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Abstract We consider a one-round two-player network pricing game, the Stackel-
berg Minimum Spanning Tree game or STACKMST.
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The game is played on a graph (representing a network), whose edges are col-
ored either red or blue, and where the red edges have a given fixed cost (representing
the competitor’s prices). The first player chooses an assignment of prices to the blue
edges, and the second player then buys the cheapest possible minimum spanning tree,
using any combination of red and blue edges. The goal of the first player is to max-
imize the total price of purchased blue edges. This game is the minimum spanning
tree analog of the well-studied Stackelberg shortest-path game.

We analyze the complexity and approximability of the first player’s best strategy
in STACKMST. In particular, we prove that the problem is APX-hard even if there
are only two different red costs, and give an approximation algorithm whose approx-
imation ratio is at most min{k,1 + lnb,1 + lnW }, where k is the number of distinct
red costs, b is the number of blue edges, and W is the maximum ratio between red
costs. We also give a natural integer linear programming formulation of the problem,
and show that the integrality gap of the fractional relaxation asymptotically matches
the approximation guarantee of our algorithm.

Keywords Combinatorial optimization · Maximum-revenue pricing ·
Approximation algorithms · Spanning trees

1 Introduction

Suppose that you work for a networking company that owns many point-to-point con-
nections between several locations, and your job is to sell these connections. A cus-
tomer wants to construct a network connecting all pairs of locations in the form of a
spanning tree. The customer can buy connections that you are selling, but can also buy
connections offered by your competitors. The customer will always buy the cheapest
possible spanning tree. Your company has researched the price of each connection
offered by the competitors. The problem considered in this paper is how to set the
price of each of your connections in order to maximize your revenue, that is, the sum
of the prices of the connections that the customer buys from you.

This problem can be cast as a Stackelberg game, a type of two-player game intro-
duced by the German economist Heinrich Freiherr von Stackelberg [18]. In a Stack-
elberg game, there are two players: the leader moves first, then the follower moves,
and then the game is over. The follower thus optimizes its own objective function,
knowing the leader’s move. The leader has to optimize its own objective function
by anticipating the optimal response of the follower. In the scenario depicted in the
preceding paragraph, you were the leader and the customer was the follower: you
decided how to set the prices for the connections that you own, and then the customer
selected a minimum spanning tree. In this situation, there is an obvious tradeoff: the
leader should not put too high price on the connections—otherwise the customer will
not buy them—but on the other hand the leader needs to put sufficiently high prices
to optimize revenue.

Formally, the problem we consider is defined as follows. We are given an undi-
rected graph1 G = (V ,E) whose edge set is partitioned into a red edge set R and

1All graphs in this paper are finite and may have loops and multiple edges.



Algorithmica (2011) 59: 129–144 131

a blue edge set B . Each red edge e ∈ R has a nonnegative fixed cost c(e) (the best
competitor’s price). The leader owns every blue edge e ∈ B and has to set a price
p(e) for each of these edges. The cost function c and price function p together define
a weight function w on the whole edge set. By “weight of edge e” we mean either
“cost of edge e” if e is red or “price of edge e” if e is blue. A spanning tree T is a
minimum spanning tree (MST) if its total weight

∑

e∈E(T )

w(e) =
∑

e∈E(T )∩R

c(e) +
∑

e∈E(T )∩B

p(e) (1)

is minimum. The revenue of T is then
∑

e∈E(T )∩B

p(e). (2)

The Stackelberg Minimum Spanning Tree problem, STACKMST, asks for a price
function p that maximizes the revenue of an MST. Throughout, we assume that the
graph contains a spanning tree whose edges are all red; otherwise, there is a cut con-
sisting only of blue edges and the optimum value is unbounded. Moreover, to avoid
being distracted by epsilons, we assume that among all edges of the same weight,
blue edges are always preferred to red edges; this is a standard assumption. As a con-
sequence, all minimum spanning trees for a given price function p have the same
revenue; see Sect. 2 for details.

Related work A similar pricing problem, where one wants to price the edges in B

and the customer wants to construct a shortest path between two vertices instead of
a spanning tree, has been studied in the literature; see van Hoesel [17] for a survey.
Complexity and approximability results have recently been obtained by Roch, Savard
and Marcotte [15], and by Bouhtou, Grigoriev, van Hoesel, van der Kraaij, Spieksma,
and Uetz [4]: the problem is strongly NP-hard and O(log |B|)-approximable. A gen-
eralization of the problem to more than one customer has been tackled using mathe-
matical programming tools, in particular bilevel programming; see Labbé, Marcotte,
and Savard [13]. This generalization was motivated by the problem of setting tolls
on highway networks. Note that the STACKMST problem is only interesting in the
single-customer case, since otherwise all customers purchase the same tree. Cardi-
nal, Labbé, Langerman, and Palop [8] give a geometric version of the shortest path
problem.

Recently, part of the results of the current paper have been generalized to other
problems by Briest, Hoefer and Krysta [5]. They also exhibit a polynomial-time algo-
rithm for a special case of a Stackelberg vertex cover problem, in which the follower’s
problem is to find a minimum vertex cover in a bipartite graph.

