, du}. It can easily be checked that each of these solutions completes P

to a Hamiltonian bi-cycle.
The total weight of the four solutions is

4∑

i=1

w(Si) ≥ 2w(ab) + 2w(bc) + 2w(ad) + w(cu) + w(du) + w(cv) + w(dv)

≥ 2(w(ab) + w(bc) + w(cd) + w(da)) ≥ 8

3
w(C),

where the last inequality follows from the following consequence of Lemma 3.3

3(w(ab) + w(bc) + w(cd) + w(da))

= (w(ab) + w(bc) + w(cd)) + (w(ab) + w(bc) + w(da))

+ (w(ab) + w(cd) + w(da)) + (w(bc) + w(cd) + w(da))

≥ 4w(C).

We make S the heaviest of the four solutions and get w(S) ≥ 2
3w(C).

Case 1b. u and v are connected to two opposite vertices on C, say u is connected
to a and v is connected to c. In this case b and d are also connected with a bi-path
in P . We consider two solutions: S1 = {ab, cd,uv} and S2 = {ad, bc,uv} (we only
need the uv bi-edges to close the bi-cycle). Again, it’s easy to see that both solutions
complete P to a Hamiltonian bi-cycle. Their total weight is

w(S1) + w(S2) ≥ w(ab) + w(bc) + w(cd) + w(da) ≥ 4

3
w(C)

using the reasoning from case 1a. Making S the heavier of the two solutions we get
w(S) ≥ 2

3w(C).
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Case 2. u and v are connected with a bi-path in P . Again we have two cases.

Case 2a. Pairs of successive vertices of C are connected with bi-paths in P , say a is
connected with b and c with d .

We consider six solutions: S1 = S2 = {ad, bu, cv}, S3 = S4 = {ad, bv, cu}, S5 =
{ac, bu, dv}, S6 = {ac, bv, du}. Again, it can easily be verified that each of these
solutions completes P to a Hamiltonian cycle.

Their total weight is at least

4w(ad) + 2(w(bu) + w(cu) + w(bv) + w(cv))

+ 2w(ac) + w(bu) + w(du) + w(bv) + w(dv)

≥ 4w(ad) + 4w(bc) + 2w(ac) + 2w(bd)

≥ 4w(C),

where the last inequality follows from the following corollary of Lemma 3.3

2w(ad) + 2w(bc) + w(ac) + w(bd)

= (w(ad) + w(ac) + w(bc)) + (w(ad) + w(bd) + w(bc))

≥ 2w(C).

Making S the heaviest of the six solutions gives w(S) ≥ 2
3w(C).

Case 2b. a and c are connected with a bi-path in P , and the same goes for b and d .
We consider four solutions: S1 = {ab, cu, dv}, S2 = {ab, cv, du}, S3 = {ad, bu,

cv}, and S4 = {ad, bv, cu}. Again, each of these completes P to a Hamiltonian bi-
cycle.

The total weight of these four solutions is

4∑

i=1

w(Si) = 2w(ab) + w(cu) + w(du) + w(cv) + w(dv) + 2w(ad)

+ w(bu) + w(cu) + w(bv) + w(cv)

≥ 2(w(ab) + w(bc) + w(cd) + w(da))

which we already know is at least 8
3w(C). Thus, making S the heaviest of the 4

solutions gives w(S) ≥ 2
3w(C). �

Lemma 4.8 Let P be a family of disjoint bi-paths satisfying Invariant 1 with no
loose ends. Assume that all cycles have been processed except for one 4-cycle C.
Then there is an allowed family of bi-edges S such that (i) P ∪ S is a Hamiltonian
bi-cycle, (ii) w(S) ≥ 1

2w(C).

Proof Let C = abcd . Again, by analyzing the bi-degrees of all vertices of G in P ,
we conclude that P consists of two bi-paths, pairing the vertices of C. We have two
cases.
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Case 1. The paired vertices are neighbors on C, say a and b are connected with a
bi-path in P , and c and d are. In this case we consider solutions: S1 = {ac, bd} and
S2 = {ad, bc}. They both complete P to a Hamiltonian bi-cycle. Also, since S1 ∪ S2
contains a plane spanning bi-path of C, their total weight is at least w(C), and so the
heavier of them has weight at least 1

2w(C).

Case 2. The paired vertices are not neighbors, i.e. a and c are connected in P and
b and d are. The reasoning is the same, only this time we use S1 = {ab, cd} and
S2 = {ad, cb}. �

4.3 Putting It All Together

Theorem 4.9 Let C1 and C2 be a nice pair of cycle covers of G. Then, there exists a
Hamiltonian bi-cycle in G with weight at least W2 + 5

8W3 + 1
2W4 + 1

2W5 + 1
3W6 +

1
3W7 + 1

4W8+, where Wk is the total weight of k-cycles in C1 and C2 and W8+ is the
total weight of cycles of length at least 8 in C1 and C2.

Proof We use the Main Algorithm and process all the long (i.e. of length at least 5)
cycles before the 3- and 4-cycles. Long cycles are processed using Lemma 4.1. As
a result we get a family P of bi-paths satisfying Invariant 1 and such that w(P ) ≥
W2 + 1

2W5 + 1
3W6 + 1

3W7 + 1
4W8+. Depending on the number of loose ends in P , we

continue in one of the following ways.

Case 1. There are at least 2 loose ends. Then we first process 4-cycles, in any order,
using Lemma 4.5 for each cycle. Note that w(P ) increases by at least 1

2W4 during
this phase. Next we process 3-cycles in order of decreasing weight. The first 3-cycle
A is processed using Lemma 4.4. As a result the number of loose ends drops by 1 and
W(P) increases by 3

4w(A). Then we process the second 3-cycle B using Lemma 4.3.
We get one loose end and W(P) increases by 1

2w(B). We process all the 3-cycles
in this way, alternating between Lemmas 4.4 and 4.3. Clearly that overall W(P)

increases by at least 5
8W3, hence after patching P to a Hamiltonian bi-cycle we get

its total weight as claimed.