Other pricing problems have been studied, in which the goal is to find the best
prices for a set of items, after bidders have announced their preferences in the form
of subset valuations. Envy-free pricing, in particular, can be viewed as a simple Stack-
elberg game. APX-hardness and approximability of such problems have been estab-
lished by Hartline and Koltum [12], and by Guruswami, Hartline, Karlin, Kempe,
Kenyon, and McSherry [11]. Balcan and Blum [2] gave improved approximation re-
sults. Approximability within a logarithmic factor has also been recently established
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for more general cases by Balcan, Blum and Mansour [3]. The case in which items
are edges of a graph has been studied by Grigoriev, van Loon, Sitters and Uetz [10],
and Briest and Krysta [6]. A semi-logarithmic inapproximability result for a special
case of the unlimited supply pricing problem has been given by Demaine, Feige,
Hajiaghayi, and Salavatipour [9].

Our results We analyze the complexity and approximability of the STACKMST
problem. Specifically, we prove the following:

1. STACKMST is APX-hard, even if there are only two red costs, 1 and 2 (Sect. 3).
This result is also the first NP-hardness proof for this problem, and, to our knowl-
edge, the first APX-hardness proof for a Stackelberg pricing game with a single
customer. The reduction is from SETCOVER.

2. STACKMST is O(logn)-approximable, and is O(1)-approximable when the red
costs either fall in a constant-size range or have a constant number of distinct
values (Sect. 4). More precisely, we analyze the following simple approximation
algorithm, called Best-out-of-k: for all i between 1 and k, consider the price func-
tion for which all blue edges have price ci , and output the best of these k price
functions. Here, and throughout the paper, ci denotes the ith smallest cost of a
red edge and k the number of distinct red costs. We prove that the approximation
ratio of this algorithm is bounded above by min{k,1 + lnb,1 + ln(ck/c1)}, where
b := |B| is the number of blue edges.

3. The integrality gap of a natural integer linear programming formulation asymp-
totically matches the approximation guarantee of Best-out-of-k (Sect. 5). Thus,
effectively, any approximation algorithm based on the linear programming relax-
ation of our integer program (or any weaker relaxation) cannot do better than
Best-out-of-k. Of course, this result does not imply that Best-out-of-k is optimal.
In fact, a central open question about STACKMST is to determine if it admits a
constant factor approximation algorithm.

2 Basic Results

Before we proceed to our main results, we prove a few basic lemmas about
STACKMST.

We claimed in the introduction that the revenue of the leader depends on the price
function p only, and not on the particular MST picked by the follower. To see this, let
w1 < w2 < · · · < w� denote the different edge weights. The greedy algorithm (a.k.a.
Kruskal’s algorithm) will work in � phases: in its ith phase, it will consider all blue
edges of price wi (if any) and then all red edges of cost wi (if any). The number of
blue edges selected in the ith phase will not depend on the order in which blue or red
edges of weight wi are considered. This shows the claim. Moreover, if there is no red
edge of cost wi then p is not an optimal price function because the leader can raise
the price of every blue edge of price wi to the next weight wi+1 and thus increase
his/her revenue. This implies the following lemma.

Lemma 1 In every optimal price function, the prices assigned to the blue edges
appearing in some MST belong to the set {c(e) : e ∈ R}.
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Notice that for optimal price functions, the prices given to the blue edges that are
in no MST do not really matter, as long as they are high enough. We find it convenient
to see them as equaling ∞. This has the same effect as deleting those blue edges. A
direct consequence of Lemma 1 is that the decision version of STACKMST belongs
to NP, using some price function p with p(e) ∈ {c(e) : e ∈ R} ∪ {∞} for all e ∈ B

as a certificate. Another possibility for a certificate is an acyclic set of blue edges F ,
interpreted as the set of blue edges in any MST. Given F , we can easily compute an
optimal price function such that F is the set of blue edges in any MST, with the help
of Lemma 2 below. In the lemma, we use the notation C(B ′, e) for the set of cycles of
G = (V ,R ∪ B ′) that include the edge e, where B ′ is an acyclic subset of blue edges
and e ∈ B ′. (Notice that C(B ′, e) is nonempty because (V ,R) is connected.)

Lemma 2 Consider a price function p, a corresponding minimum spanning tree T ,
and let F = E(T ) ∩ B . Then for every e ∈ F , we have

p(e) ≤ min
C∈C(F,e)

max
e′∈E(C)∩R

c(e′). (3)

Moreover, whenever F is any acyclic set of blue edges and we set p(e) equal to the
right hand side of (3) for e ∈ F and p(e) = ∞ for e ∈ B −F , we have E(T ′)∩B = F

for any corresponding MST T ′.

Proof The first part of the lemma is straightforward. Indeed, if (3) fails for some edge
e ∈ F , then there exists a red edge e′ with c(e′) < p(e) that links the two components
of T − e, and so T cannot be an MST. We now turn to the second part of the lemma.
First note that E(T ′)∩B is clearly contained in F because no MST can use any edge
with an infinite price. By contradiction, suppose there is some edge e in F that is
not used by T ′ and let e′ be a red edge with maximum cost on the unique cycle of
T ′ + e. Because the price function p we have chosen satisfies (3) (with equality), the
weight of edge e is at most the weight of e′, and thus T ′ is not an MST because of our
assumption that blue edges have priority over the red edges of the same weight. �

It follows from the above lemma that STACKMST is fixed parameter tractable
with respect to the number of blue edges. Indeed, to solve the problem, one could
try all acyclic subsets F of B , and for each of them put the prices as above (this can
easily be done in polynomial time), and finally take the solution yielding the highest
revenue. We conclude this section by stating a useful property satisfied by all optimal
solutions of STACKMST.

Lemma 3 Let p be an optimal price function and T be a corresponding MST. Sup-
pose that there exists a red edge e in T and a blue edge f not in T such that e belongs
to the unique cycle C in T + f . Then there exists a blue edge f ′ distinct from f in C

such that c(e) < p(f ′) ≤ p(f ).

Proof The inequality c(e) < p(f ) follows from the optimality of T and from our
assumption on the priority of blue edges versus red edges of the same weight. If all
blue edges f ′ distinct from f in C satisfied p(f ′) ≤ c(e) or p(f ) < p(f ′) then by
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Fig. 1 (a) The graph G constructed for n = 6, m = 3 with S1 = {u1, u2, u3, u4, u6}, S2 = {u3, u4, u6}
and S3 = {u5, u6}. The red edges of cost 2 are omitted for clarity. The red edges of cost 1 are dashed, and
the blue edges are solid. (b) An optimal price function p on the blue edges that yields a revenue of 9, an
example MST is depicted in bold

decreasing the price of f by some amount we would be able to find a new price
function p′ such that T ′ = T − e′ + f is an MST with respect to p′, where e′ is
some red edge on C. This contradicts the optimality of p because the revenue of T ′
is bigger than that of T . �

3 Complexity and Inapproximability

By Lemma 1, STACKMST is trivially solved when the cost of every red edge is
exactly 1, i.e., when c(e) = 1 for all e ∈ R. In this section, we show that the problem
is APX-hard even when the costs of the red edges are only 1 and 2, i.e., when c(e) ∈
{1,2} for all e ∈ R. We start with NP-hardness:

Theorem 1 STACKMST is NP-hard even when c(e) ∈ {1,2} for all e ∈ R.

Proof We present a reduction from SETCOVER (in its decision version). Let (U , S)

and the integer t be an instance of SETCOVER, where U = {u1, u2, . . . , un}, and
S = {S1, S2, . . . , Sm}. Without loss of generality, we assume that un ∈ Si for every
i = 1,2, . . . ,m (we can always add one element to U and to every Si to make sure
this holds).

We construct a graph G = (V ,E) with edge set E = R ∪ B and a cost func-
tion c : R → {1,2} as follows. The vertex set of G is U ∪ S = {u1, u2, . . . , un} ∪
{S1, S2, . . . , Sm}. The edge set of G and cost function c are defined as follows:

• there is a red edge of cost 1 linking ui and ui+1 for every 1 ≤ i < n;
• there is a red edge of cost 2 linking un and S1, and linking Sj and Sj+1 for every

1 ≤ j < m;
• whenever ui ∈ Sj we link ui and Sj by a blue edge.

We illustrate such a construction in Fig. 1. We claim that (U , S) has a set cover of
size t if and only if there exists a price function p : B → {1,2,∞} for the blue edges
of G whose revenue is n + 2m − t − 1.
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(⇒) Suppose (U , S) has a set cover of size t . We construct p as follows: for every
blue edge e = uiSj , we set p(e) to be 1 if Sj is in the set cover, and 2 otherwise.
We show that the revenue of p equals n + 2m − t − 1 by running Kruskal’s MST
algorithm starting with an empty tree, T . Because the blue edges of weight 1 are the
lightest, we start with adding them one by one to T such that we add an edge only
if it doesn’t close a cycle in T . After going over all blue edges of weight 1, we are
guaranteed that T is a tree that spans all the vertices ui for every i = 1, . . . , n, and
every vertex Sj such that Sj is in the set cover. This is because these vertices are
connected through un with only blue edges of weight 1. So the current weight of T

is |T | − 1 = n + t − 1. We next try to add the red edges of weight 1, but every such
edge connects two vertices, ui and ui+1, already spanned by T and therefore closes a
cycle, so we add none of them. Next we add the blue edges of weight 2. For every Sj

not in the set cover, we connect Sj to T with one blue edge of weight 2 (the second
one will close a cycle). Therefore, after going over all the blue edges of weight 2, we
added a weight of 2(m − t) to T . Furthermore, T spans the entire graph so there is
no need to add any red edges of weight 2. All the edges in T are blue and the revenue
of T is (n + t − 1) + 2(m − t) = n + 2m − t − 1.
(⇐) Suppose that there exists a price function p : B → {1,2,∞} for the blue edges
of G whose revenue is n + 2m − t − 1 for some t . By Lemma 1, there exists such
a function p that is optimal. Choose then p : B → {1,2,∞} as an optimal price
function that minimizes the number of red edges in an MST T .