Case 2. There are no loose ends. Note that, when a cycle C is processed, the number
of loose ends increases by |C| − 2|S|. Hence, at any time, the parity of the number of
loose ends equals the parity of the sum of lengths of the processed cycles. It follows
that if there are no loose ends then the sum of lengths of the processed cycles is even.
On the other hand, the sum of lengths of all cycles in C1 and C2 is 2n, hence also
the sum of lengths of the unprocessed cycles is even. It implies that the number of
3-cycles is even. Now we will consider subcases regarding the number of 3-cycles
and 4-cycles.

Case 2a. There are at least two 4-cycles. Then we start by processing the lightest
4-cycle using Lemma 4.3. This gives us 2 loose ends. Next, all 3-cycles and all but
one remaining 4-cycles are processed using the algorithm from Case 1. Again, since
the number of 3-cycles is even, we still have 2 loose ends when this phase is finished.
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It follows that the remaining 4-cycle can be processed using Lemma 4.7. We see that
in total w(P ) increases by 1

3 of the weight of the lightest 4-cycle, 2
3 of the weight of

some other 4-cycle, 1
2 of the weight of all the other 4-cycles and by 5

8W3, which is at
least 5

8W3 + 1
2W4, as required.

Case 2b. There are at least four 3-cycles. Then we start by processing the two lightest
3-cycles using Lemma 4.3. This gives us 2 loose ends and w(P ) increases by 1

2 of
the weight of these 3-cycles. Next, all 4-cycles and all but two remaining 3-cycles are
processed using the algorithm from Case 1. This increases w(P ) by 5

8 of the weight
of the triangles processed in this phase and by 1

2W4. Note that since the number of 3-
cycles is even, we still have 2 loose ends after this phase. The two remaining 3-cycles
are processed using Lemma 4.4 and Lemma 4.6, respectively. Then w(P ) increases
by 3

4 of their weight. During the processing of all short cycles w(P ) increases by at
least 5

8W3 + 1
2W4, as required.

Case 2c. There are two 3-cycles and one 4-cycle. Then we consider two methods of
processing these cycles and we choose the more profitable one. Method 1: process
the 3-cycles using Lemma 4.3 and obtaining 2 loose ends, then process the 4-cycle
using Lemma 4.7. In this case w(P ) increases by 1

2W3 + 2
3W4. Method 2: process

the 4-cycle using Lemma 4.3 and obtaining 2 loose ends, then process the 3-cycles
using Lemma 4.4 for the first one and Lemma 4.6 for the second one. In this case
w(P ) increases by 3

4W3 + 1
3W4. Clearly the better method gives us max{ 1

2W3 +
2
3W4,

3
4W3 + 1

3W4} ≥ 5
8W3 + 1

2W4, as required.

Case 2d. There are no 3-cycles and there is one 4-cycle. We use Lemma 4.8.

Case 2e. There are two 3-cycles and no 4-cycles. We process the lighter 3-cycle
A using Lemma 4.3 which gives us 1 loose end. Then the second 3-cycle B can be
processed using Lemma 4.6. This increases w(P ) by at least 1

2w(A)+ 3
4w(B) ≥ 5

8W3
as required.

Case 3. There is exactly one loose end. By the parity argument from Case 2, the
number of 3-cycles is odd. We can treat the single loose end as an imaginary 3-cycle
I of weight 0. This way the number of 3-cycles becomes even and we again arrive
at Case 2. Note that in the algorithms from subcases 2a, 2b and 2e the imaginary
triangle would be processed using Lemma 4.3. If we just do nothing while process-
ing I we get the same effect: w(P ) grows by 1

2w(I) = 0 and we get an additional
loose end. Case 2d does not apply since we do have 3-cycles. The only case left is a
counterpart of Case 2c: there is one 3-cycle and one 4-cycle. Similarly to Case 2c we
consider 2 methods and we choose the more profitable one. Method 1 is: process the
3-cycle using Lemma 4.3 obtaining the second loose end and then process the 4-cycle
using Lemma 4.7. Method 2 is: process the 4-cycle using Lemma 4.3 obtaining two
more loose ends and then process the 3-cycle using Lemma 4.4. Performing the same
calculations as in Case 2c, we see that w(P ) increases by at least 5

8W3 + 1
2W4, as

required. �
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Theorem 4.10 There exists a 35
44 -approximation algorithm for semimetric max-TSP.

Proof Similarly to the algorithm in Theorem 3.6, our algorithm chooses the heav-
iest of the four Hamiltonian cycles: two constructed by Kostochka and Serdukov’s
algorithm and the two cycles of the bi-cycle from Theorem 4.9.

Similarly as in the proof of Theorem 3.6 we can lowerbound the weight of the
resulting Hamiltonian cycle by solving the following linear program:

minimize W with

W ≥ 3

8
W2 + 5

12
W3 + 7

16
W4 + 9

20
W5 + 11

24
W6 + 13

28
W7 + 15

32
W8+,

W ≥ 1

2
W2 + 5

16
W3 + 1

4
W4 + 1

4
W5 + 1

6
W6 + 1

6
W7 + 1

8
W8+,

W2 + W3 + W4 + W5 + W6 + W7 + W8+ = 2OPT,

Wi ≥ 0.

The minimum value is W = 35
44 , for W2 = 10

11 OPT, W3 = 12
11 OPT, and Wi = 0 for

i ≥ 4. �
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