Assume first that T contains only blue edges. Then every vertex ui is incident
to some blue edge in T with price 1. To see this, observe that ui is adjacent to a
vertex Sj that is not a leaf, thus Sj has a neighbor uk , and the red edges in the cycle
Sj ,u1, . . . , uk, Sj all have cost 1. Thus the set S ′ of those Sj ’s that are linked to some
blue edge in T with price 1 is a set cover of (U , S). On the other hand, notice that
any Sj ∈ S \ S ′ is a leaf of T , because if there were two blue edges uiSj , ui+�Sj in T

then none of them could have a price of 2 because of the cycle Sjuiui+1 · · ·ui+�Sj .
Therefore, the revenue of p equals (n+|S ′| − 1)+ 2(m−|S ′|) = n+ 2m−|S ′| − 1.
As by hypothesis this is at least n + 2m − t − 1, we deduce that the set cover S ′ has
size at most t .

Suppose now that T contains some red edge e and denote by X1 and X2 the two
components of T − e. There exists some blue edge f = uiSj in G that connects X1
and X2 because the graph (V ,B) induced by the blue edges is connected (because
un is linked with blue edges to every Sj ). By Lemma 3, there exists a blue edge f ′ =
ui′Sj ′ distinct from f in the unique cycle C in T +f such that c(e) < p(f ′) ≤ p(f ).
In particular, we have c(e) = 1 and p(f ′) = 2. By an argument given in the preceding
paragraph, Sj ′ is a leaf of T , hence we have j ′ = j . Also, every blue edge distinct
from f and f ′ in C has price 1. But then the price function p′ obtained from p by
setting the price of both f and f ′ to 1 is also optimal and has a corresponding MST
that uses less red edges than T , namely T − e + f , a contradiction. This completes
the proof. �

The reduction used in Theorem 1 implies a stronger hardness result.

Theorem 2 STACKMST is APX-hard even when c(e) ∈ {1,2} for all e ∈ R.
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Proof We will show that, for any ε > 0, a (1 − ε)-approximation for STACKMST
implies a (1+8ε)-approximation for VERTEXCOVER in graphs of maximum degree
at most 3. The claim will then follows from the APX-hardness of the latter problem
[1, 14].

Let H denote any given graph with maximum degree at most 3. We can assume
that H is connected because otherwise we process each connected component sepa-
rately. Moreover, we can assume that H has at least as many edges as vertices because
VERTEXCOVER can be solved exactly in polynomial time if H is a tree.

Clearly, the VERTEXCOVER instance we consider is equivalent to a SETCOVER

instance with |V (H)| sets and |E(H)| elements in the ground set. Let (U , S) be the
SETCOVER instance obtained from the latter one by adding a new dummy element
d in the ground set, and adding d to every subset of the instance. Hence, we have n =
|U | = |E(H)| + 1 and m = |S| = |V (H)|. Any vertex cover of H yields a set cover
of (U , S) with the same size, and vice-versa. Thus the reduction used in the proof of
Theorem 1 provides a way to convert in polynomial time a vertex cover of size s into
a feasible solution of the STACKMST instance corresponding to (U , S) with revenue
n + 2m − s − 1, and vice-versa. In particular, we have OPT = n + 2m − OPTVC − 1,
where OPT and OPTVC denote the value of the optimum for the STACKMST and
VERTEXCOVER instances, respectively.

Now consider the vertex cover found by running the (1 − ε)-approximation algo-
rithm on the STACKMST instance and then converting the result into a vertex cover
of H . Denoting by s its size and letting r = n + 2m − s − 1, we obtain:

s = n + 2m − r − 1 ≤ n + 2m − (1 − ε)OPT − 1

= n + 2m − (1 − ε) (n + 2m − OPTVC − 1) − 1

= ε (n − 1 + 2m) + (1 − ε)OPTVC

≤ ε (3 OPTVC + 6 OPTVC) + (1 − ε)OPTVC

= (1 + 8ε)OPTVC.

Above we have used the fact that n − 1 = |E(H)| ≥ |V (H)| = m and that OPTVC ≥
|E(H)|/3 = (n − 1)/3 because H has maximum degree at most 3. �

4 The Best-Out-Of-k Algorithm

As before, let k denote the number of distinct red costs, and let c1 < c2 < · · · < ck

denote those costs. Without loss of generality, we assume that all red costs are positive
(otherwise we contract all red edges of cost 0). Recall that the Best-out-of-k algorithm
is as follows. For each i between 1 and k, set p(e) = ci for all blue edges e ∈ B and
compute an MST Ti . Then pick i such that the revenue of Ti is maximum and output
the corresponding feasible solution. In this section, we analyze the approximation
ratio ensured by this algorithm.

Theorem 3 Best-out-of-k is a min{k,1 + lnb,1 + lnW }-approximation algorithm,
where b denotes the number of blue edges, and W = ck/c1 is the maximum ratio
between red costs.
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Proof We let p∗ be an optimal price function, T ∗ be an MST of G with respect to
p∗, and ni be the number of blue edges of price ci in T ∗. We also define Ni as the
number of blue edges of price at least ci in T ∗, that is, Ni = ∑k

j=i nj .
We first prove the following claim: for all i = 1, . . . , k, the ith MST Ti computed

by Best-out-of-k contains at least Ni blue edges. For S ⊆ E, let r(S) denote the max-
imum cardinality of an acyclic subset of S (that is, the rank function of the graphic
matroid of G). We also let Ri be the set of red edges with cost at most ci , and B∗

i be
the set of blue edges e such that p∗(e) ≤ ci .

Now consider an execution of Kruskal’s algorithm on G with respect to p∗, up
to the point where all edges of weight at most ci−1 have been processed. The total
number of edges included up to that point in the MST T ∗ equals r(Ri−1 ∪ B∗

i−1).
Next, resume the execution of Kruskal’s algorithm, process all blue edges of price ci

and stop before processing any red edge of cost ci . In order to maximize the number
of blue edges Ni of price at least ci included in T ∗, we could lower to ci the price
of all blue edges whose current price is at least ci . Then, the total number of edges
included up to now in T ∗ would be exactly r(Ri−1 ∪ B). This implies

Ni ≤ r(Ri−1 ∪ B) − r(Ri−1 ∪ B∗
i−1) ≤ r(Ri−1 ∪ B) − r(Ri−1).

Because the latter expression gives the number of blue edges in Ti , this proves the
claim.

Using this claim, we can bound the revenue q of the solution returned by Best-
out-of-k:

q ≥ max
i=1,...,k

Ni · ci .

We also know that OPT = ∑k
i=1 ni · ci .

Since ni ≤ Ni , we have

OPT =
k∑

i=1

ni · ci ≤
k∑

i=1

Ni · ci ≤ k · q,

proving the first approximation factor.
Also, we have (letting Nk+1 = 0):

OPT =
k∑

i=1

ni · ci

=
k∑

i=1

Ni · ci · ni

Ni

=
k∑

i=1

Ni · ci · Ni − Ni+1

Ni

≤
(

max
i=1,...,k

Ni · ci

)
·

k∑

i=1

Ni − Ni+1

Ni
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≤ q ·
k∑

i=1

Ni − Ni+1

Ni

,

and

k∑

i=1

Ni − Ni+1

Ni

≤ 1 +
∫ N1

Nk

dt

t
≤ 1 + ln

N1

Nk

≤ 1 + lnb,

which proves the second approximation factor.
Finally, we also have the following (letting c0 = 0):

OPT =
k∑

i=1

ni · ci

=
k∑

i=1

ni

i∑

j=1

(cj − cj−1)

=
k∑

j=1

Nj · (cj − cj−1)

≤ q ·
k∑

j=1

cj − cj−1

cj

,

and

k∑

j=1

cj − cj−1

cj

≤ 1 + lnW,

establishing the third approximation factor. �

The three approximation factors are tight for the following examples. Consider a
graph with k + 1 vertices v1, v2, . . . , vk+1, in which the red edges are of the form
vivi+1, and there is a blue edge parallel to every red edge. The cost of the red edge
vivi+1 is 1/i. The optimal solution involves setting a price of 1/i for every blue
edge vivi+1, yielding a revenue of

∑k
i=1 1/i. On the other hand, the Best-out-of-

k algorithm sets the price of every blue edge to 1/i for some i, always yielding a
revenue of 1. This proves that the ratios 1 + lnb and 1 + lnW are asymptotically
tight.

The factor k can be proven tight as well by considering a similar example. The
graph is composed of 1 +∑k

i=1 ai−1 vertices for some large integer a. The red edges
form a path connecting these vertices using ak−i edges of cost ci = ai−1 for every
i between 1 and k. Every red edge is doubled by a blue edge. The optimal solution
again involves setting the prices of the blue edges equal to that of the parallel red
edge, yielding a revenue of k · ak−1. The Best-out-of-k algorithm setting the prices to
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ci yields an MST containing
∑k

j=i a
k−j blue edges, with a revenue of

ai−1 ·
k∑

j=i

ak−j = ai−1 · ak−i+1 − 1

a − 1
< ak−1 · a

a − 1
.

The ratio between the two revenues tend to k as a tends to infinity.
A natural generalization of STACKMST to matroids is as follows. Given a ma-

troid (S, I) with I partitioned into two sets R and B, and nonnegative costs on the
elements of R, assign prices on the elements of B in such a way that the revenue
given by a minimum weight basis of (S, I) is maximized. We mention that the analy-
sis of Best-out-of-k given in the proof of Theorem 3 extends swiftly to the case of
matroids, yielding the same approximation for this more general case.

5 Linear Programming Relaxation

In this section, we give an integer programming formulation for the problem and
study its linear programming relaxation. All red costs ci are assumed to be positive
throughout the section. For each j = 1, . . . , k, and each blue edge e ∈ B we define
a variable xj,e . The interpretation of these variables is as follows: think of a feasible
solution p : B → {c1, c2, . . . , ck} and an MST T with respect to p. Then xj,e = 1
means that the blue edge e appears in T , with a price p(e) of at least cj .

We let c0 = 0 and, as in the previous section, denote by Rj the set of red edges
of cost at most cj . For t pairwise disjoint sets of vertices C1, . . . ,Ct , we denote by
δB(C1 : C2 : · · · : Ct) the set of blue edges that are in the cut defined by these sets.
The integer programming formulation then reads:

(IP) max
∑

e∈B
1≤j≤k

(cj − cj−1) xj,e

s.t.
∑

e∈δB(C1:C2:···:Ct )

xj,e ≤ t − 1 ∀j ∈ {1,2, . . . , k},

∀C1, . . . ,Ct components of (V ,Rj−1); (4)
∑

e∈P∩B

x1,e + xj,f ≤ |P ∩ B| ∀f = ab ∈ B,∀j ∈ {2,3, . . . , k},

∀Pab − path in (B ∪ Rj−1) − f ; (5)

x1,e ≥ x2,e ≥ · · · ≥ xk,e ≥ 0 ∀e ∈ B; (6)

xj,e ∈ {0,1} ∀j ∈ {1,2, . . . , k}, ∀e ∈ B. (7)

Let us first give some intuition on this integer program. Consider a minimum span-
ning tree T with respect to a feasible solution p, let F be the set of blue edges ap-
pearing in T , and let Fj = {e ∈ F : p(e) ≥ cj }. Then F (= F1) must obviously be a
forest. Also, Fj (j ∈ {2, . . . , k}) must be a forest in the graph where every component
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of (V ,Rj−1) has been contracted, since otherwise we could swap in T some edge of
Fj with an edge in Rj−1. This is encoded by constraints (4). Similarly, if a cycle C of
the graph is such that every red edge in C has cost at most cj−1 and some blue edge
f of C appears in T with a price at least cj , then there must be another blue edge of
C that is not included in T . This is ensured by constraints (5).

Proposition 1 The integer program above is a formulation of STACKMST.

Proof Consider a feasible solution x of the integer program (IP) and let F = {e ∈ B :
x1,e = 1}. Inequality (4) ensures that F is a forest. For e ∈ F , let p(e) = cj if j is
the last index for which xj,e = 1 and, for e ∈ B − F , let p(e) = ∞. Now consider a
minimum spanning tree T with respect to p. We claim E(T ) ∩ B = F and that the
revenue of T is exactly the objective value for x.

It suffices to prove that all edges of F belong to T . All edges e ∈ F of price c1
are necessarily in T . Assume that all edges e ∈ F of price less than cj are in T , for
some j ≥ 2. We show that this holds too for edges of price cj . Consider some edge
f with p(f ) = cj . Suppose that f is not in T . This means that there exists a cycle in
G consisting of blue edges of price at most cj and of red edges of price at most cj−1.
But then (5) is violated, a contradiction. So the claim holds.

Conversely, consider any optimal solution to the STACKMST problem with price
function p(·) and a corresponding MST T . Let F = E(T ) ∩ B . We define a vector x

as follows: for e ∈ B , xi,e = 1 if e ∈ F and p(e) ≥ ci , otherwise xi,e = 0. It is easily
checked that the revenue given by p equals the objective function of the IP for x.
Moreover, constraints (4), (6) and (7) are clearly satisfied by x. Finally, note that if
x violates (5) for some e ∈ F , then e also violates the min-max formula given in
Lemma 2. This completes the proof. �

The rest of this section is devoted to the LP relaxation of the above IP, obtained
by dropping constraint (7). We show that the LP is tractable and that its integrality
gap matches essentially the guarantee given by the Best-out-of-k algorithm. (Let us
recall that the integrality gap of the LP on a specified set of instances I is defined as
the supremum of the ratio (LP)/(IP) over all instances in I .)

Proposition 2 The LP can be separated in polynomial time.

Proof For fixed j , (4) can be separated in polynomial time using standard techniques
for the forest polytope, as described e.g. in Schrijver [16, pp. 880–881]. Inequality
(5) can be rewritten as

∑

e∈P∩B

(1 − x1,e) ≥ xj,f .

Thus, for each fixed j and f = ab, (5) can be separated by finding a shortest ab-path
in the graph (V , (B ∪ Rj−1) − f ) where every red edge has weight 0 and every blue
edge e has weight 1 − x1,e. Finally, (6) can obviously be separated in polynomial
time. �

We first bound the integrality gap from above:
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Proposition 3 We have (LP) ≤ min{k,1 + lnb,1 + lnW } · (IP), where b denotes the
number of blue edges, and W = ck/c1 is the maximum ratio between red costs.

Proof Let x be any feasible vector for the LP. The value of the objective function for
x is thus

∑

e∈B
1≤i≤k

(ci − ci−1) xi,e.

Let i ∈ {1, . . . , k}, let C1, . . . ,C� be components of the graph (V ,Ri−1 ∪ B), and
denote by C

j

1 , . . . ,C
j

�j
the components of the subgraph of (V ,Ri−1) induced by Cj .

For every j ∈ {1, . . . , �}, we have

∑

e∈B[Cj
1 ∪···∪C

j
�j

]
xi,e =

∑

e∈δB(C
j
1 :Cj

2 :···:Cj
�j

)

xi,e.

(Here, for S ⊆ V , the notation B[S] means the set of blue edges with both endpoints
in S.) Indeed, this holds trivially if i = 1, since then each C

j
p is a vertex of Cj . For

i ≥ 2, for any blue edge f = ab that is internal to a component C
j
p of Cj (that is,

f ∈ B[Cj
p]), there exists an ab-path consisting of edges of Ri−1, and so (5) enforces

that xi,f ≤ 0.
Also, constraints (4) imply

∑

e∈δB(C
j
1 :Cj

2 :···:Cj
�j

)

xi,e ≤ �j − 1,

for every j ∈ {1, . . . , �}. We thus obtain

∑

e∈B

xi,e =
�∑

j=1

∑

e∈δB(C
j
1 :Cj

2 :···:Cj
�j

)

xi,e ≤
�∑

j=1

(�j − 1) = r(Ri−1 ∪ B) − r(Ri−1).

The number of blue edges in the ith MST computed by Best-out-of-k being exactly
r(Ri−1 ∪ B) − r(Ri−1) =: Ai , it then follows

∑

e∈B
1≤i≤k

(ci − ci−1) xi,e ≤
k∑

i=1

(ci − ci−1)Ai.

Letting q = maxi=1,...,k Ai · ci denote the revenue given by the Best-out-of-k algo-
rithm, we deduce

k∑

i=1

(ci − ci−1)Ai =
k∑

i=1

ci − ci−1

ci

Ai · ci ≤ q ·
k∑

i=1

ci − ci−1

ci

,
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and, letting Ak+1 = 0,

k∑

i=1

(ci − ci−1)Ai =
k∑

i=1

ci(Ai − Ai+1) =
k∑

i=1

Ai · ci

Ai − Ai+1

Ai

≤ q ·
k∑

i=1

Ai − Ai+1

Ai

.

As in the proof of Theorem 3, we have

k∑

i=1

ci − ci−1

ci

≤ min{k,1 + lnW }

and

k∑

i=1

Ai − Ai+1

Ai

≤ 1 + lnb.

Therefore,
∑

e∈B
1≤i≤k

(ci − ci−1) xi,e ≤ min{k,1 + lnb,1 + lnW } · q

≤ min{k,1 + lnb,1 + lnW } · (IP),

as claimed. �

Proposition 4 The integrality gap of the LP is

• k on instances with k distinct costs;
• �(lnW) on instances with maximum ratio between red costs W , and
• �(lnb) on instances with b blue edges.

Proof We already know from Proposition 3 that the integrality gap of the LP is
at most min{k,1 + lnb,1 + lnW }. We first by prove that the integrality gap is
at least k on instances with k distinct costs. To this aim, we define an instance
of STACKMST as follows: Choose an integer a ≥ 2 and let the vertex set of the
graph be V = {0,1,2, . . . , ak−1}. The graph has ak−1 blue edges, linking vertex
0 to every other vertex. The ith red cost is ci = ai−1. For i ∈ {1,2, . . . , k − 1},
the subgraph spanned by the red edges with cost ci is a disjoint union of ak−i−1

cliques, each of cardinality ai ; the vertex sets of these cliques are {1, . . . , ai}, {ai +
1, . . . ,2ai}, . . . , {ak−1 − ai + 1, . . . , ak−1}. Finally, there is a unique red edge with
cost ck , linking vertex 0 to vertex 1.

Consider an optimal solution of the STACKMST problem for the instance defined
above, and let T be a corresponding MST. Consider any blue edge e in T , of price ci ,
and let Ce be the unique component of (V −{0},Ri−1) that contains an endpoint of e.
No other blue edge of T has an endpoint in Ce, because otherwise one could replace
the edge e in T with an appropriate red edge of Ri−1 and obtain a new spanning
tree with weight strictly less than that of T , a contradiction. Thus, if e and f are
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two distinct blue edges of T , then Ce ∩ Cf = ∅. Noticing that the price given to e is
ci = ai−1 = |Ce|, we deduce that the revenue given by T is

∑

e∈B∩E(T )

|Ce| ≤ ak−1.

Moreover, a revenue of ak−1 is easily achieved, set for instance all blue edges of the
graph to the same price ci for some i ∈ {1, . . . , k}. Hence, (IP) = ak−1.

We now define a feasible solution x∗ for the LP. The point x∗ will have the prop-
erty that x∗

i,e = x∗
i,f for 1 ≤ i ≤ k and all e, f ∈ B . We thus let yi = x∗

i,e for e ∈ B .
The constraints on the yi ’s imposed by the LP are then:

ai−1yi ≤ 1, for 1 ≤ i ≤ k;
y1 + yi ≤ 1, for 2 ≤ i ≤ k;
y1 ≥ y2 ≥ · · · ≥ yk ≥ 0.

Set y1 = (a − 1)/a and yi = 1/ai−1 for 2 ≤ i ≤ k, which satisfies the above con-
straints. The value of the objective function of the LP for the point x∗ is

LP(x∗) =
∑

e∈B
1≤i≤k

(ci − ci−1)x
∗
i,e

= ak−1
(

a − 1

a
+

∑

2≤i≤k

(ai−1 − ai−2)
1

ai−1

)
= kak−1 − kak−2.

Therefore, the ratio LP(x∗)/(IP) tends to k as a → ∞.
Now, the same construction can be used to show that the integrality gap is �(lnW)

and �(lnb) on instances with ck/c1 = W and b blue edges, respectively. We explain
it in the case where the number of blue edges is fixed to some value b, the case where
the ratio ck/c1 is fixed is done similarly.

Take an instance as above, with a = 2 and k being the greatest integer such that
2k−1 ≤ b. Choose an arbitrary blue edge and add b − 2k−1 parallel blue edges to it
(so that the number of blue edges is exactly b). These extra blue edges have clearly
no influence on the value of (IP) and LP(x∗) (where x∗ is defined as before). Using
b < 2k , we deduce

LP(x∗)
(IP)

= k2k−1 − k2k−2

2k−1
= k

2
>

log2 b

2
,

and thus that the integrality gap is �(lnb), as claimed. �

To conclude this section, let us mention that we know of additional families of
valid inequalities that cut the fractional point used in the above proof. We leave the
study of those for future research.

Acknowledgements We thank Martine Labbé and Gilles Savard for preliminary discussions concerning
this problem, Martin Hoefer for his comments which led us to refine our approximability result. We are also
most grateful to the second anonymous referee for providing us with a much shorter proof of Theorem 3,
and for her or his many insightful remarks which led to an improved version of the paper.



144 Algorithmica (2011) 59: 129–144

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor. Comput. Sci.
237(1–2), 123–134 (2000)

2. Balcan, M.-F., Blum, A.: Approximation algorithms and online mechanisms for item pricing. In: Proc.
ACM Conference on Electronic Commerce (EC) (2006)

3. Balcan, M.-F., Blum, A., Manshour, Y.: Item pricing for revenue maximization. In: Proc. ACM Con-
ference on Electronic Commerce (EC) (2008)

4. Bouhtou, M., Grigoriev, A., van Hoesel, S., van der Kraaij, A.F., Spieksma, F.C.R., Uetz, M.: Pricing
bridges to cross a river. Nav. Res. Logist. 54(4), 411–420 (2007)

5. Briest, P., Hoefer, M., Krysta, P.: Stackelberg network pricing games. In: Proc. 25th International
Symposium on Theoretical Aspects of Computer Science (STACS), pp. 133–142 (2008)

6. Briest, P., Krysta, P.: Single-minded unlimited supply pricing on sparse instances. In: Proc. 17th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 1093–1102 (2006)

7. Cardinal, J., Demaine, E.D., Fiorini, S., Joret, G., Langerman, S., Newman, I., Weimann, O.: The
Stackelberg minimum spanning tree game. In: Proc. 10th International Workshop on Algorithms and
Data Structures (WADS). Lecture Notes in Computer Science, vol. 4619, pp. 64–76. Springer, Berlin
(2007)

8. Cardinal, J., Labbé, M., Langerman, S., Palop, B.: Pricing of geometric transportation networks. In:
Proc. Canadian Conference on Computational Geometry (CCCG), pp. 92–96 (2005)

9. Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R.: Combination can be hard: Approxima-
bility of the unique coverage problem. SIAM J. Comput. (2009, to appear)

10. Grigoriev, A., van Loon, J., Sitters, R., Uetz, M.: How to sell a graph: Guidelines for graph retail-
ers. In: Proc. Workshop on Graph-Theoretic Concepts in Computer Science (WG). Lecture Notes in
Computer Science, vol. 4271, pp. 125–136. Springer, Berlin (2006)

11. Guruswami, V., Hartline, J., Karlin, A., Kempe, D., Kenyon, C., McSherry, F.: On profit-maximizing
envy-free pricing. In: Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 1164–1173 (2005)

12. Hartline, J.D., Koltun, V.: Near-optimal pricing in near-linear time. In: Proc. Workshop on Algorithms
and Data Structures (WADS). Lecture Notes in Computer Science, vol. 3608, pp. 422–431. Springer,
Berlin (2005)

13. Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway
pricing. Manag. Sci. 44(12), 1608–1622 (1998)

14. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Com-
put. Syst. Sci. 43(3), 425–440 (1991)

15. Roch, S., Savard, G., Marcotte, P.: An approximation algorithm for Stackelberg network pricing.
Networks 46(1), 57–67 (2005)

16. Schrijver, A.: Matroids, trees, stable sets. In: Combinatorial Optimization. Polyhedra and Efficiency,
vol. B. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003). Chaps. 39–69

17. van Hoesel, S.: An overview of Stackelberg pricing in networks. Research Memoranda 042, Maas-
tricht: METEOR, Maastricht Research School of Economics of Technology and Organization (2006)

18. von Stackelberg, H.: Marktform und Gleichgewicht (Market and Equilibrium). Springer, Vienna
(1934)


	The Stackelberg Minimum Spanning Tree Game
	Abstract
	Introduction
	Related work
	Our results

	Basic Results
	Complexity and Inapproximability
	The Best-Out-Of-k Algorithm
	Linear Programming Relaxation
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


